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Abstract
In Part I of this paper, we identified and compared various schemes for trivalent
truth conditions for indicative conditionals, most notably the proposals by de Finetti
(1936) and Reichenbach (1935, 1944) on the one hand, and by Cooper (Inquiry,
11, 295–320, 1968) and Cantwell (Notre Dame Journal of Formal Logic, 49, 245–
260, 2008) on the other. Here we provide the proof theory for the resulting logics
DF/TT and CC/TT, using tableau calculi and sequent calculi, and proving soundness
and completeness results. Then we turn to the algebraic semantics, where both log-
ics have substantive limitations: DF/TT allows for algebraic completeness, but not
for the construction of a canonical model, while CC/TT fails the construction of a
Lindenbaum-Tarski algebra. With these results in mind, we draw up the balance and
sketch future research projects.
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Fig. 1 Truth tables for the de Finetti conditional (left) and the Cooper-Cantwell conditional (right)

1 Introduction

In Part I of this paper, we reviewed the motivations for a trivalent semantic treat-
ment of indicative conditionals, centered on the proposal made by de Finetti [13] and
Reichenbach [36, 37] to treat indicative conditionals as conditional assertions akin to
conditional bets. We singled out two de Finettian logics of the indicative conditional,
the first based on de Finetti’s table, paired with a notion of logical consequence as
preservation of non-Falsity (TT-validity), the other based on a close kin to de Finetti’s
table, the Cooper-Cantwell table, paired with the same notion of validity [10, 12].
These logics are called DF/TT and CC/TT, respectively. We repeat the truth tables of
the conditional operator in Fig. 1 and the definition of TT-validity below.

TT-validity X/TT provided every X-evaluation that makes all sentences of
T-true also makes T-true. In other words, if for every X-evaluation function
For 0 1 2 1 (where X specifies the interpretation of and other con-

nectives), for every sentence , 1 2 1 , then also 1 2 1 .

As easily seen from the tables, both conditionals are de Finettian in the following
sense: they take the value of the consequent when the antecedent is true ( 1), and
the value indeterminate when the antecedent is false ( 0). They differ when the
antecedent itself is indeterminate ( 1 2): whereas the DF conditional groups 1 2
with 0 in antecedent position, the CC conditional groups 1 2 with 1 instead. In both
logics (whether X=DF or CC), the non-conditional connectives ‘ ’, ‘ ’ and ‘ ’ are
interpreted according to the Łukasiewicz/de Finetti/Strong Kleene truth tables, where
negation swaps 1 and 0, mapping 1 2 to itself, and where conjunction and disjunction
are interpretable as min and max respectively. Although alternative tables are given
in Cooper [12] for disjunction and conjunction (see Part I of this paper, Section 6),
our focus remains on the standard interpretation of the connectives.

In Part I, it was pointed out that the resulting logics DF/TT and CC/TT share some
distinctive features. In particular, both satisfy Conditional Introduction and the law
of Import-Export, and both are connexive logics, supporting and the
inference from to . Moreover, both support unrestricted
commutation of the conditional with negation. This feature sets them apart from
other de Finettian logics, in particular Farrell’s [16] and further variants (called de
Finettian-Jeffrey in part I, after [22]).1 They differ foremost on Modus Ponens, which
is preserved in CC/TT but given up in DF/TT.

1As explained in part I, Farrell’s [16] F-variant differs from the Cooper-Cantwell table just on the entry
1 2 1 , where it returns the value 1 2: the resulting logic, F/TT, is also connexive, but does not support

full commutation.
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In this second part of our inquiry, we turn to an investigation of the proof theory
of DF/TT and CC/TT. We proceed in three main steps: in Section 2, we give sound
and complete tableau calculi for either logic; in Section 3, we present sound and
complete sequent calculi; in Section 4, finally, we examine the prospect for an alge-
braic semantics for both DF/TT and CC/TT. As we shall see, neither logic admits a
‘nice’ algebraic semantics, but there is a sense in which CC/TT, despite satisfying
Modus Ponens, falls even shorter than DF/TT in that regard. We give a discussion of
that result and compare both logics in Section 5.

2 Tableau Calculi

In this section, we introduce sound and complete tableau calculi for CC/TT and DF/TT.
Tableau calculi are a proof-theoretical formalism that is very close to the semantics. To
prove a sentence, tableaux employ trees that can be conceptualized as reverse truth
tables. In building a tableau, one starts from the assumption that certain sentences 0

have certain semantic values, and iteratively works out all the value assign-
ments to the sub-sentences of 0 that result from the initial assignment. In
the propositional case, this process always terminates after a finite number of steps,
resulting in either an open or a closed tableau: in the former case, the initial assign-
ment is possible according to the chosen semantics, whereas in the latter it is not.
Therefore, in order to prove that follows from a (finite) set of sentences in a
tableau system, one shows that all the tableaux resulting from the initial assignments
in which all the sentences in have a designated value but does not are closed.

2.1 Tableau Calculus for CC/TT

The CC/TT tableau calculus, in symbols CC/TTt, is given by the following tableau
construction rules:

Tableau rules are essentially versions of the truth-table semantics for the target logic,
in our case CC/TT. To see this, consider the first rule for the conditional, the one having

1 as premise. From this premise, one derives two nodes as consequences,
one labelled with 1 ; 1 and one labelled with 1 2 ; 1. But these two
consequences correspond exactly to the conditions for a conditional to have
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value 1 in the truth tables for the Cooper-Cantwell conditional: has value 1
in these tables if either both and have value 1, or if has value 1 2 and has
value 1 (see Fig. 1). Similar considerations apply to the other rules.

We now give a precise characterization of the tableaux generated according to the
above rules, and of CC/TTt-derivability.

Definition 2.1 – For every formula , the CC/TTt- -tableau of (for 0, 1 2,
or 1) is the tree whose root is , and that is obtained by applying the rules of
CC/TTt.

– For every finite set of formulae 0 , the CC/TTt- 0 -
tableau of (for 0, 1 2, or 1, and 0 ) is the tree whose root is

0 0 , obtained by applying the rules of CC/TTt.2

Since we are only concerned with the tableau calculus for CC/TT in this subsec-
tion, we suppress the label ‘CC/TTt’ whenever possible, to improve readability.

Definition 2.2

– A branch of an -tableau is closed if, for some formula , there are at least
two nodes in that have and in their labels, and . A branch is
open if it is not closed.

– An -tableau is closed if all its branches are closed, and open otherwise.

Definition 2.3 For every finite set of formulae of cardinality and every formula
, is CC/TTt-deducible from a , in symbols CC/TTt , if and only if all its
0 -tableaux are closed, where we use the indices 1 1 to range

over elements in 1 2 1 , and we set 0.

Before proving soundness and completeness for CC/TTt, we give a sample of how
to reason in this calculus. In particular, we prove (one direction of) the commutation
with negation in CC/TTt. The following two closed tableaux establish that
follows from in CC/TTt. The first tableau shows that cannot
have value 1 while has value 0.

2To ensure uniqueness in the definition of tableaux for more than one sentence, one should fix a convention
for the order in which the CC/TTt rules are applied. Nothing crucial hinges on this, so we don’t specify
any such convention for the sake of readability.
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The second tableau shows that cannot have value 1 2 while
has value 0.

The claim that follows from in CC/TTt is established in a
similar fashion.

We now prove that CC/TTt is sound and complete with respect to CC/TT-
validity.

Definition 2.4 A quasi-CC-evaluation is a non-total function from the formulae of
to 0 1 2 1 that is compatible with the CC truth tables.

More compactly, a quasi-CC-evaluation is a proper subset of a CC-evaluation. For
example, the function that sends and to 1 is a quasi- CC-evaluation.

Lemma 2.5 For every finite set 1 of formulae and every CC-evaluation
, the completed CC/TTt-tableau whose root is

1 1

is open, and all partial functions from sentences to 1 1 2 0 induced by its open
branches are quasi-CC-evaluations.

