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ABSTRACT. The addition of “actually” operators to modal languages allows us to capture
important inferential behaviours which cannot be adequately captured in logics formu-
lated in simpler languages. Previous work on modal logics containing “actually” operators
has concentrated entirely upon extensions ofKT5 and has employed a particular model-
theoretic treatment of them. This paper proves completeness and decidability results for
a range of normal and nonnormal but quasi-normal propositional modal logics containing
“actually” operators, the weakest of which are conservative extensions ofK , using a novel
generalisation of the standard semantics.
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0. INTRODUCTION

The main aim of this paper is to present and sketch proofs of the results
declared in its title. Section 1 motivates the introduction of “actually” op-
erators. “Actually” operators are identified in a way which does not rely
upon contentious views about the meaning of “actually”. This contrasts
with a standard account of what such operators are, in ways explained in
Section 2. More generally, Section 2 briefly discusses previous work on
“actually” operators and describes how the results derived here differ from
previous results in the literature.

Section 3 sketches completeness proofs for a bunch of propositional
modal logics containing “actually” operators, using a novel semantics. The
logics are conservative extensions ofK , KD , KT , KTB , KT4 andKT5 .1

Each of the logics has an important property: each isinformally sound
precisely if the logic which it conservatively extends is. (The notion of
informal soundness is introduced in Section 1.) Section 4 sketches proofs
that the logics discussed in Section 3 are decidable.

Section 5 sketches completeness and decidability proofs for another
batch of propositional modal logics containing “actually” operators. The
logics are nonnormal extensions of those discussed in Section 3. The logics
are not informally sound, but they do have another important property:
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each isinformally safeprecisely if the logic which it extends is informally
safe. (The notion of informal safety is introduced in Section 2.) The sixth
and final section briefly indicates how to derive some further completeness
results for the logics discussed in Sections 3–5, and presents some results
concerning further logics with “actually” operators.

1. “A CTUALLY ” OPERATORS: WHAT THEY ARE, AND WHY WE NEED

THEM

Given a formal languageJ , aninterpretation ofJ is a way of usingJ ’s wff
to express propositions, by assigning meanings toJ ’s expressions and se-
mantic significance to the ways of constructing wff fromJ ’s expressions. It
may be stipulated that interpretations ofJ must respect certain constraints.
Normally, for instance, interpretations of formal languages containing &
must interpret it as meaning “_ and. . .”.

Suppose thatS is a modal logic containing the classical propositional
calculus, formulated in the standard modal propositional languageL.2 We
stipulate that interpretations ofL must interpret¬ as meaning “it is not
the case that _”, & as meaning “_ and. . .”, ∨ as meaning “_ or. . .”, � as
meaning “it is necessary that _” and♦ as meaning “it is possible that _”.

Suppose that if the sequentφ1, . . . , φn ` ψ is provable inS, then for
any interpretation ofL, the propositions assigned toφ1, . . . , φn entail the
proposition assigned toψ . (Forn = 0, the consequent is equated withψ ’s
being assigned only necessary truths.) ThenS is informally sound.

Good modal logics – at least one variety – are ones which are informally
sound. Interpretations of provable sequents of informally sound logics re-
sult only in valid arguments. If one identifies an ordinary modal argument
as expressed by an interpreted provable sequent of an informally sound
modal logic, one can straightaway conclude that it is valid; just the sort of
thing that we want modal logics for.

For instance, assume that�p ` �(p ∨ q) is provable inS. We can
interpretp as meaning “2+ 2 = 4” andq as meaning “2+ 2 = 5”. S’s
informal soundness implies that the proposition thereby assigned to�p
entails the proposition assigned to�(p ∨ q). The argument “necessarily,
2+2= 4; so necessarily, either 2+2= 4 or 2+2= 5” is therefore valid.

How can we prove that a modal logic is informally sound? Before
considering one way of doing so, some supplementary notions must be
introduced. Alogic is a set of sequents whose wff are formulated in a
single language, the language of the logic. A sequentφ1, . . . , φn ` ψ is
provable in logicS (φ1, . . . , φn `S ψ) precisely ifφ1, . . . , φn ` ψ ∈ S. A
wff ψ is atheorem ofS(`S ψ) just in caseφ1, . . . , φn `S ψ , for n = 0. An
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axiomatisationA consists of the following: first, a set of axioms; second,
a set of rules which apply to some formulae to yield a formula, labelled as
A’s universal rules; and finally, a set of rules which apply to some formulae
to yield a formula, labelled asA’s admissible rules.

A sequentφ1, . . . , φn ` ψ is provable usingA just in case there is a
finite sequence of wff in which each formula is either an axiom ofA or
one ofφ1, . . . , φn or follows from earlier formulae in the sequence by an
application of one ofA’s universal rules. An axiomatisationA axiomatises
the logic containing precisely those sequentsφ1, . . . , φn ` ψ such that:
(1) φ1, . . . , φn ` ψ is provable usingA; or (2) there are some wffψi such
that, form = 0, φ1, . . . , φm ` ψi is provable usingA, andψ results from
theψis by an application of one ofA’s admissible rules.

Suppose that logicS is axiomatised in such a way that each of the
axioms is interpretable only as expressing necessary truths. (The axioms
areinformally sound.) Suppose that each of the axiomatisation’s universal
rules meets the following condition: if the rule applies toφ1, . . . , φn to give
ψ , each interpretation ofL assigns toφ1, . . . , φn propositions which entail
the proposition assigned toψ . (The universal rules areinformally sound.)
Finally, suppose that each of axiomatisation’s admissible rules meets the
following condition: if φ1, . . . , φn `S ψi , for n = 0, and the rule applies
to theψis to giveψ , each interpretation ofL assigns a necessary truth to
ψ . (The admissible rules areinformally sound.) Then a simple inductive
argument shows thatS is informally sound.

We want modal logics to be informally sound. But we also want them to
reflect the distinctive inferential properties of modal locutions. Preserving
informal soundness while capturing additional inferential behaviours tends
to require the introduction of axioms and vocabulary and the imposition of
constraints upon interpretations.

For instance, suppose that “water” rigidly designates whatever stuff is
actually C. And suppose that H2O might not have been C. Consider some
possible scenario in which H2O is not C. Then in the envisaged possible
circumstances, if H2O is the stuff which is actually C, it would not have
been the case that water was C. On the assumption that H2O is actually C,
therefore, it follows that water might not have been C.

The following argument can, with a little violence to the English lan-
guage, be extracted from the above:

(A) It might have been that if H2O is actually C, then water would not
have been C; but H2O is actually C; so water might not have been C.

Suppose that our resources are limited toL. How should we formalise
(A)?
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(A)’s first premiss appears to consist of a conditional within the scope
of the initial “possibly _”. We might regard that appearance as misleading.
For instance, we might paraphrase (A)’s first premiss using “if H2O is
actually C, then water might not have been C”, and then formalise it using
p→ ♦q. That strategy will, however, lead to tears if followed elsewhere.

Consider the sentence “there might have been something which, if it
actually exists, would not have been self-identical”. The best formalisation
of that sentence, using the strategy just mooted, is♦∃x(Ex → ♦x 6= x).
But that sentence is necessarily false, while the sentence which it for-
malises is true, expressing the claim that there might have existed some-
thing which does not actually exist. Accordingly, I suggest that we trust
(A)’s appearance.

