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Abstract 
This article develops a view of shape representation both in visual experience and in subpersonal 
visual processing. The view is that, in both cases, shape is represented in a layered manner: An 
object is represented as having multiple shape properties, and these properties have varying 
degrees of abstraction. I argue that this view is supported both by the facts about visual 
phenomenology and by a large collection of evidence in perceptual psychology. Such evidence is 
provided by studies of shape discriminability, apparent motion, multiple-object tracking, and 
structure-from-motion. Recent neuroscientific work has also corroborated this psychophysical 
evidence. Finally, I draw out implications of the layered view for processes of concept 
acquisition. 
 

1 Introduction 

The ability to conceptualize objects in the scene before our eyes depends in large part on seeing 

their shapes. It is by seeing the shapes of cars, buses, and motorcycles that you are able to 

cognize them as cars, buses, and motorcycles, respectively. As such, the question of how visual 

perception presents shape properties to thought deserves close philosophical scrutiny. In this 

article I’ll propose a view of how shape properties are represented both in visual experience and 

in subpersonal visual processing. My thesis is that, in both cases, shape is represented in a 

layered manner: An object is represented as having multiple shape properties, and these 

properties have varying degrees of abstraction. Call this the layered view of shape perception. 

The plan for the article is as follows. In section 2, I introduce the distinction between a 

metric property and an abstract shape property. Roughly, metric properties depend essentially on 

certain distance and/or angular measurements, while abstract shape properties do not—they are 

more qualitative. In section 3, I discuss some views of shape perception in the psychological and 

philosophical literature. I suggest that on several psychological views, the visual system’s 

subpersonal representation of shape is wholly metric (i.e., the visual system only explicitly 

encodes the metric properties of objects), and that on some philosophical views, the 

representation of shape in visual experience is wholly metric (i.e., only metric properties figure 

in visual shape phenomenology). In section 4, I argue that the visual experience of shape is 

layered, rather than metric. To preview, my argument is that such layering is necessary in order 

to explain patterns of salience in the differences among various shape experiences. In section 5, I 

discuss a host of evidence indicating that the visual system extracts and uses information about 
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abstract shape in a variety of processing tasks. In section 6, I argue that such evidence vitiates the 

proposal that the subpersonal representation of shape is wholly metric, and weighs in favor of the 

view that the visual system encodes shape in a layered manner. In section 7, I discuss some 

evidence concerning the neural underpinnings of abstract shape perception. In section 8, I 

suggest that the layered view has important implications for the process of concept acquisition. 

 

2 Metric Properties and Abstract Shape Properties 

It is common to arrange shape properties according to their relative stability, where the stability 

of a shape property is given by its invariance under geometrical transformation (change).1 On 

this construal, shape property A is less stable than shape property B iff the transformations under 

which A is invariant form a proper subset of the transformations under which B is invariant. 

Thus, for example, the property of being a square is less stable than the property of being a 

rectangle, which in turn is less stable than the property of being a quadrilateral.  

If an object o has shape properties A and B, and A is less stable than B, then an 

asymmetric entailment holds between the two: o’s having A entails that it has B, but not vice 

versa. Thus, o’s being rectangular entails that o is quadrilateral, but the converse is not the case. 

Furthermore, if o has shape properties A and B, and A is less stable than B, then a transformation 

cannot cause o to lose B without also causing it to lose A. Thus, if o starts out as a rectangle and 

so as a quadrilateral, then any transformation that causes o to cease to be quadrilateral must also 

cause o to cease to be rectangular. 

Formally, I’ll define the notion of a metric property as follows: A property F is a metric 

property iff F is invariant only under some subset of the similarity transformations. The 

similarity transformations include translation (simple change of position), rotation, reflection 

(change in “handedness”), and uniform scaling (simple change in size). Less formally, we can 

think of metric properties as properties that fail to survive changes in distances, lengths, and/or 

angles. They include, for example, being a square (which depends on having four angles of 

exactly 90°), being a square with a 20-inch perimeter, and being a circle with a 10-foot radius. 

Metric properties also include features that are much less stable, such as an object’s precise 

location within a frame of reference, which fails to survive even translation or rotation. Thus, one 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This general approach traces back to the mathematician Felix Klein’s innovative work in the 1870s (known as the 
Erlangen program) on the stratification of geometries according to the relative stability of the properties they 
examine. 
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type of metric property that will be particularly important in what follows is the location of a 

visible surface patch within a frame of reference centered on the viewer (i.e., viewer-centered 

distance and direction). This property is invariant under none of the similarity transformations, 

so trivially it is invariant under a subset of them. 

Correspondingly, I’ll define the notion of an abstract shape property as follows: A 

property F is an abstract shape property iff F is invariant under some proper superset of the 

similarity transformations. As such, we can think of abstract shape properties as ones that can 

survive at least some changes in distances, lengths, and angles. Properties like being a 

parallelogram or being a triangle are abstract, because they survive stretching and shearing, both 

of which alter a figure’s constituent edge lengths and angles.2 For instance, suppose a 

parallelogram is stretched along its horizontal axis so that its top and bottom edges double in 

length. After this transformation, its edge lengths and angles are different, but it remains a 

parallelogram. Thus, abstract shape properties are more stable than metric shape properties, and 

asymmetric entailments obtain between the two—e.g., something’s being square entails that it is 

a parallelogram, but not vice versa.  

I’ll concentrate on two types of abstract shape property here: topological properties and 

affine shape properties. A topological property is any property that is preserved under all 

topological (i.e., one-to-one, continuous) transformations. Topological transformations are often 

called “rubber sheet” transformations, because they include all the deformations one can apply to 

a rubber sheet—e.g., twisting, stretching, bending, etc. However, they do not include tearing an 

object in two, poking holes in an object, “filling in” the holes of an object, or “gluing” pieces of 

the object together. Topological properties include connectedness, an object’s number of holes, 

and an object’s property of being inside or outside another object. Because of the generality of 

topological transformations, any two solid figures—e.g., a ball and a block—are topologically 

equivalent. 

An affine shape property is any property that survives affine transformations. Roughly, 

affine transformations include the similarity transformations along with stretching and shearing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 In a stretch transformation, all points are moved in a direction perpendicular to a fixed axis, and move by an 
amount proportional to their initial distance from the axis. In a shear transformation, all points of an object are 
moved in a direction parallel to a fixed axis, and move by an amount proportional to their initial distance from the 
axis. A shear transforms, e.g., a rectangle into a (non-rectangular) parallelogram. 
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along an arbitrary direction.3 Affine shape properties include: collinearity, being straight vs. 

curved, parallelism, ellipticality, triangularity, being a parallelogram, coplanarity of lines, the 

number of sides in a polygon, and signs of curvature (concave vs. convex) along the surface of 

an object (Todd [2004]).4 Since distances and angle magnitudes are not preserved under affine 

transformation, affine shape properties are more stable than metric properties. Thus, if one 

surface is a stretching of another surface, then the two are affine equivalent, even though they are 

metrically distinct. Moreover, since the affine transformations form a subset of the topological 

transformations, it follows that any topological property also counts as an affine shape property. 

However, when I refer here to affine shape properties, I’ll have in mind properties that are affine 

invariant but not topologically invariant, such as those listed above. Figure 1 shows examples of 

topological transformation and affine transformation. 

Topological transformation 

 

Affine transformation 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Formally, an affine transformation is a function f(x) = Ax + b, such that A is an invertible matrix, x is a 
coordinatized point, and b is a position vector. Affine transformations thus include linear transformations with the 
addition of translation. 
4 A helpful way to visualize the types of changes possible under affine transformation is via the close relation 
between affine transformation and parallel projection: Any affine transformation is equivalent to a composition of at 
most two parallel projections (Brannan et al. [2012], p. 84). Moreover, many such transformations (though not 
uniform scaling) can be expressed as a single parallel projection. Thus, affine transformations can be visualized by 
imagining a parallel projection mapping one plane to another. If a figure A is specified on the plane that is the 
preimage of the mapping, then the figure on the projection plane will differ from A by at most an affine 
transformation. 

Figure 1. Examples of topological transformation and affine transformation	  
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3 Metric Views 

Many have been committed to what I’ll call metric views of either visual representation (at the 

subpersonal processing level) or visual experience. This section introduces these positions, in 

preparation for arguing against them. 

I’ll construe a metric representation of shape as one that only explicitly encodes metric 

properties, such as locations, distances, lengths, and angles. I won’t attempt to offer a reductive 

analysis of the notion of explicit representation here, but the notion can be intuitively cashed out 

as follows. When a representation makes certain information explicit, that information is made 

immediately available for use by the system that uses the representation. By contrast, when a 

representation leaves certain information implicit, further computations are necessary in order to 

extract that information (Kirsh [2003]). An illustration of this difference is due to David Marr 

([1982], p. 20): The Arabic numerical system makes explicit a number’s decomposition into 

powers of ten (e.g., “63” in the Arabic system is equal to 6*101 + 3*100), while leaving its 

composition into powers of two implicit. The binary numerical system, on the other hand, makes 

explicit a number’s decomposition into powers of two (e.g., “1011” in the binary system is equal 

to 1*23 + 0*22 + 1*21 + 1*20), while leaving its decomposition into powers of ten implicit. 

