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A Pluralist Perspective on Shape Constancy 
E. J. Green 

 
Abstract 

The ability to perceive the shapes of things as enduring through changes in how they stimulate our 
sense organs is vital to our sense of stability in the world. But what sort of capacity is shape constancy, 
and how is it reflected in perceptual experience? This paper defends a pluralist account of shape 
constancy: There are multiple kinds of shape constancy centered on geometrical properties at various 
levels of abstraction, and properties at these various levels feature in the content of perceptual 
experience, governing patterns of apparent shape similarity. I propose that the varieties of shape 
constancy are subserved by the syntactic complexity of perceptual shape representations. By assigning 
discrete constituents to various abstract shape parameters, these representations attune us to the 
preservation of certain abstract shape properties through changes in more determinate shape properties. 
Finally, I draw broader lessons concerning the nature and function of perceptual constancy. 
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1 Introduction 

The ability to perceive aspects of the environment as remaining stable despite variation in sensory 

input is a remarkable feat. As you move about your kitchen, your table seems to retain its shape and 

size although its orientation, distance, and retinal projection are in constant flux. Accounting for the 

compresence of stability and variation in perceptual experience is a central aim in the philosophy of 

perception. The present paper examines this phenomenon in the case of shape. I develop an 

account of shape constancy that illuminates salient but poorly understood aspects of spatial 

experience. 
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I advocate a pluralist account on which shape constancy is a complex capacity composed of 

various “sub-constancies.”1 There are multiple varieties of shape constancy centered on geometrical 

properties at varying levels of abstraction. This pluralism is grounded in the syntactic complexity of 

perceptual shape representations. By assigning discrete constituents to different abstract shape 

parameters, these representations attune us to deep resemblances in abstract shape despite variation 

in fine-grained, determinate shape. More abstract constancies are exercised through changes that 

“peel away” further constituents of these representations. 

 The most familiar sort of shape constancy, involving stability of perceived shape across 

shifts in viewpoint, is shown in figure 1. While this capacity is undeniably important, here I call 

attention to forms of invariance in shape perception exercised not merely through viewpoint shifts, 

but through changes in an object’s intrinsic structure. Consider figures 2-4. Each depicts objects that 

differ perceptibly in determinate shape, but there is also a salient resemblance between them—some 

deep structural characteristic that they seem to share, despite superficial differences. The challenge is 

to explain these kinds of shape similarity and the perceptual representations underlying them. 

 

 

 

 

 

 

 

Figure 1. A coin continues to be perceived as circular despite a change in viewpoint. 
 

 
1 Pluralist conceptions have recently been developed for other constancies, notably color (Foster [2011]; Wright [2013]; 
Davies [2022]). 
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 I propose that each of these cases involves a distinctive form of constancy. We perceive an 

abstract shape property as invariant through changes in determinate geometrical structure. 

Accordingly, we must broaden our conception of shape constancy, and perceptual constancy more 
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skeletal description because of behavioral48 and neural49 evidence for 3D object-centered representations in the 
visual system, which include a sensitivity to 3D skeletal structures36,37.

Participants (n = 42) were administered a discrimination task in which they were shown images of two objects 
presented simultaneously in one of three depth orientations (−30°, 0°, +30°), with either the same or di!erent 
skeletons. Participants were instructed to decide whether the two images showed the same or di!erent object 
(independent of orientation). Participants were given unlimited time to respond but the instructions emphasized 
speed and accuracy.

We chose to use an untimed discrimination task where the objects were presented simultaneously in order to 
minimize task demands. However, we also con"rmed that this task could be accomplished in a speeded context 
and found comparable performance to that reported below (see Supplemental Experiment 1).

Results and discussion. Participants discriminated the objects significantly above chance (0.50) 
Maccuracy = 0.80, t(41) = 17.64, p < 0.001, d = 2.72 (MRT = 2129 ms). $us, even though our stimulus set may be 
considered one class of object, and potentially di%cult to discriminate, the objects di!ered su%ciently to support 
accurate discrimination (see also Supplemental Experiment 1 for comparable performance in a speeded version 
of the task).

To analyze whether a skeletal model was predictive of human object judgments, we converted participants’ 
binary discrimination judgments for each object pair into a continuous dissimilarity score. Dissimilarity scores 
for each object pair were computed by taking the mean discrimination accuracy for each pair across all partic-
ipants. Human judgments were compared to each model by regressing human dissimilarity scores on model 
dissimilarity scores (see Methods).

Skeletal similarity was a signi"cant predictor of participants’ judgments, r = 0.30, p < 0.001, explaining 9% 
of the variance (signi"cance determined via permutation test; see Fig. 3A). $at is, as the similarity between 
skeletal structures increased, participants were more likely to judge the objects as the same. However, one might 
ask whether another model of vision, which does not incorporate skeletal information, would also correlate with 
human judgments. To answer this question, we compared participants’ judgments to GBJ, GIST, HMAX, and 
AlexNet models. When compared independently, these models were all predictive of participants’ judgments 
(rs = 0.25–0.32, r2 = 6–11%; see Fig. 3A), with no signi"cant di!erences between models (overlapping con"dence 
intervals). For context, a noise ceiling representing a hypothetical true model (calculated by repeatedly splitting 
participants’ data into two sets and correlating them to one another; 1000 iterations) was computed: rmean = 0.50, 
SE = 0.03 (see Fig. 3A).

Because the di!erent models were predictive of participants’ judgments to similar degrees, and because 
objects with similar skeletons might also have similar image-level properties, it was important to test whether the 
di!erent models accounted for the same variance in participants’ judgments, or whether a model of skeletal sim-
ilarity explained unique variance. To this end, we conducted a regression analysis wherein all of the models and 
the most predictive layer of AlexNet (Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet-fc6) were included as predic-
tors of human dissimilarity judgments. Together, these models explained 20.5% of the variance in human judg-
ments, with Skeletal and GBJ models each explaining signi"cant unique variance (ps < 0.01; see Supplemental 
Table 1). To ensure that the predictive power of the skeletal model was not simply the result of a suppression 

Figure 2. Stimuli used in Experiment 1. (A) Objects were procedurally generated to have di!erent skeletal 
structures. (B) Each object was also rendered with "ve surface forms so as to vary in contour shape and non-
accidental properties (NAPs) without disrupting the object’s skeleton. A cluster analysis revealed that the "rst 
and second surface forms (from top to bottom) were comprised of the same NAPs (see Methods for more 
stimulus details). Subsets of these stimuli were used in Experiments 2 and 3 (see Methods).
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Figure 2. Stimuli used in Experiment 1. (A) Objects were procedurally generated to have di!erent skeletal 
structures. (B) Each object was also rendered with "ve surface forms so as to vary in contour shape and non-
accidental properties (NAPs) without disrupting the object’s skeleton. A cluster analysis revealed that the "rst 
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1. Introduction

Every object in our environment—whether a shoe, a starfish or a dollop of cream—has a specific
shape, which we readily perceive and can use for recognition and categorization. But where do those
shapes come from in the first place? All physical objects and materials end up with particular shapes
due to some kind of generative process, such as manufacture, biological growth, or self-organization.
These shape-forming, morphogenic processes have long fascinated and beguiled researchers from
practically every branch of science. However, despite dramatic advances in our understanding of
how physical (Chen, Wen, Janmey, Crocker, & Yodh, 2010; Ferziger & Peric, 2012), chemical
(Fahlman, 2011; Inostroza-Brito et al., 2015) and biological (Boettiger, Ermentrout, & Oster, 2009;
Carlson, 2013; Paluch & Heisenberg, 2009) processes generate complex shapes, we still know surpris-
ingly little about how we perceive and understand such processes (Atit, Shipley, & Tikoff, 2013;
Bedford & Mansson, 2010; Chen & Scholl, 2015; Cutting, 1982; Dubinskiy & Zhu, 2003; Feldman,
1995; Feldman & Singh, 2006; Feldman et al., 2013; Hoffman & Richards, 1984; Koffka, 1935/1965;
Leyton, 1989, 1992; Mark, Shaw, & Pittenger, 1988; Mark & Todd, 1985; Ons & Wagemans, 2011;
Pittenger & Shaw, 1975; Shaw & Pittenger, 1977).

Understanding and inferring shape-transforming processes presumably involves both perceptual
and cognitive abilities. Here, we sought to investigate a specific role that perceptual organization pro-
cesses play in structuring these inferences. In particular, we suggest that one key component lies in
computing how locations on objects shift in space as a result of the transformation. Intuitively, to esti-
mate how points are affected by a transformation, the visual system simply has to identify features on
the shape that match up across the transformation (Fig. 1).

However, in practice, identifying such features with arbitrary objects, and then estimating dense
correspondence for intervening locations is computationally extremely challenging (Fischer &
Modersitzki, 2008; Oliveira & Tavares, 2014). Even computer algorithms that are good at establishing
point (location) correspondences across non-rigid transformations (e.g., Ma, Zhao, & Yuille, 2016;
Movahedi & Elder, 2010; Myronenko & Song, 2010) eventually fail on images that we find intuitively
easy to understand (Fig. 2). Moreover, these algorithms generally involve slow and costly iterative
computations, and are fragile, often requiring manual parameter tweaking to achieve optimal results
for a given shape and transformation. Furthermore, such algorithms are designed for identifying
correspondences between features located on the object itself, but do not usually infer how arbitrary
points in space are affected by the transformation. This contrasts with the apparent robustness and
flexibility of the human visual system in solving these tasks, which we demonstrate here.

Indeed, the subjective ease with which we tend to solve such problems belies their underlying dif-
ficulty, and is only loosely related to transformation complexity. For example, mathematically ‘simple’
transformations like reflections are not necessarily perceptually simpler to solve (e.g., Gregory &
McCloskey, 2010), while at the same time, we seem to be extremely robust at distinguishing causally
significant shape features from those that are due to noise, which is a computationally challenging

Fig. 1. (A) Example of intuitive matching of shape features across non-rigid transformation (i.e., uncoiling of a fern). (B) Super-
imposed shapes show that this correspondence cannot be established by simple template mapping.

F. Schmidt, R.W. Fleming / Cognitive Psychology 90 (2016) 48–70 49

Figure 2. After Lowet et al. ([2018]). Thanks to Chaz Firestone for this figure. 
 

Figure 3. Source: Ayzenberg and Lourenco ([2019]). Reprinted under  
the Creative Commons Attribution 4.0 International License. 

 

Figure 4. Source: Schmidt and Fleming ([2016]). Reprinted under the 
Creative Commons CC-BY-NC-ND license. 
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generally. Constancy is commonly construed as an ability to perceive certain intrinsic properties of 

objects as invariant through changes in relational, extrinsic, or situational properties—for example, 

orientation or illumination.2 This conception undergirds many standard characterizations of shape 

constancy. For example:  

Shape constancy is defined usually as the relative constancy of the perceived shape of 
an object despite variations in its orientation. (Epstein and Park [1963], p. 265) 
 
Shape constancy…is the ability to perceive an object as being the same shape despite 
changes in its orientation relative to the observer. (Slater and Morison [1985], p. 337) 

 
If I am right, such characterizations are too narrow in an important respect. Perceptual constancy, 

and shape constancy in particular, is exercised not merely through changes in extrinsic properties 

such as orientation or illumination, but also through changes in an object’s intrinsic properties—

specifically, changes altering more volatile intrinsic properties while preserving more stable ones. 

The plan is as follows. Section 2 distinguishes minimal from robust conceptions of shape 

constancy and argues that our perceptual systems achieve robust constancy. Section 3 introduces a 

prominent approach to object-centered representation—skeletal representation—and draws out its 

implications for the format of perceptual shape representations. Section 4 argues that skeletal 

representations underpin four varieties of shape constancy, which I label constancies for determinate 

shape, compositional structure, skeletal shape, and skeletal topology. I assemble evidence for each and argue 

that they figure in perceptual experience. Section 5 discusses implications for the nature and 

function of perceptual constancy. 