Proof By induction on the height of the tree.

– The tableau consisting only of the root 1 1 ; ; is open.
For suppose it is closed. Then, there are at least two sentences and s.t.

but , against the hypothesis that is a CC-evaluation:
no CC-evaluation assigns two different values to the same sentence, because CC-
evaluations are functions.

– Assume by the inductive hypothesis (IH) that the (incomplete) tableau whose
root is 1 1 ; ; and that has height is open, and that
its open branches induce quasi-CC-evaluations. Suppose also (in contradiction
with the lemma to be shown) that the tableau 1 of height 1 resulting by
applying one tableau rule to the terminal nodes of is closed. We reason by
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cases, according to the last rule applied to the nodes in a branch of (we only
do two cases):

Suppose a conjunction rule is applied to a node v occurring in
an open branch of height in , and all the branches of
height 1 resulting from this application are closed. There are
three possibilities: v has in its label 1, or 0, or

1 2.

– If v has 1 in its label, then there is exactly one
successor node v1 in the resulting branch 1 of height

, and v1 has 1 ; 1 in its label. If 1 is closed
as a result of the addition of v1, this means that there is at
least one node w, a predecessor of v, such that:

w has 0 in its label or

w has 1 2 in its label or

w has 0 in its label or

w has 1 2 in its label

Since we assumed that 1 is closed, has a node
(namely v) that has 1 in its label, and a node
(namely w) whose label is as in one of the cases just listed.
By IH, induces a quasi-CC-evaluation. But no quasi-
CC-evaluation assigns value 1 to a conjunction and a value
different from 1 to both conjuncts. Contradiction.

– If v has 0 or 1 2 in its label, the reasoning
is exactly analogous to the previous case.

Suppose a conditional rule is applied to a node v occurring in an
open branch of height in , and all the branches of height

1 resulting from this application are closed. There are three
possibilities: v has in its label 1, or 0, or

1 2.

– If v has 1 2 in its label, then there are exactly
two branches 1

1 and 2
1 of height 1 extending

with three successor nodes of v, call them v1 and v2, such
that:

v1 has 0 in its label

v2 has 1 2 in its label

Since we assumed that 1
1 and 2

1 are both closed,
then has two nodes w1 and w2, predecessors of v, such
that:

w1 has 1 or 1 2 in its label

w2 has 0 or 1 in its label
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By IH, induces a quasi-CC-evaluation. But no quasi-
CC-evaluation assigns value 1 2 to a conditional while
assigning any of the following pairs of values to its
antecedent and consequent respectively: 1 0 , 1 1 ,
1 2 0 , and 1 2 1 . Contradiction.

– If v0 has 1 or 0 in its label, the
reasoning is exactly analogous to the previous case.

Proposition 2.6 (Soundness) For every finite set of formulae and every formula :

if CC/TTt then CC/TT

Proof We prove the contrapositive. Suppose that CC/TT , for 1 .
Then there is at least one CC-evaluation such that 1 1 1 2
1 1 2 but 0. Then, by Lemma 2.5, the tree whose root is labeled

as

1 1 0

is open. Therefore, not all the trees whose root is labeled as

1 0

where 1 1 2 , are closed. But this means that CC/TTt .

We finally show that CC/TTt is complete with respect to CC/TT-validity (for
inferences with finite sets of premises).

Lemma 2.7 Every open branch of a completed CC/TTt-tableau induces a quasi-
CC-evaluation that has all the formulae appearing in the branch as its domain
and assigns to such formulae the values assigned in the labels appearing in the
branch.

Proof (Sketch) Let be a completed CC/TTt-tableau with an open branch. The
branch is finite and it has a unique terminal node v of the form . Consider now
the partial function that only sends to (i.e., that is constituted by the single pair

). This is clearly a quasi-CC-evaluation. Call this function 0 . Then construct
a new function 1 that simply adds to 0 every pair , where is in the
label of the predecessor of v in . More generally, let 1 be the function that

results from adding to 1 all the pairs of sentences and values (recall that functions
are extensionally construed as pairs) such that is in the label of the
predecessor of v in . Proceed in this fashion until the root of is reached. It is
easy to show that the resulting function (for 1 the length of ) is a quasi-CC-
evaluation.3

3More precisely, the construction of is a positive elementary definition that closes at ordinal stage .
That is a quasi-CC-evaluation follows by a straightforward induction, similar to the one used in the
proof of Lemma 2.5.
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Proposition 2.8 (Completeness) For every finite set of formulae and every
formula :

if CC/TT then CC/TTt

Proof We prove the contrapositive. Assume CC/TTt . By definition this means
that not all the CC/TTt-tableaux whose root is labeled as

1 0

are closed, where 1 1 2 . Therefore, at least one such tableau is open. Let
be an open branch in that tree. By Lemma 2.7, induces a quasi-CC-evaluation
such that

1 1 1 2 1 1 2 and 0.

Then can be extended to at least one CC-evaluation using Zorn’s Lemma. Call
one such evaluation . and agree on and , and therefore

1 1 1 2 1 1 2 and 0.

But this means that CC/TT .

2.2 Tableau Calculus for DF/TT

The tableau calculus for DF/TT, in symbols DF/TTt, is given by the rules of CC/TTt,
with the conditional rule replaced by the following one:

The notions of DF/TTt- -tableau, open and closed branch and open and closed
-tableau, and DF/TTt-deducibility (in symbols DF/TTt) are easily adapted from the

corresponding definitions for CC/TTt (Definitions 2.1–2.3).

Proposition 2.9 (Soundness and completeness) For every finite set of formulae
and every formula :

DF/TTt if and only if DF/TT

The proof is entirely similar to the proof of Propositions 2.6 and 2.8.
As mentioned at the beginning of Section 2, tableau calculi are very close to truth

table semantics. They are also quite informative: their construction determines all the
possible truth value assignments that follow from the hypothesis that a given infer-
ence is valid. However, tableau calculi are not a particularly convenient formalism
to work with. First, since tableau calculi are refutation calculi, in order to show that

follows from in a tableau system, one has to show that the hypothesis that
holds while doesn’t cannot be maintained. In a classical setting, this amounts to
showing that it is not the case that all the sentences in can be assigned value 1
while is assigned value 0 by the corresponding tableau. However, in CC/TT and
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DF/TT we have three values, two of which are designated, so this is not enough: we
have to exclude that all the sentences in can be assigned a designated value, that
is either 1 or 1 2, while is assigned value 0. And this requires to consider all the
possible combinations of assignments of values 1 and 1 2 to sentences in (keeping
the assignment of value 0 to fixed). Of course, as soon as contains more than
one sentence, showing that follows from requires more than one tableau—more
precisely, it requires 2 tableaux, for the cardinality of .

One might avoid this specific problem by considering the conjunction of all the
sentences in , in symbols , but this move would not really make the calculus
more convenient to work with: the single tableau corresponding to would be as
complex as the set of tableaux generated by considering all the possible assignments
of designated values to sentences in .

For these reasons, we now present another formalism to capture CC/TT- and
DF/TT-validity: many-sided sequent calculi, in particular three-sided sequent calculi.
Three-sided sequent calculi are a generalization of standard sequent calculi: instead
of building derivation trees labeled with sequents, the rules of the calculus generate
derivation trees labeled with triples of sets of sentences, called three-sided sequents.
Unlike tableaux, sequent calculi are not refutation calculi, and therefore any deriva-
tion of from establishes that is provable from . In addition, sequent calculi
handle arbitrary sets of premises, including infinite ones. They can also handle (possi-
bly infinite) sets of conclusions, and therefore generalize CC/TT- and DF/TT-validity
to multiple conclusions. All these advantages have little costs for the intuitiveness of
the calculus. Even though one cannot represent in a sequent calculus all the possible
outcomes of assigning a given value to a set of sentences, the sequent rules that we
are going to use are very close to the tableau rules, and mirror closely the evaluations
of their target sentences according to the CC and DF truth tables.