So the only half-decent formalisation is:♦(p → q), p ` ♦q. That
has, however, a glaring fault; no logic in which the above sequent is prov-
able is informally sound. For instance, the sequent can be interpreted as
expressing the following invalid argument:

(B) It might have been that if there were 9 planets, some number would
not have been self-identical; but there are 9 planets; so possibly, some
number is not self-identical.

Identifying the difference between (A) and (B) is easy: the antecedent
of (A)’s first premiss is in the indicative, whereas the antecedent of (B)’s
first premiss is not. A brief reflection on the standard strategy for formal-
ising ordinary arguments in languages likeL suggests that any differences
owed to that difference will not easily be captured inL.

That standard strategy involves treating nonindicative moods as result-
ing from the application of a modal operator to a proposition expressible
as the proposition thatP , whereP is a sentence whose main verb is in
the indicative mood. (An analogous strategy is used in tense logic, where
tenses are regarded as resulting from the application of a tense operator to
a proposition expressible using only present tenses.) For instance, “H2O
might have been C” would standardly be formalised using♦p, wherep is
interpreted as expressing the propositionthat H2O is C. But how are we
then to reflect the difference between, say, “H2O might have been C” and
“it might have been that H2O is actually C”? We – surely! – cannot.

We have a choice: we can either turn a blind eye to arguments like (A),
or we must enrichL. Suppose we plump for the latter and add an unary
operatorA to L. The resulting language isLA.3 A is to be interpreted as
expressing an operator having the following effect: when attached toLA

formulaφ, the proposition assigned toφ is not to be read as operated upon
by any modal operator within whose scopeAφ falls.4 When expressing the
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proposition assigned toLA-sentenceψ in whichAφ occurs, the main verb
of the sentence expressing the proposition assigned toφ must always be
kept in the indicative mood, even ifAφ is in the scope of a modal operator.5

For instance, suppose that we are formalising “H2O might have been
C” and “it might have been that H2O is actually C”. The first would be
formalised using♦p, wherep is assigned the proposition that H2O is C;
that proposition is then operated upon by the operator standardly assigned
to♦. But the second would be formalised using♦Ap, wherep is assigned
the same proposition; the application of the operator assigned toA prevents
the operator assigned to♦ from applying to that proposition. Or suppose
that p is assigned the proposition that there are no tangerines. Then the
proposition assigned to�(p → ♦Ap) is the proposition that necessarily,
if there were no tangerines then it might have been that there actuallyare
no tangerines.

The inferential behaviour reflected by (A)’s validity is easily captured
in axiomatisations formulated inLA. They need only include as axioms
all instances of the following schema:♦(Aφ → ψ) → (Aφ → ♦ψ).
Each such axiom is informally sound. What other axioms involvingAmay
axiomatisations safely include? Each instance of the following schemata
is unproblematic:¬Aφ ↔ A¬φ; A(φ → ψ) → (Aφ → Aψ); A(φ ↔
Aφ).

And suppose that for any interpretation ofLA, the proposition assigned
toφ is necessary. Then for any interpretation ofLA, it is necessary that the
proposition assigned toφ is actually true.6 The following is therefore an
informally sound admissible rule when added to informally sound axioms
and universal rules: ifφ is a theorem, so is Aφ.

What, then, are “actually” operators, and why do we need them? An
operatorO is an “actually” operator ifO is to be interpreted in the same
way asA above. One reason why we need them is because we cannot
satisfactorily reflect specific logical behaviours in logics formulated inL

without sacrificing informal soundness.

2. BRIEF DISCUSSION OF SOME PREVIOUS WORK ON“ACTUALLY ”
OPERATORS

“Actually” operators have been around for a while.A number of writers
have proved completeness theorems for propositional extensions ofKT5
containing them.7 The decidability of certain such logics has also been
proved.8 Hazen has derived completeness results for first-order extensions
of KT5 which contain “actually” operators and Hodes has proved results
about the expressive powers of first-order languages in which such op-
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erators are given a certain model-theoretic treatment.9 I do not know of
completeness and decidability results for any propositional modal logics
containing “actually” operators not extendingKT5 .

“Actually” operators are not always identified as in Section 1.A stan-
dard approach invokes a controversial interpretation of “actually” and sad-
dles “actually” operators with a related model-theoretic treatment. For in-
stance, Davies and Humberstone write:

In [Crossley and Humberstone [2]] reasons are given for enriching the conventional lan-
guage of modal logic with an operator “A” (read “actually”) whose function is to effect
(loosely speaking) a reference to a single world (within a model) designated as the actual
world.10

Why treat “actually” operators in the way suggested? The idea is, pre-
sumably, that doing so reflects the function of “actually” within natural
language: those sentences to which it applies are to be evaluated with
respect tothe actual world. The standard treatment of “actually” oper-
ators thus assumes a contentious treatment of “actually” as it figures in
natural language.11 The way of identifying them suggested in Section 1 is
therefore preferable.

I have a more selfish reason for taking issue with the above account of
“actually” operators: the semantical treatment of such operators employed
below does not treat them in the same way. The divergence is in some
ways unimportant, however. As Section 6 shows, the treatment used below
makes it straightforward to prove completeness results for more standard
semantical systems. There are two advantages to the treatment used here:
it makes for straightforward completeness proofs and, more importantly,
for simple decidability proofs.12

The standard treatment has had an unfortunate side-effect. It has led
writers to advocate axioms which are not clearly informally sound. For in-
stance, Crossley and Humberstone haveAp → �Ap as an axiom.13 Why
do they take it as axiomatic? Because it falls straight out of the standard
treatment of “actually” operators remarked above:

[The validity of (Ap → �Ap)] arises from the fact that it is one and the same world that
counts as the actual world, for every world in the model. So if something is true in that
world it is certainly going to be true in every other world that it is true in that world.14

I do not advocate the standard account of “actually” operators, so the
above argument is not available to me. Each axiom of the form♦(Aφ →
ψ) → (Aφ → ♦ψ) appears, however, to be informally sound; yet each
instance ofAφ → �Aφ is provable in any logic extending a normal modal
logic formulated inLA having each instance of♦(Aφ → ψ)→ (Aφ →
♦ψ) as a theorem (see Lemma 3 below).
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There is a division in the literature between those whose logics have
all instances ofφ ↔ Aφ as theorems and those whose logics do not. For
instance, Crossley and Humberstone favour logics of the latter kind.15 But
Hazen describes their reasons as “conceptually weak”.16

Construe “actually” as validating arguments sharing the form of (A)
above. Then no logic having each instance ofφ ↔ Aφ as a theorem is
informally sound. For instance, any such logic will havep↔ Ap as a the-
orem. If that theorem can be interpreted as expressing something which is
not necessary, the logic is informally unsound. Suppose, for contradiction,
that the theorem expresses a necessary truth, however interpreted. Then,
for instance, no matter what, there would have been tangerines precisely if
there are actually tangerines.