 

2 Object-Centered Representation and Robust Constancy 

I will understand perceptual constancy as a representational capacity—roughly, a capacity to 

perceptually represent properties of objects as remaining invariant despite relevant changes in 

 
2 See Schellenberg ([2008]), Allen ([2018]), and O’Dea ([2020]). 
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proximal stimulation received from them.3 In shape perception, this involves a capacity to 

perceptually represent shape properties as remaining invariant despite variation in projected 2D 

retinal shape. 

 We can distinguish minimal from robust conceptions of shape constancy. Let’s say a perceiver 

or perceptual system exhibits minimal shape constancy when it perceptually represents some single 

shape property under relevantly different conditions of proximal stimulation—e.g., across significant 

variation in an object’s retinal projection.4 If you continue to perceptually represent the surface of 

your table as rectangular despite variation in the shape or size of its retinal projection, then you 

exhibit minimal shape constancy. 

Let’s say a perceiver or perceptual system exhibits robust shape constancy when it 

perceptually represents some single shape property in the same way, or via tokens of a single 

representation-type, under relevantly different conditions of proximal stimulation. Robust shape 

constancy requires minimal shape constancy, but not vice versa. Consider your table again. As you 

move around the table, its 2D projection changes, and you continue to perceptually represent its 

rectangularity; thus, you exhibit minimal shape constancy. However, it is an open question whether 

you perceptually represent its rectangularity in the same way across perspectives.  

Suppose that perception represents the table’s rectangularity by encoding its spatial layout 

within a viewer-centered reference frame—for example, a frame anchored to the viewer’s cyclopean 

eye, with cardinal axes fixed by the viewer’s up, down, left, and right directions. Then the table’s 

layout in this frame—and thus the way its rectangularity is represented—changes with any shift in 

perspective on the table. Thus, one might exhibit minimal shape constancy with respect to the table, 

but not robust constancy. Some prominent models of object recognition positing only viewer-

 
3 Representational conceptions of constancy are popular (Rock [1983]; Hilbert [2005]; Burge [2010]; Rescorla [2014]; 
Cohen [2015]; Green [2019]), but not universally accepted (Gibson [1979]; Olin [2016]; Buccella [2021]). 
4 For more on the distinction between relevant and irrelevant proximal changes, see (Green [2023]). 
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centered shape representations are suited to the view that shape constancy is merely minimal—

minimal but not robust (Ullman and Basri [1991]; Bülthoff and Edelman [1992]; Edelman and 

Duvdevani-Bar [1997]). 

Conversely, suppose that perception represents the table’s rectangularity within an object-

centered reference frame determined by the table’s axes of symmetry. If so, it is possible to token the 

same representation-type despite shifts in the table’s orientation. The table’s layout relative to its 

intrinsic axes remains unchanged through these shifts, while its layout in a viewer-centered frame 

does not (Marr and Nishihara [1978]; Erdogan and Jacobs [2017]). A representation-type that 

encodes the table’s layout relative to its intrinsic axes may be tokened (veridically) across different 

perspectives on the table.5   

In what follows, I’ll be concerned with robust shape constancy. This approach departs from 

some other discussions of shape constancy, which analyze it as a capacity to represent a single shape 

property differently (say, under different modes of presentation) from different perspectives (Burge 

[2010], [2014]; see also Thompson [2010]; Schellenberg [2018]). While I don’t deny that we can form 

viewer-centered representations that vary with perspective (Briscoe [2009]; Lande [2018]), I suggest 

that such representations occur alongside object-centered representations, which subserve robust 

shape constancy. 

I cannot offer a sustained defense of object-centered representation here. However, I adduce 

two lines of support. First, certain patterns of shape misperception are governed by objects’ intrinsic 

axes in ways that are easily explainable on object-centered models but not viewer-centered models. 

Consider mirror-image confusion, where perceivers confuse an object with its mirror image (for instance, 

 
5 The object-/viewer-centered dichotomy is somewhat idealized. Broadly object-centered models can incorporate 
viewer-centered elements. For example, Biederman’s ([1987]) geon scheme encodes part shapes in an object-centered 
manner, but characterizes categorical relations between parts (for example, above) relative to the viewer or direction of 
gravity. 
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“b” vs. “d”). Human children (Rudel and Teuber [1963]), adults (Nickerson and Adams [1979]), and 

even octopuses (Sutherland [1960]) exhibit mirror-image confusions in shape recognition. 

Furthermore, discrimination of mirror-reversed objects can be selectively impaired: Vannuscorps et 

al. ([2022]) examined a patient who, when asked to draw a sample shape, often produced mirror-

reversed versions, and confused letters with their mirror-reversed counterparts (see also Turnbull 

and McCarthy [1996]). Moreover, fMRI data suggest that posterior fusiform sulcus—a high-level 

ventral area—is sensitive to most shape differences but not to mirror-reversals (Dilks et al. [2011]). 

Mirror-image confusions also commonly occur in normally-sighted adults when either reidentifying 

or drawing objects at their original orientations (Gregory and McCloskey [2010]; Chaisilprungraung 

et al. [2019]). 

Object-centered schemes encode a shape’s boundary elements via their distances and 

directions from corresponding points or segments of the shape’s intrinsic axis. Mirror-image 

confusions are analyzable as cases where distances of boundary elements from the axis are coded 

correctly but directions are systematically flipped. Conversely, if the representation of shape is 

wholly viewer-centered, it is unclear why systematic mirror-image reversals would occur (Gregory 

and McCloskey [2010]; Chaisilprungraung et al. [2019]),6 since any systematic errors should 

presumably be governed by the intrinsic axes of the perceiver, not the object. 

Unilateral neglect, a condition caused by parietal lobe lesions, offers another line of evidence. 

Neglect patients fail to attend to one side of space—typically the left. However, the “left” is 

definable in viewer-centered, object-centered, or scene-centered frames of reference (Humphreys et 

al. [2013]). Driver and Halligan ([1991]) found evidence for object-centered neglect. Participants 

judged the sameness/difference of two shapes, which could differ with respect to elements either on 

the right or left of their respective axes of elongation. Neglect patients struggled to discriminate 

 
6 More precisely, it is unclear why we would observe mirror-reversals without systematic errors of localization. 
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shapes when the differentiating elements landed on the left, and crucially this pattern persisted when 

elements on the left of the axis fell within the subject’s right hemifield (see also Tipper and 

Behrmann [1996]).7 

Thus, there is evidence that the visual system forms object-centered shape representations. 

Because object-centered representations can endure through relevant changes in an object’s retinal 

projection, they provide a basis for robust shape constancy. 

 

3 Skeletal Approaches to Shape Representation 

Object-centered representations encode the layout of an object’s boundaries in relation to its 

intrinsic axes. However, objects have many intrinsic axes that might serve this function. Mirror-

symmetric shapes have axes of bilateral symmetry. And all shapes have axes of elongation, defined 

either as the line that minimizes the sum of squared distances to all points in the shape (Cheng and 

Gallistel [2005]), or as the line connecting the two points on the shape that are farthest apart 

(Quinlan and Humphreys [1993]). 

 While symmetry and elongation axes can be employed in shape representation (Quinlan and 

Humphreys [1993]; Sekuler and Swimmer [2000]), I will primarily focus on a different axis whose 

significance is steadily gaining support. The medial axis comprises the set of points within a shape’s 

interior that have two or more nearest neighbors on the shape’s boundary (Blum [1973]; Kimia 

[2003]). It resembles a “skeleton” from which the shape is “grown.” The medial axis of a complex 

shape consists of multiple branches, which often correspond to the shape’s perceived part structure, 

wherein distinct parts are associated with distinct branches.  

 
7 Although see Buxbaum et al. ([1996]) and Filimon ([2015]) for reservations about whether object-based neglect requires 
object-centered representation. 
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 Unfortunately, the raw medial axis is highly sensitive to small contour perturbations. 

Introducing a small notch to an object’s contour produces additional branches to its medial axis that 

don’t correspond to its perceived part structure (see figs. 5a, 5c). To overcome this difficulty, various 

authors have proposed “pruned” or “smoothed” variants of the medial axis (Shaked and Bruckstein 

[1998]; Ayzenberg et al. [2019]). Thus, Feldman and Singh ([2006]) impose a Bayesian prior over 

skeletons that assigns higher probability to smoother axes and penalizes extra branches. Their 

likelihood function expresses how well each candidate skeleton “explains” the shape’s boundary 

points.8 The model selects the skeleton which maximizes the product of prior and likelihood. 

Importantly, it aligns well with perceived part structure. Thus, in figure 5b separate axis branches 

correspond to separate fingers of the hand. I’ll use skeleton to denote this sort of pruned medial axis 

whose branches accord with perceived part structure. 

 

 

 

 

 

 

 

 (b) 

              (a) 

 
8 Specifically, each axis point is construed as “sprouting” a rib perpendicular to the axis. The lengths of the ribs exhibit 
probabilistic noise, inducing a distribution over possible boundary points conditional on a given axis point. Boundary 
points are explained better when they receive higher probability in this distribution. 

DL(SKEL!SHAPE) ! " log[p(SKEL)]

" log[p(SHAPE!SKEL)] # const

! DL(SKEL) # DL(SHAPE!SKEL)

# const. [5]

Apart from the constant term (the negative logarithm of the
denominator in Eq. 1) the DL has two additive components:
DL(SKEL), which reflects the complexity of the skeletal hy-
pothesis itself, and DL(SHAPE!SKEL), which reflects the com-
plexity of the shape as described by that skeleton. The MAP
skeleton is the description that minimizes the sum of these two
complexities. Hence the MAP skeleton is naturally regarded as
identifying the simplest description of the shape as the outcome
of a skeletal generative process. This attractive interpretation
stems directly from the Bayesian conception and is not shared by
other stochastic techniques for skeletal-axis computation.

The process of estimating the MAP skeleton requires inverting
the likelihood function by choosing, for each shape point, the
skeletal point that has ‘‘responsibility’’ for it, i.e., assigns it the
highest likelihood. This skeletal point is most likely to have
sprouted a rib whose endpoint is the shape point in question. (To
stabilize the computation, we allow shape points to have mixed
sources, treating them as probability-weighted mixtures of mul-
tiple ribs.) Part boundaries along the contour can be regarded as
points at which responsibility for contour points switches from
one axis to another (e.g., the boundaries between color-coded
regions in the hand in Fig. 2; see below). The shape likelihood
depends on this hypothesized ensemble of responsibilities,
whereas the responsibilities depend on the currently estimated
skeleton, suggesting a process similar to the well known expec-
tation–maximization procedure, in which we alternately (i)
estimate the correspondences (i.e., the ribs) between axial and
contour points (the expectation phase), and (ii) search through
the parametric space of skeletons, attempting to increase the
posterior (decrease the DL) given the currently hypothesized
correspondence (the maximization phase). This procedure is
described in more detail in Methods.

Results
Figs. 3–5 show typical examples of the MAP skeleton, along with
a conventional Voronoi-based implementation of Blum’s MAT
(1, 15) shown in Figs. 3–5 Insets for comparison. Simple shapes
(Fig. 3a) yield intuitive results devoid of spurious branches, and
the estimated skeleton is robust against contour noise (Fig. 3 b
and c). Fig. 4 more specifically illustrates the robustness of the
MAP skeleton as contour noise is introduced; the axial structure
of the human form is recovered in a substantially invariant way
in all three versions (a: no noise; b: noise throughout; c: noise on
one arm and one leg only). Fig. 4c exemplifies the difficult case
in which noise is added to some parts but not others, as in
Richards et al.’s (28) famous ‘‘fuzzy pear,’’ which cannot be
correctly handled by uniform smoothing techniques. Finally, Fig.
5 shows results for a variety of animal shapes. In each case the
MAP skeleton corresponds closely to the intuitive part structure
of the shape. The perceptual naturalness of these computed
skeletons can be taken as ‘‘instant psychophysics,’’ supporting
our claim that the MAP skeleton corresponds reasonably well to
psychological shape representations.