A representative kind of metric representation is Marr’s 2½-D sketch, which can be 

construed as a type of depth map. It is an array specifying the viewer-centered distance, 

direction, and local orientation at each point (up to a certain resolution) for all visible surfaces in 

the scene (see Marr [1982], pp. 275-9).5 The 2½-D sketch is a metric representation because it 

only explicitly encodes viewer-centered locations and angles (specifically, the locations of small 

surface patches and the angles of surface normals relative to the line of sight6), and these are 

metric properties.7 Moreover, substantial computation is needed in order to extract (most) non-

metric properties on the basis of a 2½-D sketch. (This is also partly because of the local 

character of the 2½-D sketch—see note 7.) For instance, to extract the abstract shape property 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Because the 2½-D sketch is limited to describing the geometry of visible surfaces, it does not include any 
description of the way surfaces complete behind occluders.  
6 A surface normal at point p on a surface is a line segment perpendicular to the plane that is locally tangent to (i.e., 
“just grazes”) the surface at p. Marr proposed that local surface orientation at a point p is specified in the 2½-D 
sketch by encoding the angle formed by the surface normal at p and the viewer’s line of sight. 
7 The 2½-D sketch representation is also local—geometrical properties (e.g., location, orientation) are ascribed only 
to very small elements of the scene, such as small surface patches and edge segments. Some subsequent theorists 
have rejected the local assumption (see Jackendoff [1987], pp. 331-8), suggesting extensions of the 2½-D sketch that 
explicitly segment the scene into objects, surfaces, backgrounds, etc. 
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‘parallelogram’ on the basis of a 2½-D representation of a surface, the system must perform 

computations to verify, inter alia, that the surface has four straight edges, that those edges are 

connected, and that two pairs of those edges are parallel. None of this information is made 

explicit by the 2½-D sketch—indeed, the 2½-D sketch doesn’t even have the resources for 

representing parallelism or number of sides. Thus, if the 2½-D sketch encodes abstract shape 

properties at all, it does so only implicitly. 

 Call a view on which the visual system represents shape only via metric representation a 

metric view of visual shape representation. Marr himself did not hold a metric view. In Marr’s 

theory, the 2½-D sketch was followed by a 3-D structural description, which represents certain 

abstract shape properties of objects and their parts (see Marr [1982], ch. 5; Marr and Nishihara 

[1978]; see also Biederman [1987], [2013]).8 Thus, the 3-D model might simply represent an 

object’s part—say, a person’s leg—as “roughly cylindrical.” Nonetheless, while Marr clearly 

thought that visual shape analysis was not exhausted by the 2½-D sketch, several subsequent 

accounts of visual shape representation—primarily in the object recognition literature—have 

closely resembled the 2½-D sketch in important ways.9 The most common position in this vein is 

the so-called view- or image-based approach (Tarr and Pinker [1989]; Ullman and Basri [1991]; 

Ullman [1996], [1998]; Edelman [1997], [1999]; Williams and Tarr [1999]; Riesenhuber and 

Poggio [2002]; Graf [2006]). According to most such proposals, the visual system represents an 

object’s shape simply by specifying the numerical coordinates of certain local features of the 

object (or the object’s projected image).10 For instance, on Ullman’s ([1996]; [1998]) approach, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 It is interesting to observe, however, that Marr called the 2½-D sketch “the end, perhaps, of pure perception” 
([1982], p. 268, emphasis added). Steven Pinker ([1997], p. 260) appears to endorse a similar view. It is unclear 
what Marr had in mind by “pure perception.” 
9 Vision scientists outside the object recognition literature have often rejected the metric view of shape 
representation. Notable opponents to the metric view include of course the researchers whose work is discussed 
below (e.g., Biederman, Chen, Koenderink, Todd, and Wagemans). Furthermore, many psychologists working on 
perceptual organization have placed emphasis on the perceptual recovery of affine properties such as collinearity 
and parallelism, and topological properties such as closure and connectedness, since these are important cues to 
perceptual grouping, figure-ground segregation, and/or amodal completion (see, for example, Feldman [2007]; 
Hoffman [1998]; Kellman [2003]; Nakayama and Shimojo [1992]; Palmer [2003]; and Tse [1999]; see Wagemans et 
al. [2012] for review). Vision scientists who study the processes of extracting shape from line drawings, shading, or 
texture also generally reject the metric view, sometimes in favor of a view on which vision represents affine shape 
(see Belhumeur et al. [1999]; Cole et al. 2009; Koenderink et al. [2001]); Phillips et al. [2003]; Todd [2004]).  
10 Though all such views agree that the coordinate system in which features are specified is viewer-centered, they 
differ on whether it is 2-D (Ullman [1998]; Edelman [1999]) or 3-D (Williams and Tarr [1999]). Ullman ([1996], 
pp. 110-2) suggests that depth values are used when they are available, but the model he adopts does not require 
them. This distinction between 2-D and 3-D view-based schemes will not matter for current purposes, since either 
type of representation is metric in nature. 
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the representation of shape that serves as input to object recognition is a vector specifying the 

viewer-centered 2-D locations of simple image elements like edges, vertices, and contour 

inflection points. An input vector v of this sort is recognized as deriving from a particular object 

o if the visual system can obtain v by linear combination of a small number of vectors stored in 

memory that are known to correspond to distinct images of o.11 This proposal, and others like it, 

shares a critical feature with the 2½-D sketch—namely, it entails that vision only explicitly 

represents certain metric features of objects, such as the viewer-centered locations of their edges, 

vertices, etc. (after normalizing for position, rotation, and scale). Transformations of an object 

outside of the similarity group (e.g., stretching, shearing, or bending) will alter these locations. 

 The metric view of visual shape representation is a theory about subpersonal visual 

processing. However, it suggests a counterpart in the domain of phenomenology, which I’ll call 

the metric view of visual shape experience. On this proposal, the only geometrical properties 

represented in visual experience are metric properties, such as the locations and orientations of 

small surface patches. 

Although detailed theories of shape phenomenology are relatively scant in the 

philosophical literature, the metric view can be found in some authors. For instance, certain 

passages suggest that Evans ([1985]) endorsed a version of this view. Evans proposes that visual 

experience represents shape solely by egocentrically locating the points of visible surfaces in 

“behavioral space”—a specification of space common to each modality. Thus: “To have the 

visual experience of four points of light arranged in a square amounts to no more than being in a 

complex informational state which embodies information about the egocentric location of those 

lights” (Evans [1985], p. 339).12 This indicates that, for Evans, the experience of shape amounts, 

roughly, to representing the viewer-centered locations of visible surface points.13 

 Peacocke’s ([1992]) notion of scenario content bears some similarity to Evans’s 

proposal. According to Peacocke, at the most fundamental level, visual experience represents a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 Ullman and Basri ([1991]) proved that, under certain conditions (e.g., when an object is rigid, all its points are 
visible in each view, and points are correctly “matched” across images), the vectors of X- and Y- coordinates of 
points in a specific image of an object (under parallel projection) can be expressed as linear combinations of such 
vectors in three distinct images of the same object.  
12 Page references for Evans ([1985]) correspond to the reprint found in Noë and Thompson ([2002]). 
13 A caveat: Evans does not explicitly claim that the approach to shape experience that he endorses for 
configurations of points of light also holds for experiences of solid figures or surfaces. Thus, it is possible that he 
would have rejected the metric view as a complete account of shape perception.	  
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positioned scenario. This is described as a way of filling out space relative to an origin and axes 

fixed on the center of gravity of the perceiver’s body ([1992], p. 63). More specifically:  

In picking out one of these ways of filling out the space, we need to do at least the 
following. For each point…identified by its distance and direction from the 
origin, we need to specify whether there is a surface there and, if so, what texture, 
hue, saturation, and brightness it has at that point, together with its degree of 
solidity. The orientation of the surface must be included. So must much more in 
the visual case: the direction, intensity, and character of light sources; the rate of 
change of perceptible properties, including location; indeed, it should include 
second differentials with respect to time where these prove to be perceptible. 
([1992], p. 63) 
 

Again, this essentially amounts to a point-by-point representation of surface depth and 

orientation (though other local features are included as well). And as such, scenario content 

specifies, in the first instance, metric properties—point-wise distance, direction, and orientation 

relative to the viewer. However, Peacocke recognizes the need to enrich the scenario content 

approach in order to account for certain well-known perceptual phenomena.14  

The layered view is consistent with (but does not entail) the view that visual experiences 

have scenario content. But if the layered view is right, visual experiences must also have much 

more than scenario content. In particular, visual experiences must represent abstract shape 

properties in addition to metric properties. 

