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Abstract This article presents two learning processes in order to explain how children
at an early age can transform a complex sensory input to concepts and categories. The
first process constructs the perceptual structures that emerge in children’s cognitive
development by detecting invariants in the sensory input. The invariant structures
involve a reduction in dimensionality of the sensory information. It is argued that this
process generates the primary domains of space, objects and actions and that these
domains can be represented as conceptual spaces. Once the primary domains have been
established, the second process utilizes covariances between different dimensions of the
domains in order to identify natural clusters of entities. The clusters are then are used to
determine concepts as regions in the spaces. As an application, the processes are used to
resolve the so-called ‘complex first paradox’ that emerges from the fact that children, in
general, learn nouns earlier than adjectives, even though nouns are semantically more
complex than adjectives.

1 The Blooming, Buzzing Confusion

Our sensory influx is extremely rich. For example, whenever we open our eyes, there is
a constantly fluctuating wash of light captured on our retinas. It is something of a
miracle that our brains manage to sort up the sensory information and immediately
identify and categorize a vast number of entities in our surroundings. The miracle
becomes even larger when it is considered that these categories must be learned from
experience. The learning process is rapid, which is witnessed, among other things, by
the fact that children start communicating about the categories after about a year. The
following famous quote from William James’ Principles of Psychology (James 1890,
462) expresses the problem elegantly:
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“The baby, assailed by eyes, ears, nose, skin, and entrails at once, feels it all as
one great blooming, buzzing confusion; and to the very end of life, our location of
all things in one space is due to the fact that the original extents or bignesses of all
the sensations which came to our notice at once, coalesced together into one and
the same space.”

The problem I want to address in this article is how children can create categories and
concepts out of such a “blooming, buzzing confusion”. I argue that two learning process
are involved. The first constructs the underlying primary perceptual structures that emerge
in children’s cognitive development. These structures will be modelled in terms of
conceptual spaces (Gérdenfors 2000, 2014) that are presented in Section 2. My thesis
concerning this process is that it detects various invariants in the sensory input. To some
extent, my analysis follows the program of Gibson (Gibson 1966, Gibson 1979) although
my approach is more cognitively focussed. My aim in Section 3 is to show that at least
space, object, and action domains are very natural outcomes of a reduction of sensory
information in terms of invariants. I argue that these primary domains correspond to
separate sets of invariants. In other words, relying on invariants makes it possible to
present the domains as conceptual spaces that are considerable reduced in complexity
when compared to the sensory input. This process transforms the quickly changing
sensations into a relatively invariant representation of the environment. Since I take the
perceptual structures to be learned, my position is an empiricist one, in contrast to the
nativist view of, for example, Carey (2009) and Spelke (Spelke 2000, 2004).

Several philosophers and psychologists make a distinction between sensations and
perceptions (e. g. Humphrey 1993 and Gérdenfors 2003). Sensations are what is
received by our senses and perceptions are ‘interpreted’ sense data. In the present
context, the distinction can be described as that sensations are turned into perceptions
by mapping them into the conceptual spaces that are constructed from different kinds of
invariants. Harnad (1990) makes a related distinction between iconic and categorical
representations. The iconic representations are “internal analog transformations of the
projections of distal objects on our sensory surfaces” and categorical representations
contain those invariant features that “distinguish a member of a category from any non-
members”. However, Harnad does not specify what the invariants are or how they are
determined, but only mentions that they can be picked up by artificial neuron networks.

The second learning process consists of the mechanism that utilizes the primary
domains for concept formation. For this task (Section 4), I rely on covariances between
different dimensions (features) of what is perceived in order to identify natural clusters
of entities. These clusters are then used to construct regions of the underlying concep-
tual spaces. The regions are interpreted as the intensions of concepts. In Section 5, I
then argue that during children’s development there is a continued dimensionalization
of the conceptual spaces that makes it possible for children to attend to particular
features of the perceptual input, for example, colour and size.

Obviously, I will not be able to provide the details of these two learning processes,
but my proposal should rather be seen as a research program.' As an application, I show

! The proposed two processes are not the same as in the ‘complementary learning systems theory” (Kumaran
et al. 2016). The two processes proposed here could rather been seen as parts of the cortical system of that
theory.
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in Section 6 that using the two processes I propose one can explain some of the
intriguing phenomena of concept learning and the corresponding language develop-
ment, in particular the so called ‘complex first paradox’ (Werning 2010) that emerges
from the fact that children, in general, learn nouns earlier than adjectives in spite of
adjectives being semantically less complex than nouns.

A note on terminology: I use the word ‘category’ as referring to a class of entities
and the word ‘concept’ as referring to the mental representation of such a class that can
be used to categorize entities.

2 Background: Conceptual Spaces

A central idea of the conceptual spaces framework is that concepts can be represented
geometrically (Gérdenfors 1990, 2000, 2014). Conceptual spaces are mathematical enti-
ties in the form of dimensional structures, often (but not always) with a metric defined on
them. More exactly, the dimensions of these spaces are interpreted as representing
fundamental properties (qualities) that objects may possess to different degrees, so that
objects can be mapped onto points in the space in accordance with the degree to which
they instantiate a property. The quality dimensions correspond to the different ways stimuli
can be judged similar or different. For example, one can judge tones by their pitch, and that
will generate a similarity ordering of the auditory perceptions. Distances between repre-
sentations of objects are then supposed to measure how similar the objects are to each
other, where the similarity is not overall similarity but similarity in the property — for
example colour, weight, taste, shape — that the space is supposed to model. The coordi-
nates of a point within a conceptual space represent particular instances along each
dimension: for example, a particular temperature, a particular weight, etc.

Conceptual spaces that have been discussed in the literature include colour space,
taste space, olfactory space, various auditory spaces, as well as shape spaces, musical
spaces, spaces to represent actions, events, emotions, moral concepts, scientific con-
cepts, and epistemic concepts.

As a paradigmatic example, consider human perceptual colour space (see Figure 1).
This space is three-dimensional, with one dimension — the vertical axis — standing for
brightness, which goes from white to black through various shades of grey; the second
dimension is the hue circle; and the third dimension is saturation, which is the intensity
or depth of a colour.