A critical component of MAP skeleton estimation is the
evaluation of candidate axes for inclusion in the hypothesized
skeleton. As noted above, traditional approaches to computing
the MAT have suffered from the problem of spurious axial
branches, interfering with what otherwise might be a desirable
isomorphism between the branches of a skeleton and the natural
parts of a shape. The Bayesian approach provides a tool for

handling this problem: a principled estimate of the statistical
‘‘significance’’ or evidence in favor of an axial branch. The
relevant comparison is between a skeletal hypothesis SKEL that
does not include the axial branch C and an augmented hypothesis
SKEL" # SKEL $ C that does include it (Fig. 6). Following
Bayes, we adopt the axial branch C if the posterior with it is
better than the posterior without it, i.e.

p%&SKEL$C' !SHAPE)
p%SKEL!SHAPE) ( 1. [6]

This condition can be easily restated in terms of DL,

DL(SKEL!SHAPE) ) DL([SKEL$C] !SHAPE) ( 0, [7]

meaning that we should adopt axis C if doing so results in a net
reduction in complexity (DL).

The difference in DLs is sometimes referred to as the weight of
evidence, in this case quantifying the degree to which the added
descriptive accuracy (or goodness of fit) of the augmented skeletal
description offsets the added complexity of the additional axis. The
criterion is thus a principled one in that it accurately reflects
whether the new part yields a net benefit given the assumptions
underlying the prior and likelihood functions. Because the weight
of evidence quantifies the strength of posterior belief in the
candidate axis C, it may serve to quantify the perceptual ‘‘salience’’
of the corresponding part of the shape (29).

Fig. 3. Estimated MAP skeletons for the three simple shapes, showing the
absence of forking (a) and the invariance to contour noise (b and c). (a)
Rectangle. (b) Notched rectangle. (c) Noisy articulated blob. (Insets) Conven-
tional Voronoi-based MAT.

18016 ! www.pnas.org"cgi"doi"10.1073"pnas.0608811103 Feldman and Singh
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 (c) 

 

 

 

 

The format of a representational system consists in principles governing the relationship 

between the syntactic properties of representations belonging to the system and the contents that 

those representations represent. For example, certain theories of analog format classify a system as 

analog when there is a monotonic mapping from syntactic magnitudes of representations belonging 

to the system to the magnitudes that they represent (Beck [2019]). I now consider the format of 

skeletal representations, highlighting three features.  

First, skeletal representations possess a tree format (fig. 6; Siddiqi et al. [1999]; Feldman and 

Singh [2006]; Feldman et al. [2013]; Green [2019]). A shape’s skeleton is organized into a root 

branch, followed by children, grandchildren, etc. The root branch belongs to the main “body” of the 

shape, while its children belong to parts protruding from the main body. Grandchildren offshoot 

from the children, and so on. For a human body, the root branch might belong to the torso, 

children to upper limbs, and later descendants to lower limbs. The syntactic structure of a skeletal 

available, may be readily incorporated into the model. As our
results suggest, however, a generic default generative model
gives reasonably good results with bottom-up geometry alone.

The MAP skeleton should not be regarded as an attempt to
compute the MAT per se, but rather to estimate a related but
distinct skeletal structure, the generative skeleton. The MAP

a

c

e

d

MAP skeleton

Conventional MAT

b

f

Fig. 5. Estimated MAP skeletons for a variety of animal shapes. (Insets) Conventional Voronoi-based MAT.

SKEL

SKEL+C

C

a b

Fig. 6. Schematic of the Bayesian posterior test for the statistical contribution of an axis. The axis C is accepted if the posterior p([SKEL ! C]"SHAPE) with the
axis is higher than the posterior p(SKEL"SHAPE) without it. (a) Without the candidate axis, the variance in rib lengths is very high, because the single axis must
account for all points on the contour. (b) With the axis added to the hypothesized skeleton, the variance within each axis’s (i.e., like-colored) collection of ribs
is smaller. But this advantage comes as the cost of increased complexity in the skeleton, which entails a lower prior. The posterior test evaluates whether the
added descriptive accuracy (higher likelihood) offsets the increased complexity (lower prior). If it does, the axis satisfies the criterion and is ‘‘accepted.’’ The
difference in the two log posteriors (DLs), the weight of evidence for the axial part, provides a measure of its subjective salience.

18018 ! www.pnas.org"cgi"doi"10.1073"pnas.0608811103 Feldman and Singh
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Figure 5. (a) Left column shows the “raw” medial axis, while right column shows the results 
of Feldman and Singh’s ([2006]) Bayesian smoothing. (b) Skeleton of the human hand, 
together with “ribs” linking points on the axes with the boundary points they explain. (c) 
Skeletons of some nonhuman animals (with contrasting raw medial axes). Source: Feldman and 
Singh ([2006]). Copyright (2006) National Academy of Sciences. 
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representation mirrors these relations among parts of the shape it represents. The representation is 

organized as a tree composed of discrete nodes, each of which represents some part of the shape. A 

complex shape is encoded compositionally, by concatenating these nodes, which represent 

individual parts, with edges representing relations between parts.  

Nodes higher in the tree represent parts whose axes are ancestors of the axes of parts 

represented by nodes lower in the tree. Each node is complex, representing multiple geometrical 

properties of the part it characterizes: specifically, the structure of the part’s axis and the structure of 

the boundaries (contours or surfaces) surrounding the axis. Furthermore, while the presence of an 

edge simply encodes a branching relation between parts (a relation that holds between parts P1 and 

P2 iff P2’s axis branches from P1’s axis), I conjecture that edges are tagged with information about 

spatial relations between parts—for example, the point along the parent’s axis at which the child’s 

axis branches, and angles between the axes. 

 Second, skeletal representations extract properties of axes. They possess separable 

constituents that represent the structure of axes and nothing else (and nothing more specific).9 By 

analogy, the sentence “the red cup is on the blue table” possesses separable constituents, “red” and 

“blue,” that represent the properties red and blue, and nothing else. These constituents are 

“separable” because they can remain unaltered while other constituents are discarded or modified 

(see: “the red ball abuts the blue box”). Extraction is not unique to sentences. A photograph of a red 

cup on a table contains a constituent (a spatial part) depicting the cup, which represents fine-grained 

information about the cup’s color (some determinate shade of red), and can remain unaltered while 

other parts of the picture are modified. However, it does not extract the property red, since the same 

constituent also encodes more specific color properties (Kulvicki [2007], [2015]). 

 
9 This notion of extraction derives from Dretske ([1981], ch. 7; see also Matthen [2005], ch. 3; Kulvicki [2007], [2015]). 
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 A node of a skeletal representation-type contains a separable constituent that encodes the 

structure of a part’s axis (e.g., the curvature at each segment of its axis) and nothing else about the 

shape of that part.10 As such, skeletal representations explicitly encode commonalities between 

objects that share the same skeleton but differ in other ways. The properties of the outer contours 

or surfaces surrounding the part’s axis—which I’ll call the “boundary” structure of that part—are 

specified relative to its axis. For example, the representation might combine a representation of axis 

structure with a representation of the average width of the part, or perhaps with more detailed 

representations of the distance to the boundary from each point on the axis (compare Blum’s [1973] 

“sym-function”). 

 Third, beyond extracting the metric structure of axes and boundaries, I suggest that skeletal 

representations extract some of their abstract geometrical properties, representing these properties via 

separable constituents. For instance, in addition to its curvature at each segment, the axis may be 

attributed categorical properties like straight or curved (Biederman [1987], [2000]; Amir et al. [2012]). 

Likewise, the boundaries around the axis may be represented as simply parallel, tapered, or symmetric 

(Amir et al. [2012]; Hafri et al. [2023], [forthcoming]). 

 

 

Figure 6. Structure of a skeletal representation-type. Notice that nodes within the tree are complex. 
For example, the node “Part 1” is composed of a representation of part 1’s axis structure combined 
with a representation of its boundary structure. 

 
10 The constituents that represent part axes are not primitive constituents. They are complex constituents of a larger 
skeletal representation-type. 

Part 1 Axis structure; boundary structure 

Part 2 Axis structure; boundary structure Part 3 Axis structure; boundary structure 

Branching point;
Angular relations

Branching point;
Angular relations

Composed of
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Notice that “skeletal” representations encode more than just the skeleton. They also encode 

boundary structures of parts in relation to their axes and additional spatial relations between parts or 

axes. The label “skeletal representation” simply connotes the central role that skeletal axes play in 

this system—enabling an object-centered specification of boundary structure. 

There is copious evidence for skeletal representations, much of which will be discussed in 

section 4. Here are three preliminary lines of support: 

 First, medial axis structure influences low-level visual phenomena like contrast sensitivity 

(Kovács and Julesz [1994]; Kovács et al. [1998]) and texture segregation. For example, subjects are 

better at segregating texture-defined shapes from their backgrounds when the texture elements 

within the shape are oriented parallel to its medial axis (Harrison and Feldman [2009]). 

 Second, when people are asked to tap a shape wherever they like, taps tend to cluster around 

medial axes in ways that cannot be explained by alternative intrinsic axes (Firestone and Scholl 

[2014]). Moreover, Ayzenberg et al. ([2019]) found that the tapping patterns were best explained by a 

pruned model: taps clustered around axis branches marking significant structural aspects of the 

shape, but not branches reflecting contour noise, supporting the psychological reality of pruned 

medial axes. 

Third, skeletal shape complexity influences various psychological processes. Objects with more 

complex skeletons (with higher curvature or more branches) are more quickly identified among 

objects with simpler skeletons than vice versa (Sun and Firestone [2021]). Skeletal complexity also 

influences the detection of closed shapes amidst noise (Wilder et al. [2016]), and even aesthetic 

preferences—wherein shapes of intermediate complexity are more appealing than either very simple 

or complex shapes (Sun and Firestone [2022]).  
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Note, finally, that skeletal representation presupposes other capacities equally critical to 

shape perception. Gestalt processes of figure-ground organization, grouping, and contour 

integration help define the “units” to which shape properties are attributed (Palmer and Rock [1994]; 

Feldman [2007]; Wagemans et al. [2012]; Lande [2023]). Moreover, while a virtue of the 

Feldman/Singh model is that it predicts the perceived part structure of objects, the perception of 

parthood is itself a rich capacity that follows known organizational principles—e.g., minima and 

short-cut rules (Hoffman and Richards [1984]; Singh et al. [1999]). Such principles might 

independently contribute to shape representation, perhaps supplementing computations of skeletal 

axes in specifying part structure. 

 

4 The Varieties of Shape Constancy 

This section argues that skeletal representations underlie four varieties of robust constancy: 

constancies for determinate shape, compositional structure, skeletal shape, and skeletal topology. More abstract 

constancies are exercised through changes that “peel away” further constituents from skeletal 

representations. Table 1 lists these constancies alongside the component features of the complex 

properties they target. While they may be used with different meanings elsewhere, I intend the labels 

“determinate shape,” “compositional structure,” “skeletal shape,” and “skeletal topology” to denote 

just those properties described in the right-hand column.  
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Variety of Constancy  Complex Property the Constancy Targets 

Constancy for determinate shape  Axis structures, boundary structures, axis 
branching points, angular relations between 
axes 

Constancy for compositional structure Axis structures, boundary structures, axis 
branching points 

Constancy for skeletal shape Axis structures, axis branching points 

Constancy for skeletal topology Number of axes, descendancy relations among 
axes 

 
Table 1. Varieties of shape constancy (left) and the complex properties they target (right), described 

in terms of the features that compose them. 
 

