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Can biological complexity be reverse engineered?  
Sara Green1 

 

Abstract  

Concerns with the use of engineering approaches in biology have recently been raised. I 
examine two related challenges to biological research that I call the synchronic and diachronic 
underdetermination problem. The former refers to challenges associated with the inference of 
design principles underlying system capacities when the synchronic relations between lower-
level processes and higher-level systems capacities are degenerate (many-to-many). The 
diachronic underdetermination problem regards the problem of reverse engineering a system 
when the non-linear relations between system capacities and lower-level mechanisms are 
changing over time. Braun and Marom argue that recent insights to biological complexity 
leave the aim of reverse engineering hopeless - in principle as well as in practice. While I 
support their call for systemic approaches to capture the dynamic nature of living systems, I 
take issue with the conflation of reverse engineering with naïve reductionism. I clarify how 
the notion of design principles can be more broadly conceived and argue that reverse 
engineering is compatible with a dynamic view of organisms. It may even help to facilitate an 
integrated account that bridges the gap between mechanistic and systems approaches.  

 

Keywords: Reverse engineering, design principles, diachronic underdetermination, systems 
biology, engineering approaches, dynamical systems theory 

 

1. The virtues and pitfalls of reverse engineering 

Reverse engineering methodologies are currently gaining terrain in biological fields such as 
systems biology and neuroscience. In response to these developments, experimental 
biologists have raised concerns regarding the associated quest for design principles that they 
take to imply an assumption of a rather static and modular design of organisms. A workshop 
in Konstanz brought together philosophers and biologists to discuss the implications of 
research methodologies in the life sciences.2 This paper focuses in particular on concerns 
raised regarding reverse engineering of biological networks.  

The experimental biologists Erez Braun and Shimon Marom (this issue) provide fascinating 
insights to biological complexity by stressing how living systems are characterized by a 
(deep) two-way degeneracy and lack of separation of time-scales. Against this complexity, 
they criticize so-called reverse engineering approaches for investigating biological systems as 
if these were programmed and fully decomposable engineering systems, designed to conduct 
pre-designed functions. This paper clarifies and supports their criticism of naïve 

                                                           
1 Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, Email: 
saraehrenreichgreen@gmail.com. 
2 “Philosophers meet Biologists: Experimental Studies of Population Phenomena”, organized by the 
Zukunftskolleg, University of Konstanz, May 2013. 
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reductionism, but questions the argued discrepancy between reverse engineering and 
systemic approaches.  

The notion of reverse engineering has its origin in the attempt to copy or further develop the 
design underlying a functional system in hardware and software engineering without access 
to the design protocol (Chikofsky and Cross, 1990). Although the aim to design functional 
systems is primarily seen in synthetic biology and bioengineering, reverse engineering has 
currency in many other biological fields where it commonly refers to the process of ‘(detailed) 
examination of a functional system, in the face of limited a-priori knowledge of its design 
principles’ (Braun and Marom, this issue).3 In the abovementioned definition I have bracketed 
the requirement of a detailed examination. This requirement marks an important difference 
between Braun and Marom’s view on reverse engineering as a reductionist strategy and the 
account I develop in this paper. For Braun and Marom, ‘design principles’ seem to refer to the 
results of fine tuning (and selection of) specific control parameters engineered to lock the 
system in a given dynamic state.4 In contrast, the view I develop is inspired by reverse 
engineering in systems biology where abstraction is central. In this context, design principles 
typically refer to general features of functional organization that are independent of system-
specific contexts or particular molecular parameters. My aim in this paper is to take seriously 
the challenge posed for (reductionist) reverse engineering, while nuancing the description of 
reverse engineering approaches through examples from systems biology.  

It is worth noting that the call for engineering approaches often reflects a wish for an 
alternative to the reductionist study of isolated molecules and pathways. The goal is to 
identify organizational patterns that may otherwise be lost in the preoccupation with 
molecular details. If the same principles can be applied in the design of different types of 
engineered systems from cars to computers or airplanes, it seems likely that some principles 
are shared among different biological systems or even among engineered and biological 
systems (Braillard, 2010). The objective to identify shared formal criteria for functional 
design is not new. It dates back at least to the early days of control system theory and modern 
cybernetics, where feedback control was formalized as a basic principle for maintaining stable 
states and oscillations (Wiener, 1948). But reverse engineering methods have recently 
become increasingly widespread in data-intensive biological fields concerned with the 
identification of non-random connectivity patterns in biological networks. When un-aided 
pattern detection is not analytically feasible, mathematical models can guide the search for 
relevant structure-function relations (Levy and Bechtel, 2013).  

The choice of the graph theoretical framework as a key representational strategy reflects how 
reverse engineering is often conducted at a high level of abstraction. Displaying regulatory 
connections as nodes and edges affords a topological analysis that abstracts from the details 
of what these units represent to identify functional capacities that relate to the architecture of 
the network. For instance, many real-world networks seem to share general characteristics 
such as the small-world effect and scale-free connectivity distribution (Barabási & Oltvai, 
2004; Bechtel, this issue). It is highly contested how much biological information one can 
derive from topological analysis and whether the scale-free distribution exemplifies a 

                                                           
3 This definition differs from how reverse engineering is understood in the literature on adaptationism. For 
clarification see (Green, Levy and Bechtel, 2015).   
4 For a discussion of the use of the notion of design principles and other functional terms in Braun and Marom’s 
papers, see (Krohs, this issue).  



Final version published in Studies in History and Philosophy of Biological and Biomedical Sciences:  
http://www.sciencedirect.com/science/article/pii/S1369848615000618 
 
 

3 
 

biological design principle (Arita, 2004; Keller, 2005). But many biologists agree that there is 
a connection between the robustness of biological networks and their non-random 
connectivity distribution and hierarchical structure (Steinacher & Soyer, 2012). Other 
examples of design principles are bi-stable switches (Tyson et al. 2003) and overabundant 
sub-circuits in gene regulatory networks, called network motifs (Alon, 2007a, see below). To 
some researchers, such findings provide optimism that there is simplicity in the apparent 
complexity of biological systems (Csete and Doyle, 2002; Alon, 2007c).  

The quest for design principles reflects a hope that key properties of biological systems can be 
understood without knowing all the lower-level causal details. This is not only a point about 
practical convenience but also about the relevant level of analysis. The cancer biologist 
Lazebnik (2002) provocatively compared biomedical research strategies to the attempt to fix 
a radio by atomizing the system into component parts and studying these in isolation. If the 
malfunction of the system is connected to the orchestrated organization of parts and 
processes, searching for broken molecular components is bound to fail. Lazebnik therefore 
proposes an engineering approach to investigate how the components are wired together as a 
functional whole. Lazebnik’s original choice of example however also clarifies why reverse 
engineering is often considered a reductionist strategy. Biological systems do not function like 
a pre-designed radio; there is no simple and static “wiring” of a living cell. Critics are 
concerned that engineering approaches underestimate biological complexity when assuming 
that living systems are similar.   