 Finally, I should note that the metric view of visual shape experience is quite 

pretheoretically attractive. It is natural to think of visual experience as simply delivering a 

pixilated map of the environment specifying the distances and directions of individual surface 

points. On this picture, it is the job of cognition to “carve up” this map in certain ways and 

extract abstract shape categories (e.g., triangle, quadrilateral, solid figure, etc.) on that basis.15 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Consider, for instance, Mach’s tilted-square/regular-diamond figure, which can be seen either as a diamond or as a 
tilted square. Both of these percepts are compatible with precisely the same scenario content (e.g., viewer-centered 
distance, direction, and orientation). Because of this, Peacocke introduces a further layer, which he calls 
“protopropositional content.” Protopropositional content is truth-evaluable, and it consists of individuals, properties, 
and relations. Peacocke suggests that protopropositional content includes the properties of being square, diamond, 
collinear, curved, parallel, and symmetric. The layered view is consistent with this proposal, though it is consistent 
with other views as well. 
15 Though this is not the place for historical exegesis, it is worth asking whether Berkeley ([1710/1982]) held a 
metric view of visual shape experience, given his famous rejection of the “abstract general idea” of triangularity 
([Introduction, §13]). Though Berkeley allows that a determinate idea of a particular triangle may on occasion 
function to “stand for and represent” the property of triangularity ([Introduction, §15]), he seems to have believed 
that this requires a cognitive act on the part of the subject—one must use the idea in a certain way. Thus, though the 
matter is by no means clear-cut, it seems fair to assume that Berkeley would have agreed that visual experience itself 
presents us only with determinate metric properties.	  
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 In what follows I will argue against both types of metric views. I’ll first argue that the 

layered view of visual shape experience does a better job than the metric view of explaining 

patterns of salience in the differences among shape experiences. Then I’ll argue that the metric 

view of visual shape representation cannot explain the visual system’s ability to put information 

about abstract shape properties to use in a number of processing tasks. 

 

4 Against Metric Views of Visual Shape Experience 

This section addresses the question of which geometrical properties are represented in the 

conscious visual experience of shape. For present purposes, I will simply assume that visual 

experiences attribute properties to objects in the environment, and that the representation of such 

properties makes a difference to visual phenomenology. 

 As noted above, the metric view of shape experience holds that visual experience 

presents us only with metric properties of objects, such as point-wise distance and orientation. 

Another view—the one I’ll defend here—is that states of visual experience represent geometrical 

properties at multiple levels of abstraction simultaneously. Call this the layered view of visual 

shape experience. Thus, for example, when viewing a triangular surface, you might 

simultaneously experience it as: (i) a surface composed of points located in such-and-such a 

direction, at such-and-such a distance, and at such-and-such an orientation relative to your line of 

sight, (ii) a triangle, and (iii) a solid figure. 

How can we determine which (if either) of these views is correct? Perhaps the most 

obvious way would be to simply introspect one’s experience and see whether it reveals the 

representation of abstract shape properties in addition to metric properties. Unfortunately, 

however, the method of introspection faces a number of well-known problems (see Schwitzgebel 

[2011]). Moreover, if I introspect my experience and claim to encounter abstract shape properties 

while you introspect yours and claim to encounter only metric properties, how can we determine 

who is right? 

A more promising option, it seems, would be to employ the method of phenomenal 

contrast, recently championed by Susanna Siegel ([2010]). This method works as follows. First, 

formulate the hypothesis that a property F is represented in visual experience. Next, examine two 

overall experiences, A and B, such that (i) A is a candidate for representing F, (ii) B is not such a 

candidate, and (iii) A and B are as similar as possible in other respects. Then check whether A 
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and B contrast phenomenally. If they do, then determine whether the proposal that A includes a 

visual experience that represents F provides the best explanation of this phenomenal contrast. 

Critically, this last stage can invoke empirical considerations (see Block [2014]), though Siegel 

does not generally do so. 

Siegel uses the phenomenal contrast strategy to defend the view that certain “high-level” 

properties, such as causation, natural kinds, etc., are represented in visual experience, alongside 

the usual suspects (color, shape, motion, etc.). Thus, for evaluating this hypothesis, the method 

of phenomenal contrast recommends that we examine two experiences that are essentially 

identical in respect of the colors, shapes, etc., that they represent, but perhaps differ in the 

representation of such high-level properties. If the two experiences differ phenomenally, then 

(perhaps!) the best explanation is that one represents high-level properties while the other does 

not. 

 In the current case, we wish to compare the hypothesis that visual experiences only 

represent metric properties with the hypothesis that visual experiences also represent abstract 

shape properties. Thus, the most straightforward application of the method of phenomenal 

contrast would be to examine two experiences that are essentially identical in the metric 

properties that they represent, but perhaps differ in their representation of abstract shape 

properties. Any difference in shape phenomenology between these two experiences could be 

taken to support the layered view. 

But now we face a problem. Given that any difference in abstract shape entails some 

difference in metric properties (as discussed in section 2), it is prima facie plausible that any 

change in the visual experiential representation of abstract shape will entail some change in the 

visual experiential representation of metric properties.16 Accordingly, any pair of phenomenally 

contrasting experiences that even potentially differ with respect to their representation of a 

particular abstract shape property (e.g., triangularity) will also plausibly differ with respect to 

their representation of numerous metric properties (e.g., locations of surface points, edge lengths, 

angles, etc.). So it seems unlikely that we will be able to find two experiences that 

uncontroversially agree in their representation of metric properties, but perhaps differ in their 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 I do not actually endorse the latter entailment, and in fact I suspect that it does not hold (though I admit that it has 
pretheoretic plausibility). But I aim to show here that even if we grant the entailment, we still have strong reasons to 
suppose that abstract shape properties are represented in visual experience. 
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representation of abstract shape properties. So how can we identify a pair of experiences that 

allow us to appropriately compare the two hypotheses of interest?17 

 This is a tricky situation, but I suggest that there is a maneuver available. Rather than 

looking merely at two individual shape experiences, we can examine pairs of changes in visual 

shape phenomenology, one of which clearly involves a change only in the representation of 

metric properties, and the other of which is a candidate for also involving a change in the 

representation of a given abstract shape property. The hypothesis recommended by the layered 

view is that, other things being equal, changes of the latter type should be more salient (i.e., more 

noticeable or striking) than changes of the former type. 

 However, on any view of shape experience—including the metric view—certain shape 

changes should be expected to be more salient than others. For instance, a transformation that 

stretches a rectangle by a factor of 2 should be more salient than a transformation that stretches it 

by a factor of 1.5, simply because, e.g., point locations are altered more in the former case. Thus, 

the claim is not that the metric view cannot predict that certain changes will be more salient than 

others—trivially, it can. Rather, the claim is that the layered view offers a better explanation of 

the specific patterns of salience associated with shape changes. This is because the metric view 

on its own does not predict that the salience of a given shape change should be sensitive to 

whether or not that change crosses the boundary of an abstract shape category. The layered view, 

on the other hand, does predict this. 

One method, then, would be the following: First formulate a hypothesis about the 

experience of abstract shape—e.g., “Some visual experiences represent abstract shape property 

F.” Then consider the visual experience of a base stimulus that has F. Next, consider experiences 

of two stimuli—which we can call test stimuli—that meet the following conditions: Both test 

stimuli differ from the base stimulus in their metric properties, but test stimulus 1 shares F with 

the base stimulus, while test stimulus 2 does not. According to the layered view of visual shape 

experience, the experience of the base stimulus differs from the experience of test stimulus 2 as 

regards the representation of (at least) two types of properties—both metric properties and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 This problem in applying the method of phenomenal contrast is liable to arise in any situation where one wishes to 
compare two hypotheses, P and Q, where P claims that only determinates within a particular category (e.g., scarlet) 
figure in conscious experience, while Q claims that determinables within that category (e.g., red) also figure in 
conscious experience. Moreover, I suspect that analogs of the method discussed next—viz., examining patterns of 
salience among changes in experience, rather than simply comparing two individual experiences—for overcoming 
this difficulty may be applied in other cases. 
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abstract shape property F—while it differs from the experience of test stimulus 1 only in the 

representation of metric properties. As such, the layered view would predict that—other things 

being equal—the former difference will be more salient than the latter. 

Holding other things equal, however, is no easy task. Roughly, we want to ensure that the 

two changes (base stimulus to test stimulus 1 vs. base stimulus to test stimulus 2) are 

approximately comparable, aside of course from the critical geometrical difference (viz., one 

crosses the boundary of a relevant abstract shape category, while the other does not). Most 

importantly, we want to ensure that any difference in the salience of the two changes has to do 

with perception of abstract shape properties, rather than with detecting differences in very local 

features, such as point or pixel locations. Perhaps more intuitively, we want to ensure that the 

change from the base stimulus to test stimulus 2 isn’t more salient simply because the two 

figures have less “overlap” in their constituent points than the base stimulus and test stimulus 1. 

Psychologists and computer scientists who have faced this problem have developed 

measures of the degree to which two stimuli overlap in their local features (see Veltkamp and 

Latecki [2006]). Thus, suppose that we represent figures within a coordinatized frame of 

reference. A given figure can then be represented by a binary vector indicating, for each point p 

within the reference frame, whether p “belongs” to the figure (“1” if the point belongs, “0” if it 

does not). Given this scheme, one simple way to measure the difference between the overall 

“point distribution” of two figures (and thus the change between them), called the Hamming 

distance (Ullman [1996], p. 5), would be to first normalize two figures to a standard position and 

orientation, then add up the number of places in which the vectors for the two shapes differ. 