The primary function of the dimensions of a conceptual space is to represent various
qualities of objects in different domains, where a domain represents a particular set of
properties, for example colours. Since the notion of a domain is central to the analysis, |
should give it a more precise meaning. One way to do this is to rely on the notions of
separable and integral dimensions, which I take from cognitive psychology (Maddox
1992; Melara 1992). Certain quality dimensions are integral: one cannot assign an
object a value on one dimension without giving it a value on the other(s). For example,
an object cannot be given a hue without also assigning it a brightness (and a saturation).
Likewise the pitch of a sound always goes with a particular loudness. Dimensions that
are not integral are separable: for example, the size and hue dimensions. Using this
distinction, a domain can now be defined as a set of integral dimensions that are
separable from all other dimensions.
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Fig. 1 A geometric representation of human perceptual colour space

In earlier works on conceptual spaces (Girdenfors 2000, 2014; Gérdenfors and
Lohndorf 2013), the problem of the origins of the domains has barely been discussed.
The problem presented in the introduction can be formulated as follows: How do
children obtain their perceptual domains? In particular the problem pertains to the
domains of space, actions and object properties that form the basic ontology of our
perceived world. Traditionally, there are two answers to this type of question: (1) the
domains are innate (nativism); and (2) the domains are learned (empiricism). My
solution will be of the second type, although I will argue that the organisation of the
brain generates constraints on the learning processes.

3 Primary Domains
3.1 Extracting Structure: Invariants in Perception

The first learning process to be analysed thus concerns the origin of the
fundamental domains that build up the perceptual structures of an infant. My
thesis concerning this process is that the sensory input, at an early stage of
development, becomes sorted into a number of general ontological domains. In
this section I outline how a theory of invariants in the perceptual input can be
exploited to generate such domains. My approach is to some extent inspired by
Gibson’s (1966, 1979) ‘ecological approach’ to perception, more precisely, his
notion of information invariance. He writes: “The individual does not have to
construct an awareness of the world from bare intensities and frequencies of
energy; he has to detect the world from invariant properties in the flux of
energy” (Gibson 1966, 319). The brain does this by resonating with what the
senses receive. Gibson (1966, 201) defines an invariant as a ‘non-change’ that
persists during change. In particular, the most important information for per-
ception is what remains invariant as an agent moves through the environment
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(see also Cutting 1986).> Gibson’s definition is not very precise and not very
useful for identifying invariants, so in my analysis, I will mainly rely on well-
known types of invariants.

Given that the brain has a strong capacity to detect invariants, a fundamental
question is for which perceptual domains these mechanisms work the best. It is natural
to assume that the domains are the ones that infants learn first. To develop this idea, I
take inspiration from the works of Spelke and others (Spelke 2000, 2004; Spelke and
Kinzler 2007; Carey 2009) who have proposed four ‘core knowledge domains’ that are
embedded in perceptual processing: objects, action, number, and space. For example,
Spelke and Kintzler (Spelke and Kinzler 2007, 89) write:

“These systems serve to represent inanimate objects and their mechanical interac-
tions, agents and their goal-directed actions, sets and their numerical relation-
ships of ordering, addition and subtraction, and places in the spatial layout and
their geometric relationships.”

My first objective is to argue that an analysis of perceptual invariants can explain
why space, objects and actions should form the basis for the first domains that children
develop.® In contrast to Spelke and Carey, my position is empiricist. Even if Spelke
does not explicitly use the word ‘innate’ in her characterization of the core knowledge
systems, it is clear that her basic position is nativist. And Carey (2009, 11) writes “The
claim that core cognition exists is a nativist claim”.* Carey (2009, Ch.2) argues against
the empiricist accounts proposed by Piaget and Quine as a support for her nativist
position. As regards these positions, I find her arguments convincing. She admits in
passing that it might be possible to develop an empiricist model of concept learning
based on artificial networks (Carey 2009, 60). What I am proposing in this paper is a
new kind of empiricist model of the development of primary domains, using conceptual
spaces based on learning perceptual invariances as a modelling framework.> My
account will provide some arguments, albeit not conclusive, for why these domains
are primary.

3.2 Space
A central idea in Gibson’s approach is that the visual field is determined from

information that generates invariants such as texture gradients, occlusions and visual
flow. The brain tunes in to such invariants at a very early stage. For example, when we

21t is interesting to note already Kaila (Kaila 1939/2014) introduced invariances as a way of sorting up
perceptual experience: “Another important class of invariances is constituted by so-called physical objects, or
material objects. After all, every object contains a regularity, for objects are constituted by distinct properties
that hold together in a regular manner. Space is a system of invariances, it is part of our conception of space
that it possesses a structure described by a certain geometry, a structure that remains the same everywhere
[..I"

? Here I will not develop the argument for the domain of numbers. I believe, however, that the technique of
studying invariants can be applied also to the child’s developing understanding of numbers. For example, the
number of a collection of objects is invariant with respect to the location and the identity of the objects. For
similar arguments see Harbour (2014) and Johansson (2015).

4 But she adds: “Notice also that ‘innate’ does no mean ‘present at birth’. Many representational capacities
arise from maturational processes” (Carey 2009, p. 12).

> T avoid Spelke’s use of “core’ knowledge structures (and Carey’s (Carey 2009) ‘core’ cognition) since it is
connected with an nativist position, and instead speak of primary domains.
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turn our heads and let our eyes follow along, the image that reaches the retina changes
very rapidly. But, just as quick, our brain calculates a representation of the room that
remains still in relation to the direction of our body.

During her first months, a child learns to coordinate her sensory input—vision,
hearing, and touch—with her motor activities (Thelen and Smith 1994). One outcome
of this motor babbling is an egocentric representation of space that is used to coordinate
seeing with acting. As Gibson (1979: 2) wrote, “the environment to be perceived [...] is
not the world of physics but the world at the level of ecology”. The egocentric space
allows an individual to see its field of action. As long as only the head is moved and not
the rest of the body, there is no change in an individual’s possibilities to act. Since it is
primarily the hands that are to be guided, it’s more efficient if the brain creates a room
that is constant in relation to their possibilities.

The egocentric representation of space is invariant of eye, head and body direction.
The representation thus maintains a constant relation between the body location and the
surrounding objects. The constructed space is basically a three dimensional Euclidean
space with the body location as its origo.

The visual domain then expands throughout the child’s development. In particular,
by coordinating auditory information with visual, the represented space extends beyond
the child’s current visual field to cover the entire physical space. The child can then
direct its attention outside its immediate visual field. It should be emphasized that the
resulting representation is not just an extension of the visual domain but an amodal
abstraction from visual, auditory, tactile, and perhaps even olfactory experiences.

A more advanced invariant of the representing space comes with the ability to
represent an allocentric space, that is, a space that is independent of the location of the
individual. Such a representation allows an individual to shift the perspective (Piaget
1954).° Consequently, the allocentric representation of space is not only invariant of
eye, head and body orientation but also of body location. A concrete example of the use
of allocentric space is the ability to give road directions where one has to imagine the
route and movements along it.