To exemplify, topological network analysis is sometimes advertised as a bias-free 
decomposition strategy, in contrast to hypothesis-driven functional analysis. But choices of 
structural criteria – often inspired by design principles in electronic networks – also imply a 
bias. It is typically possible to fit several structural modules to a given data-set, and 
researchers cannot assume any tight overlap between structural and functional modules 
(Krohs, 2010). While the problem of underdetermination is a general problem in science, the 
challenge is particularly apparent in fields where data-intensive modeling is only loosely 
integrated with experimental analysis (Krohs, 2012). These methodological concerns are 
complemented by a more fundamental worry that biological design principles may not exist at 
all (Marom et al., 2009). The inherent plasticity, degeneracy and evolvability of the functional 
organization of living systems indicate that methodologies and conceptual frameworks from 
engineering should not be uncritically applied in biology.5 An important question is therefore 
whether there are better strategies for facing not only the challenge of ‘synchronic 
degeneracy’ (the many to many mappings between lower-level functional organization and 
system behavior) but also of what I shall call ‘diachronic degeneracy’ (the change of these 
relations over time).6  

To discuss the prospects of reverse engineering methodologies, I compare the concerns raised 
by Marom and Braun to a similar debate in systems biology. I first draw on two examples to 
illustrate the problem of ‘synchronic underdetermination’ for reverse engineering of 

                                                           
5 In the context of evolution biology, design thinking has been criticized for having adaptationist implications. I 
have discussed the relation between design approaches and adaptationism elsewhere (Green 2014; Green, Levy 
and Bechtel, 2015), and this paper instead concerns the challenges for reverse engineering associated with 
synchronic and diachronic degeneracy. I shall, however, discuss the possible role of reverse engineering in 
evolutionary studies in Section 5.  
6
 I thank Ben Sheredos for suggesting these terms to cover the challenges addressed. 
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biological networks (Section 2.1). I then discuss whether the biases can be accounted for by 
increasing the resolution of the analysis (Section 2.2). While this seems to be a feasible 
solution if the system is relatively stable over time, Section 3 highlights the challenges 
associated with what I call the ‘diachronic underdetermination problem’. This problem relates 
to the prospects of identifying design principles at the background of changes to cross-level 
relations over developmental and evolutionary time-scales. Section 4.1 and 4.2 reexamines 
the merits of engineering approaches against this challenge. Section 5 demonstrates how 
reverse engineering can be productively combined with a systemic approach. Section 6 
concludes with some general remarks on the prospects of reverse engineering methods in 
biology.   

2. Engineering approaches and synchronic underdetermination  

2.1. Reverse engineering biological networks 

To illustrate the problem with synchronic underdetermination, this section examines two 
attempts to reverse engineer biological networks. The examples are taken from systems 
biology and neuroscience, respectively. Systems biology is a relatively new interdisciplinary 
approach that applies mathematical modeling and engineering approaches to the 
interpretation of biological datasets on regulatory interactions (e.g. gene regulation). To guide 
the detection of organizational patterns, a common strategy is to represent the regulatory 
interactions as a network model that affords a mathematically aided scan for non-random 
patterns. An example is the pioneering work on motif-detection in transcriptional regulatory 
networks by Uri Alon’s group, at the Weizmann Institute of Science, Israel. The group 
modelled datasets of transcriptional regulation in E. coli as a directed graph and used 
algorithms to scan for common patterns of connectivity between small numbers of nodes in 
the network (Alon, 2007a). A few motifs turned out to be statistically overabundant compared 
to randomized networks. Examples of network motifs are pictured in Figure 1, representing 
the connectivity patterns between transcription factors (X and Y) and target genes (Z). 

  

Figure 1. Examples of network motifs.  

The finding that biological networks are composed of a small set of overabundant motifs, 
while many other logically possible motifs are absent, provides optimism that biological 
systems are not as complex as they could have been. For instance, the Feedforward loop 
pictured to the left in Figure 1 was the only statistically significant motif among 13 possible 
variants of three-node motifs, and only two of 199 possible four-node motifs are frequently 
found in biological networks (Alon, 2007a). These topological features are biologically 
interesting because the connectivity patterns are thought to constrain the functional 
capacities of the regulatory sub-circuits. For instance, mathematical modeling of the 
Feedforward loop suggested that this motif could act as a persistence detector that delays 
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protein synthesis in the presence of noisy activation signals. This prediction has been 
confirmed in experiments with transgenic E. coli where the outputs of different regulatory 
motifs were measured against changes in activating signal molecules (Mangan et al., 2003). 
The group therefore suggests that it may be possible to decompose biological networks to a 
set of networks motifs with characteristic functions such as signal amplification, sustained 
oscillations or noise filtering (Alon, 2007a).  

The abovementioned approach has, however, been criticized for oversimplifying biological 
phenomena, and for drawing unsupported conclusions from a biased decomposition of low-
resolution co-expression data. Most of the criticism has centered on the problematic 
inferences from the beneficial functions of network motifs to the selective origin of these 
(reviewed in Green, 2014). But critics have also pointed to problematic idealizations involved 
in the modeling of activation profiles for the motifs. Among these are assumptions that genes 
are either maximally on or off, and that network motifs are functionally isolated from the 
regulatory network they are embedded in. While the functional predictions for some motif-
models were confirmed in initial experiments on transgenic bacteria, studies of more complex 
networks question the existence of biological counterparts to the rigid structure-function 
categorizations. Most biological networks have a high degree of overlap among nodes and 
edges involved in network motifs, and simulations suggest that the functions of motifs are 
sensitive to altered parameter values (Ingram et al., 2006). The possibility has been raised 
that functions may be realized in multiple ways from the underlying interactions between 
components, and the same molecular circuit may enable multiple higher-level functions 
(depending on parameter values of environmental stimuli).7 Applicability of the structure-
function classifications of motifs in other systems thus needs to be further investigated. In 
summary, the example illustrates the general problem that close integration among 
components in a system has the potential to undermine the ideal of non-idealized localization 
schemes that depict biological mechanisms (Bechtel, this issue).  