Another method would be to find, for each point p belonging to one figure, the distance from p to 

the closest point belonging to the other shape, and take the maximum of these distances (known 

as the Hausdorff metric). Yet another method would be to simply sum the distances between 

each point of one figure and its nearest neighbor in the other figure, which would give a measure 

of the overall “point displacement” from one figure to the other (again, following 

normalization).18 

 While it is fortunate that such measures exist, their disparateness may make it seem 

impossible to “hold other things equal” across two shape changes. Nonetheless, there is a way 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 Alternatively, we might sum the squared distances between corresponding points of the two figures, and take the 
square root of this sum (known as the Procrustean distance). 
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forward. We can ensure that, no matter which of these measures is used, test stimulus 2 is at least 

as—if not more—different from the base stimulus in its local features. And luckily, stimuli that 

obey this restriction have been used in a recent shape discrimination study by Todd, Weismantel, 

and Kallie ([2014]). Todd et al. set out to compare the detectability of shape changes at varying 

levels of abstractness. Subjects were first shown a stimulus—the base stimulus—for 300 ms. 

Then, after a brief delay, they were shown two other stimuli in succession, each for 300 ms. One 

of these stimuli was metrically equivalent to the base stimulus, while the other was metrically 

distinct. The subjects’ task was simply to indicate which of these two objects was equivalent to 

the base stimulus. The metrically distinct stimulus could differ from the base in one of four 

ways: It could involve a stretching (change in contour length), a skewing causing very slight 

convergence of contours that were parallel in the base stimulus (loss of parallelism), the addition 

of a bump to the base stimulus’s contour (loss of collinearity), or the introduction of a hole 

(change in topology). The first type of change disrupts only metric shape, leaving affine shape 

and topology intact. The second and third types of changes disrupt affine shape, but leave 

topology intact.19 The fourth type of change disrupts topology. Examples of these changes are 

shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 Loss of collinearity also alters an object’s projective properties. A projective property is a property that is 
preserved under projective transformations. Since the affine transformations form a subset of the projective 
transformations (Brannan et al. [2012]), any property that is preserved under all projective transformations is also 
preserved under all affine transformations. Thus, every projective property is an affine property, but not vice versa. 
For present purposes, I focus on the larger set of affine properties, but it is possible that the two types of properties 
have different degrees of salience in visual phenomenology. Indeed, I find loss of collinearity to be more 
phenomenologically salient than loss of parallelism. This is borne out in the results of Todd et al. ([2014]). 

2A was created by displacing one vertex on the object
in a horizontal direction. The ones in Figure 2B and C
were created by displacing an entire edge. The only
difference between them is that the displaced edge in
Figure 2B is shorter than the one in Figure 2C. One
possible measure, called the Hausdorf metric, scales
shape changes based on the maximum displacement
among all the different points on an object’s boundary.
According to that measure, all three of the shape
changes in Figure 2 have exactly the same magnitude.
Another way of scaling these changes might be to
measure the total displacement summed over all the
different points on the boundary. Note that this is quite
different from the Hausdorf metric. When scaled based
on the total displacement, the shape change in Figure
2A is only half the magnitude of the one in Figure 2B,
and the displacement of the short edge in Figure 2B has
a smaller magnitude than the displacement of the
longer edge in Figure 2C. There are few empirical
studies that have attempted to assess the relative
psychological validity of possible shape-difference
metrics (see, however, Wilbraham, Martinez, Chris-
tensen, & Todd, 2008). Thus, in the present investiga-
tion, we evaluated a wide variety of metrics in an effort
to determine if any of them can predict the relative
detectability the different types of shape change we
employed.

Methods

Observers

Four observers participated in the experiment,
including two of the authors and two others who were
naı̈ve about purpose of the experiment. All had normal
or corrected-to-normal vision.

Apparatus

The experiment was controlled using a Dell Dimen-
sion 8300 computer with a 21-in. monitor. The monitor
was viewed at a distance of 65 in., and it had a spatial
resolution of 1280 · 1024 pixels.

Stimuli

Two of the possible standard objects are shown in
Figure 3 and will be referred to hereafter as the short
and tall object, respectively. The manipulation of object
height was included because it affects some shape-
difference metrics as shown in Figure 2. The same two
objects could also be flipped horizontally or vertically
in any given trial. Four different transformations were
performed on these objects to create possible foils for a
match-to-sample discrimination task as shown in
Figure 4: A stretching transformation could be
performed that expanded or compressed the objects
along the horizontal axis. A skewing transformation
could be performed that caused the parallel vertical
edges to taper inward or outward. Small bumps could
be added to both vertical edges. The heights of these
bumps were one third the heights of the vertical edges,
and their maximum displacements could be either
rightward or leftward. Finally, a small hole could be
added to the center of the object. The height of this hole
was 19 pixels for the short object and 28 pixels for the
tall object.

All these transformations were parameterized in
terms of their maximum displacements (i.e., the
Hausdorf metric). Based on the results of pilot

Figure 3. Two of the standard objects that were used in the
present experiment. The same two objects could also be flipped
horizontally or vertically in any given trial.

Figure 4. The four different types of shape change that were
used in a match-to-sample discrimination task. All of the
depicted changes have a maximum displacement of 15 pixels.

Journal of Vision (2014) 14(1):18, 1–8 Todd, Weismantel, & Kallie 3

Figure 2. Examples of the changes used in 
Todd et al. (2014). The base stimulus is 
shown in the center. Reproduced with 
permission of the Association for Research 
in Vision and Ophthalmology. 
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 Before covering the results of this study, I recommend that you consider your experiences 

of the stimuli in figure 2, and try to decide which changes are most phenomenologically salient. 

For me at least, the result is fairly clear. The changes that disrupt abstract shape (skewing, adding 

a bump, or adding a hole) are more salient than the change that disrupts only metric shape 

(stretching). Indeed, they strike me as ‘qualitative’ in a way that the latter change does not, even 

though the overall point displacement (for instance) is actually greater in the stretching 

transformation. This should make initially plausible the view that abstract shape properties (e.g., 

parallelism, collinearity, and number of holes) figure in shape phenomenology alongside metric 

shape properties (lengths, angles, and curvature).  

The results of the experiment comported with this intuition.20 Todd et al. analyzed 

subjects’ performance in cases where—by almost all common measures of local feature 

differences between figures, such as those discussed above—the topologically distinct stimulus 

was less different from the base than the affine distinct stimuli, and the affine distinct stimuli 

were in turn less different from the base than the merely metrically distinct stimulus. It was 

found that, even in these conditions, subjects were better at performing the task in the affine 

change conditions (when one of the stimuli involved skewing or adding a bump to the base 

stimulus) than in the mere metric change condition (stretching), and were better still in the 

topological change condition (addition of a hole). This indicates that, given two shape changes A 

and B such that (i) A disrupts an abstract shape category while B does not, and (ii) by all or most 

available measures, the magnitude of local feature difference is either roughly comparable or 

somewhat greater in the case of B, A tends to be more salient than B.21 

 Now, assuming that subjects perform discrimination tasks like this on the basis of their 

visual shape phenomenology (whether this is the case will be considered shortly), these results 

raise a challenge for metric views of visual shape experience. For if visual experience does not 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 Moreover, this is by no means the only study to document increased salience for changes that cross the boundary 
of an abstract shape category. See also the study by Kayaert and Wagemans ([2010]) described below, along with 
Amir et al. ([2014]), Biederman and Bar ([1999]), and Todd et al. ([1998]). Comparisons across these studies are 
admittedly difficult, however, because slightly different measurements of local feature differences across figures 
were used. 
21 Condition (ii) is crucial, of course. If the metric change (stretching) were made very extreme (e.g., compressing 
the object to only a few pixels) then it would likely be more salient than the changes in affine shape or topology 
shown above. But this is not a problem for the layered view. On the layered view, the salience of a particular shape 
change is predicted to be a complex function of differences in geometrical properties at varying degrees of 
abstraction—including metric properties. As such, if the change in metric properties (lengths, angles, point 
locations, etc.) is extreme enough, then it should be expected to be more salient than a given transformation that 
disrupts abstract shape, if the change in metric properties in the latter case is much smaller. 
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represent abstract shape properties, and instead only represents, e.g., the viewer-centered 

locations of surface points, then we have no obvious explanation of why changes between 

objects that alter abstract shape should be especially salient in visual shape phenomenology. But 

the layered view offers a natural explanation for this. 

 I’ll now consider two potential responses on behalf of the metric view. 

 First, one might suggest that a version of the metric view could predict the results of the 

Todd et al. experiment without invoking the representation of abstract shape properties if the 

view simply posited an appropriate subjective similarity function R over experiences of metric 

properties (assuming that discriminability tracks subjective similarity). That is, perhaps 

experiences represent only metric properties such as length, distance, location, and angle, but, by 

R, experiences of metrically distinct but affine equivalent objects turn out to be (other things 

being equal) more subjectively similar than experiences of affine distinct objects. (Of course, 

however, R could not be based on any of the measures of local feature difference given above.) 