The adult visuo-spatial domain should be seen as a combination of an allocentric
representation and an egocentric representation. The two representations are connected
to two different types of functions: The egocentric for reaching and interacting with
objects, the allocentric for navigating through the environment (Gallistel 1990). The
double aspect of our spatial representation is revealed by the two linguistic codes we
have established for referring to positions: egocentric /eft and right, and allocentric west
and east (or north and south). Similarly, what is behind the house from my egocentric
perspective may be in front of the house from an allocentric perspective.

There are strong arguments for that the experience of space is not innate but must be
learned through interaction with the world around us (e. g. Held and Hein 1963;
Agrawal et al. 2015).” The process that creates our three-dimensional perception space

® The distinction beween egocentric and allocentric corrsponds to Gibson’s (1966) distinction between
‘perspective structure’ and ‘invariant structure’.

7 In contrast to this position, Carey (Carey 2009, p. 12) writes: “Even though stereoscopic depth perception is
not present at birth, I would want to say that it is innate, for the child does not have to learn to compute depth
from the discrepancies between the two images on the two retinas”. I don’t agree. Apart from the two
references given in the text, there is further evidence that we must learn to see. For example, some blind people
who have regained vision, have problems perceiving depth (Gregory 1970).
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— partly on the basis of the two-dimensional images provided by our eyes — must learn
how the sensory impressions can be used to create meaningful fields of action. When
one gets a new pair of glasses, for example, the conditions for this process are altered,
and it takes a while before the brain has adjusted its construction of space to the new
invariants and can provide the perceptions one needs for carrying out precise actions,
for example walking down stairs without stumbling.

It is important to note that the egocentric and allocentric spaces that are generated by
extracting the various forms of invariants considerably reduce the complexity of the
information compared to what is transmitted from the retina to the brain. To the extent
that the constructed allocentric space is invariant under Galilean transformations (that
is, rotations and translations), it follows that what is conserved in visual perception is
that space is three-dimensional Euclidean. One aspect of the Galilean transformations is
that space is constant over time. When we move or turn ourselves around we actually
perform a Galilean transformation of the perceptual input, so it is very natural that an
efficient neural system picks up the invariants and uses the represented space as a basis
for the actions of the individual. Gibson (1966, 264) made this point a long
time ago: “An individual who explores a strange place by locomotion produces
transformations of the optic array for the very purpose of isolating what
remains invariant during these transformations” (see also Agrawal et al.
2015). Our movements occur mainly in the two horizontal dimensions, less
so in the vertical. As a consequence, our perception of the vertical dimension is
‘flattened’ in relation to a Euclidean space (Kaufman and Kaufman 2000).

3.3 Objects

The question of how infants represent and reason about objects is central for an analysis
of primary forms of perception. Several constraints have been offered in the literature.
For example, Spelke et al. (Spelke et al. 1992, 606) propose the following: (i) continuity
(objects move in continuous paths), (ii) solidity (objects move only on unobstructed
paths and, consequently, no two objects occupy the same place), (iii) gravity (if not
supported, objects fall downwards), and (iv) inertia (objects do not change their motion
abruptly). In my opinion, at least the last two constraints are not constitutive of objects
per se, but rather concern the behaviour of objects (the inertia constraint is, to some
extent, violated by objects that are agents). A special case of continuity is object
permanence, which means that objects do not disappear from a place even if they are
not perceived at the moment. Another central constraint, not mentioned by Spelke, is
that objects have a shape (see section 4.3).

Although I cannot fill in the details, I submit that the relevant constraints can be
derived from invariants of perceptual properties along the lines outlined above. First of
all, the relative locations of different parts of an object exhibit different types of
invariants. For a solid object, the invariants are total. For an object with movable parts,
the invariants of the locations within each part is total and so are the locations of the
points where the different parts are connected. Johansson (1964) formulates this as a
‘rigidity principle’ — a constraint of the visual process that generates a perception of
rigidity whenever equal motions in a series of simultaneous proximal elements are
detected (cf. Marr’s (1982) representation of shapes). For deformable objects — such as
cushions, towels and dough — the invariants of relative locations are less stable, but the
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changes of relative locations are continuous. (A dough is on the verge of being a mass
rather than an object.) Another aspect of continuity is that objects ‘hang together’ in the
sense that if you pull at one end of an object, the other parts will follow. Clouds are
therefore marginal as objects.”

Solidity or relative solidity is but one type of invariants that apply to objects. There
are many other types. For example, the size of an object is typically invariant,
something which helps our visual system to efficiently judge the distance to an object.
Murray et al. (2005) show that size invariance is evident already in the dorsal
retinotopic visual area V3. Another salient domain is colour. The colour pattern of an
object is not invariant since it varies with the illumination. In most cases, however, the
perceptual relations between the colours of an object are invariant (Land 1977). For
many kinds of objects, for example, different species of birds, the patterns of colours
are characteristic features.

It is still unknown how the brain picks up the invariants that are relevant for
generating a space that represents objects. Again, perceiving objects involves a con-
siderable reduction of dimensions in the sensory input. There exist a number of
computational procedures for dimension reduction, for example Principal Component
Analysis (Abdi and Williams 2010) and Multidimensional Scaling (Kruskal and Wish
1978; Borg and Groenen 2005) but it is not known to what extent brain processes
match these procedures. However, Wiskott and Sejnowski (2002) have constructed an
artificial neural network based on ‘slow feature analysis’ that, to a large extent, can
learn translation, size, rotation, contrast and illumination invariances of objects. A
particularly interesting feature of their model is that the ‘what’ and the ‘where’
components get represented in separate components of the system. This supports my
hypothesis that the space and object invariants are of different kinds (see section 3.5).

3.4 Actions

The human brain is extremely efficient at identifying different kinds of actions. For
example, you see immediately whether somebody is walking or jogging, even if the leg
movements look quite similar. Furthermore, the amount of information you need to
perform such a categorization is very limited. This point was established by Johansson
in a series of ground breaking psychophysical experiments in the 1950°s (Johansson
1973). He developed a patch-light technique for analysing biological motion where no
direct shape information is available. He attached light bulbs to the joints of actors who
were dressed in black and moved in a black room. The actors were filmed performing
actions such as walking, running, and dancing. Subjects who watched the movements
of the lights (but saw nothing else) categorized the actions within a fraction of a second.

These experiments show that that the surfaces of the agents performing the action
are not required for identifying and categorising the actions. A movie containing only
stick figures performing the same movements is sufficient. (In passing, it should be
mentioned that this observation confirms Johansson’s rigidity principle.) So what kind
of information is used in such a categorisation?

Runesson (Runesson 1994, pp. 386-387; see also Wolff 2008) claims that people
can directly perceive the forces that control different kinds of motion:

# Doughs and clouds suggest that there may be grades of objecthood.
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“The fact is that we can see the weight of an object handled by a person. The
fundamental reason we are able to do so is exactly the same as for seeing the size
and shape of the person’s nose or the colour of his shirt in normal illumination,
namely that information about all these properties is available in the optic array.”