A similar problem is faced in neuroscience where researchers aim to reverse engineer the 
underlying neural activity patterns from a behavioral response to a stimulus. Marom et al. 
(2009) show how a wrong design principle inferred for a biological ‘toy system’ may be 
accepted if state-of-the-art methods for testing representation schemes in neurophysiology 
are followed. The authors apply reverse engineering methodologies to identify the known 
(but concealed) design principle underlying neutral computation in a Braitenberg vehicle that 
is pre-designed to move continuously in a static environment while avoiding obstacles. The 
Braitenberg vehicle is in this context a Lego Mindstorms robot with two ultrasonic eyes that 
detect inputs from the environment and transmit electronic responses to a network of 
biological cortical neurons. Monitoring the spiking activity of the network of neurons, 
developed in vitro upon a substrate-embedded electrode array, allows the system to classify 
spatial objects and to send signals to motors attached to the wheels of the robot.  

For the specific robot that is ‘reverse engineered’, the design principle for object classification 
is known in advance. A well-defined algorithm classifies spatial inputs by considering only the 
rank order of spikes from individual neurons. The classification of objects is based on the 
order of spikes from stimulus to neurons that are broadly tuned to respond to inputs from 
both ultrasonic eyes. Thus, the ‘correct’ design principle is based on the relative temporal 
                                                           
7
 Furthermore, the use of random networks as a comparison class for detecting statistically and functionally 

significant motifs has been challenged (for details, see Green, 2014). 
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order of neural recruitment. To evaluate reverse engineering methods in this context, the 
authors tested the validity of an alternative, but wrong, hypothesis. The alternative design 
principle is based on population response rates, i.e. the temporal profile of total spike counts 
is interpreted rather than the identity of single neurons.  

 

Figure 2. Spikes emitted by 60 neurons after stimulus triggered by the right eye of the robot. The figure below shows the 
total spike counts per time unit. See text for clarification. Figure as originally published in Marom et al. (2009). On the 
precarious path of reverse neuro-engineering. Front Comp Neurosci, 3:4, 1-4. 

The dots on the upper diagram of Figure 2 represent the spikes emitted by individual 
neurons, and the first spike of each neuron is marked with a black circle. On the lower panel of 
the figure, the population response hypothesis is illustrated with a count histogram showing 
the total spike counts. In contrast, the ‘correct’ design principle is based only on the order of 
first spikes (here 24, 17, 26, 25, 48, 1 and so forth). The authors ask whether using a state-of-
the art method in neurophysiology would reveal that the population response hypothesis is 
incorrect. To evaluate the accuracy of input classification of the eye that initiates network 
stimulation, they used a non-linear version of a Support Vector Machine (SVM).8 Strikingly, 
the classification based on population response receives a high score for classification of the 
objects (0.9) even though it is wrong. This result raises the concern that this hypothesis would 
be considered confirmed in a more realistic situation where the correct design principle is 
unknown.  

The authors raise the possibility that design principles inferred in reverse engineering studies 
may reflect methodological biases rather than inherent features of the system: ‘in the possible 

                                                           
8 SVMs are supervised, algorithm-based models used for pattern recognition and classification of new data into 
categories, e.g. to recognize specific objects on photographs based on examples of the categories in ‘training sets’. 
The model can then classify new examples into categories, represented as groups of points in Euclidian space 
separated by a hyperplane.  
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absence of such principles, pushing the experiments to various limits may not necessarily lead 
to the selection of one universal (“true”) model. In other words, different models may “win” in 
different extreme experimental conditions’ (Marom et al., 2009, p. 3). Expectations that 
biological systems resemble engineered systems may be too easily confirmed, because 
experiments are designed from the same (reductionist) mindset. In the following section, I 
examine possible ways in which the heuristic value of these strategies can be defended by 
accounting for the biases through calibration of evidence with other methods. Section 3 
discusses situations where this strategy may not suffice.  

2.2. Accounting for biases  

Before dismissing the heuristic value of reverse engineering, it is worth reflecting on possible 
ways to take advantage of and account for the biases.9 Design heuristics can be productive 
despite the reliance on false assumptions if the analysis can uncover to what extent the 
systems are similar and different (Knuuttila and Loettgers, 2013). Sometimes ideas can fail in 
interesting ways, uncovering aspects that are different or more complex than assumed. In any 
case, some simplifying assumptions are required to constrain the overwhelming problem 
space of scientific analysis (Simon, 1966; Bechtel and Richardson, 1993/2010). That we need 
heuristic strategies to deal with complexity is also reflected in the pervasive use of metaphors 
and analogies that enable, although also possibly mislead, scientific reasoning (Hesse, 1963; 
Lakoff & Johnson, 1980; Nersessian, 2008).10 Thus, the choice to make is not between neutral 
and biased methodologies, but between ignorance and awareness of the shortcomings of 
different epistemic tools. As I shall clarify below, greater awareness of the limitations of 
research methodologies can motivate a more careful and systematic calibration of 
preliminary results with independent sources of evidence (Wimsatt, 2007). 

When reexamining the cases, it seems that there are several ways to account for the biases. In 
the case of detection of network motifs, the criticism concerned the lack of determination of 
functions from regulatory circuit structures for complex organisms. Responding to this 
challenge, Alon (2007b, 2007c) stresses his awareness of the shortcomings of the simple 
models in more complex biological contexts, but maintains the value of such ‘first-
approximations’ in experimental research. The simple diagrams of network motifs may serve 
a fruitful role as idealized models that more realistic models can be developed from through 
iterative loops with experimental results (Mangan et al. 2003; Bechtel, this issue).11 At the 
community level of systems biology, attempts to evaluate the effects of biases of such methods 
have recently emerged. An example is the DREAM project, Dialogue for Reverse-Engineering 
Assessment and Methods (Stolovitzky et al., 2007; Prill et al., 2010). Part of this initiative 
regards blind testing and evaluation of different methods to reverse engineer artificial 
networks with known design principles, and to discuss possible experimental designs that can 

                                                           
9
 While design-thinking arguably is insufficient for uncovering all aspects of living systems, the insights gained in 

successful cases provide prima facie reasons for not dismissing all design approaches and for evaluating the use 
of these in specific contexts. 
10 As pointed out in Konstanz by the philosophers and one of the biologists, it is questionable whether biological 
research could do without design-inspired functional metaphors. Even design-critical approaches use 
engineering-terms to state the flexibility of organisms, e.g. when highlighting the ability of organisms to ‘rewire’ 
their genome (Krohs, this issue) 

11
 One possible way to test such functions experimentally is to draw on fluorescent staining techniques to 

observe regulatory responses to changes in environmental parameters. 
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counteract unwanted effects of biases. Thus, rather than dismissing the attempt, researchers 
aim to develop methods to systematically distrust the results of mathematically aided 
network analysis. 