I suspect that an appropriate subjective similarity function could indeed predict the results 

of the Todd et al. study (though to have general applicability the measure would likely need to be 

forbiddingly complex and context-sensitive22). Note, however, that a similarity function R over 

shape experiences would be compatible with either the metric view or the layered view of the 

contents of shape experiences. But upon reflection, I think we still have reason to favor the 

layered view, because the layered view offers a better account of why R is the “right” indicator 

of similarity between shape experiences. On the layered view, the reason why—other things 

being equal—experiences of objects within the same abstract shape category are subjectively 

more similar than experiences of objects from different abstract shape categories is because the 

latter objects are represented in experience to differ in that shape category, while the former are 

not represented to so differ. The metric view, on the other hand, does not have any ready 

explanation of what grounds these facts about subjective similarity. Rather, on the metric view 

the relevant similarity function would be left brute and unexplained. 

A second response for the metric view is recommended by closer attention to the view-

based models of object recognition discussed above. According to several view-based models, 

the representation of shape is sparse—it involves simply representing an n-tuple composed of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 There are, it should be noted, numerous factors that seem to affect how similar two shapes are seen to be. One 
important contributor, which I will not discuss here, is whether two shapes can be decomposed into parts with 
roughly the same metric structure (e.g., Barenholtz and Tarr [2008]).	  
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the viewer-centered coordinates of “critical features” like vertices, edges, curvature extrema, and 

inflection points. Perhaps, then, visual experience is sparse in the same way—only the 

coordinates of such critical geometrical features are represented. Now, importantly, some of the 

changes in abstract shape used by Todd et al. ([2014]) (viz., adding a bump or a hole), involved 

adding extra vertices or curvature extrema. As such, on some view-based proposals, this would 

result in the addition of extra elements to the n-tuple specifying object shape. Stimulus 

stretching, on the other hand, did not involve adding an extra critical feature. Perhaps, then, it 

will be claimed that—other things being equal—changes that result in the addition or subtraction 

of critical features are more experientially salient than changes that do not. This would explain 

why some of the abstract shape changes were more salient than the stretching change. 

There are a couple of things to note in response. First, observe that the skewing change 

did not increase the number of vertices or curvature extrema in the object, yet was still more 

salient than stretching. Second, other studies have shown independently that models on which 

object shape is encoded simply as an n-tuple of critical feature coordinates do a relatively poor 

job of explaining patterns of salience in shape discrimination. Generally, such views predict that 

the dissimilarity of two shapes should be a function of the distances between their critical feature 

coordinates. However, studies specifically testing this prediction have found that discriminability 

is instead more strongly influenced by abstract shape properties of objects (e.g., whether the 

objects’ axes are straight vs. curved) and abstract (or “categorical”) relations among parts of the 

overall shape, such as whether one part intersects another part above vs. below the latter part’s 

midpoint (e.g., Hummel and Stankiewicz [1996]; Biederman and Bar [1999]). Still, the issues in 

this area are complicated, so I leave open whether a “sparse” metric view may be able to predict 

the specific patterns of discriminability found in Todd et al. ([2014]).23 

 I noted above that studies of shape discriminability seem to favor the layered view, but 

only on the assumption that subjects perform such tasks on the basis of visual phenomenology. 

However, this assumption may be questioned. Perhaps the difference in salience is rooted not in 

visual experience, but rather in the way shape properties are cognized. Doubtless we generally 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23 Nevertheless, the evidence discussed in the next section and the arguments in section 6 provide, I think, strong 
reasons to doubt that the view-based approach (including the sparse versions of this approach) can provide a 
complete account of shape representation at the subpersonal level, although it may give part of the story. If these 
arguments succeed, then the defender of the metric approach to shape experience would then be in the position of 
explaining why only the metric components of subpersonal shape representation subserve visual phenomenology, 
while other components do not. 
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categorize objects in thought according to abstract shape properties (e.g., their number of sides), 

so perhaps shape changes are especially salient when they are accompanied by differences in 

postperceptual categorization.  

Though it is quite difficult to conclusively rule out an alternative explanation of this sort, 

there are reasons to be skeptical of it. 

 First, the difference in salience between changes that preserve certain abstract shape 

properties (e.g., parallelism or solidity) and those that do not simply feels perceptual, rather than 

cognitive. Plausibly, the stimulus with a bump visually appears more different from the base 

stimulus than does the stretched stimulus. This does not seem to be a matter merely of how those 

stimuli are grasped in cognition. 

 Moreover, roughly the same patterns of salience have also been obtained with young 

infants. Kayaert and Wagemans ([2010]) used a dishabituation paradigm to study affine shape 

perception in infants and toddlers. The children were repeatedly shown either a triangle or 

trapezoid. After they habituated to this stimulus, they were presented with a display containing 

two test stimuli: (i) an object that differed from the original by only a metric change, and (ii) one 

that differed in affine structure (see figure 3). The former was a stretching of the habituation 

stimulus (but preserved its number of sides), while the latter transformed it either from a triangle 

into a trapezoid or vice versa. However, these two changes were constrained such that either they 

involved the same overall point displacement, or the change that preserved affine shape involved 

a larger difference than the change that failed to preserve affine shape. It was found that even the 

youngest infants (approximately 3 months) looked significantly longer toward the affine-distinct 

stimulus than the merely metrically-distinct stimulus, and the size of this effect did not differ 

significantly between younger and older children. 
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k. Kayaert & Wagemans (2010): Infants and toddlers repeatedly shown either a triangle or 
trapezoid. After they habituated to this stimulus, they were presented with a display 
containing two test stimuli: (i) an object that differed from the original by only a metric 
change, and (ii) one that differed in affine structure. 

 
 
 
 
 
 
 

l. Todd, Chen, and Norman (1998): Subjects shown three wire frame stimuli. One stimulus 
was designated as the “standard,” while the other two were “test” figures. One of the test 
figures was Euclidean equivalent with the standard, while the other was Euclidean 
distinct. Subjects were simply asked to identify which of the two test figures was 
Euclidean distinct. These judgments were faster and more accurate when the Euclidean 
distinct stimulus was affine distinct from the standard than when it was only metrically 
distinct. 

 
m. Conclusion: The visual system treats affine equivalent objects (e.g., triangles of different 

base-height ratios) as having a shape feature in common.  
 

n. Phenomenology of abstract shape? 
 

i. Hard to deny that the (shape-ish) phenomenal character of seeing a solid circle is 
much more similar to the phenomenal character of seeing a ring than it is to the 
phenomenal character of seeing a solid triangle. 
 

ii. One possibility: Abstract shape representation is subpersonal, preconscious—exerts 
influence on processes that subserve phenomenology (e.g., apparent motion), but 
does not subserve phenomenology of its own. 

 
iii. My own view: Abstract shape properties do figure in perceptual phenomenology, but 

alongside metric shape properties. Although there are many respects in which the 
solid circle phenomenally appears different from the solid square (e.g., outline 
curvature), there is also a property that they phenomenally appear to share—namely, 
they both appear to be solid figures. Similarly, while the solid circle appears similar 
to the ring in many respects, there is also a respect in which they appear qualitatively 
different (number of holes). 

 
6. Orthodox views of shape representation 

 
a. What do structure and abstract shape constancy tell us about the nature of visual shape 

representation?  
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be tested (eg Cutzu and Edelman 1998; Kayaert et al 2003, 2005; Vuilleumier et al 2002). It
should be noted that we used only this measure of physical calibration, and not the output
of models that are designed to emulate visual processing up to object recognition (eg the
HMAX model described by Riesenhuber and Poggio 1999) or up to certain brain regions (eg
V1, in the wavelet-based model of Lades et al 1993). In principle, it is possible that these or
other models could explain our results.(1)

Figure 1. The stimuli used in the different conditions. The test stimuli are presented side by side (see
method section).

We use two-dimensional (2D) silhouette stimuli during our experiments. It should be
noticed that these might be perceived as different from three-dimensional (3D) stimuli,
as infants are sensitive to the 3D aspects of 3D objects; by six months they can form a 3D
percept of a shape based on only a limited view (eg Quinn and Liben 2008; Soska and Johnson
2008) or transfer the 3D aspects of a shape across different kinds of depth cues (Tsuruhara
et al 2009). Also, five month old infants perceive the differences between a real 3D object, a
picture, and a line drawing of this object. They are, however, sensitive to the correspondences
as well; they can recognize a picture after having seen the real object, and a line drawing after
having seen a picture (eg DeLoache et al 1979). We cannot exclude that the development of a
differential sensitivity for NAPs and metric changes is different for different kinds of shapes,
but at present it is more parsimonious to assume a parallel development for different kinds
of shapes.