Now, it might have been that if there had been tangerines, some apple
would not have been self-identical.17 So, by the assumption of the preced-
ing paragraph, it might have been that if there are actually tangerines, some
apple would not have been self-identical. But there are actually tangerines.
So some apple might not have been self-identical (we are, remember, read-
ing “actually” so that it validates arguments like (A)). Absurdity!p↔ Ap

therefore does not express a necessary truth on all interpretations.18

If we are after informal soundness, our loyalties should be with Cross-
ley and Humberstone. And what else could we want? Consider the follow-
ing argument: “these are the good times; so these are actually the good
times”. We know that if the premiss of that argument is actually true, so is
its conclusion. Arguments having that feature aresafe.

One thing which we might want of a logic is that its interpreted provable
sequents express only safe arguments. That is, we might want our logics to
be informally safe.19 If informal safety is what we are after, the provability
of all instances ofφ ↔ Aφ is not a problem. Accordingly, those who
desire informal safety rather than informal soundness should join Hazen.

Should we want informally safe or informally sound logics? There is
surely no right answer; different strokes for different folks. But even those
desiring only informal safety need “actually” operators. For instance, the
arguments in Section 1 show that we cannot, while avoiding informal un-
safety, prove the sequent ofLwhich best formalises (A). We can, however,
provide a formalisation of (A) inLA whose provability does not result in
informal unsafety; viz.♦(Ap→ q), Ap ` ♦q.

The next section proves completeness results for some propositional
modal logics containing “actually” operators. The logics share a certain
feature: they are conservative extensions of familiar propositional modal
logics and each one is informally sound precisely if the familiar logic
which it extends is.
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3. FIRST SET OF COMPLETENESS RESULTS

Below,⊥ abbreviates(p&¬p). Given a logicS formulated inLA, S+ A
is the logic resulting when all instances of axiom schemata Ax1–Ax4, the
universal rule MP and the admissible rules RN and RA are added to an
axiomatisation ofS:

Ax1: A(φ ↔ Aφ),
Ax2: ¬Aφ ↔ A¬φ,
Ax3: A(φ → ψ)→ (Aφ → Aψ),
Ax4: Aφ → [♦(Aφ→ ψ)→ ♦ψ],
MP:ψ is provable fromφ andφ→ ψ ,
RA: if φ is a theorem, so isAφ,
RN: if φ is a theorem, so is�φ.

As pointed out in Section 2, each instance of Ax1–4 is informally sound.
Throughout the rest of this paper, it is assumed thatS is one ofK , KD ,
KT , KTB , KT4 or KT5 .20 Those logics are informally sound only if MP
and RN are.21 So if S is informally sound,S+ A is too.

Also, S has¬⊥ among its theorems. And, by truth-functional logic,
if `S+Aφ → ψ , `S+A(φ1& . . .&ψ& . . .&φn) → θ , then`S+A(φ1& . . .
&φ& . . .&φn) → θ (this fact is often needed below for proving the con-
sistency of various sets of wff; see, for instance, Theorem 2).

LEMMA 1. `S+A¬A⊥.

LEMMA 2. `S+AAφ ↔ AAφ.

LEMMA 3. `S+AAφ→ �Aφ.22

Proof.`S+A♦¬Aφ→ ♦(Aφ→⊥). By Ax4,`S+AAφ→ (♦¬Aφ→
♦⊥). So`S+AAφ → (�¬⊥ → ¬♦¬Aφ). But by RN,`S+A �¬⊥. So
`S+AAφ → ¬♦¬Aφ, i.e.`S+AAφ → �Aφ. 2
A sequenceM = 〈W,w∗, R,@, P 〉 is an @Kripke modeliff it meets the
following conditions:

@1: W is a set. The members ofW areM ’s indices.
@2: w∗ ∈ W . (w∗ isM ’s distinguished index.)
@3: R is a subset ofW ×W . (R isM ’s accessibility relation.)
@4: @ maps eachw ∈ W onto ay ∈ W such that (i) @(y) = y; and (ii)

if wRz, then @(w) =@(z).
@5: P maps each propositional variableπ onto a subset ofW .
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(Notice that{@(w) : w ∈ W } may have more than one member.) A se-
quenceM = 〈W,w∗, R, P 〉 is asub@Kripke modeliff it meets conditions
@1–@3, andP maps each sentence letterπ and formulaAφ onto a subset
of W . If M = 〈W,w∗, R,@, P 〉 is an @Kripke model, the sub@Kripke
modelM ′ = 〈W,w∗, R, P ′〉 is based onM if P ′ extendsP .

Given an @Kripke modelM = 〈W,w∗, R,@, P 〉, the definition of “φ
is true at indexw in M” – (M,w) � φ – is as follows:

P1: For each propositional variableπ of LA, (M,w) � π iff w ∈ P(π).
P2: For each wff¬φ of LA, (M,w) � ¬φ iff not-(M,w) � φ.
P3: For each wff (φ&ψ) of LA, (M,w) � (φ&ψ) iff (M,w) � φ and

(M,w) � ψ .
P4: For each wff�φ of LA, (M,w) � �φ iff for every w′ such that

wRw′, (M,w′) � φ.
P5: For each wffAφ of LA, (M,w) � Aφ iff (M,@(w)) � φ.

The definition of truth at an index in a sub@Kripke modelM =
〈W,w∗, R, P ′〉 is given by P1–P4, and the condition that(M,w) � Aφ
iff w ∈ P ′(Aφ). φ is true in (sub)@Kripke modelM – M � φ – iff
(M,w∗) � φ. And φ is valid in classC of (sub)@Kripke models –C � φ
– iff for everyM ∈ C,M � φ.

Where “M” ranges over the class of @Kripke models, the following
soundness results are easily verified:

`K+A φ only if {M : M = M} � φ.
`KD+A φ only if {M : M ’s accessibility relation is serial} � φ.
`KT+Aφ only if {M : M ’s accessibility relation is reflexive} � φ.
`KTB+A φ only if {M : M ’s accessibility relation is reflexive and
symmetric} � φ.
`KT4+A φ only if {M : M ’s accessibility relation is reflexive and
transitive} � φ.
`KT5+A φ only if {M : M ’s accessibility relation is an equivalence
relation} � φ.

If the converses of the above soundness results hold, the logics arecom-
pletefor the relevant classes of models.

Where “M” ranges over the class of sub@Kripke models based on
some @Kripke model, the following familiar soundness and completeness
results also hold for the variousS:23

`K φ iff {M : M = M} � φ.
`KD φ iff {M : M ’s accessibility relation is serial} � φ.
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`KT φ iff {M : M ’s accessibility relation is reflexive} � φ.
`KTB φ iff {M : M ’s accessibility relation is reflexive and symmetric}
� φ.
`KT4 φ iff {M : M ’s accessibility relation is reflexive and transitive}
� φ.
`KT5 φ iff {M : M ’s accessibility relation is an equivalence relation}
� φ.

Throughout the rest of this section,W is the set of all maximalS+ A-
consistent sets of wff. BecauseS+ A contains the classical propositional
calculus, the usual results about maximal consistent sets of wff apply. For
instance, Lindenbaum’s lemma applies; that is, if0 is anS+A-consistent
set of wff, there is a maximalS+ A-consistent setw of wff such that
0 ⊆ w.

THEOREM 1. For anyw ∈ W , there is a uniquey ∈ W such that for all
φ, φ ∈ y iff Aφ ∈ w. Also, for allφ,Aφ ∈ y iff Aφ ∈ w.