3 Three-Sided Sequent Calculi

In this section, we introduce sound and complete three-sided sequent calculi for
CC/TT and DF/TT. Since both CC/TT and DF/TT are super-logics of LP (they extend
the latter with a new conditional), we can obtain a sequent calculus by extending an
existing calculus for LP, in particular the three-sided sequent axiomatization of LP
provided by Ripley [38], itself drawing on techniques introduced by Baaz et al. in
[3].4 A three-sided sequent, or a sequent for short, is an object of the form

where , , and are sets of formulae. As above, we focus on the calculus for
CC/TT, and then indicate how to adapt it to the case of DF/TT.

4LP, for the ‘Logic of Paradox’, is a paraconsistent logic adopted in some approaches to the semantic
paradoxes. It is the sub-logic of both CC/TT and DF/TT that results from removing the conditional ( )
from the latter, and it is therefore quite natural to axiomatize CC/TT and DF/TT over axiomatizations of LP.
For more on LP and some of its developments, see Asenjo [2], Priest [33, 34], Goodship [18] and Beall [7].

223
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3.1 Three-Sided Sequent Calculus for CC/TT

Let CC/TTm be the calculus given by the following principles:

Axiom:
SRef

Rules:

cut-a cut-b

cut-c

0 1 2 1

0 1 2

1

0 1 2

1

Three-sided sequents have an immediate semantic reading. Consider a sequent
. Intuitively, sentences in should be thought of as having value 0, sen-

tences in should be thought of as having value 1 2, and sentences in should be
thought of as having value 1. This makes it easy to understand the rationale behind
the sequent rules. For example, consider the rule -0: if is thought of as having
value 1 (i.e., it appears in the rightmost position in a sequent), then is thought
of as having value 0 (and is therefore placed in the leftmost position in the sequent).
Similar considerations apply to all the other sequent rules.

A derivation of a sequent in CC/TTm is a tree labeled with sequents,
whose leaves are axioms of CC/TTm and whose remaining nodes are obtained from
their predecessors by applying the CC/TTm-rules. Let CC/TTm be a shorthand
for ‘there is a derivation of in CC/TTm’.

Definition 3.1 (Satisfaction and Validity) A C-evaluation satisfies a sequent
if:

– there is an s.t. 0, or
– there is a s.t. 1 2, or
– there is a s.t. 1.

A C-evaluation is a countermodel for a sequent if does not satisfy it.
A sequent is CC/TT-valid if it is satisfied by every CC/TT-evaluation.
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Let’s expand the notion of CC/TT-validity to allow for multiple conclusion, and
say that CC/TT if every CC-evaluation that makes all sentences of T-true
makes at least one sentence in T-true. The following lemma, adapted from [38], is
immediate from the definition of satisfaction and validity.

Lemma 3.2 For all sets of formulae and :

CC/TT if and only if is CC/TT-valid

Before establishing soundness and completeness for CC/TTm, we provide an
example of how one can reason with this calculus. More precisely, we show the equi-
valence of and within it. By the above lemma, this amounts to
deriving the sequents and

. In the following examples, we use the empty set symbol only in order
to make the derivations more readable. The following derivation establishes the first
sequent:

SRef

SRef

SRef

1

1

1
1 2

1 2

0

The following derivation establishes the second sequent:

SRef

SRef

SRef

0
0

0
1 2

1 2

1

We now proceed to establish soundness and completeness for CC/TTm.

Proposition 3.3 (Soundness) If CC/TTm , then DF/TT .

Proof By induction on the length of the derivation of .

To prove completeness, we prove the following more general result.

Proposition 3.4 For every triple of sets of formulae , , and , exactly one of the
two following cases is given:

– there is a derivation of in CC/TTm
– has a countermodel.
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Proof We employ the method of Schütte’s search trees, adapted to CC/TTm.5 For
every sequent , such method provides the means to construct a tree labeled
with sequents which either constitutes a derivation of in CC/TTm or can
be used to extract a countermodel to .

We begin by defining three inductive jumps, that extend a given directed tree
labeled with sequents by applying all the rules of CC/TTm. Formally, such a tree is
constituted by a pair N S , where N is the set of nodes and S is the set of edges,
together with a labeling function, that is, a function from N to their labels (that is,
sequents). To simplify our presentation, we identify nodes with their labels, and
pairs of nodes with pairs of labels. For every labeled directed tree N S , define the
following sets by positive elementary induction:

– v0 N and v v0 S if:
v N and

v is labeled with , and v0 with , or
v is labeled with , and v0 with , or
v is labeled with , and v0 with , or
v is labeled with , and v0 with , or
v is labeled with , and v0 with .

– v0 v1 N† and v v0 v v1 S† if:
v N and

v is labeled with , v0 is labeled with , and v1
with , or
v is labeled with , v0 is labeled with ,
and v1 with , or
v is labeled with , v0 is labeled with ,
and v1 with .

– v0 v1 v2 N‡ and v v0 v v1 v v2 S‡ if:

v N and v is labeled with , v0 is labeled with
,

v1 is labeled with , and v2 with , or
v N and v is labeled with , v0 is labeled with ,

, v1 is labeled with , and v2 with .

Informally, one can see the jumps , †, and ‡ as corresponding to the operations of
extending a given labeled tree to another labeled tree, where the sequents that are
added result from applying the rules of CC/TTm ‘upside down’, that is, going from a
sequent to all its possible premises according to the CC/TTm rules.6

5Search trees were originally introduced in Schutte [39]. See Pohlers [32, Chapter 4] for an application of
this method to one-sided sequents for classical logic, Baaz, Fermüller, and Zach [3, 4] for generalizations
and applications to -sided sequents, and Ripley [38] for an application to ST.
6The cut-rules are applied ‘simultaneously’, as in a single combined rule. See Ripley [38], p. 366.
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Now we construct a search tree for every sequent, that is, a labeled tree where the
above jumps are systematically applied as many times as possible. For every sequent

define (for a limit ordinal ):

N0

N 1 N N † N ‡

N N

S0

S 1 S S † S ‡

S S

Finally, define (where Ord is the class of all ordinals):7

N
Ord

N S
Ord

S

The tree N S is the search tree for . We say that N S is closed
if all its branches have finite length and have an axiom of CC/TTm as their topmost
nodes, and that it is open otherwise. Clearly, if N S is closed, this very tree
provides a proof of , since its topmost nodes are axioms and all the other
nodes are obtained from their predecessors by applying CC/TTm-rules. Now we show
that if N S is open, one can use it to construct a countermodel for .

Suppose N S is open, and let be an open branch in it. Let
be the sequent defined as the union of all the sequents in . More formally:

0 0 0

0

1 1 1

1

2 2 2

2

We now have to show that no formula is in (otherwise the branch
we are constructing might not provide a countermodel). Suppose that there is a for-
mula and there are sequents 0 0 0, 1 1 1, and 2 2 2 such
that 0 1 2. We reason by cases, in order to reach contradictions:

– Suppose is a propositional variable . Since 0 0 0, 1 1 1, and
2 2 2 all belong to the same open branch , then they occur at different

heights within . Suppose without loss of generality that 0 0 0 occurs
at height (counting upwards the nodes appearing in starting from the lowest
node, labeled with ), that 1 1 1 occurs at height , and
that 2 2 2 occurs at height (considering different orders would
not make a difference). Since 0 and all the rules of CC/TTm are context-
sharing,8 is ‘carried upwards’ during the construction of successive stages of

. Therefore, at height we have that 1 and 1, and at height
we have that 2, 2, and 2. But this means that

2 2 2 is an axiom of CC/TTm, and that is closed. Contradiction.