The experiment is subdivided in two parts. In condition A the habituation stimulus is a
triangle, and the NAP change turns it into a trapezium, while the metric change makes it
thinner and longer. In condition B the habituation stimulus is a trapezium, and the feature
switch turns it into a triangle, while the metric change makes it broader and shorter. The
test stimuli are identical in both parts of the experiment, but we predict a different outcome,
based on the different habituation stimulus. In each case we hypothesize that, since the
infants will be more interested in the shape change that is most salient, they should look more

(1) However, it is highly unlikely that the model of Lades et al (1993) could explain our results. In
the study of Kayaert et al (2003) we used this model to calibrate the shape changes of the stimuli
but retained only the physical calibration since the results of both calibrations for this kind of shape
change in those stimuli were highly correlated. Our present stimuli and shape changes are very similar
to the stimuli in Kayaert et al (2003).
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but retained only the physical calibration since the results of both calibrations for this kind of shape
change in those stimuli were highly correlated. Our present stimuli and shape changes are very similar
to the stimuli in Kayaert et al (2003).

Figure 3. Stimuli used by Kayaert and Wagemans ([2010]). The triangle on the 
left differs from the triangle in the middle by a mere metric change (stretching) 
that preserves affine shape, while it differs from the trapezoid on the right in its 
affine shape. Source: Kayaert & Wagemans ([2010]). 
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 The fact that abstract shape changes are already more salient (other things being equal) in 

infancy lends some support to the view that this contrast in salience is rooted in perception, 

because it suggests that the tendency to experience changes in abstract shape as more salient is 

present very early and is likely involuntary. These are hallmark features of a perceptual process 

(Fodor [1983]; Pylyshyn [1999]). Nevertheless, it should be admitted that this evidence is 

confirmatory, but not conclusive.  

 However, there is also a large amount of evidence that information about abstract shape 

is extracted and put to use in a number of paradigmatically visual processes, such as apparent 

motion perception, structure-from-motion, and object tracking. I contend that this, in conjunction 

with the above observations, provides good reason to believe that abstract shape properties are 

represented in visual experience, and not just in postperceptual phenomenology. I discuss this 

evidence next. 

 

5 The Visual System Uses Abstract Shape Properties 

There is now a great deal of evidence that both topological and affine properties play an 

important role in visual processing.24 I begin with topological properties. 

  One way to test whether a property is extracted during early visual processing, rather 

than in, say, postperceptual cognition, is to use very short presentation times (e.g., Sekuler and 

Palmer [1992]). The idea is that early removal of a stimulus “interrupts” the processing of that 

stimulus. Thus, to probe for the perception of topological properties, Lin Chen ([1982]; [1990]) 

gave subjects a discrimination task in which they were shown pairs of figures for just 5 

milliseconds and then asked to indicate whether the figures were the same or different in shape. 

In one experiment, the pair of figures was drawn from the following set: solid square, solid 

circle, ring, or solid triangle (see figure 4). Crucially, while the circle and the ring are very 

similar with respect to local metric properties such as contour curvature, they have different 

topologies (viz., one figure has a hole while the other does not). On the other hand, the solid 

circle is topologically equivalent with both the solid square and the solid triangle. The crucial 

measure was the rate of correctly reporting that two figures of different types were in fact 

different in shape. For if the visual system represents the topological properties of objects (such 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 For an overview of evidence in favor of the perception of topological properties, see Chen ([2005]). For 
overviews of evidence in favor of the perception of affine properties, see Todd ([2004]) and Bennett ([2012]). 
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as their number of holes), then these properties should serve to distinguish the ring from the 

other figures, but should not serve to distinguish the other figures from one another. As such, one 

might expect to find better discrimination performance in the case of, say, the ring and solid 

circle than in the case of, say, the solid circle and triangle. And this was indeed found: subjects 

were significantly better at distinguishing the ring and solid circle (64.5% correct) than either the 

solid circle and square (43.5% correct) or the solid circle and triangle (38.5% correct). Moreover, 

this pattern of results continued to hold after differences in spatial frequency, luminous flux (i.e., 

the total amount of light energy provided by the figures), and area were held constant across 

topologically equivalent and topologically distinct pairs of stimuli (see Chen [1990]).  

  

 

 

 

 

 Chen has also examined the role that topological properties play in the perception of 

apparent motion. As is well known, when one stimulus is flashed and then another is flashed in a 

different location, then with a suitable spatiotemporal gap between the flashes, the viewer will 

have a visual experience as of a single object moving continuously from one location to the 

other. One interesting variant on this paradigm involves presenting multiple stimuli, rather than 

one, in the second frame. For example, the first stimulus A may be followed by a pair of stimuli 

B and C. In this case, the visual system faces the problem of “choosing” whether to represent 

motion from A to B, from A to C, from A to both B and C (i.e., “splitting”), or no motion at all. A 

heavily examined issue concerns which properties the visual system exploits in solving this 

problem (see Green [1986]). If a property is exploited in determining matches in apparent 

motion, this provides good evidence that the property is represented in vision, because it 

indicates that the visual system uses representations of the property during motion processing.25 

Thus, Chen ([1985]) showed subjects two frames in succession. In frame 1, a single stimulus 

occupied the center of the display, and in frame 2, the stimulus was replaced by two stimuli—

one to the left of center and the other the same distance to the right of center. Subjects were 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25 It should be noted, however, that visual motion perception is not a single process, but rather involves a number of 
different subsystems (see Lu and Sperling [2001]).  

Figure 4. Stimuli similar to those used by Chen ([1982]) 
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asked to choose whether they saw motion from center to left or from center to right. For a wide 

variety of stimuli (and, again, with other differences between the stimuli controlled), subjects 

were significantly more likely to see motion from the central stimulus to a topologically 

equivalent stimulus than to a topologically distinct one. Thus, for example, if frame 1 contained a 

square with a square-shaped hole and frame 2 contained both a solid square and a ring, subjects 

were significantly more likely to see motion to the ring than to the solid square.  

The proposal that topology is used in determining object identity over time has also been 

verified by a recent multiple object tracking study (Zhou et al. [2010]). Subjects were asked to 

keep track of four stimuli as they moved about the screen in the presence of a set of distractors. 

The stimuli could undergo various sorts of feature changes during a trial. The critical measure 

was how such changes impacted subjects’ ability to keep track of the stimuli. It was found that 

changes in topology—though not other feature changes (e.g., changes in color or metric shape)—

significantly impaired the ability to track an object over time, indicating that the visual system 

relies heavily on topology in order to determine whether an object has remained the same object 

from one moment to the next. 

Each of these studies provides evidence that the visual system treats objects (or time 

slices of an object) that are very different in metric properties as nevertheless having certain 

features in common—namely, topological features. And moreover, the visual system apparently 

uses this information in certain processing tasks, such as, e.g., motion computations. 

I turn now to the perception of affine shape properties.  

 Much of the work on affine shape perception has been motivated by a large group of 

experimental findings indicating that perceivers’ judgments of the metric properties (e.g., length 

and surface orientation) of objects are quite inaccurate under many conditions (see, e.g., Norman, 

Todd, and Phillips [1995]; Norman et al. [1996]).26 The fact that metric perception is so 

inaccurate has led some researchers to hypothesize that perhaps the visual system is primarily in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26 Norman, Todd, and Phillips ([1995]) have found that judgments of surface orientation are inaccurate by an 
average of 14.5° even when subjects are given very reliable depth cues (e.g., binocular disparity, shading, texture, 
and motion). And Norman et al. ([1996]) found that subjects are highly inaccurate when asked to compare the 
lengths of line segments presented at random orientations in depth, though they are fairly accurate when asked to 
compare the lengths of nearby parallel lines. In particular, perceived length in depth tends to become progressively 
more compressed as a function of viewing distance, while length in the frontoparallel plane does not undergo this 
distortion. Incidentally, the finding that subjects are fairly accurate in comparing the lengths of parallel lines, but not 
non-parallel lines, lends some support to the view that perceivers represent affine shape. This is because the relative 
lengths of parallel line segments are preserved under affine transformations while the relative lengths of nonparallel 
line segments are not. 
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the business of producing estimates of more abstract shape properties—namely, affine 

properties. But how can this hypothesis be tested? One way is to place observers in restricted 

conditions in which only affine structure can be extracted (at least initially), and see whether it is 

indeed extracted.27 

 Researchers have explored this possibility quite extensively in the structure-from-motion 

paradigm.28 In this paradigm, the observer is shown a display of dots or line segments that, when 

viewed statically, looks like a random 2-D configuration. The elements of the configuration, 

however, are generated by orthographic projection from elements of a (real or computer-

generated) 3-D object. When the elements of the pattern begin to move in a way consistent with 

the movement of the 3-D object from which they were projected, the viewer spontaneously 

undergoes a percept of 3-D structure. 

How does this happen? Ullman ([1979]) proved that it is possible to recover metric 

structure from a rigidly moving 3-D object on the basis of three distinct views (under 

orthographic projection) of four non-coplanar points of the object. For several years after 

Ullman’s proof, it was assumed that the visual system solves the structure-from-motion problem 

by analyzing three views of the object and thus extracting precise metric shape. 

