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Abstract. We prove that degrees that are low for Kurtz randomness cannot

be diagonally non-recursive. Together with the work of Stephan and Yu [16],

this proves that they coincide with the hyperimmune-free non-DNR degrees,
which are also exactly the degrees that are low for weak 1-genericity.

We also consider Low(M, Kurtz), the class of degrees a such that every

element of M is a-Kurtz random. These are characterised when M is the
class of Martin-Löf random, computably random, or Schnorr random reals.

We show that Low(ML, Kurtz) coincides with the non-DNR degrees, while

both Low(CR, Kurtz) and Low(Schnorr, Kurtz) are exactly the non-high, non-
DNR degrees.

1. Introduction

Lowness is a notion of feebleness. A Turing degree a is called low in a given
context if it is indistinguishable from 0, the degree of recursive sets, using the
tools being examined; in other words, it is useless as an oracle for the notion of
computation under discussion. Technically, if C is a relativisable class of reals, we
say that A is low for C if CA = C.

The first notion of lowness to be examined was that of lowness for the Turing
jump: a is low if the halting set relative to a (denoted by a′) is computable from
the unrelativised halting set 0′ (in the notation of the previous paragraph, C = ∆0

2).
Spector showed that there are non-recursive low degrees [15].

Recently, attention has been focused on lowness notions arising from effective
randomness, genericity, and other classes from computability theory. Typically, the
class of degrees that are low for a class C is shown to be definable using common
notions of computability, thus shedding light on the class C itself.

The first such result is due to Slaman and Solovay [14], who showed that the
degrees that are low for EX-learning are exactly the degrees of ∆0

2, 1-generic sets.
However, lowness has come to prominence with the increased interest in algorithmic
randomness. The class of degrees that are low for Martin-Löf randomness has been
shown [10, 2] to be robust and to posses various pleasing degree-theoretic qualities,
such as being a Σ0

3 ideal contained in the ∆0
2 degrees and generated by its c.e.

elements. This class, known as the K-trivials, is also unique in being the only
well understood lowness class that has not yet been shown to be definable without
appealing to measure or effective randomness. As can be seen in Table 1, most
lowness classes that arise from other notions of randomness have either turned out
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to be identical to the K-trivials or have been characterised without reference to
randomness, often using the discrete notion of traceability [17, 7].

On the genericity front, Greenberg, Miller and Yu (published in [18]) have shown
that the sets that are low for 1-genericity are exactly the computable ones. It
is, however, easy to construct non-computable degrees that are low for weak 1-
genericity (a set is weakly 1-generic if it is an element of all dense Σ0

1 sub-classes of
Cantor space, 2ω). In a remarkable paper [16], Stephan and Yu have characterised
the class of degrees that are low for weak 1-genericity as exactly those degrees that
are hyperimmune-free and not DNR. (The fact that such degrees are hyperimmune-
free is due to Nitzpon [12]). We recall that a degree a is hyperimmune-free (or
0-dominated) if every function f : ω → ω computable from a is dominated by some
recursive function; and a degree is DNR if it computes a diagonally non-recursive
function f , namely a function such that, for all e, if J(e) = ϕe(e)↓ then its value
is different from f(e) (where 〈ϕe〉 is an effective listing of all partial computable
functions).

Stephan and Yu have also showed that each degree that is low for weak 1-
genericity is low for Kurtz tests, hence low for Kurtz randomness. This connection
between weak genericity and weak randomness may seem surprising; however, Kurtz
randomness is so weak that it may actually be considered a notion of very weak
genericity, as it only refers to open sets: a real is Kurtz-random if it lies in every
Σ0

1 class of measure one. It is known that the genericity notions themselves are
distinct: there are reals that are Kurtz random and yet are not weakly 1-generic
[8]. However, Stephan and Yu asked if the lowness notions coincided. It is easy to
see that degrees that are low for Kurtz randomness have to be hyperimmune-free
[4]; indeed, every hyperimmune degree contains a Kurtz random real [8]. In this
paper we confirm Stephan and Yu’s suspicion by showing the following:

Theorem 1.1. No DNR degree is low for Kurtz randomness. Hence the degrees that
are low for Kurtz randomness are precisely those that are low for weak 1-genericity:
the hyperimmune-free, non-DNR degrees.