7Since we construct one search tree per sequent, a more perspicuous notation would indicate the depen-
dence of N on the starting sequent , for example by writing N (similarly for S
and the ordinal stages). We stick to the simpler notation for readability and because the sequent in question
is clear from the context.
8That is, sequent rules with more than one premises are applied to sequents with identical side-formulae,
i.e., sharing the sets of premises , , and . See Troelstra and Schwichtenberg [41, 64 and following]
for more details.
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– Suppose is a complex formula of complexity 1, and assume the claim as IH
for formulae of complexity up to .9 Suppose is , and that 0 0 0
occurs at height , that 1 1 1 occurs at height , and that 2 2 2
occurs at height . Then:

0 0 and 0 where 0 1 0 and 0 0 0 are
predecessors of 0 0 0 in N S , and one of them is in .

1 and 1 where 1 1 1 is a predecessor of
1 1 1 in N S , and is in .

2 2 and 2 where 2 2 2 and 2 2 2 are
predecessors of 2 2 2 in N S , and one of them is in .

Therefore, one of the following is the case:

(i) 1 0 0, where 1 , 0 , and 0 ; or
(ii) 1 2 2, where 1 , 2 , and 2 ; or

(iii) 0 1 2 , where 0 , 1 , and 2 ;

But all of (i)-(iii) contradict our IH. The cases of the other connectives are similar.

Now that we have shown that the open branch is such that the union sets of the
left-, middle-, and right-items in the sequents in have an empty intersection, that is
that no formula is in , we can proceed to extract a proper countermodel
from , , and . In order to construct our countermodel, we now define the
following partial function from formulae to 0 1 2 1 by simultaneous induction:

0
0 if and
1 2 if and
1 if and

1

0 if

is and 1 or
is and 0 or 0 or
is and 1 or 1 2

and 0

1 2 if

is and 1 2 or
is and 1 and 1 2

or 1 2 and 1
or 1 2 and 1 2

is and 0 or 1 2

1 if

is and 0 or
is and 1 and 1 or
is and 1 or 1 2

and 1

9Since the cut-rules only move formulae upwards, their case is covered by the case of logical connectives
done here in detail. See Ripley [38], pp. 374 and following for more details.
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By construction, is a quasi-C-evaluation,10 and it can be extended to a C-
evaluation that agrees with on . Therefore, for every ,

, and :

0 1 2 1

But since , , and , for every , , and :

0 1 2 1

Therefore, there is a C-evaluation that does not satisfy , namely .

A few observations on the functions are in order. First of all, the definition of
0 is in part arbitrary, as other choices of truth value assignments to propositional

variables would have been possible. In order to get a countermodel, one just needs a
function that (i) assigns to the propositional variables in , , and a value
that is incompatible with the corresponding position of such variables in the union
sequent (and clearly there is more than one choice here) and that (ii) is a quasi-C-
evaluation. Notice moreover that the construction of every is by simultaneous
induction, but every is inductive in , , and , since these sets occur
also negatively in the definition of 0 .11 This seems unavoidable: there seems to
be no definition of ‘having value 1 if not in , 1 2 if not in , and 0 if not in

’ that yields a function and that is positive in , , and . However, this
causes no problem as far as the existence and uniqueness of is concerned, since
the existence and uniqueness of , , and is immediate by their definition.

Finally, notice that we gave a simplified inductive construction for . More
specifically, we define directly as a function rather than as a positive elementary
set of pairs of sentences and values (then one would have had to show that such set is,
indeed, a function). Giving a proper positive elementary definition of would make
it clearer that its construction is by simultaneous induction, but would be significantly
less readable.

A completeness theorem for CC/TTm is now immediate from Proposition 3.4.

Proposition 3.5 (Completeness) For every set of formulae and every formula :

if CC/TT then CC/TTm .

3.2 Three-Sided Sequent Calculus for DF/TT

The three-sided sequent calculus for DF/TT, in symbols DF/TTm, is given by the rules
of CC/TTm, with the conditional rules replaced by the following ones:

0 1 2

10See Definition 2.4. That is a quasi-C-evaluation can be rigorously shown by an induction similar to
the one employed in the proof of Lemma 2.5.
11See Moschovakis [31, 17 and following].
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1

The notions of DF/TTm-derivability, as well as of satisfaction and validity of a
three-sided sequent are immediate from the corresponding definitions for CC/TTm
(Definition 3.1).

Proposition 3.6 (Soundness and completeness) For every set of formulae and
every formula :

DF/TTm if and only if DF/TT

The proof is entirely similar to the proof of soundness and completeness for
CC/TTm.

4 Algebraic Semantics

In this section, we explore the algebraic structures that correspond to DF/TT and
CC/TT, and investigate the prospects for an algebraic semantics of these two logics.
We begin by recalling some structures, and introducing the algebraic counterparts of
DF/TT. We start with DF/TT because, as will be clear in Section 4.3, algebraically it
is significantly more tractable than CC/TT. We use overlined uppercase Latin letters
( , , , ) to range over sets (supports of algebraic structures) in order to avoid
possible confusions with meta-variables for -formulae, and boldface characters
to indicate designated elements of the supports of algebraic structures (1, 0, 1 2, ),
in order to avoid possible confusions with truth values in truth table semantics.

4.1 De Finetti Algebrae

We begin by some basic definitions, which will be needed for the algebraic semantics
for DF/TT.

Definition 4.1 A structure 0 1 , where is a set and 0 1 , is a
distributive bounded lattice if for every :

– The lattice conditions are satisfied:

and (commutativity)
and (associativity)

and (absorption)

– The lattice is bounded:

0
1

– The lattice is distributive:
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For every lattice the order induced by is the binary relation
such that:

if and only if if and only if .12

An involution on a lattice is a unary operation s.t. for every :

If , then , and

A bounded, distributive, involutive lattice 0 1 is a De Morgan
algebra if for every :

, and

A De Morgan algebra 0 1 is Kleene if, for every :

A relative pseudocomplementation on a lattice is a binary operation s.t. for
every :

if and only if for all .

A relatively pseudocompletemented Kleene algebra 0 1 is an
Ł3 algebra if for every :

0 1

An Ł3 algebra 0 1 1 2 is de Finetti if:

There is a distinguished element 1 2 s.t. 1 2 1 2, and
There is an operation defined on s.t. 1 2 .13

Some remarks on de Finetti algebrae are in order. First, we have defined them
over Ł3-algebrae (also known as Łukasiewicz (or Moisil-Łukasiewicz) trivalent alge-
brae), but other options are possible, including MV3-algebrae.14 We have adopted
Ł3-algebrae both because they are simpler than MV -algebrae, and in order to better
relate our presentation and results to the elegant formalization and the results of [30].
Second, de Finetti algebrae have a paraconsistent flavour, suggested by the behaviour

12Notice that is transitive. Suppose that and . Then,
(these identities follow from the assumption that

, commutativity, distributivity, the assumption that , distributivity again, and absorption, in this
order). The proof for is similar. Therefore, .
13The definition of Ł3 algebrae follows Milne [30, 517-518], and so does the characterization of the
algebraic counterpart of the de Finetti conditional over them. We note that Milne considers algebrae of
conditional events, while we consider arbitrary supports. Nothing crucial hinges on this.
14See Gottwald [19, Ch. 9.2] and Malinowski [27, Ch. 5]. Indeed, while MV algebrae provide suitable
algebraic counterparts for every -valued Łukasiewicz logic (and MV-algebrae algebraically characterize
Łukasiewicz continuum-valued logic), Łukasiewicz algebrae only succeed in capturing the three- and
four-valued cases.
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of the element 1 2. Such flavour is more vividly expressed by noticing that they are
both special cases of LP algebrae. In the characterization offered by Pynko [35], a
Kleene algebra 0 1 is LP if it has an inconsistent proper filter on
its support, that is, if there is an s.t. for every and for some

(i) if and , then ,
(ii) if , then ,

(iii) both and .

It is easily seen that de Finetti algebrae are LP. Let be a de Finetti algebra with
support . The set 1 2 provides the required inconsistent proper
filter.