He summarizes this as that the kinematics of a movement contains sufficient
information to identify the underlying dynamic force patterns. This thesis is
formulated with respect to biological motion. I speculate that it extends to other
forms of motion as well. I have hypothesized that the brain automatically
extracts the forces that lie behind different kinds of movements and other
actions (Gérdenfors and Warglien 2012; Girdenfors 2014). Furthermore, the
process is automatic: one cannot help but perceive the forces. For example,
the pattern of forces involved in the movements of a person running is different
from the pattern of forces of a person walking; likewise, the pattern of forces
for saluting is different from the pattern of forces for throwing.’ Just as for
shapes, the space within which force patterns are located can be treated as a
separate perceptual domain, with its unique structure of similarities. Of course,
the perception of forces is not perfect; people are prone to illusions, just as in
all types of perception (Johansson 1964, 1973).

An important consequence of this hypothesis is that the individuals or objects
involved in an action are not part of the representation of the action, but only the
forces are involved. I speak of patterns of forces since, for bodily motions, several body
parts are involved; and thus, several force vectors are interacting (by analogy with Marr
and Vaina’s (1982) differential equations). Again, these patterns form the invariants that
I submit generate the structure of actions. However, the invariants that pertain to actions
are different from both those for objects and those for space. In particular, the patterns
are neither dependent on the location of the acting object, nor of its surface properties.
However, the more precise structure of action space remains to be investigated. As for
space and objects, the structure generated by the invariants involves a considerable
reduction in dimensions.

It should be noted that similar arguments can be applied to speech. Gibson
(1966, 93) identifies some of the invariants of speech: “[Plhonemes are transpos-
able over the dimensions of pitch, loudness and duration, and [...] the stimulus
information for detecting them is invariant under the transformations of frequency,
intensity and time.” Browman and Goldstein (1990) describe the act of uttering a
word as a ‘score of gestures’ where the gestures are performed, not by the hands,
but by the five vocal organs of velum, tongue tip, tongue body, lips, and glottis.
They then describe the utterance of a word as a temporal sequence — a score — of
activation of these organs. Such a score can be re-described as a temporal pattern
of force vectors. Browman and Goldstein’s description of the patterns as ‘vocal
gestures’ underlines this analogy.

® An example of data that can be used to study force patterns comes from Wang et al. (2004). They collected
data from the walking patterns of humans under different conditions. Using the methods of Giese et al. (2008),
these patterns can be used to calculate the similarity of the different gaits in terms of the underlying forces.
Gharaee et al. (2017) have applied the force dynamic model in a robotic system that has been constructed for
categorizing actions.
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3.5 The Brain is Prepared to Find Invariances

The main conclusion to be drawn from the preceding subsections is that the primary
domains for space, objects and actions can be generated from the invariants that apply
to each of the three domains. Thus the same method has been used to identify the
domains. It should be noted, however, that the sets of invariants are distinct for the three
structures: For space, the main invariants are relative distances that are also invariant of
time. Object locations may change rapidly, but object identity changes rarely, or slowly.
Thus object categories are invariant of location in space. Furthermore, the relative
positions of the parts of objects show more or less strict invariants. Other properties of
objects, such as relative colours, may, also be invariant. For actions, finally, the
invariants pertain to force patterns. In brief, the set of invariants for the three primary
knowledge domains are more or less disjoint, which is an argument for why the
domains are represented separately.'® This analysis must be developed in more detail,
but if valid, it would provide a strong argument for why these domains are indeed
primary and universal among humans.

Although I cannot provide any conclusive arguments at this stage, I submit that the
invariants that determine the domains for space, objects and actions are the ones that are
most easily picked up by the sensory system of an infant. If this can be
substantiated, it would provide a strong argument for why places, objects and
actions are fundamental cognitive domains. My position is basically empiricist
since the invariances must be learned.

An important question is now whether there are other primary domains that can be
identified via the proposed method of searching for invariants. I will return to this
question in the concluding section.

A follow-up question would be: Why are the invariants that determine places, objects
and actions the ones that are the easiest to learn? At the bottom, this question would
need an argument in terms of evolutionary epistemology. The process turning sensa-
tions into perceptions by identifying invariances takes the different kinds of energy
hitting our sensory receptors and turns them into something that represents structures in
the environment. In brief, some regularities in the world have been evolutionarily more
important than the amounts of energy at sensory surfaces.

A part of the argument would build on that human infants are not born as blank
slates (Pinker 2002). Evolution has made the brain prepared for picking up the most
relevant invariants. To this extent there is a nativist element in my analysis. In
particular, the space representation is generated in the dorsal stream of the cortex (the
where pathway), object representation is generated in the dorsal stream (what pathway)
and action representation in the dorsal stream (how pathway). However, even if the
pathways in the brain are to some extent prepared, the infant must still /earn which
invariants generate the most useful perceptual structures. Even after the invariants have
been learned, the brain exhibits an amazing plasticity that supports relearning: For
example, if a person is given goggles that turn the visual field upside-down, it is

19 This argument can be used to provide and altemative definition of separability: Two domains are separable
if the sets of invariants determining the domains are disjoint. Such a definition presumes, however, that the
determining invariants have been identified.
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possible to relearn the mapping so that, after a few weeks, the world is perceived in the
‘normal’ way (Kohler 1951).

Gibson (1979) favoured a bottom-up approach to how the invariants are acquired,
claiming that the information is picked up directly, so that no intervening mental
processes are necessary for visual perception, but this position has been criticised.
For example, Gregory (1970) argued that top-down processes must mediate perception.
Goldstein (1981, 193) writes:

“The problem comes with Gibson's statement that what an object affords is
specified in the light, and his failure to deal adequately with the fact that
affordances must be learned. A wooden chair may afford sitting for a human,
but something to gnaw on for a beaver, even though the information provided by
the light is the same for both.”

While useful information may exist directly in the ambient light, Gibson presents no
account of the mechanisms of how this information is picked up. In contrast to his view,
the sensory information received is often incomplete and, consequently, the brain must
‘construct’ a perception.

4 Concept Formation

An old philosophical question is whether supposedly natural concepts, such as ‘red’,
‘gold’, and “cat’, reflect real divisions in nature that exist independently of our thinking
and theorizing, or whether their meanings are dependent on our minds. The first
position is called realism, the second conceptualism. Without further ado, I here adopt
the conceptualist position about concepts. For some arguments, see (Gérdenfors 2000,
2014).