 However, while three views are necessary (and sufficient, assuming rigid movement) for 

extracting metric structure, it has been shown that with only two orthographic views, it is 

possible to recover the structure of an object modulo a uniform stretching in depth (Todd and 

Bressan [1990]; Ullman [1983]). In other words, one can recover the X and Y coordinates of each 

object point, but Z coordinates can only be recovered up to multiplication by a constant but 

unknown stretch factor k. As such, two views are sufficient to specify relative depth and ratios of 

distances along the depth axis, but are insufficient to specify absolute distances.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27 There is another type of evidence that some have marshaled in support of affine shape perception. In a number of 
studies, Jan Koenderink and colleagues (e.g., Koenderink et al. [1996]; Koenderink et al. [2001]) have 
systematically investigated subjects’ perceptual judgments of surface orientation. They have found that while 
perceivers’ metric judgments are quite inaccurate (see note 27), perceived surface geometry nevertheless tends to be 
affine equivalent with real surface geometry. Specifically, perceived surface geometry tends to correspond to real 
surface geometry modulo a stretching or shearing in depth. 
 However, while some have taken these results to indicate that the visual system represents the affine 
properties of surfaces, I believe that this conclusion is too hasty. Rather, these findings can also be explained on the 
view that subjects only visually represent metric shape properties, but such representations simply tend to be non-
veridical in systematic ways. That is, the visual system might non-veridically represent metric shapes that are 
distinct from, but affine equivalent to, metric shapes in the environment. 
28 For more—and critical—discussion of the evidence in favor of affine shape perception in structure-from-motion, 
see Bennett ([2012]). 
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Recall that affine properties are, roughly, those that are preserved under stretching or 

shearing along an arbitrary direction. These transformations preserve ratios of distances along 

parallel lines, but disrupt absolute distances. Accordingly, the types of geometrical properties 

recoverable on the basis of two views in a structure-from-motion display are, roughly (though 

not exactly), affine properties.29 Thus, an interesting test case for the proposal that the visual 

system extracts affine shape is to present an observer with an apparent motion sequence 

involving just two orthographic projections of elements of a 3-D object (with other depth cues 

removed), and see whether this produces a percept of 3-D structure. If so, then a reasonable 

interpretation is that the visual system generated this percept by recovering the affine structure 

(more specifically, structure modulo an unknown stretch factor along the depth axis) specified by 

the two views. And indeed, a number of studies have suggested that subjects do undergo percepts 

of 3-D structure under these restricted conditions, and that they can accurately identify aspects of 

the affine structure of the object. For instance, subjects are able, on the basis of just two views, to 

discriminate curved from planar surfaces (Norman and Lappin [1992]), or determine whether 

two line segments are coplanar (Todd and Bressan [1990]). As such, it is reasonable to conclude 

that the visual system can recover affine shape properties.30 

 But are affine shape properties extracted in the general case, when more precise metric 

information is available (at least in principle)? There are theoretical reasons to think that they 

are. Critically, many affine properties/relations of line segments (collinearity, parallelism, 

straightness, and curvedness) are more readily computable on the basis of retinal images than 

metric properties. The reason is that they tend to be preserved under projection to the retina,31 

and moreover they are highly unlikely to arise at the retina by accident of viewpoint. As such, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29 The type of structure recovered here is actually slightly more determinate than affine shape. Certain objects that 
are related by affine transformation can be distinguished on the basis of two orthographic views, if they differ by 
more than a uniform stretching in depth (e.g., a shear or a stretching along either the horizontal or vertical axis). See 
Todd and Bressan ([1990], p. 421). 
30 For now, I leave aside the issue of whether the structure-from-motion algorithms implemented by the visual 
system extract only affine shape. Todd and his colleagues have argued that the visual system is incapable of using 
more than two views in an apparent motion sequence to extract 3-D structure. This has, however, been challenged 
(Hogervorst and Eagle [2000]; Bennett et al. [2012]). Moreover, it is also possible that, on the basis of 2 views, 
subjects do perceive metric structure, but such percepts are generated on the basis of background heuristics rather 
than image data. However, even if this is right, it still seems plausible that such percepts are produced by way of 
prior representation of the affine structure determined by the 2 views (essentially, velocities of image elements). 
31 Parallelism is preserved under parallel or orthographic projection, but is not in general preserved under 
perspective projection. As such, it is not strictly speaking the case that parallelism is preserved under projection to 
the retina. However, when the ratio of an object’s extension in depth to its distance from the viewer (known as the 
perspective ratio) is very small—as is often the case—the effects of perspective are negligible, and the projection 
process approximates parallel projection (see, e.g., Todd [1995]). 
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they are often called nonaccidental properties (e.g., Biederman [1987]). For instance, two 

collinear line segments in the world will always (discounting noise) project to collinear segments 

on the retinal plane—and the probability that two non-collinear segments in the world will 

project to collinear segments on the retinal plane is vanishingly small (Albert and Hoffman 

[1995]). Similar remarks hold for the other properties listed above. As such, detection of such 

properties at the retina is sufficient for inferring that they are present in the world.32 By contrast, 

since metric properties (e.g., lengths and angles) are not preserved under projection, the visual 

system must do an incredible amount of computational work to recover them. 

 

6 Against Metric Views of Visual Shape Representation 

The evidence discussed in section 5 indicates that information about abstract shape properties is 

likely extracted by early visual processes and used in a number of ways. I now argue that this 

raises a serious difficulty for metric views of shape representation at the level of subpersonal 

visual processing. 

 The challenge for the metric view is simply to explain how it is that information about 

particular abstract shape properties is brought to bear in visual processing if visual shape 

representations do not make such information explicit. For as we saw earlier, 2½-D sketch-style 

(and other “view-based”) representations make explicit only metric information, usually 

pertaining to individual surface points and edges (e.g., their numerical coordinates in a viewer-

centered reference frame). Given just a representation of this sort, how can the visual system 

make use of the information that a certain object is, e.g., a triangle or a solid figure? 

 To make the problem more concrete, let’s consider again the role that perception of 

topological properties plays in apparent motion perception.33 Suppose that frame 1 contains a 

solid square, and that frame 2 contains both a square with a square-shaped hole and a solid 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
32 This is not to suggest, however, that their detection at the retina is trivial. The detection of luminance edges—let 
alone geometrical relations between them—is an incredibly difficult computational task that has yet to be 
completely solved. The point, rather, is that such properties are in general more easily computable than metric 
features like depth and surface orientation. 
33 The emphasis on topology here is deliberate. Affine structure (or at least relations of affine equivalence across 
images) is often relatively easy to compute on the basis of image coordinates (see, e.g., Ullman [1996], pp. 208-13). 
As such, the representation of affine structure perhaps need not require drastic revisions to extant view-based 
models. Topology, however, is another story. It is well-known that topological properties (e.g., connectedness) are 
quite difficult to extract because (as can be proved) such properties in general cannot be computed by any set of 
local procedures that each depend only on a fixed set of points (Minsky and Papert [1969], pp. 12-14; Todd [2005]). 
As such, the perception of topology may require large changes to current models of shape processing (see also Chen 
[2005]).	  
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triangle. If shown these two frames in succession, the subject is likely to see motion from the 

solid square to the solid triangle. And moreover, we have good reason to believe that it is 

sameness of topology (i.e., the property of being a solid figure) that accounts for this tendency. 

But for the visual system to compute motion paths in a manner that is selectively sensitive to 

topological similarities, respects of topological similarity must be selected or highlighted in 

contrast to other respects of geometrical similarity. That is, the respect in which the solid square 

is more similar to the solid triangle (both are solid figures) must be selected over the respects in 

which the solid square is more similar to the square with a hole (both have square-shaped 

bounding contours). The problem is that metric representations don’t do this. Rather, in the 2½-D 

sketch, for instance, information about topology is implicit alongside information about, e.g., the 

lengths and angles of a shape’s bounding contour. As such, this type of representation alone 

cannot provide the basis for mapping the solid square to the solid triangle rather than the square 

with a hole. 

But what is it to select information about a certain abstract shape property? Plausibly, it is 

just to construct a representation that explicitly encodes the property. As such, it seems likely 

that visual shape representations explicitly encode information about abstract shape properties, 

such as topological properties and affine shape properties.34 

 This weighs in favor of a layered view of visual shape representation. On this approach, 

visual representations of geometrical properties are layered in a hierarchy roughly in accordance 

with the stability of those properties. Thus, when you see a triangular surface of an object, your 

visual system constructs numerous representations arranged in a multi-level hierarchy: The 

object is represented at one level as having a quite specific metric shape (e.g., a surface 

composed of points such-and-such a distance away with such-and-such orientation relative to the 

line of sight), but it is also represented at another level as a triangle, and at a third level as a solid 

(filled) figure. The explicit representation of such abstract properties can enable them to exert an 

influence on other visual or vision-based processes, such as motion perception, object tracking, 

and shape discrimination. 