Proof. By w’s maximality and Lemma 1,¬A⊥ ∈ w. So byw’s con-
sistency,A⊥ 6∈ w. It is then easy to show that0 = {φ : Aφ ∈ w}
is S+ A-consistent. But Ax2 andw’s maximality obviously entail0’s
maximality. And anyy in W meeting the above conditions would have to
have0 as a subset; so0 is unique in meeting those conditions. To prove
the second part of the theorem, note thatw’s maximality and Lemma 2
entail thatAφ ∈ w iff AAφ ∈ w, which completes the proof. 2
For allw, y ∈ W , the relationR is defined thus:wRy iff {φ : �φ ∈ w} ⊆
y.

LEMMA 4. For w, y ∈ W , if wRy, then for allφ,Aφ ∈ w iff Aφ ∈ y.
Proof. The left-to-right direction follows immediately fromw’s maxi-

mality, Lemma 3 and the fact thatwRy. For the other direction, suppose
thatAφ ∈ y andAφ 6∈ w. Then, byw’s maximality,¬Aφ ∈ w and so
A¬φ ∈ w. But by Lemma 3 andw’s maximality,�A¬φ ∈ w. And so, as
wRy,A¬φ ∈ y. But therefore, byy’s maximality,¬Aφ ∈ y, contradicting
y’s consistency. 2
THEOREM 2. For w ∈ W , if ¬�ψ ∈ w, then there existsy ∈ W such
that¬ψ ∈ y andwRy.

Proof. Let 0 = {φ : �φ ∈ w} ∪ {¬ψ}. Suppose that0 is S+ A-
inconsistent; that, for instance, there is�φ ∈ w such that̀ S+A φ → ψ .
Then`S+A�(φ→ ψ). So`S+A�φ→ �ψ . But then, byw’s maximality,
�ψ ∈ w. Contradiction! So0 is S+ A-consistent. There is therefore a
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y ∈ W such that0 ⊆ y. But it is obvious that if�φ ∈ w, thenφ ∈ y; and
sowRy, which completes the proof. 2
For eachw ∈ W , let @(w) be the uniquey ∈ W satisfying the conditions
of Theorem 1. Note that forw ∈ W , φ ∈@(w) iff Aφ ∈ w iff Aφ ∈@(w)
(the last follows by the second part of Theorem 1). So @(@(w)) =@(w).
And note that by Lemma 4, ifw, y ∈ W andwRy, @(w) =@(y). Define
P thus: for eachLA-propositional variableπ , P(π) = {w : w ∈ W and
π ∈ w}. And suppose thatw∗ ∈ W . ThenM = 〈W , w∗, R, @,P 〉 is an
@Kripke model; it is anS+ A canonical @Kripke model.

THEOREM 3. For w ∈ W , φ ∈ w iff (M,w) � φ.
Proof. Proceeds by induction on the complexity ofφ. The cases in

which φ is either a propositional variable or has a main connective which
is truth-functional are trivial. The case whereφ is�ψ is easy, given Theo-
rem 2. The case whereφ isAψ is also easy:Aψ ∈ w iff (see the proof of
Theorem 1)ψ ∈ @(w) iff (by inductive hypothesis) (M, @(w)) � ψ iff
(M,w) � Aψ . 2
It was noted earlier that all of the usual results involving maximal consis-
tent sets apply toW . In particular, the following holds:̀ S+A φ iff for any
w ∈ W , φ ∈ w. Wherew ∈ W , letMw = 〈W,w,R, @,P 〉. The following
is easily verified, using Theorem 3:φ ∈ w iff Mw � φ. So`S+A φ iff for
anyw ∈ W ,Mw � φ. That is,`S+A φ iff {Mw : w ∈ W } � φ.

If S is KD , it is easily verified that for anyMw, R is serial. If S is
KT , then for anyMw, R is reflexive. If S is KTB , then for anyMw, R
is symmetric and reflexive. IfS is KT4 , then for anyMw, R is transitive
and reflexive. Finally, ifS is KT5 , then for anyMw, R is an equivalence
relation.

The remarks in the last two paragraphs lead immediately to:

THE FIRST SET OF COMPLETENESS RESULTS.For eachS+ A, the
converse of the soundness result stated earlier in this section holds.

The following lemma can be used to show that eachS+ A conservatively
extendsS in relation to theA-free wff ofLA; that is, ifφ does not contain
A (φ is a wff of bothL andLA), `S+Aφ iff `S φ:24

LEMMA 5. Suppose thatM is an @Kripke model and thatM ′ is a
sub@Kripke model based onM. Then for anyφ which is a wff of both
L andLA, and for anyw ∈ W , (M,w) � φ iff (M ′, w) � φ.



68 DOMINIC GREGORY

Proof.A trivial induction on the length ofφ. 2
The interesting parts of the conservative extension results follow from the
soundness results for theS+A, Lemma 5 and the completeness results for
theS.

4. FIRST SET OF DECIDABILITY RESULTS

The following proofs employ the technique ofmini-canonical models,
which is essentially equivalent to the use of filtrations.25 The technique
provides a way of showing that eachS+ A has the finite model property
– that is, for each of the logics there is a class of finite (@Kripke) mod-
els for which the logic is sound and complete. As eachS+ A is finitely
axiomatisable, it follows that eachS+ A is decidable.26

Given a set of wff,8:

(1) sub(8) = {ψ : there is someφ ∈ 8 such thatψ is a well-formed
subformula ofφ},

(2) ¬(8) = {¬φ : φ ∈ 8},
(3) A(8) = {Aφ : φ ∈ 8},
(4) 8∗ = sub(8) ∪ ¬(sub(8)) ∪ A(sub(8)) ∪ A(¬(sub(8))). (If 8 is

finite, so is8∗.)

A set0 of wff is A8-maximal iff (i) 0 ⊆ 8∗; (ii) if φ ∈ sub(8), either
φ ∈ 0 or ¬φ ∈ 0; (iii) if φ ∈ sub(8), eitherAφ ∈ 0 or A¬φ ∈ 0.
Assume that0 isA8-maximal andS+ A-consistent. The following facts
are easily proven: ifφ ∈ sub(8), φ ∈ 0 iff ¬φ 6∈ 0; if φ&ψ ∈ sub(8),
φ&ψ ∈ 0 iff φ ∈ 0 andψ ∈ 0; and if φ, ψ ∈ 8∗, `S+A φ → ψ and
φ ∈ 0, thenψ ∈ 0. The first two of those facts are used in proving the
trivial parts of Theorem 10 below; the final one is used at a number of
points in the following.

LEMMA 6. If 8 is a consistent set of wff, then either8∪ {Aφ} is consis-
tent or8 ∪ {A¬φ} is consistent.

Proof. If both are inconsistent then there areφ1, . . . , φn ∈ 8 such that
`S+A (φ1& . . .&φn) → ¬Aφ and`S+A (φ1& . . .&φn) → ¬A¬φ. But
`S+A (¬Aφ&¬A¬φ)→⊥. 2
THEOREM 4. Suppose that8 is finite. If 1 ⊆ 8∗ and1 is S+ A-
consistent, then there is anA8-maximal andS+ A-consistent set0 such
that1 ⊆ 0.