A crucial factor is what concepts are for. There are three main uses of concepts: (i)
for categorization; (ii) for communication; and (iii) for reasoning. Here I focus on our
need to categorize entities. For example, we must be able to distinguish edible things
from non-edible ones. The most important cognitive function of a system of concepts is
to provide a mapping from perceptions to actions. In the case of simple reflex
mechanisms, the mapping is more or less fixed and automatic. In most cases, however,
the mapping has to be learned and it is a function not only of the current perception, but
also of memory and context. It is central that such a mapping can be learnable in an
efficient way. In earlier works (Gérdenfors 2000), I have argued that similarity should
be a fundamental notion when modelling the concepts that mediate perceptions and
actions.'' In this section, I show how similarities in the primary knowledge domains
can be used when learning the content of concepts.

4.1 Clusters of Sensory Information

I now turn to the second general learning process — the one generating concepts. Given
a perceptual domain of the kind discussed in the previous sections, concepts can be

' Not everybody agrees, for example Carey (2009). I will return to this topic in section 5.
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built up from perceptual mechanisms (to some extent combined with memory), based
on the information contained in the instances of a concept. Here follows a proposal for
how this learning process works.

The key idea is that perceptual information is not random but information comes in
clusters. Work by Billman (1983) and Billman and Knutson (1996) indicates that
humans are quite good at detecting covariations that cluster several dimensions, in
spite of our limitations in detecting isolated correlations between variables (see also
Kornblith 1993, 96-105). For example, singing covariates with having feathers, flying,
laying eggs and building nests. In other words, we have a sensitivity to features that
tend to be found together.

A plausible explanation of this phenomenon is that our perceptions of ‘natural’
objects show covariations along multiple dimensions, and, as a result of natural
selection, we have developed a competence to detect such clustered covariations.
Kornblith (1993), pp. 105-6) provides a similar argument:

“It is thus safe to say that we have a sensitivity to the features of objects which
reside in homeostatic clusters. Indeed, the way in which we detect covariations is
precisely tailored to the structure of natural kinds. [...] we conceptualize kinds in
such a way in order to separate the properties of the members of a kind which are
projectable from those which are not. We are aided in this task by our ability to
detect clustered covariation.”

Billman and Knutson (1996, 459) identify two structural principles in such covariations
that help category learning:

Value systematicity: If one property value (e. g. that the form of locomotion is
flying) predicts the value of a second property (that the limb is a wing), then that
same value should predict values of other (for instance that the covering of the
limb is feathers).

Value contrast. If one value of a property (that the form of locomotion is flying)
predicts the value of a second property (that the limb is a wing), then other values
of the same property (that the form of locomotion is walking, swimming or
crawling) should also be predictive.

When investigating covariation learning, Billman used a technique called focused
sampling both in her computer models and in her and Heit’s study of human subjects
(Billman and Heit 1988). In this process, the material consists of a large class of objects,
each of which is characterized by a large number of properties. Because of the large
number, a complete survey of the objects and the corresponding properties is impossible
both for a computer and a human. Correlations must therefore be detected from samples
of the objects. Rather than performing a random search, focused sampling preferentially
selects those objects that have properties that have already proven to be connected. So if
properties C and D have been found to correlate, objects with these properties are more
likely to be studied. If C and D correlate with a further property E, this technique will
reinforce itself and rapidly detect clusters of properties that correlate. The upshot is that
the more properties objects have in common, the more similar they will be, and,
consequently, the smaller will be the size of the cluster they form.
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A central part of the theory of conceptual spaces is that concepts can be modelled as
convex regions in a domain or a set of domains (Gérdenfors 2000, 2014). For example,
even though different languages carve up the colour domain in different ways, it seems
to be a universal principle that colour concepts form convex regions (Jager 2010).

A set of clusters in a conceptual space can be used to partition the space into regions,
where the elements of a cluster are central in a region. The clusters form the extensions
while the regions are the intensions of the concepts. Assuming that the space has a
metric, there are several computational methods for determining such a partitioning, for
example, K-means, self-organizing maps and neural gas (see e.g. Filippone et al. 2008).
For another example, (Gérdenfors 2000) proposes to take the mean of each cluster as a
prototype of a concept and then use the prototype to generate a so-called Voronoi
tessellation.'?

A problem is that clusters can be identified at several levels of coarseness. For
example the set of scotch terriers forms a cluster that is a subset of the cluster of dogs,
which in turn is a subset of the cluster of mammals. Depending on the size of the cluster
chosen, different superordinate or subordinate concepts can therefore be generated. |
will return to this in connection with my discussion of prototype theory.

I next turn to a description of the concept learning process for each of the spatial
structures connected with the primary domains of space, objects and actions.

4.2 Space Concepts

General spatial concepts are not common. The most obvious examples are places,
which literally are regions of physical space. Common examples are forests, mountains,
lakes, beaches, and villages.

Concepts for spatial relations form a richer system. In language prepositions are
used to express such relations, for example locative prepositions — such as inside, near,
far, above, in fiont of, and beside — and directional prepositions — such as to, from, and
through. Zwarts and Gardenfors (2016) show that locative prepositions can be repre-
sented by (convex) regions in ordinary space and that directional prepositions can be
represented by (convex) regions in the space of paths."

A special type of spatial concepts is landmarks that are objects the locations of
which are invariant. It must be possible to sense the landmark (by visual, olfactory or
auditory means) from a distance that is large relative to the movements of an individual.
Animals are surprisingly skilled at maintaining a precise representation of their location
in relation to landmarks in the environment (Gallistel 1990).

4.3 Object Concepts
The space of objects is rich and it contains a number of subdomains (properties) that

have their own structure, each with their own invariants. However, this richness helps
the child to detect similarities between objects — similarities that determine the

'2 In passing, I note that by using this method to generate concepts, the learner can learn a concept from a few
examples and she need not be informed about examples that do not fall under the concept.

3 An interesting detail is that Zwarts and Gérdenfors (2016) use polar coordinates in their model rather than
the standard Euclidean one.
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clustering of objects, and thereby the formation of object concepts. In particular the
invariants of mereonomic structure and rigidity that apply to a single object — solid or
partially solid — are central for how infants judge object similarities. These similarities
will group objects into clusters of things with similar shape (Zhu and Yuille 1996). In
support of this argument, it has been established that children show a strong shape bias
when learning object categories (e. g. Billman and Heit 1988; Smith 1995). My
explanation for this bias is thus that the shape invariants are among the most important
features when objects are clustered.

There are, however, often other types of similarities that are combined with shapes
when an object is categorized. For example, even though many songbirds have similar
shapes, it is sometimes possible to categorize them based on their colouring patterns
that are similar for a species. Or if a colouring pattern is also indistinct, the song of the
bird — that for many species forms a highly specific pattern — further helps to categorize
the bird. Given that these properties also show strong covariations, clear clusters of
objects can be identified, which then can generate the regions that represent the
corresponding concepts.