 Pluralism about shape constancy is the view that our perceptual systems exhibit robust constancy 

with respect to shape properties at varying levels of abstraction. This view is distinct from pluralism 

about shape representation, which holds that our perceptual systems employ multiple systems of shape 

representation—e.g., involving different formats or reference frames. For instance, Hummel ([2013]) 

maintains that perception employs both template-like systems of shape representation (Bülthoff and 

Edelman [1992]) and geon-based systems (Biederman [1987]), utilizing the former for unattended 

objects and the latter for attended objects (Stankiewicz et al. [1998]; Thoma et al. [2004]; although see 

Guggenmos et al. [2015]). 

 Pluralism about shape constancy is compatible with, but doesn’t entail, pluralism about 

shape representation. A perceptual system might employ distinct systems for representing 

determinate shape properties and abstract, determinable properties. If both systems generate 

representation-types that remain invariant through proximal variation, then the perceptual system 

would exhibit multiple constancies by way of multiple representational systems. However, a single 

representational system might facilitate shape constancies at multiple levels of abstraction if it 

explicitly encodes both more and less abstract shape properties. I suggest that skeletal 

representations do this. They assign separable constituents to shape properties of varying 
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abstractness. Because these constituents remain invariant through different kinds of variation, 

skeletal representations underlie constancies for both more and less abstract shape properties. 

 I am also inclined toward pluralism about systems of shape representation. For instance, I 

believe the visual system produces both viewer-centered and object-centered shape representations. 

However, one needn’t accept this view to accept pluralism about shape constancy.  

 

4.1 Determinate shape 

The first variety of shape constancy is constancy for determinate shape. An object’s determinate shape 

consists in the intrinsic shapes of its parts (their axis and boundary structures) together with the 

angular relations between them (e.g., the angle between a person’s arm and their torso). Determinate 

shape constancy is exercised when a perceiver or perceptual system tokens the same overall skeletal 

representation-type despite relevant variation in proximal stimulation. Paradigm cases include shifting 

viewpoint on an object or seeing the object undergo a rigid translation or rotation. 

Determinate shape constancy is a robust constancy. It requires representing an object’s 

determinate shape via the same representation-type under different proximal conditions. 

Importantly, the hypothesis that we exhibit determinate shape constancy explains similarities and 

differences among shape experiences that are not easily explainable otherwise. The contents of 

object-centered representations are inherited by perceptual experiences. 

 Section 2 assembled evidence for object-centered representations, but did not explore their 

fit with shape phenomenology. However, one might worry that the fit is poor. Shapes appear different 

at different orientations. Coins viewed head-on appear different from slanted coins. Because object-

centered representations remain invariant through changes in orientation, they run afoul of this basic 

datum. Rather, shape representation-types must be tethered to specific perspectives on objects, so 

objects elicit different representation-types at different orientations. 
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 However, perspectival variation in shape appearance does not impugn object-centered 

representations. First, even if shape phenomenology were wholly determined by viewer-centered 

representations, our perceptual systems might still form unconscious object-centered representations. 

Such representations might still feature in object recognition, categorization, or action guidance. 

More importantly, inspection of the patterns of similarity among shape experiences actually 

offers compelling support for object-centered representations. Such patterns are naturally explained 

by the view that our visual systems produce both viewer-centered and object-centered representations 

that both contribute to shape phenomenology. 

Consider the triangle and the square in figure 7, and consider the effect of 45°-rotation on 

our experiences of them. Plausibly, there is a larger change in the square’s appearance than the 

triangle’s (Peacocke [1992], pp. 76-77; Macpherson [2006]). While the triangles appear different, the 

squares appear more different. The hypothesis that experience reflects both viewer-centered and 

object-centered representations can explain this datum. Viewer-centered representations ground 

aspects of appearance that vary in both cases, while object-centered representations ground aspects 

that vary only in the square case. When an object has a single salient axis, that axis will be used to 

encode its shape regardless of orientation. Because the triangle has only one salient axis (its 

symmetry axis), it elicits the same object-centered representation-type at both orientations. However, 

when an object has multiple salient axes, perception may prioritize the axis nearest to vertical in 

viewer-centered coordinates. Because the square has multiple salient axes (e.g., symmetry axes 

bisecting both its corners and its sides), it elicits different object-centered representation-types at 

different orientations. Consistent with this, isosceles triangles visually prime their 45°-rotated 

counterparts, while squares do not (Humphreys and Quinlan [1988]).  
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Figure 7. An isosceles triangle and a square/diamond. 

I suggest, then, that we exhibit determinate shape constancy for the triangle but not the 

square, and this difference is phenomenologically manifest. 

A study by Baker and Kellman ([2018]) provides further evidence for determinate shape 

constancy. Participants briefly saw a shape composed of black and white dots followed by a mask 

(fig. 8). Afterward, another shape appeared, which either matched the first or was slightly deformed, 

and subjects reported whether it was the same or different. On same-shape trials, the second shape 

was either at the same position and scale as the first, or was rotated or rescaled. Accuracy gradually 

improved with longer exposure to the first shape: participants were at chance for 30 ms exposures, 

but above chance at 50 ms or longer. Performance flattened for exposures of 110 ms or longer. 

Critically, this pattern held regardless of whether the shape underwent an orientation/size change. 

Baker and Kellman ([2018], p. 1300) conclude: “That results were similar across differing 

transformation types…suggests that a common abstract shape representation was used in the task.” 

In other words, by around 110 ms, the visual system tokened a representation-type that was 

invariant to changes in picture-plane orientation (see also Quinlan and Allen [2018]). 
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Figure 8. Trial structure in Baker and Kellman ([2018]). Top right shape is a rotated version of the 
left shape without any shape change. Bottom right shape involves both rotation and shape change. 
Reprinted with permission from (Baker and Kellman [2018]). 
 
 Thus, there is evidence that the visual system generates representations of determinate shape 

that remain stable through relevant changes in retinal projection. While the foregoing evidence 

concerns constancy through picture-plane rotations, determinate shape constancy may also be 

achieved through rotations in depth, provided the object has readily identifiable part structure and 

the same parts are visible throughout the rotation (Biederman and Gerhardstein [1993]; Biederman 

and Bar [1999]; Pizlo and Stevenson [1999]). Constancy through depth rotation is significantly aided 

by stereoscopic depth cues (Bennett and Vuong [2006]; Oliver et al. [2018]; although see Pizlo et al. 

[2008]). 

Nonetheless, it is questionable how often determinate shape constancy is achieved. Human 

perception exhibits notable biases, limiting the situations in which perfect determinate shape 

constancy is possible. A given interval appears shorter when oriented in the sagittal plane (extending 

away in depth) than when oriented in the frontal plane (perpendicular to the line of sight) (Wagner 

[1985]; Loomis et al. [2002]; Wagner and Gambino [2016]). Likewise, volumetric shapes often appear 

compressed along the viewer’s depth axis (Tittle et al. [1995]; Todd and Norman [2003]; Todd 

[2004]; Hill [2020]; Yu et al. [2021]). Rotating an object in depth alters its apparent determinate 

shape, since this changes the object’s orientation with respect to the viewer’s depth axis, and so the 

performance on this task, abstract shape representations might
make it worse, in that detection of dot position change might be
overshadowed by the formation of obligatory abstract shape rep-
resentations.

Experiment 1

In Experiment 1, we tested subjects’ ability to determine if the
shape outlines formed by two dot patterns are the same or different
across a range of encoding times. We presented subjects one novel
shape for a varied duration, followed by a mask and a second
shape. The second shape could differ from the first both in global
outline and in position, size, or orientation on the screen. Subjects
were instructed to report shapes as different only if the second
shape had a different global outline than the first.

Method

Participants. Twenty-five (21 female, four male, Mage !
20.2) undergraduates from the University of California, Los An-
geles participated in Experiment 1 for course credit. All partici-
pating subjects had normal or corrected to normal vision.

Displays and apparatus. Novel amoeba-like shapes were
generated for each trial. The displays contained no continuous
contours that might give shape information. Displays were com-
prised of 25 black and white dots evenly sampled along the
contour and were displayed on a gray background screen (see
Appendix A for more information).

Subjects were seated 71 cm from the 20-in. View Sonic Graphic
Series G225f monitor. The monitor was set to 1024 " 768 reso-
lution, with a refresh rate of 100 Hz.

The first display was presented at the center of the screen and
subtended up to 13.8 degrees of visual angle from the most
extreme left dot to the most extreme right dot (mean horizontal
length was 8.00 degrees). The second shape subtended up to 18.43
degrees of visual angle (mean horizontal length of 8.03 degrees).
(See Appendix B for more information).

Except when noted otherwise, all aspects of the displays and
apparatus in subsequent experiments were the same as in Experi-
ment 1.

Design. On each trial, two dot patterns were shown sequen-
tially, separated by a pattern mask. After the second pattern was
shown, subjects were asked if the second pattern had the same
shape as the first pattern. Nine presentation durations—30, 50, 70,
90, 110, 130, 150, 250, and 400 ms—for the first display were
presented in separate blocks of 40 trials each in a within-subjects
design. Subjects completed five practice trials with feedback in
which the first stimulus was presented for 500 ms and then began
the official experiment, where they received no feedback.

Procedure. Each trial began with a fixation cross for 300 ms
in the location of the first pattern, followed by a presentation of the
first pattern for a given duration (30–400 ms), which was in turn
followed by a mask of random dots for 50 ms. Following the mask,
a second shape was shown. The second shape could be the same as
or different from the first shape. Different shapes were generated
by taking the first shape and deforming its global outline (see
Appendix B). The second shape also underwent some transforma-
tion, regardless of whether or not its shape outline was altered.
There were four possible conditions for the transformation of the

second shape: rotation (5 to 20 degrees in either direction), scaling
(between .5 and 1.5 times original shape size), translation (up to
150 pixels in any direction), and no transformation. Dot patterns
were transformed in these ways to ensure that success on the task
required comparisons between abstract shapes.

The second shape was always shown for 1,000 ms, and was
followed by another mask for 300 ms. Subjects performed a forced
choice same/different task. They were instructed to report “Same”
if the two dot patterns had the same shape outline and to report
“Different” if the second pattern had a different shape outline,
irrespective of the rigid body 2D transformation. See Figure 3
below for a sample trial of Experiment 1.

Dependent measures and data analysis. We measured sub-
jects’ accuracy on the same/different task across the nine presen-
tation times for the first display. Data were analyzed by taking
each subject’s average performance for each of the nine presenta-
tion times, and then computing a group average and confidence
intervals. Performance was statistically compared across the sev-
eral exposure durations and to chance performance. To eliminate
possible effects of bias from subjects tending to say “same” or
“different,” we also used signal detection methods to measure
sensitivity (d=) as a function of encoding time. Finally, we used
logistic and piecewise regression analyses to identify the encoding
time beyond which a stable, abstract shape representation was
available (see below).

Results

Figure 4 shows the mean accuracy data for the 9 exposure
durations for the first display. Performance was better than chance
in all conditions except at the 30 ms exposure duration (all ts #
2.99; all ps $ .01); at 30 ms, the mean accuracy of .508 (95%
confidence interval [.482,.533]) did not differ from chance,
t(24) ! .64, p # .250.

Performance improved with encoding time, up to 110 ms, after
which it plateaued. To identify the point at which more processing
time ceased to produce improvements in the comparison task, we
fit the results to a psychometric function using the Palamedes
Toolbox (Prins & Kingdom, 2009). The maximum likelihood estima-

Figure 3. Sample trial for Experiment 1. The first display is on the left,
followed by a pattern mask. The second display could either have the same
shape as the first with some transformation (top right) or the shape could
be deformed in some way (bottom right).
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direction along which it is perceptually compressed. Thus, determinate shape constancy is typically 

imperfect through depth rotations. 

I regard determinate shape constancy as an ideal that is often only approximated. 

