Skip to main content
Log in

Theory change as dimensional change: conceptual spaces applied to the dynamics of empirical theories

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

This paper offers a novel way of reconstructing conceptual change in empirical theories. Changes occur in terms of the structure of the dimensions—that is to say, the conceptual spaces—underlying the conceptual framework within which a given theory is formulated. Five types of changes are identified: (1) addition or deletion of special laws, (2) change in scale or metric, (3) change in the importance of dimensions, (4) change in the separability of dimensions, and (5) addition or deletion of dimensions. Given this classification, the conceptual development of empirical theories becomes more gradual and rationalizable. Only the most extreme type—replacement of dimensions—comes close to a revolution. The five types are exemplified and applied in a case study on the development within physics from the original Newtonian mechanics to special relativity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen H., Barker P., Chen X. (2006) The cognitive structure of scientific revolutions. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Balzer W., Moulines C. U., Sneed J. D. (1987) An architectonic for science: The structuralist program. Reidel, Dordrecht

    Book  Google Scholar 

  • Balzer, W., Moulines, C. U., Sneed, J. D. (eds) (2000) Structuralist knowledge representation: Paradigmatic examples. Rodopi, Amsterdam

    Google Scholar 

  • Balzer W., Pearce D. A., Schmidt H.-J. (1984) Reduction in science: Structure, examples, philosophical problems. Reidel, Dordrecht

    Google Scholar 

  • Barker P. (2012) The cognitive structure of scientific revolutions. Erkenntnis 75(3): 445–465

    Article  Google Scholar 

  • Blaug M. (1975) Kuhn versus Lakatos, or paradigms versus research programmes in the history of economics. History of Political Economy 7(4): 399–433

    Article  Google Scholar 

  • Bridgman P. (1922) Dimensional analysis. Yale University Press, Yale

    Google Scholar 

  • Chandler P. (1975) Clairaut’s critique of Newtonian attraction: Some insights into his philosophy of science. Annals of Science 32: 369–378

    Article  Google Scholar 

  • Chang H. (2004) Inventing temperature: Measurement and scientific progress. Oxford University Press, New York

    Book  Google Scholar 

  • Clarke B. (2002) From thermodynamics to virtuality. In: Clarke B., Hernderson L. D. (eds) From energy to information: Representation in science and technology, art and literature. Stanford University Press, Stanford, CA, pp 17–33

    Google Scholar 

  • Coopersmith J. (2010) Energy, the subtle concept: The discovery of Feynman’s blocks from Leibniz to Einstein. Oxford University Press, Oxford

    Google Scholar 

  • Coulson J. M., Richardson J. F., Backhurst J. R., Harker J. H. (2007) Chemical engineering. Elsevier, Burlington, MA

    Google Scholar 

  • Czyz J. (1994) Paradoxes of measures and dimensions originating in Felix Hausdorffs’s ideas. World Scientific, River Edge, NJ

    Book  Google Scholar 

  • Falkenburg B. (2007) Particle metaphysics: A critical account of subatomic reality. Springer, Berlin

    Google Scholar 

  • Fleck, L. (1935/1979). Genesis and development of a scientific fact. T. Trenn & R. Merton (Eds.). Chicago: University of Chicago Press.

  • Gärdenfors P. (2000) Conceptual spaces: The geometry of thought. The MIT Press, Cambridge, MA

    Google Scholar 

  • Gärdenfors P., Zenker F. (2011) Using conceptual spaces to model the dynamics of empirical theories. In: Olsson E. J., Enqvist S. (eds) Belief revision meets philosophy of science. Springer, Berlin, pp 137–153

    Google Scholar 

  • Gähde U. (2002) Holism, underdetermination, and the dynamics of empirical theories. Synthese 130: 69–90

    Article  Google Scholar 

  • Harman P. M. (1982) Energy, force, and matter: The conceptual development of nineteenth-century physics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Hausdorff F. (1903) Das Raumproblem. Annalen der Naturphilosophie 3: 1–23

    Google Scholar 

  • Hickman F. R. (1984) Electrodynamical origins of Einstein’s theory of general relativity. International Journal of Theoretical Physics 23: 535–566

    Article  Google Scholar 

  • Hoyningen-Huene P. (1993) Reconstructing scientific revolutions: The philosophy of science of Thomas S. Kuhn. University of Chicago Press, Chicago

    Google Scholar 

  • Huntley H. E. (1952) Dimensional analysis. McDonald, London

    Google Scholar 

  • Jammer M. (1957) Concepts of force: A study in the foundations of dynamics. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Joule, J. P. (1849/1887). On the mechanical equivalent of heat. Reprinted in The Scientific Papers of James Prescott Joule (pp. 298–328). London: Dawsons of Pall Mall.

  • Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971, 1989, 1990). Foundations of measurement (Vol. I–III). New York: Academic Press.

  • Kuhn T. S. (1961) The function of measurement in modern physical science. Isis 52: 161–193

    Article  Google Scholar 

  • Kuhn, T. S. (1962/1970). The structure of scientific revolutions. Chicago: University of Chicago Press.

  • Kuhn T. S. (1976) Theory-change as structure-change: Comments on the Sneed formalism. Erkenntnis 10: 179–199

    Article  Google Scholar 

  • Kuhn T. S. (1977) The essential tension: Selected studies in scientific tradition and change. University of Chicago Press, Chicago

    Google Scholar 

  • Kuhn, T. S. (1987). What are scientific revolutions? In L. Krüger, L. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (pp. 7–22). Cambridge, UK: Cambridge University Press.