As part of prototype theory, Rosch (Rosch 1975, 1978; Mervis and Rosch 1981)
introduces the basic level of a hierarchy of object categories as a particularly salient
level of concept formation. She presents a number of criteria for what distinguishes the
basic level from superordinate or subordinate levels. One criterion says that superordi-
nate categories contain much fewer common properties than the basic level and the
subordinate levels contain hardly any additional common properties. For example, cat
has many more characteristic properties than mammal, but not many more than
abyssinian. In support of this analysis, Hunn (1976) has argued that the basic level is
the only level at which category membership can be determined by an overall config-
urational Gestalt perception.

A strong argument for the importance of meronomic relations in concept formation
comes from Tversky and Hemenway (1984). They show that part terms occur fre-
quently when subjects describe categories at the basic level, but are rare on superordi-
nate levels. Basic level objects are often distinguished from each other by the config-
uration of their parts. Furthermore, subordinate categories typically share the part
structure with the basic level, but differ from one another on other domains.

I have now given some arguments for why object concepts can be generated from
different types of covariances of properties along the lines of Billman’s criteria.
However, the outline I have provided needs to be connected to research concerning
how infants form object concepts (see e.g. Carey 1985, 2009; Landau et al. 1998;
Mandler 2004; Smith 2005; Spelke 2000, 2004;).

4.4 Action Concepts

In section 3.4, I argued that the structure of the action domain is determined by
invariants of force patterns. In order to identify the relevant clusters and regions of
the action space, similarities between force patterns should be determined. The dy-
namic properties of actions can be judged with respect to similarities: for example,
walking is more similar to running than to waving. This can be accomplished by
basically the same psychological methods used for investigating similarities between
objects. I submit that the similarities between actions are determined via the
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covariances of the movement patterns of different body parts. In earlier works I have
proposed the thesis that an action concept can be described as a (convex) region of such
patterns (Gérdenfors and Warglien 2012; Gérdenfors 2014).

In analogy with shapes, force patterns also have meronomic structure. For example,
a dog with short legs moves in a different way than a dog with long legs. Furthermore,
there are strong reasons to believe that actions exhibit many of the prototype effects that
Rosch (1975) presented for object categories. For example, Hemeren (Hemeren 1997,
2008) showed that action categories show a similar hierarchical structure and have
similar typicality effects as object concepts.

One example of analytic work along these lines is Giese and Lappe (2002). Using
Johansson’s (1973) patch-light technique, they started from video recordings of natural
actions such as walking, running, limping, and marching. By creating linear combina-
tions of the dot positions in the videos, they then made films that were morphs of the
recorded actions. Subjects watched the morphed videos and were asked to categorize
them as instances of walking, running, limping, or marching, as well as to judge the
naturalness of the actions. In accordance with the proposal made in (Gérdenfors and
Warglien 2012; Géardenfors 2014), prototypes could be found and the categorization
identified convex regions of the underlying space.

4.5 Concepts in Primary Knowledge Domains and the Semantics of Word Classes

In this section I have outlined how the primary domains can be seen as the fundaments
on which concepts can be erected. The main ideas have been that concept formation is
based on discovering covariations in the knowledge domains and that the clusters of
covariations are used to partition conceptual spaces into regions that represent concepts.
I next want to argue that this process is central also for language learning.

When infants begin to extract patterns in the sounds emitted by people in their
environment (some of which will later be identified as words), they have no idea that
these patterns stand for different types of entities. The patterns will, however, form part
of the sensory input that is used to identify covariances. For example, the sound pattern
“kitty” covaries with the presence of cats, toy cats, or pictures of cats (although the
word may be uttered also in other contexts). In particular, when a parent is establishing
joint attention with the infants to such objects, the covariation is strong. The sound
pattern thus become part of the perceptual clusters that generate the concepts. Only
later does the infant learn that the sound patterns can be used to trigger the correspond-
ing concepts in the minds of others even when no entity falling under the concept is
present. They then learn that words refer to regions of conceptual spaces (that in turn
are determined by clusters). This principle can be seen as a linguistic ‘meta-invariant’
that is picked up from their communicative interactions with others.'*

Our words express our concepts. Hence a theory of semantics should be founded on
a theory of concepts. Croft (2001, 364) makes the connection as follows:

The categories defined by constructions in human languages may vary from one
language to the next, but they are mapped onto a common conceptual space,

'* This principle only applies to ‘content’ words and not to syntactic markers. A wild speculation is that this
may be the reason why children learn syntactic markers later than a considerable number of content words.
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which represents a common cognitive heritage, indeed the geography of the
human mind [...] which can be read in the facts of the world’s languages in a
way that the most advanced brain scanning techniques cannot ever offer us.

In this article the focus is, however, not on the geography of the mind, but on its
geometry. However, as I have already mentioned in relation to colour concepts,
different languages carve up the domains in different ways. A similar point is made
by Mandler (1991, 414):"°

“Language is unlikely to be mapped directly onto sensorimotor schemas. There is
a missing link: A conceptual system that has already done some of the work
required for a mapping to take place.”

The work that she mentions has been performed by the first learning process that
generates the primary domains.

Even if the concepts defined on a domain (and their corresponding words) are not
universal, my analysis in section 3 suggests that at least the primary domains are
universal in human cognition. If this is correct, they should somehow be reflected in the
structure of language (a related argument is presented by Strickland 2017).

Indeed, the three primary domains I have identified in section 3 correspond to three
of the main word classes in languages: Concepts based on the object knowledge
domain are typically expressed by nouns; concepts based on the action domain are
expressed by verbs; and relational concepts based on the space domain are expressed
by prepositions (although many languages use other means to express spatial relations).

These connections between knowledge domains and word classes help children
learn language more efficiently (Bloom 2000; Gardenfors 2014). Most languages use
different kinds of syntactic markers for the main word classes. These markers help
identify the relevant primary domain for the word. Lupyan and Dale (2010, p. 8) make
“the paradoxical prediction that morphological overspecification, while clearly difficult
for adults facilitates infant language acquisition”. Mandler (2004, p. 281) argues along
the same lines:

“Many of the grammatical aspects of language seem impossibly abstract for the
very young child to master. But when the concepts that underlie them are
analyzed in terms of notions that children have already conceptualized, not only
does the linguistic problem facing the child seem more tractable but also the types
of errors that are made become more predictable. The invention of grammatical
forms to express conceptual notions that are salient in a young child’s conceptu-
alization of events seems especially informative.”