Fortunately, skeletal representations offer resources for understanding approximations to 

determinate shape constancy. Recall the third feature of skeletal representations highlighted earlier: 

They extract abstract shape properties, encoding them by separable, dedicated constituents. One 

relevant abstract property is affine shape (Todd [2004]; Bennett [2012]; Warren [2012]; Green [2017]; 

Todd and Petrov [2022]). Unlike metric shape properties, which are preserved only under similarity 

transformations (rigid transformations and uniform scaling), affine properties are preserved under all 

affine transformations—roughly, transformations preserving collinearity, parallelism, and ratios of 

lengths of parallel line segments. These include compressing, stretching, or shearing along a 

direction.11 Examples of affine properties include parallelogram, ellipse, or triangle. Because compression 

along a direction—say, the depth axis—preserves affine shape, distortion of perceived metric shape 

is compatible with accurate perception of affine shape. Someone might perceptually represent a 

slanted square as a compressed rectangle (getting its metric shape wrong), but also simply as a 

parallelogram (getting its affine shape right). 

There is evidence that our visual systems represent affine shape. Shapes are more 

discriminable when they differ in affine shape than when they differ only in metric properties, even 

when they differ equally in other respects (e.g., in pixel-level overlap) (Todd et al. [1998], [2014]; 

Amir et al. [2012]; Green [2017]). Moreover, perceptually-based judgments about an object’s affine 

 
11 Two external objects can be affine-equivalent even if their retinal images are not. A head-on square and a slanted 
oblong rectangle are affine-equivalent. However, the square projects an image with two pairs of parallel sides while the 
rectangle projects a trapezoid with non-parallel sides, so their images are not affine-equivalent. I suggest that perception 
represents affine properties of external objects, not their projected images. 
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properties are both more accurate and more invariant across changes in viewpoint than judgments 

about metric properties (Phillips et al. [2003]). 

Perceptual representation of affine shape is not always perfect. A rectangular object might 

appear trapezoidal when presented at an extreme slant. This would mark a misperception of affine 

shape (since rectangles and trapezoids are not affine-equivalent). The crucial point is that perception 

of affine shape is significantly more accurate and viewpoint-invariant than perception of metric shape. 

Thus, when an object is rotated in depth, constituents of its representation encoding metric 

properties often do not remain invariant, but constituents encoding abstract properties might. More 

generally, while perfect constancy for determinate metric shape may be relatively rare, constancy for 

affine abstractions from determinate shape may be fairly common. 

I conjecture that the remaining forms of constancy are also imperfect, particularly under 

depth rotation. However, the foregoing strategy can be generalized. We do not achieve perfect 

constancy for the relevant property under depth rotation, but may achieve near-perfect constancy 

for a natural (e.g., affine) abstraction from it. Systematic biases in spatial perception do not preclude 

shape constancy, but demand a nuanced understanding of it (Todd [2004]; Bennett [2012]; Hatfield 

[2016]). 

 

4.2 Compositional structure 

In a perceptive passage, J. L. Austin ([1962], p. 67) observes that when we seek to identify the “real” 

shape of a cat, multiple answers present themselves: 

[W]hat is the real shape of a cat? Does its real shape change whenever it moves? If 
not, in what posture is its real shape on display? Furthermore, is its real shape such as 
to be fairly smooth-outlined, or must it be finely enough serrated to take account of 
each hair? It is pretty obvious that there is no answer to these questions—no rules 
according to which, no procedure by which, answers are to be determined. 
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Austin mentions two challenges in specifying the cat’s real shape. First, it adopts various postures, 

which affect how its limbs are oriented relative to its body. Either (i) we say that its real shape 

changes whenever its posture changes, or (ii) we choose some specific posture as displaying its real 

shape, but any choice seems arbitrary. Second, the cat’s outline can be characterized at many levels 

of specificity. The finest description incorporates every hair, while a coarser description would treat 

its outline as a smooth curve. Austin could have expanded the second challenge to pose a parallel 

issue to the first. The precise arrangement of hairs on the cat’s body is volatile, changing whenever 

the cat runs quickly or gets wet. Assuming a fine-grained description, then either (i) the cat’s real 

shape changes whenever it gets wet, or (ii) we choose some level of wetness in which its real shape is 

on display, but any choice seems arbitrary. 

 This subsection analyzes a form of constancy exercised through changes in the cat’s posture. 

The next analyzes a form exercised through changes in its fine-grained outline. At certain levels of 

analysis, the cat’s shape remains unaltered through these shifts, and we perceptually represent 

properties at these levels, enabling us to reliably reidentify the cat despite postural changes. Thus, my 

answer to Austin is that the cat has multiple “real” shapes. Some are volatile, others are resilient, and 

we perceptually represent both. By analogy, stretching a square into an oblong rectangle alters its 

determinate shape while preserving certain more abstract shape properties (e.g., quadrilateral). Just as 

it makes no sense to ask whether the “real” shape of the square changes or survives the stretching, 

as if there were a single answer, it makes no sense to ask whether the cat’s real shape changes or 

remains constant when it shifts posture. 

 An object’s compositional structure consists in its decomposition into parts, the determinate 

intrinsic shapes of its parts, and the “joints” at which its parts are connected—construed as the 

point along the parent part’s axis at which the child’s axis branches (see Green [2019], [2022]). 

Compositional structure abstracts away from the precise angular relations between parts. As a 
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person walks, her limbs rotate with respect to her torso, so the angular relations between these parts 

change. Nonetheless, the determinate intrinsic shapes of the parts remain approximately unchanged, 

as do their joint locations. The notion of compositional structure can be precisified using skeletal 

representations. Figure 8 crosses out elements of the representation encoding features that are 

inessential to compositional structure. The remaining elements encode properties—namely, axis and 

boundary structures of parts and the points where branches sprout from their parents—that 

together comprise compositional structure. 

 Compositional structure is distinct from determinate shape, although it is an abstraction 

from determinate shape (just as quadrilateral is an abstraction from square). An object’s determinate 

shape depends on both the determinate shapes of its parts and the angles between them, while 

compositional structure abstracts away from the latter feature. Any objects that share determinate 

shape also share compositional structure, but the converse does not hold. Moreover, compositional 

structure remains invariant under a wider range of transformations than determinate shape. 

 Compositional structure is not a property traditionally studied in geometry. Indeed, it is 

geometrically “messy” insofar as it is not preserved under the sorts of transformations standardly 

used to individuate shape properties, which coincide with different general geometries (e.g., 

Euclidean, affine, or projective geometry) (Todd and Petrov [2022]).12 The perceptual significance of 

compositional structure derives not from pure mathematics, but from contingent facts about our 

environments: objects often change in ways that preserve compositional structure but not 

determinate shape, making it adaptive for our perceptual systems to extract compositional structure 

in order to reidentify objects across such changes.  

 
12 While compositional structure is not itself a metric property, it is partially composed of metric properties—namely, the 
metric shapes of an object’s parts. It consists of both metric properties and pure topological properties (viz., the points 
of contact between parent and child axes). Thus, compositional structure spans traditional levels of abstraction in 
geometry.  
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Skeletal representations facilitate robust constancy for compositional structure, or structure 

constancy for short. Structure constancy is exercised when a perceiver or perceptual system 

perceptually represents compositional structure via tokens of the same representation-type despite 

relevant variation in proximal conditions. The representation-type here is a separable complex 

constituent possessed by many skeletal representation-types—a constituent consisting of just those 

elements that remain uncrossed in figure 9. Because skeletal representations extract the axis and 

boundary structures of parts, representing them independently from angular relations between parts, 

structure constancy can be exercised through changes that “peel away” those constituents of the 

representation that encode angular relations, while determinate shape constancy cannot. 

 

 

Figure 9. Uncrossed elements represent aspects of compositional structure. Crossed-out elements 
do not. 
 

4.2.1 Compositional structure in perceptual experience 

There is an introspective case that perceptual experience represents compositional structure. Objects 

that share compositional structure are, other things being equal, more similar in apparent shape than 

those that do not, even when both pairs are equally alike in other respects. 

Consider a base object, A, and two test objects, B and C. B and C are equally different from A (or 

perhaps B is more different) along low-level measures such as the amount of pixel-level overlap 

between them. However, objects A and B share compositional structure while A and C do not. In 

such cases, introspection suggests that A and B appear more similar vis-à-vis shape than A and C. 

Part 1 Axis structure; boundary structure 

Part 2 Axis structure; boundary structure Part 3 Axis structure; boundary structure 

Branching point;
Angular relations

Branching point;
Angular relations

Composed of
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For example, figures 10a and 10b share compositional structure, while figures 10c and 10d differ 

from them. In figure 10c, the smaller part’s axis offshoots from a lower point along the larger part’s 

axis (altering joint location), while in figure 10d, the shape of the smaller part has changed from 

rectangular to triangular.13, 14 Importantly, explicit similarity judgments exhibit the same pattern: 

shapes that share compositional structure are systematically rated as more similar than shapes that 

differ either in part shapes or joint locations (Barenholtz and Tarr [2008]). 

 

 

 

 

 

(a)  (b) 

 

 

 

 

 

  (c) (d) 

Figure 10. (a) and (b) share compositional structure, while (c) and (d) both differ from them. 

 
13 Figures 10b and 10c are equally different from figure 10a in lower-level respects because the same amount of rotation 
has been applied to the “arm.” The only difference is that, in figure 10b, the arm has rotated about its joint with the 
“body,” while in figure 10c it has rotated about its endpoint.  
14 These patterns would be less salient if figures 10a and 10d were made more alike by, say, making the “arm” in figure 
10d a trapezoid. However, the figures would still differ in compositional structure because their arms would differ in 
determinate shape (namely, in the boundary structures surrounding their axes). If experience represents compositional 
structure, then the figures should appear more similar under these conditions. Since compositional structure consists 
partly in the determinate shapes of an object’s parts, objects should appear more similar as their parts’ determinate 
shapes become more alike. 
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The hypothesis that visual experience represents compositional structure offers an attractive 

explanation for this pattern of apparent shape similarity. While all four objects are experienced as 

differing in determinate shape, figures 10a and 10b are experienced as sharing a property that figures 

10a and 10c (and 10a and 10d) are not. Thus, figures 10a and 10b are more alike in apparent shape. 

 Return to the cat. As the cat walks, its compositional structure often (though not always) 

remains stable. Its limbs rotate about its torso, but the determinate shapes of the limbs and the 

points at which its body parts are connected remain approximately unchanged, due to its anatomical 

skeleton. So, if perceptual experience represents compositional structure, then it represents a feature 

that endures through non-rigid articulations of the cat.  

If visual experiences represent compositional structure, then they plausibly inherit some of 

their contents from skeletal representations. After all, skeletal representations extract the features 

constitutive of compositional structure, representing them separately from features that are not 

constitutive of its compositional structure. Not just any system of shape representation predicts the 

above patterns of shape similarity. For example, template-based models where shape is encoded as a 

vector of local feature locations within a viewer-centered reference frame (Ullman and Basri [1991]; 

Bülthoff and Edelman [1992]; Edelman and Duvdevani-Bar [1997]) do not predict them because 

shapes that share compositional structure are deemed more similar than those that do not even 

when local feature change is equated in both cases (Barenholtz and Tarr [2008]; Lowet et al. [2018]; 

see also Stankiewicz and Hummel [1996]). 

 Buccella ([2021]) objects to the distinction between determinate shape constancy and 

structure constancy. Buccella argues that if we countenance this distinction, then we are committed 

to the presence of two constancy mechanisms—one activated by rigid objects (for determinate shape), 

the other by non-rigid objects in motion (for compositional structure). Accordingly, we face the 
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unenviable task of explaining “how the retinal image gets disambiguated and…how the visual 

system ‘decides’ which constancy mechanism to activate in each case” (Buccella [2021], p. 15). 

 However, a reply is available. While we must differentiate determinate shape constancy from 

structure constancy, we needn’t hold that these constancies depend on distinct constancy mechanisms. 