Similarly, in the toy example on reverse neuroengineering, the hypothesized design principles 
can be systematically “distrusted” in several ways. Recalling the example, the fact that the two 
representation schemes both perform well in classification tests made the authors question 
the ability of biologists to experimentally falsify wrong hypotheses. Given the problems for 
reverse engineering principles even in the simple setup described, Marom et al. (2009) see the 
prospects of reverse engineering as highly limited. But the results of a later study suggest that 
increasing the complexity of the example can provide tighter constraints on the problem 
space. An in vitro study compared the efficacy of a number of representation schemes, 
including the two candidates discussed in Section 2, in a series of discrimination tasks 
(Kermany et al., 2010). Modification of the spatial location of inputs and the time elapsed 
revealed that rate-based schemes have a reduced efficacy and lower stability over long time-
periods compared to time-based measures in localizing the stimulus, whereas rate-based 
schemes are more sensitive to the history of simulation and hence to adaptation processes. 
Thus, the static environment and primitive task described for the toy example may be what 
makes it so easy to realize the task efficiently in several ways. Fine-graining the functional 
capacity may therefore provide tighter constraints on the problem-space, contrary to what is 
assumed. 

Another possibility is to fine-grain experimental measures by drawing on new molecular 
techniques for in vivo testing of representation schemes. As a comment to Marom and 
colleagues’ concerns with reverse engineering approaches, O’Connor et al. (2009, p. 923) state 
that ‘[…] inferring design principles from measurements of neural activity is treacherous. 
Hypotheses regarding behavior ultimately need to be tested by manipulating neural activity 
during behavior. The fourth step in reverse engineering therefore requires inactivation and 
activation of specific cell types’. Examples of methods to accommodate the fourth step include 
protein sensors that convert changes in membrane potentials to fluorescence signals, and 
genetically targeted molecular switches to manipulate the activity in defined cell types in 
living organisms.12  

The aspects summarized above leave the impression that the main problem has been the use 
of design heuristics, rather than the tools themselves. But Braun and Marom raise a deeper 
concern that regards not only the complexity-challenge of multiple mappings between 
molecular structures and higher-level functions, but also the ability of organisms to rewire 
their functional organization over time. While the ‘synchronic underdetermination problem’ 
may be dealt with by increasing the resolution of models and experiments, this solution may 
not suffice for the attempt to reverse engineer diachronic relations.  

3. The problem of diachronic underdetermination 

To illustrate why ‘looking closer’ may not always suffice to account for biological complexity, 
consider the strategy used in the development of the first (and so far only) whole-cell model 

                                                           
12 Cell-type-specific methods for controlling neural activity are currently being developed for studies with mice 
and monkeys (He et al., 2012; Gregoriou et al., 2012). The strategy of combining different kinds of evidence to 
overcome the problem of heuristic biases is of course a general methodological strategy that by no means is 
restricted to or special for engineering-approaches (Bechtel and Richardson, 1993/2010; Wimsatt, 2007).  
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of the human urogenital parasite Mycoplasma genitalium. The astonishing accomplishment to 
model the dynamics of the whole cell involved the integration of more than 1,900 
experimental parameters in a system of coupled large-scale simulations (Karr et al., 2012). 
Although upscaling the complexity of models of organisms may seem like a straightforward 
solution to embrace biological complexity, several new challenges are faced when relying on 
this strategy. Despite the simplicity of M. genitalium, with only 525 genes, it is tremendously 
challenging to integrate data from different experimental contexts and models of different 
biological processes. No single model can accommodate all the different kinds of data. 
Ordinary differential equations cannot capture the spatial features of biochemical and 
biophysical interactions, and partial differential equations and agent-based simulations 
quickly lead to intractable models (cf. Wolkenhauer and Green, 2013). Karr and colleagues 
dealt with this challenge through reliance on a decomposition strategy akin to the one 
described by Bechtel and Richardson (1993/2010). The system was divided into 28 functional 
submodules, corresponding to different cellular functions (transcription, replication, host 
interactions etc.) which are modelled in isolation. These models were then recomposed 
through numerical integration of 16 output variables for every 1 second sub-model 
simulation, and their values were updated as inputs to the next simulation round. Together, 
the mosaic of integrated models forms the simulation of a complete cell cycle.  

While the results of model of M. genitalium may readily be considered a success, the example 
also offers a lesson in modesty regarding the prospects of applying this strategy to complex 
systems (Gross, 2013). The example shows that also large-scale models have to rely on 
decomposition strategies that separate operations of functional modules on short time-scales. 
Researchers hope that by imposing boundaries on the system, the results may hold to a “first 
approximation” for models that can subsequently be modified to better encompass complex 
organization. It however remains an open question whether more complex systems can be 
successfully reverse engineered in detail like Mycoplasma genitalium. In particular, several 
researchers have stressed their skepticism regarding projects like the Blue Brain/Human 
Brain Project and the SyNAPSE project that aim to reverse engineer the brain in all its causal 
details.13 For instance, the assumption that the neocortex is organized into modular building 
blocks characterized by a basic canonical pattern of connectivity has been criticized with 
reference to the plastic nature of brain processes (Schierwagen, 2012). Decomposition 
strategies (whether structural, functional or temporal) are highly productive if biological 
systems are hierarchically structured into functional modules, but face limitations if these are 
not decomposable or even near-decomposable, or if the functional organization changes over 
time (cf. Simon, 1962, 1966; Bechtel and Richardson, 1993/2010; Marom, 2010). It is 
therefore important to reflect on the ramifications of the assumption that organisms are 
organized into semi-static functional modules like machines. 

A pervasive problem in biological research is that knowledge on the relevant level of 
organization and time-frames for experimental studies is often lacking. To distinguish fact 
from artifact, biologists must constantly evaluate the effects of conditions imposed by the 
observer of the system through experimental setups and modeling frameworks. Marom 
                                                           
13 In the official video for the Blue Brain Project it is declared that in the new in silico neuroscience there will be 
“nothing we cannot measure, no aspect of the model we cannot manipulate, and there will be no question we 
cannot ask”. Available at bluebrain.epfl.ch, accessed 15/05-2014. While this aim seems overly optimistic, a more 
promising middle-way to model complex systems may be to advance lower-resolution simulations of whole 
organs. This strategy is currently pursued in cardiac computational physiology (Carusi et al., 2012).   
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(2010) demonstrates this for timescales documented for neurological processes. Most 
experiments in neuroscience are limited to measurements on the timescale of seconds. But 
excitable dynamics have been observed over extended timescales, revealing a much richer 
dynamics than typically observed (Marom, 2010). This suggests that the time-frame of 
analysis constrains the observable characteristics of neurological processes, and the influence 
of methodological choices must be critically assessed. The issue is particularly problematic for 
studies of multilevel dynamic processes like brain activities and behavior that cannot be 
reduced to sequential information flow.14  

Furthermore, studies of neural circuits under stable experimental settings often fail to 
account for the degeneracy and adaptability of the functional organization of neural processes 
over time. The adaptability of brain processes was recognized already in the beginning of the 
last century by the German neurologist and psychiatrist Kurt Goldstein who observed that the 
neural system of injured soldiers could readjust even to severe brain damage. Goldstein 
concludes on this basis that organisms are very different from machines in their capacity to 
reorganize organizational processes to recover critical functions whereas most machines 
would break down if you remove essential parts (Goldstein, 1934; Nicholson, 2013). The 
causal relations between a population of neurons and brain functions are not just multiply 
realized in the sense of many-to-one relations between microscopic and macroscopic 
processes. There is also one-to-many degeneracy between a given pattern of activity and the 
mapping of brain functions (Braun and Marom, this issue).  Due to this two-way degeneracy 
biological networks may be able to rewire their organization in an overwhelming number of 
ways.  