The upshot is that the underlying structures in form of word classes that are common to
languages in the world have strong connections to the primary knowledge domains.
This parallel deserves further investigations.

13 Mandler (1991) proposes image schemas from cognitive semantics as the underlying conceptual system. I
believe that her proposal is consistent with the one made in this article since image schemas can be seen as an
alternative way (albeit less systematic) of representing invariants.
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5 Properties Emerge Via Dimensionalization
5.1 Context Dependence of Similarity

I argued in section 4.3 that objects are grouped by their overall similarity.'® There I
assumed that similarity is determined from the structures of the primary domains.
However, similarity judgments are not constant over time, but as children learn more
about the structure of the world (and more of their mother tongue), their perception of
similarity develops into a complex system that, among other things, becomes depen-
dent on the categorization context.

Smith (1989, p. 159) points out that similarity judgments are holistic at the begin-
ning, but are then separated into dimensions:'”

?[TThere is a dimensionalization of the knowledge system. [...] Children’s early
word acquisitions suggest such a trend. Among the first words acquired by
children are the names for basic categories—categories such as dog and chair,
which seem well organized by overall similarities. Words that refer to superordi-
nate categories (e.g., animal) are not well organized by overall similarity,
and the words that refer to dimensional relations themselves (e.g., red or
tall) appear to be understood relatively late [...] School-age children
consistently assign objects to groups by single dimensions, categorizing
reds versus blues, bigs versus littles. Children under 5 do not [...]; instead
they classify objects by their similarity overall.”

In section 4, I argued that the primary domains can be represented as conceptual spaces.
The object domain consists of several subdomains, for example, shape, size, colour and
weight. A domain of such a space is a set of dimensions that are integral. What happens
in children’s development is that one dimension after the other is separated out in
perception and can be attended to. For example, two-year-olds can represent object
categories, but they cannot reason about the dimensions of those objects. One way to
express the development is to say that children go from judgments of similarities to
judgments of kinds of similarities.
In line with this, Goldstone and Barsalou (1998, 252) note:

“Evidence suggests that dimensions that are easily separated by adults, such as
the brightness and size of a square, are treated as fused together for children [...] .
For example, children have difficulty identifying whether two objects differ on
their brightness or size even though they can easily see that they differ in some
way. Both differentiation and dimensionalization occur throughout one’s
lifetime.”

16 The similarity need not be exclusively perceptual. For example for functional categories, such as chairs and
watches, children also use the actions performed by an object as a cue to its categorization, in addition to shape
and other static domains (see, for example, Smith 2005; Gardenfors (2007)). Carey (2009, 275) argues that
infatns sometimes categorize on the basis of global kind rather than by perceptual similarity. However, her
examples concerns animals that are similar with respect to a number of properties, even if they are not directly
perceptual.

'7 See also Smith and Sera (1992, 132).
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An example of dimensionalization is seen in Piaget’s (1972) conservation task. Chil-
dren under the age of five cannot separate the volume of a liquid from its height. When
choosing between two glasses of lemonade, they pick the glass with the highest level of
lemonade even though that glass is very narrow and the other is wide. Only later do
they learn that the volume of a liquid is conserved between containers and not always
correlated with height. In other words, volume is an invariant of liquids (which height is
not). When this invariant is discovered, children learn to separate the domain of volume
from that of height. A related phenomenon from child language is that adjectives that
denote contrasts within one adult domain are often used for other domains as well.
Thus, three- and four-year-olds confuse high with tall, big with bright, small with dim
etc. (Carey 1985). This is an indication that the domains are not yet sufficiently
separated in the minds of the children.

The separation into dimensions (domains) means that children learn to focus on
certain properties of objects. Only when they, for example, can attend to the colour of
objects (instead of, say, shape or size) is it possible for them to learn the full meaning of
the colour words (see section 6).

5.2 Properties Expressed by Adjectives

In Gérdenfors (1990, 2000), properties are identified with convex regions of single
domains. For example, the property red is a convex region of the colour domain and the
property hot is a convex region of the temperature domain. Properties are thus special
cases of concepts.

One of the first domains that is separated out in perception is that of shape (Smith
1989). Shapes are multimodal since they can be perceived by both vision and touch and
they remain invariant through a large class of transformations. Interestingly, Folster and
Hansson (2017) show that the capacity for shape perception in children at the age of
24 months correlates with their linguistic competence at the age of 6 or 7 years.

In language, properties are typically expressed by adjectives. Thus, the
semantics of yet another central word class is given a cognitive grounding
via the proposed account of properties as concepts that depend only on a single
domain (in contrast to the meaning of concrete nouns that depend on covari-
ations between several domains).

If property concepts are learned later than object concepts, then it should be expected
that adjectives should be learned later than nouns. There is strong evidence from
language development supporting this conclusion (e. g. Dromi 1987; Jackson-
Maldonado et al. 1993; Sandhofer and Smith 2007). For example, Mintz and Gleitman
(Mintz and Gleitman 2002, 269) note:

“Glaring asymmetries in noun vs. adjective (and verb) frequencies in novice
vocabularies ... persist until about their third birthday [... ]. [O]ne potential
explanation for why acquiring adjectives is hard has to do with the possibility
that they fall into a variety of conceptual classes whose conflation under a lexical
categorization [...] is more arbitrary than natural.”

Their phrase ‘conceptual class’ corresponds to my ‘domain’. I will return to this
phenomenon in the following section in relation to the complex first paradox.
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Mintz and Gleitman (2002) show, however, that if the adjective comes together with
a noun that already is understood, then even 2-year-olds can learn the meanings of new
adjectives quickly (see also Waxman and Markow 1998). Mintz and Gleitman (2002,
285) conclude that “24- and 36-month-olds do not seem to map novel adjectives to
object properties without the support of a full noun”.

6 The Complex-First Paradox

In the previous section, I have outlined a mechanism for concept formation that
constitutes the basis for word learning. Such a proposal is not uncontroversial. One
potential counterargument that recently has been suggested is the ‘complex-first para-
dox’ that was formulated by Werning (2010). The paradox derives basically from the
clash of two facts: (i) Children learn noun concepts such as cat, cup, and chair earlier
than adjectives like red, hot and short (Bloom 2000; Mintz and Gleitman 2002). (ii)
The meanings of nouns are ‘semantically thick’ since they comprise multidimensional
information while the meanings of adjectives are ‘thin’ since they cannot be
decomposed. Nouns should therefore be more difficult to learn than adjectives. The
second statement is supported by findings from neuroscience showing that the cortical
correlates of nouns are more complex than those of adjectives (Werning 2010, 1097).