PROPOSITIONAL MODAL LOGICS CONTAINING “ACTUALLY” OPERATORS 69

Proof. As 8 is finite, sub(8)’s members can be listed asφ1, . . . , φn.
Let10 = 1. Then, given1i , define1i+1 using the following conditions:
if 1i ∪ {φi+1} is consistent,1i+1 = 1i ∪ {φi+1}; otherwise1i+1 =
1i ∪ {¬φi+1}. (It is easily shown that if1i ∪ {φi+1} is not consistent,
then1i ∪ {¬φi+1} is.) Next, for i ≥ n, if 1i ∪ {Aφi+1} is consistent,
1i+1 = 1i ∪ {Aφi+1}; otherwise1i+1 = 1i ∪ {A¬φi+1}. (Lemma 6
justifies that definition.) The final set in the series,12n−1, is clearlyA8-
maximal andS+ A-consistent; and1 = 10 ⊆ 12n−1, which completes
the proof. 2
Throughout the rest of this section8 is a finite set of wff, andWS+A8 is
the set of allA8-maximalS+ A-consistent sets of wff. Note thatWS+A8
is therefore finite.

THEOREM 5. For anyw ∈ WS+A8, there is somey ∈ WS+A8 such that
for anyφ ∈ sub(8)∪¬sub(8), φ ∈ y iff Aφ ∈ w. Also, for anyφ,Aφ ∈ w
iff Aφ ∈ y.

Proof.Let0 = {φ : Aφ ∈ w}∪{Aφ : Aφ ∈ w} (= α∪β). Suppose that
there isφ1 ∈ α andAφ2 ∈ β such that̀ S+A(φ1&Aφ2) → ⊥. It is easily
shown, using Lemma 2, thatw is thereforeS+A-inconsistent, contrary to
hypothesis. So0 is S+ A-consistent.

Now, suppose thatφ ∈ sub(8) and thatφ 6∈ 0. EitherAφ ∈ w or
A¬φ ∈ w. So clearlyA¬φ ∈ w; therefore,¬φ ∈ 0. Next, suppose that
φ ∈ sub(8) and thatAφ 6∈ 0. ThenAφ 6∈ w. SoA¬φ ∈ w. And hence
A¬φ ∈ 0. 0 is thereforeA8-maximal as well asS+ A-consistent.

Suppose thatφ ∈ 0. Suppose thatφ ∈ sub(8). ThenA¬φ 6∈ w, by
0’s S+A-consistency. So, byw’s A8-maximality,Aφ ∈ w. Suppose that
φ = ¬ψ ∈ ¬(sub(8)). ThenAψ 6∈ w, by 0’s S+ A-consistency. So
A¬ψ = Aφ ∈ w. As it is obvious that ifAφ ∈ w, φ ∈ 0, we get that for
anyφ ∈ sub(8) ∪ ¬(sub(8)), φ ∈ 0 iff Aφ ∈ w.

Finally, we need to show that for anyφ, Aφ ∈ w iff Aφ ∈ 0. Only the
right-to-left direction is nontrivial. So suppose thatAφ ∈ 0. Then either
Aφ ∈ w, or AAφ ∈ w. But in the latter case,Aφ ∈ sub(8); and by
Lemma 2,Aφ ∈ w, completing the proof. 2
For allw, y ∈ WS+A8, define “R1”, “R2”, “R3” and “R4” thus:wR1y iff
(a) {φ : �φ ∈ w} ⊆ y, and (b){Aφ : Aφ ∈ y} ⊆ w; wR2y iff (a)
{φ : �φ ∈ w} ⊆ y, (b) {φ : �φ ∈ y} ⊆ w, and (c){Aφ : Aφ ∈ y} ⊆ w;
wR3y iff (a) {�φ : �φ ∈ w} ⊆ y, and (b){Aφ : Aφ ∈ y} ⊆ w; andwR4y

iff (a) {�φ : �φ ∈ w} = {�φ : �φ ∈ y}, and (b){Aφ : Aφ ∈ y} ⊆ w.

LEMMA 7. For all w, y ∈ WS+A8 and i = 1,2,3 or 4, if wRiy then for
anyφ, Aφ ∈ w iff Aφ ∈ y.
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Proof. The right-to-left part is trivial. Suppose thatAφ ∈ w. Then
φ ∈ sub(8)∪¬sub(8). Suppose thatφ ∈ sub(8). Then byy’s A8-
maximality, eitherAφ ∈ y or A¬φ ∈ y. But if the latter holds, then both
Aφ ∈ w andA¬φ ∈ w. The other case is essentially the same. 2
THEOREM 6. Let S= K , KD or KT . Then forw ∈ WS+A8, if ¬�ψ ∈
w, then there is somey ∈ WS+A8 such thatwR1y and¬ψ ∈ w.

Proof. Let 0 = {φ : �φ ∈ w} ∪ {Aφ : Aφ ∈ w} ∪ {¬ψ}. Then
0 ⊆ 8∗(¬�ψ ∈ w; so¬�ψ ∈ 8∗; hence�ψ ∈ sub(8); therefore
¬ψ ∈ ¬(sub(8)) ⊆ 8∗). It is easily shown that0’s S+ A-inconsistency
would entail theS+A-inconsistency ofw. 0 is thusS+A-consistent. But
by Theorem 4, there is ay ∈ WS+A8 such that0 ⊆ y. Clearly, if�φ ∈ w,
φ ∈ y. Suppose thatAφ ∈ y. Thenφ ∈ sub(8) ∪ ¬sub(8). Suppose
thatφ ∈ sub(8). Then eitherAφ ∈ w or A¬φ ∈ w. But if A¬φ ∈ w,
A¬φ ∈ 0 ⊆ y, entailing theS+ A-inconsistency ofy. SoAφ ∈ w.
The case whereφ ∈ ¬sub(8) is essentially the same. SowR1y, which
completes the proof. 2
THEOREM 7. For w ∈ WKTB+A8, if ¬�ψ ∈ w, then there is some
y ∈ WKTB+A8 such thatwR2y and¬ψ ∈ w.

Proof. Let 0 = {φ : �φ ∈ w} ∪ {¬�φ : ¬φ ∈ w and¬�φ ∈
w} ∪ {Aφ : Aφ ∈ w} ∪ {¬ψ}. 0 ⊆ 8∗. Suppose thaty is A8-maximal
KTB + A-consistent and that0 ⊆ y. We show thatwR2y. If �φ ∈ w,
φ ∈ y. Suppose that�φ ∈ y. Then�φ ∈ sub(8); so either�φ ∈ w
or ¬�φ ∈ w. In the former case,φ ∈ w, asKTB + A includesKT . So
suppose that¬�φ ∈ w andφ 6∈ w. Then¬φ ∈ w, asφ ∈ sub(8). But
then¬�φ ∈ 0 ⊆ y, entailingy’s inconsistency. Soφ ∈ w.

To conclude the proof, we must show that0 is KTB + A-consistent;
Theorem 4 and the preceding do the rest. To this end, suppose that
`KTB+A (φ1&¬�φ2&Aφ3)→ ψ , where�φ1 ∈ w, ¬�φ2 ∈ w, ¬φ2 ∈ w
andAφ3 ∈ w. Then`KTB+A(�φ1&�¬�φ2&�Aφ3)→ �ψ . But we then
easily get thatw is KTB + A-inconsistent. So0 is KTB + A-consistent,
which completes the proof. 2
THEOREM 8. For w ∈ WKT4+A8, if ¬�ψ ∈ w, then there is somey ∈
WKT4+A8 such thatwR3y and¬ψ ∈ w.