We remark that another lowness result of a somewhat similar flavor has recently
been established by Simpson and Cole [13], who showed that a degree is low for
bounded limit recursiveness, a notion resembling ω-r.e.-ness, if and only if it is both
superlow and jump-traceable.

Additional lowness notions can be defined by using two classes M ⊆ N as
parameters. Here a set A is in Low(M,N ) if M ⊆ NA. Such notions have been
mainly investigated by Nies (see [9]). In this paper we add to our understanding
by extending Theorem 1.1 to show:

Theorem 1.2. No DNR degree is in Low(ML,Kurtz).

As a corollary, we get that all intermediate lowness classes, Low(Schnorr,Kurtz)
and Low(CR,Kurtz), also consist of non-DNR degrees. Since every high degree
contains a Schnorr random real, we get in fact:

Corollary 1.3. Low(CR,Kurtz) = Low(Schnorr,Kurtz) consists exactly of the
degrees that are non-DNR and not high.

Table 1 summarizes the current knowledge about lowness classes issuing from
notions of randomness. Two slots currently remain uncomputed:
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N
W2R ML CR Schnorr Kurtz

W2R K-trivial [3, 6, 9] K-trivial [3] K-trivial [9] ? ?

ML K-trivial [10] K-trivial [10]
r.e.

traceable
[7] non-DNR

CR recursive [10]
recursively

traceable
[7]

non-high

and non-DNR

M Schnorr
recursively
traceable

[17, 7]
non-high

and non-DNR

Kurtz
hyperimmune-free

and non-DNR

Table 1. Low(M,N ) for various randomness classes. Note that
each class is contained in the classes above it and to its right. The
gray entries are from this paper.

Question 1.4. What are Low(W2R,Schnorr) and Low(W2R,Kurtz)?

We note that this last class contains 0′.

The main theorem (5.2) will follow from the seemingly weaker Theorem 5.1,
which states that no DNR degree is low for Kurtz tests; that is, if f is a DNR
function then there is some null Π0

1(f) class which is not contained in any null
Π0

1 class. The general plan for the proof of this theorem (and the organization of
this paper) is as follows. We define (in Section 3) a continuous operator P that
maps functions f : ω → ω to a null Π0

1(f) class P f . The aim is to make P f and
P g, for distinct functions f and g, sufficiently independent, so that even though
the measure of each P f is zero, the union of P f for non-negligible collections of
functions f will be far from null. The technical notion of negligibility that we
employ is that of svelte trees (Definition 3.2).

Suppose that C is a null Π0
1 class. Since P is a continuous operator, the collection

of functions f for which P f ⊆ C is a closed subset of Baire space ωω, so it is the
set of paths through a tree T ⊆ ω<ω. Essentially, we show that this tree can be
covered by sufficiently few basic clopen sets [σ] so that we can make none of the
paths of T DNR, dispensing of those clopen sets σ by defining J(x) = σ(x) for some
x in some column of the jump function J over which we have control (using the
recursion theorem, of course). The notion of svelteness is exactly what is needed
to carry out this plan.

As mentioned, in Section 3 we define the notion of svelte trees (which applies
to finite trees); we use various calculations (which we make in Section 2) to show
that if

⋃
P f , where f ranges over a clopen subset of ωω, has small measure, then

the corresponding finite tree which generates this clopen set is svelte (Theorem
3.3). In Section 4 we generalise the situation to the case where the union ranges
over (roughly speaking) a closed class of functions, which is what appears in the
actual construction. We remark that up to and including Section 4, the paper is
completely combinatorial, and does not mention any computability.
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In Section 5 we carry out the plan and provide the proof of Theorem 5.2. In
Section 6 we generalize this result and characterise the classes Low(C,Kurtz) for
other randomness notions C.

We remark that since the discovery of the proof described in this paper, work by
the second author, motivated by results of Kjos-Hanssen’s regarding infinite subsets
of random sets, has resulted in a completely different proof of our results.

2. Calculations and inequalities

Lemma 2.1. The function

f(x) =
(

1 + x

2

)1/ ln x

is increasing on the interval (0, 1).

Proof. This is routine. We show that ln f is increasing on (0, 1). Note that

(ln f(x))′ =
x lnx− (1 + x) ln( 1+x

2 )
x(x+ 1)(lnx)2

.