An elegant solution to the complex-first paradox, based on conceptual spaces, has
been presented by Poth (2016). Her key idea is that entities denoted by concrete nouns
show a greater overall similarity than those denoted by adjectives. The reason for this is
that entities falling under a concrete noun show greater covariances than entities falling
under an adjective. This idea thus depends on the size of the regions that are associated
with a word, for example a noun or an adjective. She notes that children’s language
learning seems to follow a general ‘size principle’ saying that the meaning of a word
should be determined from the cluster with the smallest size that the observed entities
belong to.'®

To spell out this idea, let me make a proposal conceming the learning mechanism
involved. A problem that I noted earlier is that clusters of objects can be identified on
different levels of coarseness. For example, assume that the child has heard the word
‘dog’ a few times referring to, say, a cocker spaniel, a Scotch terrier and a German
shepherd. The child then identifies the smallest cluster to which theses objects belong,
that is, the cluster of dogs and the meaning of ‘dog’ with the region covered by this
cluster. Even though all the objects also belong to the cluster of objects corresponding
to ‘mammal’, this cluster will not be selected since the cluster of dogs has a smaller
size."” However, if all the observed objects in the cluster happen to be cocker spaniels,
then the size principle would predict that the child instead associates ‘dog’ with the
region determined from the cluster of cocker spaniels.

In contrast to nouns, words denoting adjectives, such as ‘brown’ apply to objects
that do not show much overall similarity. For example, a brown shoe is not particularly

18 See Poth (2016) for a discussion of a probabilistic version of this principle and its relation to a proposal by
Xu and Tenenbaum (2007).

19 Poth (2016) also assumes that the instances of the objects associated with ‘dog’ is a random sampling from
the corresponding cluster. However, in my opinion, this assumption is not required for the learning
mechanism.
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similar to a brown cow or a brown log. Thus the size of the region of object space that
is associated with a colour term is considerably larger and more weakly
clustered than those for nouns. Consequently, more instances of objects with
a particular colour are required for a child to learn the appropriate extension of
the corresponding colour word.

It is only when children have gone through a dimensionalization that separates out a
particular class of properties, say colours, that the child can learn to see similarities with
respect to colours and thereby learn the meanings of colour terms. When the colour
domain is focused on, brown things form a cluster in this domain and this cluster
determines a region of the domain. Thus the learning strategy used to generate
children’s early conceptual space offer, via the size principle, an explanation of why
the meanings of nouns are easier to learn than the meanings of adjectives. A seemingly
counterintuitive fact is that the semantic ‘thickness’ of nouns actually contributes to
making the size of the corresponding concepts smaller. However, this fact contains the
solution to the complex-first paradox.

This argument also explains the finding from Mintz and Gleitman (2002), that if the
adjective comes together with a noun, then even young children can learn the meanings
of new adjectives quickly. In this case the colour domain must be identified as a
substructure within the region of object space associated with the noun. For example,
brown shoes forms a sub-cluster among shoes that can be distinguished from clusters of
black, blue and red shoes. This task is cognitively considerably easier than learning to
identify the colour contrasts between all objects, which would amount to identifying the
colour domain in the full object space.

Poth (2016) formulates her arguments in a Bayesian framework. In this section I
have tried to show that the central idea of her solution can be formulated without
relying on probabilities — using sizes of regions is sufficient. Instead of probabilistic
representations, it therefore seems possible to rely directly on the structure of the
underlying conceptual space (see Gardenfors 2000, 2014).

7 Conclusion

The main question I have addressed in this article is how the infant mind develops from
the initial ‘blooming buzzing confusion’ to a mind full of sensory concepts and
categories. | have outlined a process that has three main steps:

(1) The brain reduces sensory information into more manageable structures. The most
efficient way to do this is to extract different kinds of invariants. 1 have argued
that by identifying such invariants, primary perceptual domains are constructed, at
least those related to space, objects and actions. The knowledge domains can be
modelled as conceptual spaces that reflect similarity judgments.

(2) Once the primary domains are in place, the brain is efficient in finding covariances
of different features. Such covariances generate clusters of entities. These clusters
then determine regions of the underlying conceptual space and the regions
can be taken as the intensions of the concepts. This analysis also explains
that when certain instances are more central in the regions, they are
perceived as being more prototypical.

@ Springer



From Sensations to Concepts: a Proposal for Two Learning Processes 461

(3) A part of the sensory input is the language spoken around the infant. These sound
patterns form part of the data for detecting covariances so the infants learns to
bring in sound patterns (or other communicative signs) as part of the cluster
formation. Thereby the infant eventually learns to associate sound patterns with
concepts. | am aware that this form of word learning is not the full story of
language acquisition, but it forms a seed for coupling words to meanings that can
later be expanded by other methods (see Bloom 2000).

In this article, I have focussed on the primary domains concerning space, objects and
actions. There are, however, other domains that should be considered when studying
how sensory concepts are learned. I conclude by briefly presenting some of the main
candidates that I leave for further analysis in the future.

A first example is the domain of numbers that has been proposed by several
researchers (Dehaene 1996; Spelke 2000, 2004; Carey 2009). Number cognition can
be divided into two subsystems: approximate magnitudes and discrete numbers
(Dehaene 1996). It should be noted that numbers relate to collections of objects and
thus to a different ontological category. Furthermore, it is clear that both approximate
and discrete numbers are governed by invariances (Harbour 2014). For example, the
number of objects in a collection is invariant under the spatial location of the objects
and under replacement of one object by another.

I would also like to suggest events as a fundamental domain for structuring sensory
information (see also Strickland 2017). Already Gibson (1979, 100) describes events as
primary realities. More recently, Radvansky and Zacks (2014, Ch. 10) present a review
of experiments concerning children’s development of event cognition. I have argued
that the semantic reference of a basic sentence is an event (Géardenfors 2014). This
explains why sentences are natural units in language. Knowledge about event structure
brings in the core ‘thematic roles’ — agent, patient, recipient, instrument, cause and
effect — that help the child understand the construction of sentences. For example,
Papafragou (2015, 338) compares how speakers of Greek and English describe events
and she concludes: “Basic patterns in event perception are independent from one’s
native languages”. It is also clear that our understanding of causality is related to event
structure (Gérdenfors and Warglien 2012; Warglien et al. 2012; Géirdenfors 2014).
Given all this, it would be an interesting task to find out what are the central invariants
in our perception of events.

It is often proposed that cognitive representations of events presupposes representing
time. Consequently, zime would be an even more primary domain. However, the
abstract conceptual domain of time is not culturally universal, but the product of
systems for measuring time intervals, and hence a socio-historical construction
(Sinha and Girdenfors 2014). In addition to this argument, children understand events
carlier than they understand time as a separate entity, which supports my claim that
knowledge about event structures is more primitive.
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