(i) is immediate, because is transitive.
As for (ii), assume that 1 2 and that 1 2 . By Definition 4.1, this
assumption entails that 1 2 and that 1 2 . But since we
have 1 2 1 2 1 2 by distributivity, we also have
1 2 1 2 by our assumption, that is, 1 2 .

As for (iii), notice that both 1 2 and 1 2 are in 1 2 .

4.2 Algebraic Semantics for DF/TT

In order to prove algebraic soundness and completeness for DF/TT, we construct the
Lindenbaum-Tarski algebra of a set of formulae, for DF/TTm-deducibility. Therefore,
we first isolate the relation of DF/TTm-provable equivalence (where ‘equivalence’ is
formalized via the DF-biconditional).

Definition 4.2 For every For, let df For For be the relation defined as
follows:

df if and only if DF/TTm

where denotes the de Finetti biconditional.

This definition, however, does not partition the set of formulae into equivalence
classes, but only into sets that have weaker closure conditions.

Lemma 4.3 In general, df is not an equivalence relation on For For.

Proof Reflexivity and symmetry hold, since DF/TTm , and if DF/TTm

, then also DF/TTm . However, transitivity fails, for otherwise
DF/TTm would be unsound (consider a DF/TT-evaluation in which 1,

1 2, and 0).

As the above proof shows, the failure of transitivity for DF/TTm-provable equiva-
lence is closely connected to the failure of Modus Ponens for DF/TT. However, even
though df is not an equivalence relation on For For, we will see that it is suf-
ficiently well-behaved to support an application of the Lindenbaum-Tarski method.
More specifically, due to failure of transitivity, df fails to partition For For into
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equivalence classes. Nevertheless, we can still use df to define sets of sets of for-
mulae which still support an application of the Lindenbaum-Tarski method, and
therefore a proof of algebraic completeness. This is done in the following definition.

Definition 4.4 For every For, let df denote the set of formulae that are
provably DF/TTm-equivalent to . The quotient induced by df on For, in symbols
For df, is the set of sets in which df subdivides For.

More formally, For df is the set of sets For DF/TTm

for some For . Since we are only concerned with de Finetti algebrae in this
subsection, we drop the superscript df and simply write , in order to improve
readability.

Definition 4.5 The de Finetti-Lindenbaum-Tarski algebra of is the structure

For 0 1 2 1

where:

0 1

1 2

As shown by Lemma 4.3, is not an equivalence relation, and the sets are
not equivalence classes. Therefore, there is no guarantee that every formula belongs
to exactly one of the elements in For . So, we have to prove that the operations
that characterize de Finetti-Lindenbaum-Tarski algebrae, that is , , , and
are actually well-defined, and do not depend on the choice of particular formulae:
otherwise , , , and might not be operations at all. This is done in the
following lemma.

Lemma 4.6 (Independence from representatives) For every set
For, the following holds:

– If , then .
– If and , then .
– If and , then .
– If and , then .

Proof We only show the cases of negation and conditional (the others are similar).
For the case of negation, suppose that there is a set For such that
but that it is not the case that . This means that DF/TTm

but DF/TTm . By the completeness of DF/TTm (Proposition 3.6), this
means that DF/TT but DF/TT . Let be any DF-evaluation
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that assigns value 1 or 1 2 to all the sentences in , value 1 or 1 2 to but
value 0 to (if there are no DF-evaluations that assign values 1 or 1 2
to all the sentences in , the claim is immediate). A biconditional is assigned value
0 by a DF-evaluation just in case that evaluation assigns value 1 to one side of the
biconditional and 0 to the other. Suppose without loss of generality that 1
and 0. Since is a DF-evaluation, 0 and 1. But then

0, against our supposition.15

For the case of the conditional, suppose that there is a set For
such that and but that it is not the case that

. This means that DF/TTm and DF/TTm but DF/TTm

. Again by the completeness of DF/TTm (Proposition 3.6),
this means that DF/TT and DF/TT but DF/TT

. Let be any DF-evaluation that assigns value 1 or 1 2 to all the sentences
in , value 1 or 1 2 to and to but value 0 to
(if there are no DF-evaluations that assign values 1 or 1 2 to all the sentences in ,
the claim is immediate). As noted above, a biconditional is assigned value 0 by a DF-
evaluation just in case that evaluation assigns value 1 to one side of the biconditional
and 0 to the other. Suppose without loss of generality that 1 and

0. Since is a DF-evaluation, 1 and
0. But then 0, against our supposition.

Lemma 4.7 For every For, is a de Finetti algebra.

Proof It is easy to see that the properties of distributive bounded lattices hold for
. We do just one case of distributivity in detail.

definition of

definition of

logic

definition of

definition of

The line labeled with ‘logic’ abbreviates the fact that the corresponding identity is
proven by the fact that DF/TTm .

As for the involution, suppose that , where is the partial order
induced on For df by and . By Definition 4.1, this means that

. However, and have the same DF truth table, and
are DF/TTm-provably equivalent. Therefore, in particular, DF/TTm

15Notice that the above reasoning breaks down for CC/TT, due to the different truth table for the condi-
tional (and hence the biconditional). More specifically, a biconditional is assigned value 0 by a
CC-evaluation if that evaluation assigns value 1 or 1 2 to one side of the biconditional and 0 to the other. In
the case of a CC-evaluation that assigns value 1 2 to and 0 to , we have that 0
but 1 2. See also Lemma 4.18 below.
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. It follows that inherits the features of in , and thus the
claim is established by contraposition. More precisely:16

iff

iff DF/TTm

iff DF/TTm

iff DF/TTm

iff DF/TTm

iff

iff

The second constraint on involution is also satisfied, since DF/TTm .
The De Morgan and Kleene properties, as well as the defining equation of , are

proven in a similar way.

We now provide algebraic counterparts of the notions of evaluation and TT-
consequence. More precisely, we provide a local notion of algebraic TT-consequence
(TT-consequence with respect to a single de Finetti algebra) and a global one (TT-
consequence with respect to a class of de Finetti algebrae). This is done in the next
two definitions.

Definition 4.8 Let be a de Finetti algebra with support . A -evaluation is a
function For s.t.:

Definition 4.9 For every class of de Finetti algebrae D, every de Finetti algebra
D, and every set For:

is a -consequence of , in symbols if for every -evaluation , if
for every , 1 or 1 2, then 1 or 1 2.

is a D-consequence of , in symbols D , if for every D, is a
-consequence of .

Notice that, even though de Finetti algebrae include an algebraic counterpart of
the Łukasiewicz trivalent conditional, the latter is not used in defining an algebraic

16Note that the following reasoning does not rely on uses of Modus Ponens in DF/TTm, but can be carried
out using the soundness and completeness of the calculus DF/TTm.
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evaluation for de Finetti algebrae (and it is not going to be used to construct specific
algebraic models of DF/TT either). The reason behind this choice is that we want
to isolate the de Finetti conditional, and the respective TT-logic, without including
extraneous connectives (such as the Łukasiewicz conditional). However, it would be
possible to expand our definition of algebraic evaluations and algebraic consequence
to include the Łukasiewicz trivalent conditional, and prove the relative algebraic
soundness and completeness theorems by adding suitable multi-sequent rules to
DF/TTm.

We can finally use the structures introduced above, as well as the algebraic notions
of consequence, to establish an algebraic soundness and completeness result. This is
done in the next two results.

Lemma 4.10 For every set For:

DF/TTm if and only if

Proof sketch The left-to-right direction is proven by induction on the length of
derivations in DF/TTm. As for the right-to-left direction, suppose that DF/TTm .
By Proposition 3.4, the sequent has a countermodel, that is, there is a func-
tion For 0 1 2 1 s.t. for every , 1 2 or 1, but 0.17

Let be the set of propositional variables in . Let be the partial function
For For df defined as follows:

0 if and 0
1
2 if and 1 2
1 if and 1

By Zorn’s Lemma, can be expanded to a total function obeying the clauses of
Definition 4.8, i.e., a DF-evaluation.18 By Lemma 4.7, is a -evaluation, and
by construction for every , 1 or 1

2 , but 0 . This shows that
, as desired.