Functional plasticity in terms of many-to-many relations and reorganization of regulatory 
structures over time also characterize the highly non-linear relations between genotypes and 
phenotypes. One genotype can give rise to the realization of number of different phenotypic 
characteristics, but a large space of genotypes can also give rise to similar phenotypes (see 
also Section 5). Like neural networks, these regulatory connections may change even over 
short time-scales from interactions with the environment. Whereas the details of gene 
regulatory networks are often thought of as ‘prewired’ or ‘programmed’ by selection to deal 
with specific challenges, recent studies suggest that adaptation to environmental challenges 
sometimes happens through changes that are not caused by mutation and subsequent 
selection but by ‘rewiring’ of the genome. Phenotypic plasticity, as a facilitator of adaptive 
change, has been documented for genetic as well as non-genetic perturbations (Stolovicki et 
al. 2006; Espinosa-Soto et al., 2011; Katzir et al., 2012).  

More specifically, Braun’s group have used genetic engineering techniques to rewire a yeast 
genome by placing an essential metabolic gene, from the histidine biosynthesis pathway, 
under the regulation of the galactose utilization system that is repressed if glucose is available 
(David et al., 2010). In a glucose medium, cells are severely challenged to produce histidine 
and must adapt the regulatory system significantly in order to survive. The experiments 
showed that a high number of individual cells can adapt through yet unknown mechanisms of 
heritable phenotypic switching.  

 

                                                           
14 For a discussion on the implications of these insights for mechanistic accounts of explanation, see Bechtel (this 
issue).  
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Studies with twin cell populations have revealed that yeast cell populations with identical 
genomes can exhibit similar adaptive growth phenotypes while displaying diverse expression 
dynamics of metabolically essential genes. Accordingly, the authors suggest that regulatory 
changes in gene expression should be understood as a self-organization process that is 
intrinsically coupled to population-environment dynamics (Stolovicki and Braun, 2011; Braun 
and Marom, this issue).15 The degeneracy of living systems thus indicates that the way 
genomes are often conceptualized as ‘programs’ that generate output signals from input 
signals through ‘cellular computing’ should be revised and replaced with more adequate 
guiding assumptions (Braun & David, 2011, p. 190).  

Braun and Marom (this issue) take the abovementioned challenges to show the limitation of 
engineering approaches in biology. While acknowledging that engineering approaches have 
often been used to push a reductionist or genetic deterministic agenda, I shall suggest what 
seems to be the opposite; namely that one of the strongest virtues of reverse engineering lie in 
its ability to make progress on the problems of understanding the non-linear relations and 
dynamic aspects of development and evolution.  

4. Beyond naïve reverse engineering 

4.1. Reexamining engineering approaches 

There are many examples of how comparisons of organisms and engineered systems have led 
to misunderstandings, and it has accordingly been argued that the heuristic value of 
engineering approaches are limited and often purely metaphorical (Nicholson, 2013; Pauwels, 
2013). Sometimes, the use of engineering approaches in practice however goes beyond 
metaphors in exploring the application of concrete principles and modeling tools in the two 
domains (Calcott, 2014).16 Furthermore, these comparisons exceed the reductionist design 
perspective in searching for the class of models that can realize the observed system behavior, 
rather than by decomposing the system to detailed interactions between components. From 
this perspective, a search for design principles can afford insights to phenomena that Braun 
and Marom (this issue) consider a challenge to reverse engineering, namely the capacities of 
biological systems to maintain dynamic stability largely independent of specific control 
parameters. 

To illustrate this point, I shall briefly revisit the case on network motifs. Although one fruitful 
way to use abstract models is to use these as templates for more realistic models, it is 
important to recognize that representational accuracy is not always the aim of reverse 
engineering. A central aim is to understand why systems with shared organizational features 
conduct similar operations. That is, although specific functions of concrete network motifs 
may depend on specific parameters, it may be possible to classify – from a coarser grained 
perspective – parameter spaces for which the generalized functions hold. With this aim in 
mind, Tyson and Novák (2010) explore the shift between two motifs functions for a 
Feedforward loop with an inhibitory connection, depending on the relative temporal order of 
activation of the two transcription factors. A similar approach is taken by Wall et al. (2005) 

                                                           
15 Krohs (this issue) questions whether the experimental result should reflect a population-related property. I 
have a similar concern regarding the lack of clarity of what constitutes self-organization. However, the challenge 
to reductionism is well taken.  
16 Calcott (2014) points to illuminating examples and highlights parallels between a ‘diachronic engineering goal’ 
in software development and ‘evolvability’ in EvoDevo.  
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who explicitly state that they selected the reference parameter values ‘in the interest of 
exploring model behaviors rather than in the interest of understanding the dynamics of 
specific natural systems’ (supplementary material). Thus, the aim is to explore how a set of 
parameter changes affect system behavior for models with mathematically defined 
organizational constraints. This aim seems to be directly relevant to a goal called for by Braun 
and Marom, namely to understand why dynamic states of living systems are robust to changes 
at the molecular level.  

Robustness of biological functions against perturbations to the system components and 
underlying connectivity is one of the major research topics in systems biology (Gross, 2013). 
Contrary to what one would expect from Braun and Marom’s (this issue) account, a key 
insight provided by reverse engineering analyses is that robustness is often not attained 
through fine-tuning of specific mechanisms but due to features associated with the 
organization of the system. Architectural features of robust systems have been demonstrated 
for robustness to gradients in embryonic patterning (Eldar et al., 2002), concentration 
robustness in biochemical reaction networks (Shinar and Feinberg, 2011), for bacterial 
chemotaxis (reviewed in Braillard, 2010), and for the spindle assembly checkpoint 
mechanism in cell division (reviewed in Gross, 2013). Thus, engineering-inspired research in 
systems biology is directly related to the aim of understanding what robust networks have in 
common in terms of system-level organizational features, and to identify organizational 
features that may or may not work for a given property.17 It is important to mind the level of 
abstraction in such analyses, since these often go beyond the specific mechanisms realized in 
concrete systems and instead identify possible classes of models based on observationally or 
operationally defined constraints. Recalling the challenge posed in Section 3 can such 
approaches also provide progress for understanding diachronic relations? The following 
section explores the merits of design thinking in studies of development and evolution.  