Since the denominator is positive when x ∈ (0, 1), it is enough to prove that x lnx >
(1+x) ln( 1+x

2 ) for x ∈ (0, 1). Both sides are equal when x = 1, so it suffices to prove
that the right hand side grows faster than the left hand side. Differentiating and
then simplifying, we need to show that lnx < ln( 1+x

2 ), which holds when x < 1. �

Lemma 2.2. Let δ0, . . . , δn−1 ∈ (0, 1) and ε = mini<n δi. Then∏
i<n

(
1 + δi

2

)
6

(
1 + ε

2

)ln(Qi<n δi)/ ln ε

.

Proof. We proceed by induction on n. We get equality when n = 1. Assume that
the lemma holds for n, and let δ0, . . . , δn ∈ (0, 1). By rearranging, we may assume
that δn = mini6n δi. Let η = mini<n δi. Since δn 6 η, Lemma 2.1 ensures that(

1 + η

2

)1/ ln η

>

(
1 + δn

2

)1/ ln δn

.

Since ln
(∏

i<n δi
)

is negative,(
1 + η

2

)ln(Qi<n δi)/ ln η

6

(
1 + δn

2

)ln(Qi<n δi)/ ln δn

.

Now by induction,

∏
i6n

(
1 + δi

2

)
6

(
1 + η

2

)ln(Qi<n δi)/ ln η (1 + δn
2

)
6

(
1 + δn

2

)ln(Qi<n δi)/ ln δn (1 + δn
2

)
=
(

1 + δn
2

)ln(Qi6n δi)/ ln δn

. �

The following lemma is again an exercise in elementary calculus, although it is
worth noting that the left hand side approaches 1/2 as ε approaches either 0 or 1,
so the inequality is tight at both extremes.
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Lemma 2.3. If ε ∈ (0, 1), then(
1 + ε

2

)1−ln 4/ ln ε

<
1
2
.

Proof. Taking the logarithm of both sides, we will show that(
1− ln 4

ln ε

)
ln
(

1 + ε

2

)
< − ln 2.

Multiplying by ln ε, which is negative, it is sufficient to show that

(ln ε− ln 4) ln
(

1 + ε

2

)
> − ln 2 ln ε.

Both sides are equal when ε = 1, so it is enough to prove that the right hand side
grows faster than the left hand side. Differentiating and then simplifying, we need
to show that

ln ε− ln 4 +
1 + ε

ε
ln(1 + ε) < 0.

The value of the left hand side is 0 for ε = 1, so the inequality will follow from
the fact that the left hand side is increasing on (0, 1). Again differentiating and
rearranging, it suffices to show that

2ε > ln(1 + ε).

However, for all ε, we have ln(1 + ε) 6 ε so we are done. �

Raising to the nth power, we get:

Corollary 2.4. For all ε ∈ (0, 1) and n > 0,(
1 + ε

2

)n+ln(2−2n)/ ln ε

< 2−n.

3. Svelte trees

We begin by defining the operator taking an f ∈ ω6ω to a closed subset P f

of Cantor space, 2ω. The operator depends on an increasing sequence of natural
numbers n̄ = 〈n1, n2, . . .〉, which we fix for now (and which we will eventually
compute using the recursion theorem).

Fix an injection I : ω<ω → ω. For n ∈ ω, let Un = {X ∈ 2ω : X(n) = 1}. For
f ∈ ω6ω, define

P f =
⋂

m :nm6|f |

UI(f�nm).

The reason for using the Un is that they yield independent sets. Recall that two
sets A,B ⊆ 2ω are independent if µ(A ∩B) = µ(A)µ(B). For I ⊂ ω, let AI be the
algebra of sets obtained from Un, for n ∈ I, by using finite Boolean combinations.

Fact 3.1. Suppose that I, J ⊂ ω are disjoint, A ∈ AI and B ∈ AJ . Then A and
B are independent.

We will use this observation repeatedly, but for now, note that it implies that
µ(P f ) = 0 for every f ∈ ωω.

Definition 3.2. Let T ⊂ ω<ω be a finite tree. We say that T is k-svelte if there is
a sequence 〈Sk+1, Sk+2, Sk+3, . . .〉 of subsets of T such that:
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• Sm ⊆ T ∩ ωnm ;
• |Sm| 6 2m−(k+1); and
• every leaf of T extends some string in

⋃
Sm.

For a finite tree T ⊂ ω<ω, let PT be the union of Pσ for all leaves σ of T .
The following theorem, which is the main computational theorem in this paper,
establishes a dichotomy: either the measure of PT is large, or T is svelte (and so
can be covered “cheaply”).