  • Kuhn, T. S. (2000). The Road since Structure: Philosophical Essays, 1970–1993, with an Autobiographical Interview. In J. Conant & J. Haugeland (Eds.). Chicago: University of Chicago Press.

  • Kyburg H. E. (1984) Theory and measurement. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lakatos I. (1978) The methodology of scientific research programs. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Larvor B. (2003) Why did Kuhn’s Structure of Scientific Revolutions cause a fuss?. Studies in the History and Philosophy of Science 34: 369–390

    Article  Google Scholar 

  • Lindsay R. B. (1971) The concept of energy and its early historical development. Foundations of Physics 1: 383–393

    Article  Google Scholar 

  • Lorentz H. (1899) Simplified theory of electrical and optical phenomena in moving systems. Proceedings Academy of Science, Amsterdam I: 427–443

    Google Scholar 

  • Losee J. (2004) Theories of scientific progress: An Introduction. Routledge, New York, NY

    Book  Google Scholar 

  • Maddox W. T. (1992) Perceptual and decisional separability. In: Ashby G. F. (eds) Multidimensional models of perception and cognition. Lawrence Erlbaum, Hillsdale, NJ, pp 147–180

    Google Scholar 

  • McMullin E. (2002) The origins of the field concept in physics. Physics in Perspective 4: 13–39

    Article  Google Scholar 

  • Melera R. D. (1992) The concept of perceptual similarity: From psychophysics to cognitive psychology. In: Algom D. (eds) Psychophysical approaches to cognition. Elsevier, Amsterdam, pp 303–388

    Chapter  Google Scholar 

  • Moulines C. U. (2002) Introduction: Structuralism as a program for modeling theoretical science. Synthese 130: 1–11

    Article  Google Scholar 

  • Navarro J. (2005) J. J. Thomson on the nature of matter: Corpuscles and the continuum. Centaurus 47: 259–282

    Article  Google Scholar 

  • Oberheim, E., & Hoyningen-Huene, P. (2009). The incommensurability of scientific theories. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2009/entries/incommensurability Accessed 24 December 2011.

  • Okun L. B. (1989) The concept of mass. Physics Today 42(6): 31–36

    Article  Google Scholar 

  • Palmer A. C. (2008) Dimensional analysis and intelligent experimentation. World Scientific Publishing, Hackensack, NJ

    Book  Google Scholar 

  • Poincaré H. (1897) Science and method (F. Maitland, Trans.). Thomas Nelson and Sons, London

    Google Scholar 

  • Rayleigh L. (1915) The principle of similitude. Nature 95: 66–68

    Article  Google Scholar 

  • Rehg W. (2009) Cogent science in context: The science wars, argumentation theory and Habermas. The MIT Press, Cambridge, MA

    Google Scholar 

  • Rivadulla A. (2004) The Newtonian limit of relativity theory and the rationality of theory change. Synthese 141: 417–429

    Article  Google Scholar 

  • Roche J. (1998) The mathematics of measurement: A critical history. The Athlone Press, London

    Google Scholar 

  • Roseveare N. T. (1982) Mercury’s perihelion from LeVerrier to Einstein. Clarendon Press, Oxford

    Google Scholar 

  • Schofield R. E. (1964) Joseph Priestley, the theory of oxidation and the nature of matter. Journal of the History of Ideas 25: 285–294

    Article  Google Scholar 

  • Sneed J. D. (1971) The logical structure of mathematical physics. Reidel, Dordrecht

    Book  Google Scholar 

  • Soler L., Sankey H., Hoyningen-Huene P. (2009) Rethinking scientific change and theory comparison: Stabilities, ruptures, incommensurabilities? (Boston studies in the philosophy of science, vol. 255). Springer, Berlin

    Google Scholar 

  • Stegmüller W. (1976) The structuralist view of theories. Springer, Berlin

    Google Scholar 

  • Stevens S. S. (1946) On the theory of scales of measurement. Science 103: 677–680

    Article  Google Scholar 

  • Sibum H. O. (1995) Reworking the mechanical value of heat: Instruments of precision and gestures of accuracy in early Victorian England. Studies in History and Philosophy of Science 26: 73–106

    Article  Google Scholar 

  • Suppes P. (2002) Representation and invariance of scientific structures. CSLI Publications, Stanford, CA

    Google Scholar 

  • Thomson J. J. (1881) On the electric and magnetic effects produced by the motion of electrified bodies. Philosophical Magazine 11: 229–249

    Article  Google Scholar 

  • Thomson J. J. (1897) Cathode rays. Philosophical Magazine 44: 293–316

    Article  Google Scholar 

  • Thomson J. J. (1899) On the masses of the ions in gases at low pressures. Philosophical Magazine 48: 547–567

    Article  Google Scholar 

  • Zenker F. (2009) Ceteris paribus in conservative belief revision. On the role of minimal change in rational theory development. Peter Lang, Berlin

    Google Scholar 

  • Zenker, F. (forthcoming). From features via frames to spaces: Modeling scientific conceptual change without incommensurability or aprioricity. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Proceedings of CTF09, Duesseldorf, June 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gärdenfors, P., Zenker, F. Theory change as dimensional change: conceptual spaces applied to the dynamics of empirical theories. Synthese 190, 1039–1058 (2013). https://doi.org/10.1007/s11229-011-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-0060-0

Keywords

Navigation