Proposition 4.11 (Algebraic soundness and completeness) Let D be the class of all
the de Finetti algebrae. For every set For:

DF/TTm if and only if D

17Observe that the range of is the usual value space of de Finetti evaluations, that is, the set 0 1 2 1 ,
not the set of designated elements 0 , 1 2 , and 1 of .
18More specifically, one first observes that is a quasi-DF-evaluation. It is easy to check that the collection
of quasi- DF-evaluations and DF-evaluations forms a partially ordered set , induced by the inclusion
relation ( ). Moreover, every totally ordered subset of contains an upper bound, that is a quasi-
DF-evaluation or a DF-evaluation which is not extended by any other element in . By Zorn’s Lemma,
then, itself contains a maximal element, i.e., a quasi-DF-evaluations or a DF-evaluation s.t. .
It is then immediate to observe than is a DF-evaluation and not a quasi-DF-evaluation, and hence that

, for otherwise it would be itself expanded by another element in , and therefore it would not be
maximal.
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Proof sketch The left-to-right direction is straightforward. As for the right-to-left
direction, suppose that DF/TTm . By Lemma 4.10, this entails that ,
which in turn entails that D , as desired.

It should be noted that the proof of algebraic completeness just given is not, strictly
speaking, a genuine algebraic proof: it is parasitic on the Schütte-style completeness
proof given in the previous Section 3.1.19 More precisely, the Schütte-style proof
is used to construct a countermodel based on the de Finetti algebra with just three
elements, 0, 1 2, and 1, which is then expanded to an evaluation based on . A
typical algebraic proof would proceed by establishing a canonical model theorem;
however, DF/TT does not seem to support this result. We can explain the specific
features of the completeness theorem for DF/TT as follows.20

Lemma 4.10 and Proposition 4.11 entail that if and only if D .
While the right-to-left direction of this biconditional is not surprising,21 its left-to-
right direction yields that follows from in the specific de Finetti algebra
just in case follows from in the class of all de Finetti algebrae. That is, the ques-
tion of whether is a consequence of in all de Finetti algebrae is reduced to the
question of whether is a consequence of in . However, this appears less
surprising if one considers how is constructed: in fact, is built using the
very sentences that make up the target inference from to .22 Indeed, algebraic
completeness proofs typically establish even stronger results, i.e., they establish a
canonical model theorem. Such a theorem guarantees that there is exactly one eval-
uation (in our case, it would be a de Finetti (algebraic) evaluation) which assigns
the designated value to all the elements of such that assigns the designated value
to if and only if D . That is, rather than reducing the question of whether

is a consequence of in all algebrae of a certain kind to the question of whether
is a consequence of in a single algebra of that kind, a canonical model theorem

reduces the former question to the question of whether has a designated value in
a single evaluation. And this is a much stronger result because, in order to establish
that , one has to consider all the de Finetti algebraic evaluations based on

, whereas if a canonical model were available, one would just need to consider
one such evaluation (a particularly informative and ‘canonical’ one). This happens,
for example, in proofs of algebraic completeness for classical logic (with respect to
the class of all Boolean algebrae), and for several other logics as well. Many of these
logics are also algebraizable.

The situation is visualized in Fig. 2: a circle is an algebra, a dot in a circle is an
evaluation based on that algebra, and the collection of circles is a class of algebrae.
Our completeness result establishes that, for every inference, there is one circle such

19See the proof of Proposition 3.4.
20We thank an anonymous referee for prompting us to comment on this issue.
21Lemma 4.7 establishes that is a de Finetti algebra, and hence D, as in Proposition 4.11
we explicitly assume that D is the class of all de Finetti algebrae.
22There are immediate parallels outside of abstract algebraic logic if one looks at how Henkin models are
defined in standard completeness proofs for pure classical logic, or if one considers canonical models in
completeness proofs for normal modal logics.
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Fig. 2 A graphical representation of the evaluation of inferences in classes of algebrae.

that that inference is valid in all the circles if and only if it is valid in that circle (which
in turn requires considering all the dots in that circle). A canonical model theorem
establishes a much stronger claim, namely that for every inference there is one single
dot in one of the circles such that that inference holds in all the circles if and only if
its conclusion receives the designated value in that dot.

Crucially, however, proving a canonical model theorem typically requires Modus
Ponens. Indeed, an attempted proof of a canonical model theorem for DF/TT breaks
down exactly where Modus Ponens is required. In absence of Modus Ponens, only
the weaker result that if and only if D holds. However, this
is enough for our purposes, that is proving algebraic completeness for DF/TT. In
the next subsection, we will see that things do not work so well for CC/TT and the
TT-logics of Jeffrey conditionals more generally.

We conclude this subsection with a brief discussion of the prospects for a full
algebraizability of DF/TT.23 In this respect, however, DF/TT reveals non-negligible
limitations. Let’s start with some preliminary definitions.

Definition 4.12

– Let an equation, in symbols , be a pair of formulae of . The set of all
equations is therefore For For. A set of equations, i.e., a subset of For For,
is denoted by .

– Let be a de Finetti algebra, and let be a set of equations.
validates the equational inference from to , in symbols ,
if for every -evaluation if, if for every equation , ,
then .24

– Let D be a class of de Finetti algebrae. D validates the equational inference from
to , in symbols D , if for every D, .

We can now formulate the notion of algebraizability.

23The notion of algebraizability (introduced by Blok and Pigozzi [8]) generalizes the link between a logic
and its algebraic semantics, imposing stricter conditions than those required for algebraic completeness.
See also Herrmann [20] and Font [17, Chapters 2 and 3].
24Informally, validates the equational inference from to if every de Finetti evaluation based
on that satisfies all the equations in , also satisfies .
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Definition 4.13 A logic L is algebraizable if there are a class of algebrae A and
functions For For For and For For For s.t. for
every For:25

(A1) L if and only if A

(A2) A

(A1) is a generalization of algebraic completeness, where the right-hand side
expresses in the object-language the requirement that has a designated value when-
ever all the sentences in do.26 (A2) ensures that the solvability of equations is fully
captured by some formula of the object-language.27

However, (A1) and (A2) do not sit well with the conditional of DF/TT. In the con-
text of DF/TT, the right-hand side of (A1) expresses that whenever all the sentences
in have value 1 or 1

2 , so does . A plausible formalization is obtained by letting
be . D then becomes

D

Define as For . (A2) becomes

D

which, however, does not express the idea that and have the same value whenever
holds in DF/TT. In fact, it is not the case that, in order for to have

the same value as , has to have the same value as
; an evaluation such that 1 and 1 2 provides a counterexample.

This translates into the algebraic semantics, considering a de Finetti algebra and
an algebraic evaluation based on s.t. 1 and 1

2 (for 1, 1
2 ).

Of course, this observation only tells us that does not express the fact that
and have the same value—which is not surprising, given the 1- and 1 2-rows

of the truth table of the de Finetti conditional. However, the idea of mapping identity
of semantic values to a formula that expresses ‘having a designated value’ seems
at odds with the conditional of DF/TT, because DF/TT does not distinguish between
1 and 1 2 when it comes to designatedness, nor does its conditional. In a tolerant-
tolerant semantics, validity (and the corresponding conditionals) does not depend on
the identity of the semantic values that are preserved from premises to conclusion,
but on their similarity: 1 and 1 2 are not identical, but similar enough for DF/TT

25Let ‘ ’ be a shorthand for For For .
26For example, consider the case of classical logic and Boolean algebrae. Letting be the function defined
as , and B be the class of Boolean algebrae, B becomes B

, which formalizes the idea that whenever every sentence in has value 1, so does .
27Consider again classical logic and Boolean algebrae. Classically, and have the same value just in
case m (where m denotes the material biconditional) has value 1. Letting be s.t. m

For , B becomes B m , which
expresses the idea that and have the same value whenever the corresponding biconditional holds (i.e.
has value 1) in classical logic.
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not to distinguish them. But condition (A2) can only be satisfied via a formula that
captures a notion of validity based on the identity of semantic values.