Theorem 3.3. If T ⊂ ω<ω is a finite tree such that µ(PT ) 6 2−(k+1), then T is
k-svelte.

Proof. For m ∈ ω, let Tnm = T ∩ωnm and let S =
⋃
m Tnm . Let L be the collection

of strings in S that do not have proper extensions in S. We note that

PT =
⋃
σ∈L

Pσ.

For τ ∈ S and σ ∈ L such that σ ⊇ τ , let

Pστ =
⋂

m : |τ |<nm6|σ|

UI(σ�nm)

(so for σ = τ we have Pστ = 2ω) and for τ ∈ S let

Qτ =
⋃

σ∈L :σ⊇τ

Pστ .

For τ ∈ S, let δτ = 1− µ (Qτ ).
By induction on m > k + 1, define sets Sm ⊆ Tnm . Let Sk+1 = {τ} where δτ

is minimal among the strings of Tnk+1 . Suppose that Sk+1, . . . , Sm−1 have been
chosen. Let S<m be the collection of strings in Tnm that extend some string in
Sk+1 ∪ Sk+2 ∪ · · · ∪ Sm−1. Order Tnm r S<m so that δτ is non-decreasing, and
let Sm be the first 2m−(k+1) many strings on the list (or if the list is shorter, let
Sm be all of Tnm r S<m). We halt the process when we get to some m such that
S<m = Tnm . Figure 1 shows an example.

If every string in L (and so every leaf of T ) extends some string in
⋃
m>k Sm

then T is k-svelte. Otherwise, we show that µ(PT ) > 2−(k+1).

First, if there is some σ ∈ L ∩ Tnm for some m 6 k, then we note that µ(Pσ) >
2−k and Pσ ⊆ PT . Assume from now that is not the case.

For m > k, let S6m = S<m ∪ Sm. Let m∗ be least such that L∩ Tnm∗ r (S6m∗)
is nonempty. By reverse induction on m, k 6 m < m∗, we show that

(1)
∏

τ∈TnmrS6m

δτ < 2−2m−k .

First, we show that for all m ∈ [k,m∗ − 1],

(2)
∏

τ∈TnmrS6m

δτ =
∏

σ∈Tnm+1rS<m+1

(
1 + δσ

2

)
.

Because m < m∗, for every τ ∈ Tnm r S6m, the set

τ ↑= {σ ∈ Tnm+1 : τ ⊂ σ}
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Tn1

Tn2

Tn3

Figure 1. The covering process shows that T is 0-svelte. The
elements of Sm are the boxed nodes on level nm of T ; the grey
nodes are the ones that have been “knocked off” by S1 ∪ S2. Note
that we first choose the weightiest nodes τ (among the non-grey
ones) to put in Sm - those for which µ(Qτ ) is the greatest. This is
not necessarily the same as having the largest number of leaves (in
L) above τ , since if, for example, two leaves σ and σ′ are close to
each other (they have a long common initial segment) then there is
significant overlap between Pστ and Pσ

′

τ , so the joint contribution
Pστ ∪Pσ

′

τ to Qτ is smaller than the contribution of leaves which lie
further apart.

is nonempty (and disjoint from S<m+1), and

Qτ =
⋃
σ∈τ↑

Qσ ∩ UI(σ).

Further, {τ ↑ : τ ∈ Tnm rS6m} is a partition of Tnm+1 rS<m+1. For every σ ∈ τ ↑
there is some Jσ ⊂ ω such that Qσ ∈ AJσ , I(σ) /∈ Jσ and such that the Jσ ∪{I(σ)}
are pairwise disjoint. It follows that all the sets involved are independent (Fact 3.1).
Thus µ(Qσ ∩ UI(σ)) = µ(Qσ)/2 and so µ

(
2ω r (Qσ ∩ UI(σ))

)
= (1 + δσ)/2; and

µ (2ω rQτ ) =
∏
σ∈τ↑

µ
(
2ω r

(
Qσ ∩ UI(σ)

))
;

this establishes Equation 2. See Figure 2 for an illustration.
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δσ1

σ1

δσ2

σ2

δσ3

σ3

δσ4

σ4

1+δσ1
2

(
1+δσ2

2

)(
1+δσ3

2

)(
1+δσ4

2

)τ τ ′︸ ︷︷ ︸
S6m

S<m+1︷ ︸︸ ︷

Tnm

Tnm+1

Figure 2. Illustrating Equation 2: in this tree, we have two nodes
τ and τ ′ in Tnm rS6m. We have τ ↑= {σ1} and τ ′ ↑= {σ2, σ3, σ4},
a partition of Tnm+1 r S<m+1. This gives δτ = (1 + δσ1)/2 and
δτ ′ = (1 + δσ2)(1 + δσ3)(1 + δσ4)/8.