Proof.Let0 = {�φ : �φ ∈ w}∪{Aφ : Aφ ∈ w}. The rest of the proof
proceeds along similar lines to that of Theorem 7. 2
THEOREM 9. For w ∈ WKT5+A8, if ¬�ψ ∈ w, then there is somey ∈
WKT5+A8 such thatwR4y and¬ψ ∈ w.
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Proof.Let0 = {�φ : �φ ∈ w}∪{¬�φ : ¬�φ ∈ w}∪{Aφ : Aφ ∈ w}.
The rest of the proof proceeds along similar lines to that of Theorem 7.2
Forw ∈ WS+A8, let @(w) = {φ : Aφ ∈ w} ∪ {Aφ : Aφ ∈ w}. By the
second part of Theorem 6, @(@(w)) = @(w). Also, by Lemma 7, for
i = 1,2,3 or 4, ifwRiy, then @(w) =@(y). For eachLA-propositional
variableπ , let PS(π) = {w : w ∈ WS8 andπ ∈ w}. Wherei = 1,
let S = K ,KD or KT ; wherei = 2, let S = KTB ; wherei = 3, let
S = KT4 ; and wherei = 4, let S = KT5 . Wherew ∈ WS+A8, let
Mi8(w) = 〈WS+A8, w,Ri, @,PS〉.Mi8(w) is an @Kripke model.

THEOREM 10. For w, y ∈ WS+A8, if φ ∈ sub(8) ∪ ¬(sub(8)), then
φ ∈ y iff (Mi8(w), y) � φ.

Proof. The cases whereφ is a propositional variable or has a truth-
functional main connective are trivial. The cases whereφ = �ψ are
easy, given Theorems 6–9. Finally, the case whereφ = Aψ is simple:
Aψ ∈ y iff Aψ ∈ @(y) (by the proof of the second part of Theorem 5)
iff ψ ∈@(y) (by the proof of the first part of Theorem 5) iff (by inductive
hypothesis) (Mi8(w), @(y)) � ψ iff (Mi8(w), y) � Aψ . 2
Suppose not-̀S+A φ. Then {¬φ} is an S+ A-consistent set of wff. By
Theorem 4, there is aw ∈ WS+A{¬φ} such that¬φ ∈ w. By Theorem 10,
(Mi{¬φ}(w),w) � ¬φ, and soMi{¬φ}(w) � ¬φ. It is easily verified that
whereS= KD or KT , R1 is respectively serial and reflexive; whereS=
KTB , R2 is reflexive and symmetric; whereS= KT4 , R3 is reflexive and
transitive; and whereS = KT5 , R4 is an equivalence relation. But each
Mi{¬φ}(w) is finite. By the soundness results stated in Section 3, therefore,
the variousS+ A have the finite model property, which gives:

THE FIRST SET OF DECIDABILITY RESULTS.K+A,KD+A,KT +
A,KTB + A,KT4 + A andKT5 + A are all decidable.

5. SECOND GROUP OF COMPLETENESS AND DECIDABILITY RESULTS

By the first set of decidability results, we can axiomatise a logic by taking
all of S+ A’s theorems plus all instances of the following axiom schema
AxA ′ as axioms, and having MP as the sole (universal) rule:

AxA ′ : φ ↔ Aφ.

Call the logic thereby axiomatised,S+A[A′].27 While none of the various
S+ A[A′] is informally sound, for reasons explained in Section 2, each
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instance of AxA′ is informally safe. Informal soundness implies informal
safety; so ifS+ A is informally sound,S+ A[A′] is informally safe. In
the rest of this section,W ′ is understood to be the set of maximalS+
A[A′]-consistent sets of wff.

THEOREM 11. Suppose thatM = 〈W,w∗, R, @,P 〉 is anS+A canon-
ical @Kripke model. Then for anyw ∈ W , @(w) ∈ W ′. And for anyw′ ∈
W ′, there isw ∈ W such thatw′ =@(w). That is{@(w) : w ∈ W } = W ′.

Proof. For w ∈ W , @(w) = {φ : Aφ ∈ w} (see Section 3). By
the proof of Theorem 1,Aφ ∈ @(w) iff Aφ ∈ w; so φ ∈ @(w) iff
Aφ ∈ @(w). But by Theorem 1, @(w) is maximal. Therefore, for any
φ, (φ ↔ Aφ) ∈ @(w). Each instance of AxA′ is therefore in @(w), as
also are all ofS+ A’s theorems; so all ofS+ A[A′]’s theorems are in
@(w). @(w)’s S+A[A′]-consistency is then easily proved, using @(w)’s
maximality. So @(w) ∈ W ′.

For the second part, suppose thatw′ ∈ W ′. Thenw′ ∈ W . Let 0 =
{Aφ : φ ∈ w′}. 0’s S+ A-consistency is easily proved. By Lindenbaum’s
lemma, there is therefore aw ∈ W such that0 ⊆ w. Suppose thatAφ ∈ w
but φ 6∈ w′. By the maximality ofw′, ¬φ ∈ w′. SoA¬φ ∈ 0, and hence
A¬φ ∈ w. But thenw is S+A-inconsistent, which is absurd. But as clearly
w′ ⊆ {φ : Aφ ∈ w}, we get that @(w) = w′, completing the proof. 2
LetM = 〈W,w∗, R, @,P 〉 be anS+A canonical @Kripke model. Define
“M �′ φ” thus: M �′ φ iff for any w ∈ W , (M, @(w)) � φ. Then
Theorems 3 and 11 entail thatφ ∈ w′, for all w′ ∈ W ′, iff M �′ φ. And as
`S+A[A′ ]φ iff for any w′ ∈ W ′, φ ∈ w′, we get:

LEMMA 8. For any φ, `S+A[A′] φ iff M �′ φ, whereM is an S+ A-
canonical @Kripke model.

LetM = 〈W,w∗, R, @,P 〉 be anS+A canonical @Kripke model. Where
w ∈ W , any @Kripke modelM ′ = 〈W , @(w), R, @,P 〉 is a centred
@Kripke model based onM. Lemma 8 entails that̀ S+A[A′ ] φ iff for each
centred @Kripke modelM ′ based onM, M ′ � φ. Notice that ifM is a
serial @Kripke model, thenM ′ is a serial centred @Kripke model; ifM
is a reflexive @Kripke model,M ′ is a reflexive centred @Kripke model;
and so on. Given the observations about the accessibility relations inS+A
canonical models made prior to the first set of completeness results, that
leads immediately to:

THE SECOND SET OF COMPLETENESS RESULTS.K+A[A′] is com-
plete for the class of centred @Kripke models;KD + A[A′] is complete
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for the class of serial centred @Kripke models;KT + A[A′] is complete
for the class of reflexive centred @Kripke models;KTB + A[A′] is com-
plete for the class of symmetric and reflexive centred @Kripke models;
KT4 + A[A′] is complete for the class of transitive and reflexive centred
@Kripke models; andKT5 + A[A′] is complete for the class of centred
@Kripke models whose accessibility relation is an equivalence relation.