This does not show that DF/TT is not algebraizable: here, we leave the question
open. However, the above observations suggest a possible strategy to prove non-
algebraizability: if one can show that a truth-function expressing identity of truth
values is not definable in the truth table semantics for DF, this would translate into
the algebraic semantics, and establish non-algebraizability.28

4.3 An algebraic Semantics for CC/TT?

Can we provide a proof of algebraic completeness for CC/TT employing the
Lindenbaum-Tarski method, as we did for DF/TT? The CC/TT-conditional appears
better-behaved than the DF/TT one—in particular because it obeys Modus Ponens—
so this would appear prima facie possible.

Let us try to apply the Lindenbaum-Tarski method to CC/TT. First, we need an
algebraic counterpart of the Cooper-Cantwell conditional. This is provided by the
following definition.

Definition 4.14 An Ł3 algebra 0 1 1 2 is Cooper-
Cantwell if:

There is a distinguished element 1 2 s.t. 1 2 1 2, and
There is an operation defined on s.t. w w , where
w is a shorthand for 1 2.

We then work towards the construction of a Lindenbaum-Tarski algebra for
CC/TT.

Definition 4.15 For every For, let c For For be the relation defined as
follows:

c if and only if CC/TTm

Since Modus Ponens holds in CC/TT, the relation of CC/TTm-provable equiva-
lence seems better behaved than the one defined for DF/TTm.

Lemma 4.16 c is an equivalence relation on For For.

Proof Reflexivity holds since CC/TTm . Symmetry also holds, since if
CC/TTm , then also CC/TTm . Finally, transitivity holds as well,

28This proof strategy seems simpler and more informative than a proof via Isomorphism Theorems, which
are the standard results employed to prove non-algebraizability (see [17]). Another open question is
whether DF/TT is algebraizable over other logics. A natural choice would be Łukasiewicz’s trivalent logic
(with a TT-notion of validity), because de Finetti algebrae are defined over Ł3 algebrae. There are reasons
to expect a positive result, namely that the Łukasiewicz trivalent conditional can be used to express the
identity of semantic values, e.g. via .
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because if CC/TTm , and CC/TTm then CC/TTm

as well. These equivalences are quickly established semantically, i.e., considering
CC/TTm rather than CC/TTm, by the completeness of CC/TTm.

We now have an equivalence relation, so we can use it to partition the set of
formulae into equivalence classes.

Definition 4.17 For every For, let c denote the equivalence class of
induced by c . The quotient induced by c on For, in symbols For c , is the set of
equivalence classes induced by c .

Since we only work with Cooper-Cantwell algebrae in this subsection, we drop
the superscript cc again to improve readability, without risks of confusion. Now, in
order to proceed with the proof of algebraic completeness, we would have to define
a Cooper-Cantwell version of a Lindenbaum-Tarski algebra. Such a structure would
look as follows:

For c 0 1

where:

0 1

1 2

However, the construction is blocked, because some of its defining operations
turn out to be not well-defined. In particular, the Cooper-Cantwell conditional is not
substitutive with respect to negation.

Lemma 4.18 There are sets For s.t.

but it is not the case that

Proof It is sufficient to set , , and .

This lemma shows that the process of providing an algebraic semantics (via the
standard Lindenbaum-Tarski method) for CC/TT stops here: it does not even get off
the ground.

In fact, this negative result is more general: it applies to every Jeffrey con-
ditional. Recall that Jeffrey conditionals are required to obey the condition that

1 0 1 2 0 0. Now, the above proof employs exactly the cases in
which a conditional has an antecedent with value 1 and a consequent with value
0, and an antecedent with value 1 and a consequent with value 1 2. Therefore, no
Jeffrey conditional is substitutive with respect to negation—under a TT-notion of
validity, and a Strong Kleene interpretation of conjunction and negation. In turn, this
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means that no ‘ J-Lindenbaum-Tarski algebra’, where ‘J’ is any Jeffrey conditional,
is well-defined, and therefore that no algebraic semantics (via the Lindenbaum-Tarski
method) is available for any TT-logic of a Jeffrey conditional.

5 General Discussion

This two-part paper has reviewed the main motivations for a trivalent semantics for
indicative conditionals, interpreting them as conditional assertions, and defining their
truth conditions in analogy with the conditions that settle the winner of a conditional
bet (i.e., the bet or assertion is declared void when the antecedent is false). Although
the idea goes back to de Finetti [13], and Reichenbach [36, 37], there have been few
explorations of the logics induced by the adoption of that semantic scheme. Beside
expounding the historical roots of trivalent semantics for conditionals, our paper has
given a systematic survey of the different logics that emerge by (i) choosing a truth
table for the conditional operator in agreement with the above rationale, and (ii) deter-
mining a specific notion of validity (one vs. two designated truth values, pure vs.
mixed consequence relations).

As reviewed in Part I, the trivalent approach yields a fully truth-functional seman-
tics with attractive logical and inferential properties. It also provides the conceptual
foundations for a probabilistic theory of assertability and reasoning with condition-
als along the lines of Adams [1]. For simple conditionals, combining our semantics
with defining the assertability of a sentence as the conditional probability that A
is true, given that it has a classical truth value, immediately yields Adams’ Thesis
that . This property highlights the potential of the trivalent
approach for guiding an account of the epistemology of conditionals, and explain-
ing how people reason with them (e.g., [5, 6]). While the semantics of the trivalent
conditional is factual—that is, its truth value is a function of matters in the actual
world—no such limits are imposed on the scope of the probability functions in judg-
ments of assertability (e.g., can be practically unverifiable, but the conditional may
still be highly assertable).

With respect to the above challenges (i) and (ii), it quickly transpires that any alter-
native to a tolerant-to-tolerant (TT-) notion of validity would be either too strong (in
the sense of licensing undesirable inferences such as implying the converse cond-
tional) or too weak (in the sense of violating the Identity Law and not having
sentential validities). Only the Cooper-Cantwell conditional, where indeterminate
antecedents are exactly treated like true ones, satisfies both the full Deduction The-
orem and commutation with negation. For conceptual, empirical and logical reasons
(the conditional is essentially interpreted as making an assertion upon supposing the
antecedent), these are eminently reasonable properties, apparently favoring CC/TT as
the best trivalent logic of the indicative conditional.

The results of Part II nuance this judgment. For both DF/TT and CC/TT we can
develop sound and complete calculi based on tableaux (Section 2) and three-sided
sequents (Section 3). The latter calculi have the advantage of being simpler and
more direct: unlike tableau calculi, they do not establish that an inference is valid
by showing that it is impossible to assign a designated value to the premises and an
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undesignated value to the conclusion. Moreover, many-sided sequent calculi make it
easier to handle inferences with multiple conclusions, as well as inferences involving
infinite sets of sentences.

As soon as we consider the algebraic semantics, however, differences between
DF/TT and CC/TT emerge. While provable equivalence fails to be transitive and there-
fore induces no equivalence relation for DF/TT (Lemma 4.3), we can still use this
relation to define a Lindenbaum-Tarski algebra and to show an algebraic soundness
and completeness theorem (Proposition 4.11). In other words, can be derived from

using one of the above calculi (e.g., many-sided sequents) if and only if a con-
sequence relation holds between and in the associated de Finetti algebrae. The
failure of Modus Ponens for DF/TT, however, blocks the construction of a canonical
algebraic model.