 The hierarchical aspect of the proposal is critical. When the visual system represents an 

object as both square and quadrilateral, these two representations are almost certainly more 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
34 Or, failing this, visual shape representations must at least explicitly encode relations of affine or topological 
equivalence among objects. 
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functionally integrated with one another than either is with, e.g., representing the object as 

maroon. Plausibly, the former two representations will need to be deployed in many of the same 

computational processes. Thus, representations of various shape properties should be 

appropriately related, and their relation arguably should reflect the asymmetric entailments 

among the properties represented. Hierarchical structure is the appropriate framework for 

accomplishing this (figure 5). Directed edges linking property representations at distinct levels of 

the hierarchy encode entailment relations between those properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 Before moving on, I should forestall some potential misconceptions. 

 First, I should emphasize that I am not claiming that the visual system fails to construct a 

representation of metric features, such as the 2½-D sketch (though I remain agnostic about 

whether this is the best way to represent metric structure). Purely metric changes among affine 

equivalent objects are certainly registered by the visual system, and can be used to discriminate 

objects.35 Indeed, if the visual system did not represent anything more specific than affine shape, 

then, as Li et al. ([2013]) note, a pizza box and a shoebox would be visually indistinguishable by 

shape. I am only claiming here that metric representations cannot exhaust the visual 

representation of shape. Shape representations must also explicitly encode information about 

more abstract shape properties. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
35 Lee et al. ([2012]) have shown that a novel target object can be distinguished fairly reliably from a metrically 
distinct (but affine equivalent) object so long as the viewer sees the target from a variety of perspectives. 
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structure is the appropriate framework for accomplishing this. Roughly, directed edges linking 

property representations at distinct levels of the hierarchy should encode entailment relations 

between those properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Before moving on, I should forestall some potential misconceptions. 

 First, I should emphasize that I am not claiming that the visual system fails to construct a 

representation of metric features, such as the 2!-D sketch (though I remain agnostic about 
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Figure 5. Hierarchy in accordance with geometrical stability. At the lowest level, highly 
unstable location features are represented. At the next level the property of being a 
square (invariant under similarity transformations) is represented. Next, the property of 
being a parallelogram (invariant under affine transformations). Finally, the property of 
being a closed figure (invariant under topological transformations). 

Figure 5. Hierarchy in accordance with 
geometrical stability. At the lowest level, highly 
unstable location features are represented. At the 
next level the property of being a square 
(invariant under similarity transformations) is 
represented. Next, the property of being a 
parallelogram (invariant under affine 
transformations). Finally, the property of being a 
closed figure (invariant under topological 
transformations). 
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 Moreover, I am not claiming anything about the order in which the visual system extracts 

geometrical information on the basis of retinal input. Thus, it is possible that metric properties 

are extracted prior to abstract shape properties. This issue lies beyond my scope here. (However, 

there is reason to think that this is not the actual order of processing—see Chen [2005].) 

 Finally, the layered view should not be confused with the proposal that metric shape is 

represented in vision only at coarser levels of precision (which is almost certainly correct). For, 

just as an imprecise representation of being a poodle does not constitute a representation of being 

a dog, an imprecise representation of the sides and angular measurements of a particular triangle 

does not constitute a representation of the abstract property of being triangular. 

 

7 Neural Underpinnings of Abstract Shape Perception 

Given the strong psychophysical and theoretical support for visual representations of abstract 

shape, a natural next step is to inquire into their neural underpinnings. Vision scientists have 

started to take this step, and have so far met with promising results (for a more comprehensive 

review of this research, see Biederman [2013]). 

 Studies of both humans and nonhuman primates have produced compelling evidence that 

higher-level ventral stream neurons are more sensitive to changes in abstract shape than to mere 

metric changes. Thus, Kayaert, Biederman, and Vogels ([2003]) recorded the responses of single 

neurons in the anterior inferotemporal cortex (IT) of rhesus monkeys as they were shown a base 

stimulus, followed by a set of variations of the base stimulus. The variations included pairs of 

changes equated in their low-level image differences from the base, such that one change 

involved a variation in affine shape (e.g., a change from straight sides to curved, or from parallel 

to nonparallel), while the other involved mere metric change (e.g., a change in aspect ratio or 

degree of curvature).36 In approximately 65% of the cases studied, neural responses were altered 

significantly more by a difference in affine shape than by an equated difference in metric 

properties (see also Vogels et al. [2001] and Kayaert et al. [2005]).  

As regards the perception of topology, a recent fMRI study of the lateral occipital cortex 

(likely the human homologue of IT) has documented increased sensitivity to changes that disrupt 

the topological structure of a display (e.g., attaching two figures that were previously unattached) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
36 As noted above, “equating” low-level image differences is nontrivial. Kayaert et al. took the Euclidean distances 
between the gray levels of each pixel in the base stimulus and that pixel’s counterpart in the variant stimulus. 



	  
27	  

in comparison to equated changes that do not disrupt topology (Kim and Biederman [2012]). 

Another fMRI study has revealed that when right-handed subjects perform a shape 

discrimination task, they exhibit greater activation in a region of the left inferior temporal gyrus 

when the figures to be discriminated are topologically distinct than when they are topologically 

equivalent (Wang et al. [2007]), suggesting that there may be some lateralization in the ventral 

stream processing of topological properties. 

Thus, the existing neurophysiological data corroborates psychophysical findings, 

indicating increased sensitivity to changes in abstract shape, at least in certain cortical regions. 

The evidence also implicates ventral stream areas already known to be involved in visual shape 

processing (see Denys et al. [2004]). 

 

8 Implications 

Kulvicki ([2007]) has recently introduced the notion of vertical articulateness and argued that it 

is a highly general characteristic of perceptual content. On Kulvicki’s characterization, a state 

has vertically articulate content “when for some property P that it represents, it also represents 

some Q, which is an abstraction from P” (Kulvicki [2007], p. 359). And roughly, one property is 

an abstraction from another only if there is an asymmetric entailment between the two: “Q is an 

abstraction from P only if being P entails being Q but the converse fails” (Kulvicki [2007], p.  

359). While Kulvicki suggests that this view holds for a wide variety of types of perceptual 

content (e.g. color, shape, texture, etc.), he primarily motivates it in the case of color experience. 

Here I have mounted a sustained defense of the view that the content of visual states vis-à-vis 

geometrical properties is vertically articulate as well. This holds both for subpersonal 

representational states of the visual system, and for states of visual experience. 

Kulvicki points out that vertically articulate perceptual content may have a crucial role to 

play in guiding concept acquisition. Most of our concepts concern fairly general categories. 

Thus, while most of us have the concept of red, few (if any) of us have concepts for maximally 

determinate shades of red. If perception presents us with the property redness (assuming there is 

such a property) in addition to presenting us with maximally determinate shades of red, then we 

have a much clearer picture of how we might acquire the concept of this general category. For, 

otherwise, generalization across specific shades would be left entirely up to post-perceptual 
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cognition. Thus, it is quite possible that perceptual content needs to be vertically articulate if it is 

to form an adequate basis for learning. 

Arguably, the need for vertical articulateness is even more pressing in the case of shape 

perception than in the case of color. It is well known that many of the earliest concepts children 

acquire reside at the so-called “basic” level, where perceptual “similarity” among members of 

the category is most salient (see Rosch [1978]). At this level, cars may be grouped together and 

distinguished from buses, but no general concept MOTOR VEHICLE is yet available. But how 

is such “similarity” to be characterized? A number of authors have contended that shape serves 

as the most important respect of perceptual resemblance during concept learning (see Rosch et 

al. [1976]; Landau et al. [1988]; Margolis [1998]).37  

Nevertheless, while it is generally accepted that children must be sensitive to shape 

similarities during concept learning, members of the same basic category almost never share a 

common metric shape—e.g., some cars are longer or wider than others (and often drastically so). 

Rather, to locate the pertinent respect of shape similarity, arguably we must turn to abstract 

shape properties. And indeed, it appears that, at least in many cases, members of the same basic-

level category (e.g., bottles or bowls) are at least roughly affine equivalent: the shape of one 

member can roughly be obtained from the shape of another by some combination of scaling, 

stretching, and shearing (see, e.g., Ons and Wagemans [2011]).  

But how are children sensitive to similarities in abstract shape during the early stages of 

concept acquisition? Metric views of shape representation seem to have a difficult time 

answering this question, since abstract shape properties are left implicit in visual 

representation.38 On the view outlined here, vision takes over much of the work that would 

otherwise have been left to cognition. That is, generalization across metrically distinct 

individuals occurs within vision. As such, on the layered view of visual shape perception I have 

offered, we gain a clearer conception of how visual shape perception may furnish a partial basis 

for early concept learning. 

 In closing, we should reject the idea that the representation of abstract shape properties 

belongs solely to the domain of post-perceptual cognition. Such properties are represented during 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
37 However, it should be stressed that common shape is merely taken as a guide to common category membership. 
When information about “hidden” or “internal” features is available to children, it will often override shape 
information when making category judgments (see Gelman and Wellman [1991]). 
38 This difficulty is not new. View-based proposals have often been criticized for lacking a good account of basic 
level categorization (e.g., Palmer [1999], p. 452). 
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vision proper, exert an influence on other perceptual processes, and are represented in visual 

experience. 
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