An attractive feature of the account advocated here is that it illustrates how a single constancy 

mechanism with syntactically complex outputs may ground multiple constancy capacities. The 

mechanism produces skeletal representations based on proximal cues. Because of their syntactic 

structure, these representations enable constancies for shape properties at different levels of 

abstraction. A common representation-type facilitates both determinate shape constancy and 

structure constancy, along with the others to come. We needn’t posit multiple constancy 

mechanisms (though multiple mechanisms may exist), and thus needn’t posit a stage where the 

system decides whether to engage mechanisms for determinate shape or structure constancy. 

 

4.2.2 Further support for structure constancy 

The case for structure constancy is bolstered by two further data: (i) the visual system represents the 

shapes of parts independently of one another, and (ii) the visual system differentiates changes in the 

relations between parts that alter their joint locations from changes that merely alter angles between 

parts. 

Regarding (i): A raft of data indicates that the visual system divides objects into parts and 

that represents their shapes separately from one another, allowing us to appreciate commonalities 

between objects composed of same-shaped parts in different arrangements. Cacciamani et al. 

([2014]) found that visual priming transfers between objects with the same parts in different 

arrangements. When shown an ambiguous figure-ground display, participants were more likely to 

see a region as figure if they were primed with an object containing the same parts as the region but 
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arranged differently. Second, the ability to represent part shapes can be preserved while the ability to 

represent their relations is impaired. For example, certain patients with integrative agnosia reliably 

distinguish complex objects composed of differently shaped parts (e.g., a cube atop a rod versus a 

cone atop a sphere), but cannot distinguish objects that differ only in how their parts are arranged 

(Behrmann et al. [2006]).  

These data are explainable on the hypothesis that the visual system produces shape 

representations containing discrete constituents encoding the shapes of midsized parts. This format 

makes explicit the commonalities between objects composed of the same parts in different 

arrangements, since their representations have discrete, separable constituents in common. 

Moreover, the mechanism that produces these representations may be partially damaged without 

going fully offline. It may retain the ability to form representations of part shapes (nodes) while 

losing the ability to form representations of their relations (edges). 

 Regarding (ii): Changes modifying the joint locations between parts are more salient than 

equal-magnitude changes that merely modify angles between parts. Barenholtz and Tarr ([2008]) 

presented a base shape followed by two test shapes, and subjects judged which appeared more 

similar to the base. The objects consisted of a main “body” and a “limb.” In one test shape, the limb 

was rotated about its joint (preserving joint location), while in the other it was rotated about its 

endpoint (altering joint location and thus compositional structure). Subjects reliably rated the former 

shape as more similar to the base. More recently, Lowet et al. ([2018]) found that unfamiliar shapes 

composed of line segments were more easily discriminable when joint locations between line 

segments were altered than when only the angles between them changed.  

Skeletal representations can explain these results. Such representations prioritize joint 

locations between parts because they extract this information. Separable constituents encode the 

point along a parent axis at which its child axis sprouts, and this information is represented with 
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high fidelity. In contrast, information about angles between parts is represented independently, 

perhaps in a more coarse-grained way. 

Thus, our visual systems recover a type of property that cats, staplers, and other deformable 

objects retain through changes in posture. This capacity grounds a form of constancy distinct from 

constancy for determinate shape. Our visual systems represent compositional structure via tokens of 

the same representation-type despite relevant proximal variation. Moreover, compositional structure 

is represented in experience, governing comparative similarities among shape experiences. 

 

4.3 Skeletal shape 

I turn to skeletal shape constancy. An object’s skeletal shape consists in the shapes of its parts’ axes 

together with their branching points. Objects can share the same skeletal shape despite differing in 

their determinate shapes (and compositional structures) due to differences in the boundaries 

(contours or surfaces) surrounding the axes. The features constitutive of skeletal shape are shown in 

figure 11. Skeletal shape is represented by a complex constituent of a skeletal representation-type 

consisting of (i) constituents of nodes that encode structural features (length, curvature, etc.) of part 

axes, and (ii) tags on the edges between nodes that encode the point(s) along each parent axis where 

its children offshoot. Elements representing features inessential to skeletal shape have been crossed 

out. 

 

Figure 11. Uncrossed elements represent aspects of skeletal shape. Crossed-out elements do not. 

 

Part 1 Axis structure; boundary structure 

Part 2 Axis structure; boundary structure Part 3 Axis structure; boundary structure 
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 Skeletal shape is distinct from compositional structure, though it is an abstraction from 

compositional structure. An object’s compositional structure depends not just on the shapes of its 

component axes, but also on the structure of the boundaries (contours or surfaces) surrounding the 

axes. Skeletal shape abstracts away from the latter feature—though, like compositional structure, it 

also abstracts away from the angles between connected parts. Thus, any two objects that share 

compositional structure also share skeletal shape, but the converse is not true. 

Skeletal shape constancy is exercised when a perceiver or perceptual system perceptually 

represents skeletal shape via tokens of the same representation-type despite variation in proximal 

conditions. The relevant representation-type is a constituent possessed by many skeletal 

representation-types. Because skeletal representations encode axis structure independently from 

boundary structure, skeletal shape constancy can be exercised through changes that “peel away” 

constituents of the representation that encode boundary structure, while constancies for 

compositional structure and determinate shape cannot. 

 

4.3.1 Skeletal shape in perceptual experience 

My argument for the experiential representation of skeletal shape parallels that given for 

compositional structure.  

Consider figure 12. While all three shapes differ from one another in both determinate shape 

and compositional structure, there is a salient respect in which the top shape appears more similar to 

the bottom-left shape than the bottom-right. The hypothesis that perceptual experiences inherit 

some of their contents from skeletal representations explains these patterns of apparent shape 

similarity, while various alternative theories do not. For example, there is no easy way to explain 

these patterns by appeal to the viewer-centered coordinates of local boundary features. There is also 

no easy way to explain them by appeal to more qualitative aspects of boundaries (e.g., whether they 
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are “sharp” or “smooth,” etc.), since such aspects are, if anything, more similar between the objects 

that differ in skeletal shape (Ayzenberg and Lourenco [2019], pp. 6-7). 

 

 

Figure 12. Similarity versus difference in skeletal shape. Source: Ayzenberg and Lourenco ([2019]). 
Reprinted under the Creative Commons Attribution 4.0 International License. 

 

 Ayzenberg and Lourenco ([2019]) gathered shape discrimination evidence that corroborates 

these introspective judgments. They presented a pair of objects like those shown in figure 12 at 

varying orientations in depth and asked participants to judge whether the objects were the same. 

Levels of discriminability were predicted by skeletal dissimilarity15: objects with more dissimilar 

skeletons tended to be easier to discriminate. Skeletal dissimilarity also explained unique variance in 

subjects’ discrimination performance that low-level image-based measures and contemporary 

convolutional networks like AlexNet could not explain (see also Destler et al. [2019]).16 

 Ayzenberg and Lourenco ([2022]) found these same patterns in human infants. 6- to 12-

month-old infants were habituated to a novel shape, and then shown two new objects. Both differed 

in determinate shape from the habituation stimulus, but only one shared its skeletal shape. Infants 

dishabituated to the object with the new skeleton, but not to the one with the same skeleton. Thus, 

 
15 Calculated as “the mean Euclidean distance between each point on one skeleton and the closest point on the second 
skeleton following maximal alignment” (Ayzenberg and Lourenco [2019], p. 2). 
16 Baker et al. ([2020]) gather further evidence that convolutional neural networks prioritize texture over shape in 
classification (although see Hermann et al. [2020]). 

7SCIENTIFIC REPORTS |          (2019) 9:9359  | https://doi.org/10.1038/s41598-019-45268-y
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Match-to-sample task: results and discussion. Participants successfully categorized objects by either 
their skeletons, M = 0.88 (MRT = 1167 ms), t(38) = 27.01, p < 0.001, d = 4.32, 95% CI [3.35, 5.41], or surface forms, 
M = 0.78 (MRT = 1419 ms), ts(38) = 15.51, p < 0.001, d = 2.48, 95% CI [1.87, 3.16], when each cue was presented 
in isolation, as indicated by their above chance performance in these conditions (see Fig. 6A). Crucially, however, 
on the con"ict trials, participants categorized objects by their skeletons, not surface forms, t(38) = 6.63, p < 0.001, 
d = 1.06, 95% CI [0.66, 1.45] (see Fig. 6B,C). Indeed, participants preferentially categorized objects by their skel-
etons when pitted against all, M > 0.61 (MRT < 1218 ms), ts[38] > 2.52, ps < 0.016, ds > 0.40) but one, M = 0.58 
(MRT = 1140 ms) (p = 0.059, d = 0.31) surface form. #us, although surface forms were perceptually matched to 
the objects’ skeletons and were comprised of unique NAPs, participants relied more heavily on the shape skeleton 
when classifying objects, suggesting that skeletal structure may be a privileged source of shape information for 
object recognition.

General Discussion
#e ability to determine the similarity between shapes is crucial for object recognition. Shape skeletons may be 
particularly useful in this context because they provide a compact descriptor of shape, as well as a formalized 
method for computing shape similarity. Nevertheless, few models of biological object recognition include skeletal 
descriptions in their implementation. Here we tested whether skeletal structures provide an important source 
of information for object recognition when compared with other models of vision. Our results showed that a 
model of skeletal similarity was most predictive of human object judgments when contrasted with models based 

Figure 5. Examples of the three trial types used in Experiment 3. (A) A skeleton match trial wherein one choice 
object matched the sample’s skeleton, but not surface form. #e other choice object matched on neither skeleton 
nor surface form. (B) A surface form match trial wherein one choice object matched the sample’s surface form, 
but not skeleton. #e other choice object matched on neither skeleton nor surface form. (C) A con"ict trial 
wherein one choice object matched the sample’s skeleton, but not surface form, and the other choice object 
matched the sample’s surface form, but not skeleton.

Figure 6. Results from the match-to-sample task of Experiment 3. (A) Participants’ mean accuracy (error bars 
represent ± 1 SE) on trials in which only a skeleton or surface form match was possible (dotted line indicates 
chance performance). (B) Participants’ categorization judgments in the con"ict trial. A value closer to 1 
indicates greater weighting of the object’s skeleton; a value closer to 0 indicates greater weighting of the object’s 
surface form. Although participants successfully matched objects by their skeletal structure or surface forms 
when each cue was presented in isolation, they were more likely to match objects by their skeletons, as opposed 
to their surface forms, when these cues con"icted with one another. (C) Histogram of participants’ responses 
on the con"ict trials. A value greater than zero indicates greater weighting of skeletal information. #e majority 
of participants matched objects by their skeletons, demonstrating a consistent pattern of responses across 
participants.
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there is evidence that skeletal shape is recovered in perception and broadcast to processes of shape 

discrimination and categorization.  

Return to the cat. As it runs quickly or gets wet, its determinate shape changes. Its 

compositional structure changes too, since its parts adopt new determinate shapes. However, its 

skeletal shape remains virtually constant. If visual experience represents skeletal shape, then it 

represents an aspect of shape that endures through variation in the cat’s intrinsic structure, and 

accounts for our sense of stability through these changes. 

 

4.3.2 Further support for skeletal shape constancy 

The perceptual representation of skeletal shape is supported by patterns of apparent shape similarity, 

discriminability, and categorization. However, one concern with this evidence is that the behavioral 

data might result from the recovery of skeletal shape in cognition, not perception. However, there is 

also evidence that canonical visual brain areas code for skeletal shape, bolstering the case that 

skeletal shape representations are perceptual. 

 First, Hung et al. ([2012]) found neurons in the inferotemporal cortex (IT) of macaques that 

were tuned to particular complex medial-axis structures. Their responses were more heavily driven 

by medial axis structure than by surface curvature. IT is generally regarded as the homologue of 

human lateral occipital cortex (LOC), which functions to represent shape for recognition (Grill-

Spector et al. [2001]). 