It is easy to verify that the converse of each of the above completeness
results holds; that is, that each of the above logics is sound for the relevant
class of centred @Kripke models.28

The following lemma provides a neat characterisation of the theorems
belonging to the variousS+ A[A′]:
LEMMA 9. For anyφ, `S+A[A′]φ iff `S+AAφ.

Proof.LetM = 〈W,w∗, R, @,P 〉 be anS+A-canonical model. Then
`S+A[A′ ] φ iff (by Lemma 8)M �′ φ iff for every w ∈ W , (M,w) � Aφ,
iff (by Theorem 3)̀ S+AAφ. 2
Lemma 9 and the first set of decidability results also give:

THE SECOND SET OF DECIDABILITY RESULTS.K + A[A′], KD +
A[A′], KT + A[A′], KTB + A[A′], KT4 + A[A′] andKT5 + A[A′] are
decidable.

Notice that Lemma 9, the fact thatS + A conservatively extendsS in
relation to theA-free wff of LA, and the fairly easily proven fact that,
for anyφ which is a wff of bothL andLA, `S+Aφ iff `S+AAφ, entail that
S+ A[A′] also conservatively extendsS.29

6. SOME FINAL RESULTS AND REMARKS

1. Suppose thatM = 〈W,w∗, R, @,P 〉 is an @Kripke model. Then
letMw∗ be the @Kripke model resulting when one appropriately restricts
each element ofM to those indices inW which areR-descendants of either
w∗ or @(w∗) (counting bothw∗ and @(w∗) as degenerateR-descendants
of themselves). It is obvious thatM � φ iff Mw∗ � φ. But for any
w ∈ W , eachR-descendanty of w is such that @(y) = @(w), and
@(w) =@(@(w)); so there is, as it were, a single actual world inMw∗ .
Note also thatR is serial only if the restriction ofR figuring inMw∗ is
serial;R is reflexive only if the restriction ofR figuring inMw∗ is reflexive;
and so on.
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It follows that the variousS+ A andS+ A[A′] are complete for more
familiar classes of models than the classes of @Kripke models used above.
Consider, for instance,KT4 + A[A′]. Suppose thatM = 〈W,w∗, R, @,
P 〉 is a transitive and reflexive centred @Kripke model. Let astandardised
@Kripke modelbe one which contains a single actual world. ThenMw∗
is a standardised transitive and reflexive @Kripke model. ButMw∗ � ¬φ
iff M � ¬φ. The second set of completeness proofs immediately entails
thatKT4 + A[A′] is complete for the class of standardised transitive and
reflexive @Kripke models.

The advantages in using the wider class of @Kripke models employed
above are, however, obvious. For instance, suppose that one is trying to
prove the completeness ofKT4 + A. One might hope to use canonical
models, as they provide a simple and elegant way of proving completeness
results elsewhere. But the set of all maximal andKT4 + A-consistent
sets ofLA’s wff cannot form the basis of a standardised transitive and
reflexive @Kripke canonical model; for there may be maximal andKT4+
A-consistent setsw and y for which Aφ ∈ w but ¬Aφ ∈ y. Similar
remarks apply to the proofs of decidability.

2. Notice that none of the variousS+A studied above has each instance
of �φ→ Aφ as a theorem. (EachS+A[A′] which extendsKT obviously
has each instance as a theorem, and eachS+ A[A′] having each instance
as a theorem obviously extendsKT .) Let S+ AA∗ be the logic resulting
from the addition of each instance of the following axiom schema AxA∗
to the earlier axiomatisation ofS+ A:

AxA ∗: �φ→ Aφ.

An @Kripke modelM = 〈W,w∗, R, @,P 〉 is a super @Kripke model
iff for any w ∈ W,wR@(w). Where “M” ranges over the class of super
@Kripke models, the following soundness and completeness results are
fairly easily proven:

`K+AA∗ φ iff {M : M = M} � φ.

`KT+AA∗ φ iff {M : M ’s accessibility relation is reflexive} � φ.

`KTB+AA∗ φ iff {M : M ’s accessibility relation is reflexive and sym-

metric} � φ.

`KT4+AA∗ φ iff {M : M ’s accessibility relation is reflexive and transi-

tive} � φ.

`KT5+AA∗ φ iff {M : M ’s accessibility relation is an equivalence rela-

tion} � φ.
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Each of the above logics is finitely axiomatisable, has the finite model
property, and is thus decidable.30

Now consider the logicsS+ {�φ → �n♦φ : n ∈ Nat}.31 Where
“M” ranges over the class of sub@Kripke models based on some super
@Kripke model, the following soundness and completeness results hold:32

`K+{�φ→�n♦φ:n∈Nat}φ iff {M : M = M} � φ.
`KT+{�φ→�n♦φ:n∈Nat}φ iff {M : M ’s accessibility relation is reflexive}
� φ.
`KTB+{�φ→�n♦φ:n∈Nat}φ iff {M : M ’s accessibility relation is reflexive
and symmetric} � φ.
`KT4+{�φ→�n♦φ:n∈Nat}φ iff {M : M ’s accessibility relation is reflexive
and transitive} � φ.
`KT5+{�φ→�n♦φ:n∈Nat}φ iff {M : M ’s accessibility relation is an equiv-
alence relation} � φ.

It follows thatS+ AA∗ conservatively extendsS+ {�φ → �n♦φ : n ∈
Nat} in relation to theA-free wff of LA, by the soundness results for the
S+ AA∗, Lemma 5 and the completeness results for theS+ {�φ →
�n♦φ : n ∈ Nat}.33
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NOTES

1 More traditionally known asK , D, T, B, S4andS5.
2 For the record, the class ofL’s wff is defined thus: it is the smallest class WFF of

strings containing each propositional variable ofL; each string¬φ,�φ, whereφ ∈WFF;
and each string(φ&ψ), whereφ,ψ ∈WFF. (L’s propositional variables arep, q, r, p1, . . .)
(φ ∨ ψ) abbreviates¬(¬φ&¬ψ); (φ → ψ) abbreviates(¬φ ∨ ψ); (φ ↔ ψ) abbreviates
((φ → ψ)&(φ → ψ)); and♦φ abbreviates¬�¬φ. When they do not matter, inner and
outer brackets are left out below. I also frequently commit the peccadillo of speaking as
if ∨,→,↔ and♦ are symbols ofL which are to be interpreted in the standard ways, for
ease of exposition.

3 For the record, the class ofLA’s wff is defined thus: it is the smallest class WFF
of strings containing each propositional variable ofL; each string¬φ, �φ, Aφ where
φ ∈WFF; and each string(φ&ψ), whereφ, ψ ∈WFF.
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4 How to generalise this interpretation to the first-order case? The simplest strategy is to
regard open formulae as expressing singular propositions relative to an interpretation and
a variable assignment.

5 Humberstone [10] discusses the link between “actually” operators and the indicative
mood at length. He expresses his points using possible worlds semantics, but the underlying
themes are clearly the same as those discussed above. For instance, Humberstone writes
on p. 104 that “[The ‘actually’ operatorA] functions. . . as an inhibitor; semantically, it
protects what is in its scope by saying ‘There’s no free world-variable here’.”