Now let m = m∗ − 1. Then since Tnm∗ r S6m∗ is nonempty, we know that
|Sm∗ | = 2m

∗−(k+1). By the definition of m∗, in fact, there is some σ∗ ∈ Tnm∗rS6m∗
in L; we have δσ∗ = 0 and δσ 6 δσ∗ for all σ ∈ Sm∗ . Thus δσ = 0 for all σ ∈ Sm∗ .
So, ∏

σ∈Tnm∗rS<m∗

(
1 + δσ

2

)
6

1
2

2−2m
∗−(k+1)

< 2−2m−k .

Equation 2 now ensures that the Inequality 1 holds for m = m∗ − 1.
Assume that Inequality 1 holds for m where k < m < m∗; we prove it for

m − 1. Again because m 6 m∗, we know that Tnm r S6m is nonempty, and so
|Sm| = 2m−(k+1). Because m < m∗, we know that for all σ ∈ Tnm r S6m, δσ > 0.
Let ε = minσ∈TnmrS6m δσ. Then for all σ ∈ Sm, δσ 6 ε. Thus

∏
σ∈Sm

(
1 + δσ

2

)
6

(
1 + ε

2

)2m−(k+1)

.

By Lemma 2.2,

∏
σ∈TnmrS6m

(
1 + δσ

2

)
6

(
1 + ε

2

)ln
“Q

σ∈TnmrS6m
δσ
”
/ ln ε

.

By induction, we know that∏
σ∈TnmrS6m

δσ < 2−2m−k = 2−2·2m−(k+1)
,

so (as ε < 1),

ln
(∏

σ∈TnmrS6m
δσ

)
ln ε

>
ln
(

2−2·2m−(k+1)
)

ln ε
.
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Since (1 + ε)/2 < 1, the function y 7→
(

1+ε
2

)y is decreasing, so

(
1 + ε

2

)ln
“Q

σ∈TnmrS6m
δσ
”
/ ln ε

<

(
1 + ε

2

)ln

„
2−2·2m−(k+1)

«
/ln ε

.

Putting it all together, since Tnm−1rS<m−1 = Sm−1 ∪ (Tnm−1 r S6m−1), we get

∏
τ∈Tnm−1rS<m−1

δτ 6

(
1 + ε

2

)2m−(k+1)+ln

„
2−2·2m−(k+1)

«
/ ln ε

.

Corollary 2.4 shows that this quantity is strictly smaller than 2−2m−(k+1)
= 2−2(m−1)−k

,
as required.

Thus (noting that S6k = ∅) we get that∏
τ∈Tnk

δτ <
1
2
.

Now, by reverse induction on m 6 k, we show that

(3)
∏

τ∈Tnm

δτ < 1− 2−(k+1−m)

(where we let n0 = 0). Assume that this is true for m 6 k. Note that Equation 2
still holds for the levels below k:∏

τ∈Tnm−1

δτ =
∏

σ∈Tnm

(
1 + δσ

2

)
.

Let ε = minσ∈Tnm δσ. The key observation here is that ε >
∏
σ∈Tnm

δσ. Thus
Lemma 2.1 says that(

1 + ε

2

)1/ ln ε

>

(
1 +

∏
σ∈Tnm

δσ

2

)1/ ln
“Q

σ∈Tnm
δσ
”

;

raising both sides to the power of ln
(∏

σ∈Tnm
δσ

)
, which is negative, we get that

(
1 + ε

2

)ln
“Q

σ∈Tnm
δσ
”
/ ln ε

6

(
1 +

∏
σ∈Tnm

δσ

2

)
.

Now Lemma 2.2 shows that∏
σ∈Tnm

(
1 + δσ

2

)
6

(
1 +

∏
σ∈Tnm

δσ

2

)
<

1 +
(
1− 2−(k+1−m)

)
2

= 1−2−(k+1−(m−1)),

as required. We note that the worst case (
∏
δτ being maximal) is when ε =

∏
δσ,

which happens exactly when there is only one branch below level nk, i.e., when
|Tnk | = 1. In that case, µ(PT ) = 2−kµ(Qτ ), where τ is the unique string on level
nk.