 Similarly, Lescroart and Biederman ([2013]) found that BOLD activity patterns in areas V3 

and LOC of humans were selective for medial axis structures across changes in orientation, 

independent of changes in the boundaries surrounding the axes.17 Ayzenberg et al. ([2022]) 

 
17 The claim is not that information about position/orientation is discarded at higher levels—it is not (DiCarlo and 
Maunsell [2003]). Rather, it is represented alongside object-centered information. 
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reinforced this conclusion by showing that skeletal shape similarity explained unique variance in the 

response patterns in areas V3 and LOC (see also Papale et al. [2020]; Ayzenberg and Behrmann 

[2022b]). Skeletal encoding again generalized across changes in surface form. Finally, they found that 

the response patterns in V3 and LOC predicted the discrimination data from Ayzenberg and 

Lourenco ([2019]), with similar responses correlated with lower discriminability.18 

 The fact that responses in visual brain areas are correlated with skeletal shape does not entail 

that skeletal shape is perceptually represented. Correlation is not sufficient for representation. The 

neuroscience should be interpreted as complementing the behavioral evidence, which suggests that 

skeletal shape guides visual discrimination, recognition, and categorization. The best overall 

conclusion, I contend, is that skeletal shape is perceptually represented and made available to these 

processes. 

 

4.4 Skeletal topology 

I turn finally to constancy with respect to skeletal topology. My case for this constancy is somewhat 

more speculative, but it is a natural extrapolation from the first three varieties of constancy.  

 Many objects are not just globally non-rigid; they are piece-wise non-rigid. Unlike the cat’s 

limbs, which remain roughly the same shape as it moves, the parts of many objects undergo non-

rigid deformations like bending or twisting—think of a snake, a fern, or a lizard’s tail. This is true 

even of parts of the cat—its torso and tail deform non-rigidly when it walks or curls up to nap. 

Nonetheless, such changes seem systematic, in contrast to the deformation of, say, an amorphous 

blob. 

 
18 Another question concerns how representations of skeletal shape in LOC are generated. Recent evidence suggests that 
dorsal-stream regions may encode the spatial arrangement of part axes and transmit this information to the ventral 
stream, where it is combined with ventrally encoded information about local features into a representation of overall 
shape (Ayzenberg and Behrmann [2022a], [2022b]). Thus, while LOC is a ventral region, computations of skeletal shape 
may not be confined to the ventral stream. 
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 The foregoing changes alter the intrinsic shapes of an object’s parts—both their axes and 

their boundaries—and thus demand revisions to most constituents of a skeletal representation. 

Nevertheless, the changes leave the overall topology of ancestral relations among parts intact. More 

specifically, an object’s skeletal topology consists of (i) the number of axes in its skeleton, and (ii) the 

pattern of ancestral relations among these axes (compare Destler et al. [2023], p. 4). To make this 

notion more concrete, imagine the deformation of a lizard as its body bends and its tail curls. The 

lizard’s torso and tail adopt new shapes, and their skeletons deform non-rigidly (they become more 

curved). However, the lizard’s torso continues to appear as the “main” part of its body, and the 

number of parts seen as “descending” from its torso (tail, limbs, etc.) remains unchanged.  

 Skeletal topology is distinct from skeletal shape, though it is an abstraction from skeletal 

shape. Skeletal shape involves not just an object’s number of axes and their ancestral relations, but 

specific geometrical properties of each axis (for instance, length and curvature), and specific relations 

between axes (namely, the points along each parent axis at which its children offshoot). Thus, any 

two objects that share the same skeletal shape also share the same skeletal topology, but the 

converse is not the case. 

Constancy for skeletal topology is exercised when we perceptually represent an object’s skeletal 

topology via tokens of the same representation-type despite variation in proximal conditions. Here, 

the relevant representation-type is the general tree structure, which is shared between skeletal 

representations that attribute different axis and boundary structures to each part. I conjecture that 

skeletal topology is unique among the abstract shape properties discussed here insofar as it is not 

encoded by a discrete, separable constituent that represents the property independently of other 

properties. Rather, skeletal topology is encoded by a structural aspect of the representation: namely, the 

number of nodes it contains, and the positions of edges between those nodes. I suggest that this 

structural aspect of the representation is accessible by consuming processes. 
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Another unique feature of skeletal topology is that it is a purely categorical property that 

does not exhibit continuous variation. While it is possible to measure comparative differences in 

skeletal topology (Sebastian and Kimia [2005]; Destler et al. [2023]), it is not true that whenever two 

objects differ in skeletal topology, there is always a third skeletal topology lying “between” them. If 

object A is a one-part object and object B is a two-part object consisting of a parent and a single 

child, no skeletal topology lies between them. Accordingly, skeletal topology differs from, say, 

skeletal shape, which depends on continuous properties of an object’s component axes (such as 

length or curvature) that can be manipulated parametrically (Ayzenberg and Lourenco [2019]). 

Skeletal representations thus have the virtue of explicitly encoding information about both 

continuous and categorical geometrical features. 

 Consider figures 13a-c. The central figure differs from both the left and right figures, but 

there is plausibly a respect in which the central figure appears more like the one on the left. I suggest 

that this difference is explained, at least in part, by the experiential representation of skeletal 

topology. The objects on the center and left both have one skeletal axis, while the object on the right 

has two axes. Figures 13d-13f illustrate that these patterns of apparent similarity cannot be easily 

explained in terms of pixel-level overlap between the shapes. 

 

(a)                            (b)        (c) 
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 (d)                    (e)         (f) 

Figure 13. (a)-(c): The central shape differs from the right shape in skeletal topology, but shares 
skeletal topology with the left shape. (d)-(f): It is difficult to understand the respect of apparent 
similarity between figures (a) and (b) in terms of pixel-level overlap. 
 

Within computer vision, Sebastian et al. ([2004]) developed an algorithm for shape 

recognition based on comparing the topology of graphs formed from medial-axis branches. All 

shapes with the same topological configuration of axis branches are treated as equivalent, and the 

“distance” between two shapes is measured by the number of topological changes to the skeleton 

needed to transform one shape’s graph into the other. They found that this approach outperformed 

algorithms based on boundary curvature in recognizing shapes through articulation of parts and 

partial occlusion (Sebastian and Kimia [2005]). 

 A recent study by Destler et al. ([2023]) suggests that skeletal topology also contributes to 

apparent shape similarity in humans. Participants were shown a grid of 36 novel shapes and asked to 

indicate which belonged to the same category as a reference shape. Categorization judgments were 

well-predicted by a model that compared the skeletal topologies of the objects. Objects were more 

often categorized together when fewer axis additions or deletions were needed to transition from 

one object’s skeletal topology to the other’s. 

 Further evidence derives from judgments of structural stability through non-rigid 

transformations—e.g., bending or twisting. Several studies have explored our ability to match 
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objects as being “the same” across such distortions (Spröte and Fleming [2016]; Schmidt and 

Fleming [2016]), and to infer the kind of distortion an object has undergone (Spröte et al. [2016]; 

Schmidt and Fleming [2018]; Fleming and Schmidt [2019]; Schmidt et al. [2019]). 

 Spröte and Fleming ([2016]) showed participants a test object at the center of a screen and 

four candidate objects at the four corners (fig. 14). Participants were asked to identify which (if any) 

candidate matched the test object. When there was a match, either the objects had the same 

determinate shape or one was a bent version of the other, and they were told to ignore bending 

when identifying matches. Importantly, participants identified matches in the bent condition at well-

above-chance rates. It is worth noting that the objects in this study were unfamiliar and highly 

complex, and so weren’t matched perfectly even without a bend. 

 

Figure 14. Example stimulus used by Spröte and Fleming ([2016]). The test object is at center, and 
the “unbent” version of it is at the upper left. Reprinted with permission from (Spröte and Fleming 
[2016]). 
 

Perceptual representation of skeletal topology may facilitate the matching of shapes across 

non-rigid changes like bends—particularly when the shapes are unfamiliar. If shape representations 

make an object’s skeletal topology readily accessible to consuming processes, then it should be 

presented in the four corners of the active screen, 16.86! from the
center. Subjects had to indicate which candidate object was
identical to the test object in terms of shape, while ignoring
differences in orientation and degree of bend. By pressing one of
four buttons the object location assigned to that button was
surrounded by a green frame. Subjects confirmed their response
and started the next trial by pressing ‘Enter’. Test images were
presented in random order in four blocks of 88 trials (352 in total).
The target object (identification object with the same shape as the
test object) was presented randomly at one of the four locations
surrounding the test object balanced within a block. The remaining
three locations were filled with distractors (different shape
than the test object) randomly selected from the ten remaining
identification objects.

4.2. Results and discussion

In Experiment 1 we found that subjects can identify transfor-
mations across objects (at least to some extent). With Experiments
3 we sought to test whether subjects can also identify objects
across different transformations. In other words, can they identify
the correct base object (unbent version of an object) from a set of
four base objects, whose potential manipulation would lead to the
appearance of the test object.

Fig. 13 shows the mean proportion correct for each subject
across shapes, separated by whether the test object was bent
(orange bars) or not (blue bars). One sample t-tests confirmed that
all subjects performed significantly (t(10)P 4.638, p 6 .001) above
chance (25% correct answers indicated by red dashed line). This
suggests that subjects can discount bending transformations
applied to unfamiliar objects.

Additional paired sample t-tests showed that nine out of 14
subjects identified the correct base object significantly (t(10)P
2.466, p 6 .034) more often when the test objects were unbent as
opposed to bent (see Fig. 13, asterisks indicate level of signifi-
cance). The result across all subjects reflects the pattern already
observed for individual subjects. The mean proportion of correct

identifications across subjects was 0.77 (SEM = 0.02) for unbent
and 0.59 (SEM = 0.03) for bent objects. An additional paired sample
t-test confirmed that subjects are on average significantly better in
identifying the correct base shape when the test shape was unbent
in contrast to bent (t(13) = 8.669, p < .001), but both were signifi-
cantly above chance. Put simpler, unbent test objects were easier
to identify than bent ones. This indicates, unsurprisingly, that there
is an additional cost to undoing the non-rigid transformation com-
pared to simply mentally rotating the object.

To see whether errors in subjects’ responses were systematic
across objects, we looked at confusions between the correct (tar-
gets) and incorrect base objects (distractors). Fig. 14 illustrates this
frequency of target confusions with distractors weighted by the
frequency of target-distractor co-occurrences. Put differently,
how often did subjects ‘confuse’ the correct base object (target)
with a specific incorrect base object (distractor)? As already evi-
dent in the mean results shown in Fig. 13 the diagonal line in the
left and right panel in Fig. 14 exhibit high values reflecting high
rates of correct identifications. When confronted with unbent test
objects (left panel) subjects confused object six with object three
and object seven with object six significantly above chance (25%).
For bent test objects, objects three, four, eight and nine were con-
fused significantly above chance with objects ten, nine, one and
again one respectively. In short, we found that certain distractors
were significantly often confused with certain targets. Fig. 15
shows that the objects subjects most often confused with each
other also perceptually appear similar in terms of their shape. In
other words, subjects made most of their errors when objects were
perceptually similar.

However, this raises the question about the strategy subjects
used in order to do the task. It is possible that some of the suc-
cesses in this task might have been achieved by a process of elim-
ination, rather than by positively identifying the correct target. At
least in some situations (low shape similarity), rather than picking
an object because subjects knew it was the correct one, they picked
an object because the alternatives were just less likely than the
correct ones. The higher the perceived shape similarity, the less

Fig. 12. Screen as seen by subjects in the 4 AFC task. Subjects had to pick the one of four outer objects that appeared to them as being identical in terms of their shape, despite
differences in the level of bend or orientation.

P. Spröte, R.W. Fleming / Vision Research 126 (2016) 330–346 339
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possible to determine whether two objects have the same skeletal topology, assuming the objects are 

not too complex (viz., by assessing whether their skeletal representations possess the same tree 

structure). This would provide a basis for deciding whether two objects possess the same shape, 

modulo a simple non-rigid distortion. 