4.2. Mechanistic and systemic approaches to development 

Currently, the most popular conceptual schemes used to describe developmental processes 
rely on information and computation metaphors that draw on a comparison between evolving 
software programs and static hardware systems that run the program. As Braun and Marom 
(this issue) point out, the problem with such a view is that causal relations are pictured as a 
fixed one-way instructive information flow encoded in the genome. If the relations between 
different organizational levels are characterized by complex many-to-many mappings, the 
traditional focus on additive models of (programmatic) genetic and selective effects will 
provide limited insight to how genetic effects relate to the generation of phenotypic variation. 
Thus, genetic changes need to be contextualized by an understanding of how the regulatory 
(or developmental) system works as a whole. 
 
Critics of reductionist and gene-centric approaches have for many years pointed to the 
existence of “invariant sets of genotypes” as a challenge to the simplistic idea of the genome as 
a program (e.g. Goodwin, 1982; 1994). While two-way degeneracy of the genotype-phenotype 

                                                           
17 While this property involves ascription of functions to biological systems (Krohs, this issue), the analysis needs 
not be adaptationist or even focused on evolutionary questions (Green, Levy and Bechtel, 2015). Neither does 
the analysis necessarily entail assumptions about optimal design. It is rather ironic that discussions of 
modularity in biology have often focused solely on selective advantages whereas engineers have discussed the 
costs and trade-offs of different degrees of modularity (Krohs, 2009). 
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map presents a challenge to biological research, functional flexibility also provides optimism 
that we do not need to map biological mechanisms in all their quantitative and qualitative 
details to understand patterns and regularities in systems dynamics. Evolutionary systems 
biologists have recently found inspiration in theoretical approaches to development that draw 
on the conceptual framework of dynamical systems theory (Jaeger et al. 2012). I first examine 
the general idea of the approach, and then proceed to clarify how reverse engineering may be 
used to support this aim.  
 
The basic insight that motivates the dynamical systems theory approach is that even complex 
systems converge to a limited set of (self-organizing) stable states as long as certain general 
conditions are obeyed (Goodwin, 1982; Kauffman, 1993; Oster & Alberch, 1982). To 
exemplify, Goodwin and colleagues used computer simulations to clarify why different algal 
species go through similar developmental stages where certain morphological patterns 
(whorls) are generated (Goodwin, 1994). The central idea is that although the possible 
mechanisms leading to behaviors observed in specific organisms are manifold, the inherent 
constraints of biochemical and biophysical interactions in the systems may greatly limit the 
space of possible numbers of, and transitions between, dynamical regimes. In this approach, 
stable (developmental) states are modelled as attractors in phase space, and changes in 
dynamic states are reflected by a shift between basins of attraction that separate the phase 
space into distinct dynamical regions. The phase space representation allows for prediction of 
the states that a developmental system converges to, given the initial conditions and other 
changes that cause the system to either stay within a basin of attraction or to shift to another 
dynamic state. An understanding of what enables such transitions, or buffers against these, is 
believed to clarify why some lower-level changes have no impact on system behavior; why 
other changes have a drastic effect; and why some phenotypic designs are not feasible at all 
(see Section 5).  
 
The notion of design principles in the example I examine in Section 5 is inspired by 
structuralist envisions of general principles influencing the range of phenotypes a system can 
or cannot implement (Goodwin, 1994; Jaeger and Monk, 2013: Jaeger and Sharpe, 2014). The 
principles point to the generative constraints on phenotypic patterning. This ‘thin’ notion of 
design, for instance, is employed in the following passage by Gould: ‘[H]owever much we 
celebrate diversity and revel in the peculiarities of animals, we must also acknowledge a 
striking ‘lawfulness’ in the basic design of organisms’ (Gould 1977/2006, p. 319). The 
lawfulness that Gould refers to includes physically and structurally constrained relations 
between size, shape and function of organisms (e.g. the disproportionate relations between 
volume, weight, surface area, strength of organic material, and between requirements for 
energy consumption and gas exchange for organisms of varying sizes). Design explanations 
from this perspective may therefore reflect insights to the synchronic constraints on the 
survival of organisms under certain circumstances, rather than a blueprint or programmatic 
principles of any specific organism (Wouters, 2007; Braillard, 2010). In the context of 
evolutionary systems biology, evolutionary design principles reflect generative aspects of 
constraints in determining the possibilities of diachronic relations to produce phenotypic 
variation (Green, Fagan and Jaeger, 2015). To exemplify the significance of such constraints 
for understanding evolution, there are limits to what respiratory designs (gills, lungs, or open 
respiratory systems) could work on land or in water for organisms of different size. 
Vertebrates have had the evolutionary potential to increase surface area by 
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compartmentalization and convolution of organs (e.g. lungs and intestines), but land-living 
organisms such as insects are constrained to remain small. On the other hand, the small size of 
insects enables these to fly using design strategies that are not feasible for bigger animals 
(Gould, 1977/2006).18 Other examples of general designs in need of a developmental 
explanation are fixed digits of vertebrae, stripe and segment formation in insects, wing 
shapes, and patterns in leaf and flower structures. The point is that there is a limit to the 
designs that are possible in relation to capacities maintained in organisms, and in relation to 
the phylogenetic lineage and developmental systems that produce the variation. The goal of 
analysis is therefore akin to Hugo de Vries’ call for ‘laws of variation’ that clarify how non-
genetic as well as genetic constraints enable the generation of stable phenotypes. The thin 
notion of design is not only compatible with systems-theoretical views but supportive of the 
task to define the space of possible dynamic states at the background of system organization 
and environmental interactions. I therefore believe that the framework is supportive of Braun 
and Marom’s call for insights to so-called ‘universal features’ of biological systems.  

The existence of regularities in dynamic and phenotypic patterns provides optimism that the 
roads of evolution are not randomly curved, even if specific endpoints are inherently 
unpredictable. But the key limitation of the dynamical systems approach is - as also pointed 
out by Stolovicki and Braun (2011) - that it so far has remained highly theoretical and 
disconnected from the causal processes at work in real-world biological systems. Similarly, 
evolutionary systems biologists contend that general principles of functional design and 
development can only be found if the gap between systems-theoretical and experimental 
analysis can be bridged (Jaeger and Crombach, 2012; Green, Fagan and Jaeger, 2014). As I 
shall clarify below, reverse engineering can be used to give the otherwise highly theoretical 
concepts of attractors and bifurcations an empirical basis by connecting ‘ensemble 
approaches’ to detailed experimental studies.19 Reverse engineering therefore can directly 
support – rather than counteract – an understanding of the dynamics of synchronic and 
diachronic genotype-phenotype relations.  