For m = 0, we get δ〈〉 < 1 − 2−(k+1), so µ
(
Q〈〉
)

= µ(PT ) > 2−(k+1) and the
proof is complete. �
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4. Infinite trees

In this section, instead of using finite trees, we use infinite trees that have no
dead ends. We maintain our notation from the previous section. Our trees have a
particular form:

Definition 4.1. A tree T ⊆ ω<ω is full-by-finite if there is a finite tree S ⊂ ω<ω,
each leaf of which lies on some level nm, such that

T = S ∪ {σ ∈ ω<ω : σ extends some leaf of S}.
Let T ⊆ ω<ω be a tree with no dead ends. We let PT =

⋃
f∈[T ] P

f .

Theorem 4.2. Suppose that T is a full-by-finite tree, witnessed by the finite tree
S. If µ

(
PT
)
6 2−(k+1) then S is k-svelte.

Proof. Let L be the set of leaves of S. Assume that µ
(
PT
)
6 2−(k+1). We will

show that µ
(⋃

τ∈L P
τ
)
6 2−(k+1), from which will follow by Theorem 3.3 that S

is k-svelte.
For any m ∈ ω, for any σ ∈ ωnm , let

Bσ = Pσ r
⋃

ρ∈ωnm+1 : ρ⊃σ

P ρ.

Then since {UI(ρ) : ρ ∈ ωnm+1} are all independent,

µ (Bσ) = µ

Pσ r
⋃

ρ∈ωnm+1 : ρ⊃σ

UI(ρ)

 = 0.

Let τ ∈ L and suppose that |τ | = nmτ .

Pσ r
⋃

f∈ωω : f⊃τ

P f ⊆
⋃

m>mτ

⋃
σ∈ωnm :σ⊇τ

Bσ

and so the measure of the set on the left is 0. Since every f ∈ [T ] extends some
τ ∈ L, we get that

µ

(⋃
τ∈L

P τ r PT

)
= 0.

�

Note that we did not actually need T to be full above the leaves of S; it is
sufficient that every string of length nm extending a leaf of S has infinitely many
extensions of length nm+1. However, this generality is not useful because the full-
by-finite trees are the ones that arise naturally:

Lemma 4.3. Suppose that C ⊆ 2ω is clopen. Then there is some full-by-finite tree
T such that

[T ] =
{
f ∈ ωω : P f ⊆ C

}
.

Proof. Let C ⊆ 2ω be clopen; then there is some d ∈ ω such that C is the union of
[ρ] for certain ρ ∈ 2d.

Let R be the set of strings σ ∈ ωω such that Pσ ⊆ C, and let L be the set of
minimal strings in R. Then L is finite: if τ ∈ L then |τ | = nm for some m and
I(τ) 6 d. Let S be the downward closure of L. Then S is a finite tree (and each
leaf of S has length nm for some m); noting that R is closed upwards, we can let
T = S ∪R. �
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Remark 4.4. The witnessing tree S can be obtained effectively from C.

Proof. To find L we only need to search over the finitely many strings σ such that
I(σ) 6 d, and tell for which such strings we have Pσ ⊆ C. The operation mapping
σ to (a canonical index for the clopen set) Pσ is effective, so given C, we can answer
that question, for each σ, effectively. The number d can also be obtained effectively
from C. �

5. Characterising Low(Kurtz)

In this section we prove that no DNR function is low for Kurtz randomness.
First we show that DNR functions cannot be low for Kurtz tests. In particular,
there is a (recursive) increasing sequence n̄ as above such that using the derived
operator P , if f is a DNR function, then P f (which is a Π0

1(f) class of measure 0)
is not contained in any Π0

1 class of measure 0.

Theorem 5.1. A DNR degree is not low for Kurtz tests.

Proof. We use the recursion theorem. Recall that J , the universal partial recursive
function, is defined by letting J(e) = ϕe(e) if the latter converges, and is left
undefined otherwise; f ∈ ωω is a DNR function if for all e ∈ dom J , f(e) 6=
J(e). The function J is universal in the sense that for every c ∈ ω there is some
(uniformly) recursive order function αc such that J ◦ αc = ϕc.