 One might object that there is a simpler explanation of our ability to match objects across 

bends: Perhaps such matches rely on correspondences in the ordering of local surface features like 

bumps, indentations, or corners. As an object is bent, the ordering of its convexities and concavities 

remains generally stable, and we can use this pattern to determine whether two objects are the same 

modulo a bend. 

 Participants do sometimes rely on local-feature correspondences when comparing objects 

across non-rigid distortions. Schmidt and Fleming ([2016]) presented shapes that differed by various 

non-rigid changes (shears, bends, etc.). A series of dots was shown on one shape, and participants 

had to move dots on the other shape to locations “corresponding” to the dots on the first shape. 

Their responses were highly consistent and well-predicted by a model which first matched salient 

landmarks between the shapes (for example, curvature extrema), then placed points at the same 

positions relative to corresponding landmarks. Perhaps Spröte and Fleming’s ([2016]) subjects also 

used local feature-matching to determine whether two shapes were bent versions of one another. 

 However, it is doubtful that local feature-matching fully explains shape matching across non-

rigid distortions. For, two shapes with similar curvature extrema in the same order can look very 

different. Figure 15 shows an example modeled after (Sebastian and Kimia [2005], fig. 14). The two 

shapes have a similar sequence of curvature extrema. However, the figure on the right does not look 

like a bent version of the figure on the left. They look like completely different shapes. Plausibly, 

one reason they look so different is that they possess skeletal trees with different topology. 
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Figure 15. Two shapes that have similar orderings of curvature extrema but appear very different.  
 

Matching shapes across nonrigid distortions may rely on both skeletal topology and local 

feature matching. Perhaps skeletal topology is used to determine whether two objects are viable 

candidates for correspondence—whether one could be a bent version of the other. Once this initial 

global matching is performed, we may turn to local feature matching to determine how to match 

smaller contour segments between the shapes.  

 

4.5 Two concerns 

Before closing, I consider two potential concerns with the foregoing approach. 

First, while I’ve argued that abstract varieties of shape constancy are reflected in online 

perceptual experience, an alternative view would maintain that abstract shape properties are not 

represented in perception, but only later on—perhaps when encoding shapes into memory. 

However, two data speak in favor of the perceptual view. First, skeletal shape influences 

paradigmatically low-level perceptual processes, such as contrast sensitivity (Kovács and Julesz 

[1994]; Kovács et al. [1998]), texture segregation (Harrison and Feldman [2009]), and figure-ground 

segregation (Froyen et al. [2010]), suggesting that it is represented perceptually as well. Second, the 

perceptual view arguably fits better with the phenomenology of shape. When we look at the pairs of 

objects in figures 2-4 above, we don’t merely remember them as bearing some structural similarity—

the similarities seem immediately present in experience. Thus, while it is notoriously difficult to 
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resolve the boundary between perception and memory, I think we have grounds for placing skeletal 

representations, and the constancies they engender, on the perception side. 

Second, one might worry that the account has been supported only by confirming its 

positive predictions. I identified several properties that skeletal representations extract, and adduced 

evidence that perception exhibits constancies for these properties. But this leaves negative predictions 

unexplored. Are there any possible forms of shape constancy that the skeletal approach predicts 

should be absent in human perception? 

One problem with evaluating negative predictions in this context is that even if there are 

forms of constancy that skeletal representations cannot explain, other representations might explain 

them instead (recall that I am inclined toward pluralism about shape representation). Nonetheless, I 

now highlight a possible form of constancy that skeletal representations are unfit to explain, and 

which also turns out to be not very prominent in human perception. 

 While all viable systems of shape representation are compositional insofar as complex 

representations are composed from semantically significant constituents (Hummel [2000], [2013]), a 

signature of skeletal representations is that their constituents (nodes) characterize a shape’s spatial 

parts. Not all schemes have this feature. One that lacks it is Fourier description. On this approach, a 

shape is first encoded as a vector of local features (e.g., a sequence of turning angles). The Fourier 

transform of this vector outputs a series of components characterizing the entire shape via its 

amplitude and phase at various frequencies (Zahn and Roskies [1972]; Zhang and Lu [2004]). These 

components comprise the shape’s Fourier description (FD). Importantly, the constituents of an FD 

do not represent a shape’s spatial parts. Rather, as figure 16 illustrates, each represents a global 

contributor to the frequency content of the entire shape (Elder [2018]). 
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Figure 16. FD-based approximations of a complex shape using 1(left) to 10 (right) components. 
Reprinted with permission from (Elder [2018]). 
 
 
 
 We might imagine a system that displayed constancy for Fourier components. The system 

would be selectively sensitive to similarities between objects that, while distinct, share certain 

components of their Fourier series. Skeletal representations would be poorly suited for this type of 

constancy. When a shape has multiple parts, each node of its skeletal representation encodes a 

spatial part of the shape; there is no single node dedicated to the shape “as a whole.” Thus, there is 

nowhere in the tree to “put” representations of a shape’s FD components, since there is no spatial 

part that they characterize. Accordingly, the FD approach is sometimes offered as a “holistic” 

alternative to part-based schemes (Cortese and Dyre [1996]). 

 However, this blindness to part structure is a severe limitation of FD, since it precludes 

sensitivity to similarities between shapes that share parts but differ in their spatial arrangement 

(Arguin and Saumier [2004]). Moreover, the FD approach predicts that the visual system should 

represent individual Fourier components of shapes generated by combining multiple frequencies, 

but there is scant evidence for this (Brincat and Connor [2004]; Elder [2018]). For instance, neurons 

in inferotemporal cortex are typically insensitive to shared Fourier components between shapes that 

differ in other respects (Albright and Gross [1990]).  

Thus, skeletal representations are unsuited to subserve constancy for Fourier components, 

and this form of constancy is also not very prominent in human vision. 
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Shapelets

Fourier
descriptors

Formlets

Figure 6
Three alternative progressive representations of two-dimensional shape, using from 1 to 10 shape components.

obey superposition, suggesting that the FD representation does not in fact form a good account of
IT shape coding (Albright & Gross 1990). Moreover, Brincat & Connor (2004) report that they
see no evidence for periodic selectivity for curvature extrema that is predicted by FD tuning. It
thus seems that while IT neurons tend to be responsive to FD stimuli, they are not specifically
selective for individual FD components.

Psychophysical experiments suggest that, at least for simple shapes composed of a small number
of FD harmonics, human judgments of shape similarity can be predicted by a Euclidean metric in
FD frequency-phase space (Cortese & Dyre 1996). More recently, Wilder et al. (2018) adapted a
linear systems identification method called classification image analysis to study the discrimina-
tion of animal shapes in the FD domain. They found that estimated linear templates are biased
away from the ideal, overly weighting lower frequencies. This lowpass bias suggests that higher
frequency shape processing relies on nonlinear mechanisms.

The Achilles’ heel of the FD representation is that every coefficient represents a global prop-
erty of the curve, violating the locality criterion of Section 7. As a result, spatially localized
perturbations (e.g., occlusions, articulations of an object part) that occur commonly in our visual
environment impact all coefficients of the representation, complicating recognition.

7.1.3. Shapelets. The shapelet model of Dubinskiy & Zhu (2003) addresses this issue. The theory
is based upon the representation of a shape by a summation of component shapelets, which are
Gaussian-windowed Fourier descriptors (i.e., Gabor functions over arclength), distributed over a
range of arclength locations and scales. Unlike the Fourier descriptor representation, the shapelet
family is overcomplete, which means that the representation is not unique unless an additional
rule for selecting shapelets is imposed. Dubinskiy & Zhu employed matching pursuit (Mallat &
Zhang 1993), which selects a sequence of shapelets by performing iterative gradient descent on
the approximation error (Figure 6).

The shapelet model has many positive features. Components are localized, and scale is made
explicit in a natural way. However, like all contour-based methods, the shapelet theory does
not explicitly capture regional properties of shape, violating the region and contour criterion of
Section 7. Perhaps most crucially, the model does not respect the topology of object boundaries:
Progressive representations of a target shape may introduce topological errors (Figure 7), and
sampling from the model will in general yield nonsimple (i.e., self-intersecting) curves. This
violates the closure criterion of Section 7.
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4.6 Summing up 

I have elucidated four varieties of shape constancy. Each targets a complex property represented by 

a constituent or aspect of a skeletal representation-type. Skeletal representations extract information 

about abstract shape properties, allowing constancies for them through proximal variation caused by 

changes to an object’s determinate shape. Abstract constancies are exercised through changes that 

alter or peel away constituents of these representations while leaving other constituents or aspects of 

the representation unchanged. 

 The four types of constancy are exercised through different kinds of variation. While 

determinate shape constancy is paradigmatically exercised through changes in perspective or rigid 

transformations of an object, more abstract constancies can be exercised through nonrigid 

transformations as well, and also across differences between category exemplars. For instance, two 

cats that differ in determinate shape might have very similar skeletal shapes, and even identical 

skeletal topologies. 

 I do not intend this to be the last word on the varieties of shape constancy. There may be 

further constancies more abstract than those considered, or which fall between them. An advantage 

of skeletal representations is that they extract a wide range of shape features, potentially enabling 

constancies for various complex properties comprising features from different levels of 

abstraction—e.g., composites of metric and topological properties. Properties that appear “messy” 

from the standpoint of geometry can be adaptive for perception to represent, particularly when they 

endure through intrinsic changes that objects in our environment often undergo. Future work may 

unearth further constancies underpinned by skeletal representations, or perhaps identify constancies 

demanding entirely different systems of representation. 
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5 Conclusion 

This paper has developed a pluralist perspective on shape constancy. Our perceptual systems extract 

shape properties at varying levels of abstraction and exercise distinct constancies for properties at 

these various levels. These constancies are explained by the syntactic structure of perceptual shape 

representations, which assign separable constituents to various abstract shape properties. I’ve argued 

that the varieties of shape constancy are not confined to subpersonal processing, but manifest in 

experience as well. 

I close with three broader implications concerning the nature and function of perceptual 

constancies.  

First, my account fits with an emerging consensus that constancy mechanisms do not 

function to discount variable properties like illumination (pace Helmholtz [1867/1962]), but to 

represent these properties separately from more stable properties, enabling information about these 

properties to be accessed independently (Hilbert [2005]; Matthen [2010]; Brown [2014]; O’Dea 

[2022]). Likewise, mechanisms of shape perception do not aim to discount information about a cat’s 

posture, but rather to represent its shape in a manner that makes its present posture accessible 

separately from its posture-invariant structure. 

Second, the account uncovers a connection between perceptual constancy and the format of 

perceptual representation. It is possible to exhibit constancies for perceptible dimensions at multiple 

levels of abstraction. However, doing so generally requires a representational format that extracts 

abstract properties rather than simply “nesting” them in the representation of more determinate 

properties (pace Kulvicki [2007]). As such, shape representations are unlike familiar imagistic 

representations like drawings or color photographs which lack discrete constituents for abstract, 

categorical properties, instead nesting information about these properties in the more determinate 
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properties they depict (Quilty-Dunn [2020]). Rather, shape representations assign separable 

representation-types to abstract properties. 

Third, it is sometimes suggested that the primary aim of constancy mechanisms is to separate 

intrinsic properties of objects, like size or reflectance, from relational properties like distance or 

illumination. I believe this is only a crude approximation to the truth. The more fundamental aim is 

to separate more variable properties of objects from less variable properties preserved through changes 

in the former. Many relational properties, such as depth or orientation, are indeed highly variable, 

and our visual systems do form representations that endure through changes in them. However, on 

closer inspection, we find that certain intrinsic properties are highly variable too. To reidentify 

objects through these variations, we must differentiate volatile intrinsic properties from stable ones. 

The pluralist approach illuminates how this challenge is met in the case of shape. 
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