Things look bleak, by contrast, for CC/TT and other TT-logics based on a Jeffrey
conditional. While provable equivalence induces an equivalence relation for these
logics, the construction of a Lindenbaum-Tarski algebra does not get off the ground
because provable equivalence fails to be substitutive under negation. More precisely,
the Cooper-Cantwell biconditional falls short of expressing CC/TT-equivalence
since CC/TT . Which means that there is not, and cannot be, a
fruitful standard algebraic treatment of Jeffrey conditionals. In fact, this is grounded
in a defining property of Jeffrey conditionals: to preserve Modus Ponens and to
yield a full Deduction Theorem, a trivalent conditional based on the “defective” truth
table needs to obey 1 0 1 2 0 0. It is exactly this property which
makes substitution under negation fail (Lemma 4.18), and prevents a proper algebraic
semantics for Jeffrey conditionals.

Clearly, the failure of substitution under negation is closely related to the failure
of contraposition in Jeffrey conditionals—an inference that does not fail in DF/TT.
Indeed, the same evaluation provides the counterexamples employed in proving both
Proposition 5.6 (Part I) and Lemma 4.18 (Part II). So it turns out that what has been
a strength of Jeffrey tolerant-tolerant logics, and CC/TT in particular, at the level
of desirable conditional principles, comes at the price of the algebraic semantics.
Importantly, the lack of an algebraic semantics is not a mere technical fact, but it has
philosophical consequences as well. In particular, in every Jeffrey tolerant-tolerant
logic, even if it is the case that , the same equivalence does not hold in
general for logically complex sentences that result by uniform substitutions of and

(see Lemma 4.6 for a formally precise version of this property). Therefore, Jeffrey
conditionals do not provide a workable notion of equivalence.

Of course, the limitations of Jeffrey conditionals just reviewed arise from the
combination of the semantics of Jeffrey conditionals, TT-validity, and Strong Kleene
conjunction, disjunction, and negation: one might therefore wonder whether they
can be improved on by altering some of these parameters. However, as the results
of Part I show, adopting an alternative to TT-validity does not seem promising.
As for the semantics of the other connectives, in part I we noted that Cooper
adopted alternative truth tables for conjunction and disjunction, while retaining the
K3 table for negation (see also [9, 14] and [21, §7.19, 1044 and following]). This
modification gives up some classical properties, such as the inference from to

(set 1 2 and 0). With regard to the algebraic semantics,
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the difficulties raised in the previous section may not easily be overcome as a
result.29

Alternatively, one might inquire into what happens to the interaction of Jeffrey
conditionals with a non-K3 negation. To be sure, the K3-negation squares particu-
larly well with the philosophical motivation for de Finettian conditionals: when a
conditional assertion is “called off” because is false, the same should
happen for the negation of that assertion (i.e., the sentence , thanks to
the commutation scheme). Nonetheless, it might be worth investigating how Jef-
frey logics (keeping a tolerant-to-tolerant notion of validity) fare when coupled with
what [11] call a “Gentzen-regular” negation, that is a negation obeying the Gentzen
sequent calculus rules. While a Gentzen-regular negation might avoid some of the
above problems, it would lose the commutation of conditional and negation, and the
attached connexive principles (see Subsections 5.2 and 5.3 of Part I). In conclusion,
there seem to be structural limitations, or at least unavoidable tradeoffs, that affect
Jeffrey conditionals, when it comes to their interaction with other connectives.

We therefore believe that it is not easy to justify a clear preference between
the two logics CC/TT and DF/TT that we have isolated as most promising amongst
trivalent logics of indicative conditionals. Both have attractive properties, both have
limitations—but they agree in essential properties such as the valuation of classical
sentences, the Import-Export principle, their connexive nature, and the connection to
a theory of assertability. To solve the limitations highlighted throughout the paper,
one would probably have to give up one or more of these features. So while there
is perhaps no perfect trivalent semantics for indicative conditionals, they need to be
considered carefully between two-valued truth-functional logic and modal logics of
conditionals. In any event, they give rise to a promising research program, and we
shall support this claim by sketching some future projects that build on our work in
this paper.

First, we would like to extend the current framework to predicate logic and to
investigate how the trivalent conditionals fare in that context, including how they
interact with a naı̈ve or a compositional truth predicate. Second, we would like to
apply trivalent semantics to McGee’s famous challenge to Modus Ponens, applying
our accounts of logical consequence and probabilistic assertability [29, 40]. Third,

29A similar application of the Lindenbaum-Tarski method would also likely fail if one replaces strong
Kleene conjunction and disjunction with Cooper’s quasi-conjunction and quasi-disjunction (see Part I,
Section 6), because it only depends on features of the conditional and negation (see Lemma 4.18). How-
ever, we don’t have proper algebraic counterparts of Cooper’s connectives, therefore we can only advance
this claim as a conjecture. In particular, some features of Cooper’s connectives show that they cannot
receive their standard algebraic interpretation. Consider the failure of quasi-disjunction introduction. Stan-
dardly, a disjunction is interpreted as the maximum of the two disjuncts, in some order. In a bounded
lattice, this means that if an element has a position with respect to the top element, in the order induced
by the lattice, then for every element , max has a position which is at least as close to the top ele-
ment as the position of . But this feature seemingly has to fail for an algebraic representation of Cooper’s
quasi-disjunction, for it corresponds to disjunction introduction. The failure of negated quasi-conjunction
introduction (i.e., that the inference from to is not TT-valid for Cooper’s quasi-conjunction)
seems to have even more far-reaching consequences, for it also involves the involution defined on the
corresponding lattices.
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one should review the intuitions and inference schemes which fuel connexive logics
(e.g., Aristotle’s Thesis, Boethius’ Thesis) from a trivalent perspective, and conduct a
more detailed comparison. Fourth, we can use our theory to respond to recent attacks
on Import-Export (e.g., [28]) from a trivalent perspective.

Finally, there is the question of how a trivalent semantics integrates into a gen-
eral theory of conditionals, including those in the subjunctive mood. Extending a de
Finettian treatment of indicative conditionals yields the consequence that all condi-
tionals with false antecedents—in particular, all counterfactuals—have indeterminate
truth value. The difference between them is only a difference in assertability (because
their conditional probabilities Pr can be different and will typically vary with
context). This perspective is close to Jeffrey’s view which qualifies counterfactual
questions either as “nonsense“ or as “colorful ways of asking about conditional prob-
abilities” [23, 164]. On this picture, the traditional view that indicative conditionals
are epistemic and counterfactuals are metaphysical [15, 24–26] would be reversed:
while indicatives are factual statements (i.e., conditional assertions) with non-trivial
truth conditions, counterfactuals come out as having trivial truth conditions and dif-
fer only in their epistemic import, that is, their assertability conditions. Whether the
proponent of a trivalent semantics for indicative conditionals should be committed to
such far-reaching philosophical consequences is, of course, a question that we have
to postpone to future research.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Adams, E.W. (1975). The logic of conditionals. Dordrecht: Reidel.
2. Asenjo, F.G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 16, 103–105.
3. Baaz, M., Fermüller, C., Zach, R. (1992). Dual systems of sequents and tableaux for many-valued

logics. Technical Report TUW-E185.2-BFZ.2–92.
4. Baaz, M., Fermüller, C., Zach, R. (1993). Systematic construction of natural deduction systems for

many-valued logics: Extended report. Technical Report TUW- E185.2-BFZ.1–93.
5. Baratgin, J., Over, D., Politzer, G. (2013). Uncertainty and the de Finetti tables. Thinking &

Reasoning, 19, 308–328.
6. Baratgin, J., Politzer, G., Over, D.E., Takahashi, T. (2018). The psychology of uncertainty and three-

valued truth tables. Frontiers in Psychology, 9, 1479.
7. Beall, J.C. (2009). Spandrels of Truth. Oxford: Oxford University Press.
8. Blok, W.J., & Pigozzi, D. (1989). Algebraizable Logics. Volume 77 of Memoirs of the American

Mathematical Society. American Mathematical Society.
9. Calabrese, P. (2002). Deduction with uncertain conditionals. Information Sciences, 147, 143–191.

245

http://creativecommonshorg/licenses/by/4.0/
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