During the construction we define a partial recursive function ψ; by the recursion
theorem, we can assume that we know a c ∈ ω such that ψ = ϕc and so we know
the “column” of J over which we “have control”. Partition ω into finite intervals
Xm,k for m > 0 and k < m so that |Xm,k| = 2m−(k+1) (and so that if m < m′,
k < m and k′ < m′ then maxXm,k < minXm′,k′).

We can now define the sequence 〈nm〉 so that for all m > 0 and k < m, αc[Xm,k]
is contained in the interval [nm−1, nm).

We now describe how to define ψ. Let k ∈ ω and let Qk be the kth Π0
1 class. If at

some stage s of the construction we have enumerated enough of (the complement of)
Qk to see that µ (Qk[s]) < 2−(k+1), then we compute a finite tree S which is k-svelte
and such that the upward closure T of S is the tree of paths f such that P f ⊆ Qk[s].
Let 〈Sk+1, Sk+2, . . . , Sl〉 witness that S is k-svelte. For every m ∈ [k+1, l] and every
σ ∈ Sm, we pick a distinct x ∈ Xm,k and define ψ(x) = σ(αc(x)). Thus for such σ,
σ(αc(x)) = J(αc(x))↓ and so σ is not a DNR string. Since every f ∈ [T ] extends
some σ in some Sm, no f ∈ [T ] is DNR. This concludes the proof. �

The uniformity of P f yields the main theorem:

Theorem 5.2. Suppose that f is DNR. Then P f contains a Kurtz random real.
Hence, Low(Kurtz) ⊆ ¬DNR.

Proof. The main idea is that for any f ∈ ωω, if some nonempty clopen subclass
[ρ∗] ∩ P f is covered by a Π0

1 class of measure 0, then so is all of P f . For suppose
that ρ∗ ∈ 2<ω, [ρ∗] ∩ P f 6= ∅, and [ρ∗] ∩ P f ⊆ Q where Q is Π0

1. For all ρ ∈ 2<ω of
the same length as ρ∗, let

Qρ = {ρaX : ρ∗aX ∈ Q}
and let

Q′ =
⋃

ρ : |ρ|=|ρ∗|

Qρ.
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Then Q′ is a Π0
1 class, and if Q has measure 0, then so does Q′. Suppose that

X ∈ P f , and let ρ = X � |ρ∗|; let X∗ = ρ∗aX � [|ρ∗|,∞). Recall that

P f = {Y ∈ 2ω : (∀m ∈ ω) Y (I(f � nm)) = 1}.

Let m ∈ ω and let i = I(f � nm). If i > |ρ|, then X∗(i) = X(i) = 1 because
X ∈ P f . If i < |ρ| then X∗(i) = ρ(i) = 1 because [ρ]∩P f 6= ∅. Hence X∗ ∈ P f , so
X∗ ∈ Q. It follows that X ∈ Q′ so P f ⊆ Q′.

Now suppose that f is a DNR function. We know that P f is not contained in
any Π0

1 class of measure 0, and so for all ρ ∈ 2<ω, if [ρ] ∩ P f is nonempty, then
that class is also not contained in any Π0

1 class of measure 0. By induction, we
define an increasing sequence 〈ξk〉 of strings. List all Π0

1 classes of measure 0 as
R1, R2, . . . . Let ξ0 = 〈〉. Given ξk−1, assuming that [ξk−1] ∩ P f 6= ∅, we know that
[ξk−1]∩P f is not contained in Rk, and so we can find some ξk extending ξk−1 such
that [ξk] ∩ P f 6= ∅ but [ξk] ∩ Rk = 0. Then X =

⋃
k ξk is a Kurtz random real

contained in P f . �

This completes the proof that the degrees that are low for Kurtz randomness
are low for weak 1-genericity. Since every degree that is low for weak 1-genericity
is low for Kurtz tests [16], all three notions coincide.

6. Characterising Low(M,Kurtz)

We now consider the classes Low(M,Kurtz) for notions of randomness stronger
than Kurtz randomness. We start with Martin-Löf randomness; we show that a
degree is in Low(ML,Kurtz) iff it is not DNR. Note that, as there is a univer-
sal Martin-Löf test, lowness for the pair (ML,Kurtz) is the same as lowness for
(ML,Kurtz)-tests.

One direction of the characterisation of Low(ML,Kurtz) was provided by Bjørn
Kjos-Hanssen in [5].