 

5. Reverse engineering as a tool for integration 
 
Johannes Jaeger and colleagues, at Centre de Regulació Genòmica in Barcelona, aim for an 
integrative approach to study development and evolution of dipteran insects. Inspired by 
dynamical systems theory, a basic assumption of their research is that the diversity of 
functional morphological traits, and the processes producing these, is constrained by a finite 
amount of dynamic behaviors that can be realized by particular biological systems (Jaeger and 
Crombach, 2012; Jaeger and Sharpe, 2014). For the group it is, however, important that design 
principles not only cite superficial similarities but refer to design themes that are 
experimentally supported as well as formally well-defined. 
 

                                                           
18 Similarly, the laws of gravity greatly constrain the evolutionary roads for different lineages in terms of types of 
skeletons to support the weight of animals on land. An animal of the size of an elephant or dinosaur cannot have 
the body proportions of a dog.  
19 ‘Ensemble approaches’ here refer to mathematical modeling of networks to study properties associated with 
network architectures such as network motifs (Alon, 2007a), potential for evolvability (Espinosa-Soto et al., 
2011) and attractors of complex (developmental) systems (Goodwin, 1982; Kauffman, 1993).  
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Connecting general theoretical insights to experimentally tractable biological systems has so 
far been challenged by discrepancies in the explanatory aims and standards of the 
mechanistic and systems theoretical approaches (Green, Fagan and Jaeger, 2015), and by the 
lack of relevant data on gene regulatory networks (GRN) to test theoretical results.20 One of 
the most extensively studied developmental systems is the gap gene system that governs 
segment development in insects. Data on nucleus-specific information on spatial and temporal 
distribution of gap gene products and maternal transcription factors have recently become 
available. But obtaining such data requires labor intensive techniques, such as 
immunofluorescent staining and confocal microscopy, and detailed modeling is only feasible 
for a few extensively studied organisms like Drosophila melanogaster (Jaeger and Crombach, 
2012). Jaeger’s group therefore explores the use of reverse engineering methods to fit 
systems parameters from coarser-grained mRNA expression data to create GRN models 
amenable for phase space analysis.21   
 
Figure 3 illustrates the procedure of the approach. The first step is extensive experimental 
measurements to generate quantitative mRNA expression data that enable an empirical basic 
for changes in expression patterns of the developing insect embryo. The next step is to draw 
on reverse engineering methodologies to fit computational models of the gene regulatory 
networks to the dataset. The system is mathematically modelled through coupled ODE-
models that characterize changes in protein concentrations in each nucleus as a function of 
gene regulation, diffusion and decay rates. Whereas reverse engineering of GRNs traditionally 
have been restricted to inference of static network structure, more dynamic network models 
can now be obtained through global non-linear optimization algorithms (for details, see 
Ashyraliyev et al., 2009; Jaeger and Monk, 2010). These models can then feed empirical 
import to the otherwise highly abstract representations of phase space models whose 
dimensions correspond to the concentration of regulatory factors (state variables) as a result 
of the regulatory network structure and initial conditions.  
 
The dynamical systems framework helps to clarify how regulatory interactions within the 
whole network constrain protein synthesis across the embryo. In phase space 
representations, a point corresponds to a dynamic state of the system. Because genes 
influence each other’s transcription (through activation and inhibition) and are at the same 
time affected by environmental inputs (e.g. maternally expressed transcription factors), some 
combinations of proteins cannot be maintained over time in the network. Accordingly, 
depending on the initial values of the state variables, the system will converge to stable points 
(attractors) in the characteristic basins of attraction.  
 

                                                           
20

 It should be noted that gene regulatory networks in this context do not refer to a static mapping of DNA 
sequences but to the interconnections between nodes, i.e. genes, mRNAs and protein products. Access to 
genome-wide gene regulatory network data now affords modeling of the concerted changes in expression levels 
of the nodes in a gene expression network over time. 
21

 To explore the merits of the coarser-grained analysis, they have compared results from reverse engineered 
networks (inferred from mRNA expression data) and GRNs made from detailed data on Drosophila (Jaeger and 
Crombach, 2012). Since they obtained a close match, the group now draws on this method to study development 
in other dipteran insights. 
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Figure 3. Illustration of the approach described in (Jaeger and Crombach, 2012), where reverse engineering is 
used to bridge between experimental and theoretical approaches. See text for clarification.  

The representation of changes in gene expression patterns over time as trajectories in phase 
space can be illustrated through a simple empirical example. Staining the protein products of 
gene regulatory networks with fluorescent antibodies can reveal how some genes exclude the 
expression of other genes in the same nucleus. For instance, the gap genes giant and Krüppel 
never co-occur in the same nucleus of Drosophila embryos but block each other’s expression 
(blocked arrows on Fig. 3; for details see Jaeger and Crombach, 2012). The relation between 
concentrations of such genes can be modelled as a phase space diagram, where the axes 
represent the concentration of gap-gene products. The scope of possible trajectories is 
determined by the features of the basins of attraction that divide the phase space (in this case 
there are two such basins, see Figure 3). Particular trajectories are influenced by initial 
conditions, e.g. maternally expressed proteins that differ in concentration in different nuclei. 
As long as the initial expression of one of the genes is higher than the other, the system will 
converge to high expression of the most “dominant” gene and repression of the other, 
corresponding to one of the two attractor states (red dots in state space).  

The structure of the phase space is determined by the system components (state variables) 
and system parameters. In this context, system components are transcription factors that 
regulate the expression of genes and other transcription factors, physiological components 
like enzyme activities, membrane potentials and environmental features that affect regulatory 
activities. Systems parameters specify strengths and types of regulation (activation, 
repression) between transcription factors and genes, and are modelled as connectivity 
matrices. Although the GRN of the whole gap gene system is complex and high-dimensional, a 
dynamical systems analysis is still feasible with the use of advanced computer algorithms 
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(Manu et al., 2009: Jaeger and Sharpe, 2014).22 Basing the phase space analysis on empirical 
data also enables a comparison of theoretical predictions to further experimental measures. 
For instance, predictions of how changes in regulatory patterns are associated with 
expression patterns can be tested through systematic manipulation of gene activities through 
RNA interference techniques that increase or eliminate gene expression (Figure 3).  