6 There is some sleight of hand here. When “actually” is read as validating (A), the
inference from “necessarilyP ” to “necessarily actuallyP ” does not owe its validity to
the (false) principle “necessarilyP iff necessarily actuallyP ”. Rather, it comes from the
validity of “necessarilyP ; therefore actuallyP ” and “actuallyP ; therefore necessarily
actuallyP ”. For more discussion of the latter inference, see Section 2; see also Lemma 3.

7 See, for instance, [2] and [6].
8 See [2].
9 See respectively Hazen [7] and Hodes [8]. Hazen [6] presents results related to those

proved by Hodes.
10 [3], p. 1. See also [6], p. 40.
11 For instance, Forbes takes issue with it: see his [4], p. 92.
12 The only decidability proofs which I have met with in the literature are those in Cross-

ley and Humberstone [2] for extensions ofKT5 . Their proofs are much more complex than
those given below, and go via normal forms.

13 For instance, Melia [11] states that (Ap→ �Ap) “is intuitively false” (p. 49). Forbes
[5] describes that wff as “unintuitive but valid” (p. 61).

14 [2], p. 17. They appear to pin some of the blame onKT5 , which is unfair. Each instance
of Aφ → �Aφ is a theorem of all of the logics considered below, even the conservative
extensions ofK .

15 [2], pp. 14–15.
16 [7], p. 502.
17 Reading the conditional as material implication and assuming that there might have

been no tangerines.
18 Why such a roundabout route to that conclusion? Because the sorts of arguments

usually used – for instance, thatP may obviously hold in some possible world while not
holding in the actual world – employ just the kind of semantic assumptions that I am
foregoing. The argument in the text shows that one can rely upon uncontentious resources,
yet end up with the conclusions reached using those more theory laden means.

19 Note that informal soundness entails informal safety.
20 Let N be the schema�(φ → ψ)→ (�φ → �ψ); let T be the schema�φ → φ; let

B be the schema�♦φ → φ; let 4 be the schema�φ → ��φ; and let5 be the schema
♦φ → �♦φ. ThenK is axiomatisable inLA by taking each truth-functional tautology and
and each instance ofN as axioms; having MP as the sole universal rule; and having RN
as the sole admissible rule. The other logics mentioned are axiomatisable by adding each
instance of the schemata whose name follows “K ” in the logic’s name as an axiom to the
preceding axiomatisation ofK .

21 The last of those two claims is not, strictly speaking, right: the variousS+ A contain
additional theorems to those which the variousS contain, so more is involved in claiming
that RN is informally sound in the context of the variousS+A than is involved in making



PROPOSITIONAL MODAL LOGICS CONTAINING “ACTUALLY” OPERATORS 77

a similar claim about the variousS. Nonetheless, I take it that each Ax1–4 is not only
necessary, but necessarily necessary, and necessarily necessarily necessary, etc.; so that
RN will lead us to theorems interpretable as expressing nonnecessary propositions only if
there are already such theorems within the variousS.

22 It is easy to show that each instance of Ax4 is a theorem of a normal modal logic
formulated inLA if each instance ofAφ→ �Aφ is a theorem of the logic.

23 The class of sub@Kripke models based upon some @Kripke model is, in fact, the
class of sub@Kripke models. The above completeness results are easily proved by proving
similar completeness results relating to the class as latterly described. And those latter
results follow from similar completeness results for the counterparts of theS formulated
in theA-free languageL, given the following: (1) a one-one mappingf from the proposi-
tional variables ofL onto the class ofLA’s propositional variables and wff of the form
Aφ (this provides a way of moving back-and-forth between Kripke models forL and
sub@Kripke models forLA); and (2) the fact, whereπ1, . . . , πn are the propositional
variables occurring in theL wff φ, that any proof ofφ in the counterpart ofS formulated in
L can be transformed into a proof inSof the wff ofLAwhich results when each occurrence
of πi in φ is replaced by an occurrence off (πi).

24 One logic is usually said to conservatively extend another iff the first is formulated in
an extension of the language of the second, but the logics coincide on the theorems from
the language of the second logic. LetS(L) be the obvious counterpart ofS formulated inL.
Then asSconservatively extendsS(L) in the standard sense,S+A conservatively extends
S(L) in the standard sense. Similar remarks apply to all of the results below which are
described as “conservative extension” results.

25 See [9], Chapter 8.
26 For an explanation of why this entailsS+ A’s decidability, see [9], Chapter 8, or [1],

pp. 62–63.
27 The bracketing of “A′” is to reflect the fact that these logics are not generated simply

by adding each instance of AxA′ to the earlier axiomatisations ofS+ A. The notation is
owed to Segerberg: see [12], p. 177.

28 Each of theS+ A[A′] is nonnormal, as RN fails in them all. EachS+ A[A′] is,
however,quasi-normal; each one extendsK ([12], p. 172). Chapter 3 of Segerberg [12]
introduced the notion of quasi-normality (in the terms of his discussion, centred @Kripke
models are @Kripke models based upon frames containing a unique distinguished element
w satisfying the condition that @(w) = w).

29 For any @Kripke modelM = 〈W,w∗, R, @,P 〉, define @′ thus: for anyw ∈ W ,
@′(w) = w∗. To prove that for any wffφ ofL andLA,`S+AAφ only if `S+A φ, note that
Lemma 5 and the fact that there is a sub@Kripke model based on bothM and〈W,w∗, R,
@′, P 〉 can be used to show that, for any wffφ of L andLA, M � φ iff 〈W,w∗, R, @′,
P 〉 � φ. And it is obvious that〈W,w∗, R, @′, P 〉 � φ iff 〈W,w∗, R, @′, P 〉 � Aφ.
It is then easy to show, using the soundness and completeness results for theS+ A, that
`S+AAφ only if `S+Aφ.

30 Mini-canonical models can be used to prove that those logics have the finite model
property.

31 That is, the logics axiomatisable by adding, for each natural numbern, each instance
of each schema�φ→ �n♦φ to the earlier axiomatisations of the variousS.

32 The soundness parts of the above results are easy to prove. WhereM = 〈W,w∗, R, P 〉
is a sub@Kripke model, let ch(w) = {w′ : w′ is anR-descendant ofw or w is anR-
descendant ofw′}. The class of sub@Kripke models based upon some super @Kripke
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model is, in fact, the class of sub@Kripke models in which for each indexw, there is
an indexy such that for everyw′ ∈ ch(w),w′Ry. The completeness parts of the above
results are easily proved by proving similar completeness results relating to the class as
latterly described. And those latter results follow from similar completeness results for the
counterparts of theS+ {�φ → �n♦φ : n ∈ Nat} formulated in theA-free languageL,
given the following: (1) a one-one mappingf from the propositional variables ofL onto
the class ofLA’s propositional variables and wff of the formAφ (this provides a way of
moving back-and-forth between Kripke models forL and sub@Kripke models forLA);
and (2) the fact, whereπ1, . . . , πn are the propositional variables occurring in the wffφ
of L, that any proof ofφ in the counterpart ofS formulated inL can be transformed into a
proof in S of the wff of LA which results when each occurrence ofπi in φ is replaced by
an occurrence off (πi).

33 I owe the conjecture that this result might be provable to the anonymous referee.
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