Theorem 6.1 (Kjos-Hanssen). ¬DNR ⊆ Low(ML,Kurtz).

Proof. Let a be a degree that does not compute a DNR function. Let P be any
Π0

1(a) class of measure 0. We want to show that P is contained in an unrelativised
ML-test.

There is an a-recursive, nested sequence 〈Cn〉 of clopen sets such that µ(Cn) =
2−n and P =

⋂
n Cn. By the assumption on a, there are infinitely many numbers

n such that J(n) = Cn (or more precisely, J(n) is a code for Cn). Now let Un be
the union of all J(e) for e > n such that J(e) codes a clopen set of measure at most
2−e. Then 〈Un〉 is uniformly r.e. and indeed a ML-test, and P ⊆

⋂
Un because for

all n there is some e > n such that Ce ⊆ Un. �

The other direction extends Theorem 5.2 and uses the tools developed in earlier
sections.

Theorem 6.2. Low(ML,Kurtz) ⊆ ¬DNR.

Proof. As in the proof of Theorem 5.1, we consider the operator f 7→ P f ; again we
define a partial function ψ and, by the recursion theorem, we get an index c such
that ψ = ϕc. We partition ω into intervals Xm,k for m > 0 and k < m such that
|Xm,k| = 2m−(k+1) and define the sequence 〈nm〉 so that αc[Xm,k] ⊂ [nm−1, nm)
for all k < m.
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Let 〈Uk〉 be the universal Martin-Löf test; at stage s, for all k, let Uk[s] be the
clopen set that has so far been enumerated as part of Uk. At stage s, suppose that
a (unique) number k has been enumerated into ∅′. Since µ (Uk+1[s]) < 2−(k+1),
we can compute a finite k-svelte tree whose upwards closure is the tree of paths f
such that P f ⊆ Uk+1[s]. We ensure none of these paths are DNR by defining ψ as
before.

Now suppose that f is DNR but that P f ⊆
⋂
k Uk. We show that ∅′ 6T f . This

will prove the theorem: no complete degree is low for (ML,Kurtz) because there
is an ML-random set R 6T ∅′. Let k ∈ ω. Since P f ⊆ Uk+1 and P f is compact,
there is some s such that P f ⊆ Uk+1[s]. Such a stage s can be effectively obtained
from f . Then we know that if k /∈ ∅′[s] then k /∈ ∅′, for otherwise we would ensure
that f is not DNR at the stage at which k enters ∅′. �

We now turn to the intermediate classes Low(Schnorr,Kurtz) and Low(CR,Kurtz).
Recall that a degree a is called high if a′ > 0′′.

Theorem 6.3. Low(Schnorr,Kurtz) = Low(CR,Kurtz) = ¬High ∩ ¬DNR. Fur-
thermore, the test notions are also equivalent.

Proof. For a degree a,

a is low for (Schnorr,Kurtz)-tests =⇒ a is low for (CR,Kurtz)-tests
⇓ ⇓

a is low for (Schnorr,Kurtz) =⇒ a is low for (CR,Kurtz).

Because Low(CR,Kurtz) ⊆ Low(ML,Kurtz), all of these properties imply that a is
non-DNR. Nies, Stephan and Terwijn [11] proved that every high degree contains
a computably random real. Hence no high degree can be low for (CR,Kurtz), so
again, all four properties imply that a is not high.

All that remains is to prove that if a is not high and not DNR, then it is low for
(Schnorr,Kurtz)-tests. We will use a result of Kjos-Hanssen (see [1]): if a is not
high and not DNR, then for any a-recursive function h, there is a (total) recursive
function f such that f(n) = h(n) for infinitely many n.

Let P be a Π0
1(a) class of measure 0, and again consider the a-recursive, nested

sequence 〈Cn〉 of clopen sets such that µ(Cn) = 2−n and P =
⋂
n Cn. Define an

a-recursive function h such that h(n) is a code for Cn. Take the recursive function
f guaranteed by Kjos-Hanssen’s result; we may assume that f(n) codes a clopen
set of measure 2−n for all n. Now by padding, we can increase

⋃
e>n f(e) to a

nested sequence of uniformly r.e. classes 〈Un〉 of measure exactly 2−n—the point is
that after taking

⋃
e∈(n,m] f(e) we know that the contribution of the rest is at most

2−m. Therefore, we have a Schnorr test and P ⊆
⋂
n Un. �
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