(How) can the approach provide insight to evolutionary change in systems parameters 
whereby the developmental system is itself modified? For this purpose, the group combines 
the reverse engineering of phase space portraits with data-constrained evolutionary 
simulations. They use the phase portraits of closely related organisms or species with 
conserved and diverged traits as starting- and end points of the simulations to identify 
changes in the developmental system. Thus, it is an explicit goal of the integrative approach to 
study how developmental potentials affect evolutionary processes through diachronic 
changes in the scope of realizable relations between GRNs and system capacities. The 
conceptual framework of dynamical systems theory is well suited for this purpose because it 
illustrates why many changes will not significantly affect the phenotypic development 
observed (the system will converge to similar attractor states from a range of initial 
conditions and parameter values).  In the same systems some changes, e.g. development of 
auto-activation of genes, can lead to dramatic changes as a system approaches a bifurcation, 
where basins of attraction are annihilated or new ones are created (Jaeger et al., 2012). 
Accordingly, the conceptual approach of attractors and bifurcations may help clarify why the 
genotype-phenotype map is highly non-linear and why some evolutionary events are not 
gradual but punctuated. Depending on the phase space portrait of specific lineages, species 
with similar expression profiles in one environmental setting may react differently to new 
environmental or genetic changes because their systems may differ in the ‘hidden variables’ 
that contribute to the evolvability of the system (Jaeger and Crombach, 2012). The analysis 
can therefore reveal which phenotypic transitions are possible for specific lineages if 
parameters of the system change. 

The example shows that reverse engineering may play an integrative role in bridging between 
experimental practices and theoretical approaches that study development through phase 
space geometry. The approach does not draw on a view of living systems as pre-designed or 
programmed by their genomes. On the contrary, the aim of the analysis is to uncover the 
causal basis for the two-way degeneracy of the evolving genotype-phenotype map. Combining 
the different methods enables the researchers to alternate between the different levels of 
analysis, from general and abstract conceptions of design principles to specific causal 
mechanisms. Neither of these can stand alone. Insights to the higher-level dynamics of 
phenotypic patterning are relevant for understanding how the developmental repertoire of 
lineages enables the production of stable and discrete phenotypes (Jaeger and Sharpe, 2014). 
But gaining mechanistic details about specific developmental systems is crucial for 

                                                           
22 Some analyses also involve evaluation of dynamic patterns in three-dimensional configuration spaces where 

the response of developmental transitions to variation can be compared and classified based on similarities or 
differences of the qualitative properties of arrangement of attractors and bifurcations. This approach has 
recently been used to investigate whether mechanisms involved in digit patterning in vertebrates and stripe 
formation are similar or form separate clusters of processes in phase space (reviewed in Jaeger and Sharpe, 
2014).  
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constructing and validating models of developmental dynamics in real-world systems.23 The 
example illustrates a productive role of reverse engineering that goes beyond reductionism, 
and demonstrates a regulative role of design principles to clarify general constraints on 
phenotypic variation. This approach is therefore radically different from (naïve) reverse 
engineering that is rightfully criticized by Braun and Marom.  

  

6. Conclusion 

The fact that living systems are functionally flexible and adaptive has consequences for the 
prospects of naïve reverse engineering in biology. As we have seen in Section 2, pattern 
detection in regulatory networks involves an inherent risk of inferring design principles that 
upon closer inspection only reflect a snap-shot of the functional organization of the system or, 
even worse, just reflect inherent biases of decomposition strategies. I have discussed the 
prospects of reverse engineering in systems biology in comparison to challenges highlighted 
by Braun and Marom. While acknowledging the problematic aspects of naïve reverse 
engineering, I take issue with the conflation of reverse engineering and naïve reductionism.  

First, I have argued that the challenge of synchronic underdetermination may be dealt with if 
the simplicity of the hypothesized design principles is more systematically distrusted through 
calibration with finer-grained experimental techniques. This solution may however not suffice 
for the challenge of diachronic underdetermination. I have discussed how heuristics relying 
on assumptions of static design and programmatic relations between genotypes and 
phenotypes provide limited insights to phenomena such as robustness, development and 
evolvability. But rather than dismissing reverse engineering, I have exemplified how reverse 
engineering can be productively combined with a systemic approach. The advantage of 
reverse engineering methods in the example discussed in Section 5 is that it allows 
researchers to mathematically fit system parameters that are too costly or impossible to 
obtain experimentally but nevertheless are necessary to give theoretical analysis an empirical 
basis. Thereby, reverse engineering of more dynamic gene regulatory networks provides a 
framework for integrating theoretical and experimental approaches.  

In this context, the notion of design principles is a regulative abstraction that illuminates how 
different mechanisms relate to general types due to common physical, functional and 
developmental constraints on the dynamics of the system. This view differs considerably from 
the view of design principles as static end-points of evolution or the surprisingly persistent 
idea of the genome as a program. Yet, it is important to stress that methodological power is 
not necessarily correlated with ‘true’ assumptions. Completely unbiased methodologies are 
not viable options because efficient heuristics must reduce the complexity of a problem to 
make this tractable for analysis. But just as all handicraft tools have restricted scopes of 
applicability, so can different types of heuristics be productive or counterproductive for 
addressing specific questions. Machine-inspired heuristics may serve as efficient tools for 
(near)decomposable systems, or as negative analogies, but face limitations if the aim is to 
understand the nonlinear relations in evolving genotype-phenotype maps. A systemic 
approach accounting for the concerted changes in expression levels of the network over time 
can better clarify aspects of the degeneracy, flexibility and evolvability of living systems. On 

                                                           
23 For further discussion on what insights the mechanistic and DS theoretical view afford, and the prospects and 
challenges for integration, see (Green, Fagan and Jaeger, 2015).  
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the other hand, the dynamical systems approaches relies on a reduction of developmental 
processes to trajectories in phase space and is not geared for uncovering the detailed 
biochemical composition of specific molecular regulators. A combinatorial strategy therefore 
seems to be the most feasible approach.  

Integrating different methodological strategies is necessary because no single framework can 
uncover all relevant aspects of living systems. Modeling all measurable details of organisms 
does not necessarily provide the information needed for understanding how the system is 
functionally organized. Whereas reverse engineering of network topology risks 
oversimplifying the system of study, the pre-occupation with details runs the opposite risk of 
overcomplicating the task by overlooking common dynamic patterns (Gross, 2013). In the 
words of Marom: ‘One good reason to bother with formulation of an abstract model is the 
hope that it leads up to a mathematical construct that dramatically reduces the dimensionality 
of the problem at hand. This, in turn, allows for analyses and uncovering of principles that are 
otherwise masked by the details’ (Marom, 2010, p. 26). Thus, the task seems to be to find a 
way to productively combine approaches that lie between a distorting reduction of 
complexity and unfruitful reproduction of complexity. Discussion among biologists and 
philosophers is one way by which we may increase the awareness of our guiding assumptions. 
But progress requires that the evaluation of research methodologies goes beyond an analysis 
of the truth value of guiding assumptions, to study the productivity and pitfalls of epistemic 
tools used in practice.  
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