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Abstract Concerns over epistemic opacity abound in contemporary de-
bates on Artificial Intelligence (AI). However, it is not always clear to
what extent these concerns refer to the same set of problems. We can
observe, first, that the terms ‘transparency’ and ‘opacity’ are used either
in reference to the computational elements of an AI model or to the
models to which they pertain. Second, opacity and transparency might
either be understood to refer to the properties of AI systems or to the
epistemic situation of human agents with respect to these systems. While
these diagnoses are independently discussed in the literature, juxtaposing
them and exploring possible interrelations will help to get a view of the
relevant distinctions between conceptions of opacity and their empirical
bearing. In pursuit of this aim, two pertinent conditions affecting com-
puter models in general and contemporary AI in particular are outlined
and discussed: opacity as a problem of computational tractability and
opacity as a problem of the universality of the computational method.

Keywords: Artificial Intelligence, Epistemic Opacity, Black Box Prob-
lem, Explainable AI, Computer Models in Science

The problem: AI co-originated with computer science and the practice of com-
puter modelling and formed one of the earliest domains of application of com-
puter modelling methods. It is the paradigm of a discipline that involves stored
programs and digitally encoded information as core constituents of its models.
By virtue of these properties and in the course of increasing the scope and depth
of computational methods, AI gave rise to epistemic situations that are arguably
novel, unique, and uniquely problematic. These situations are being referred to
as ‘epistemic opacity’ or the ‘Black Box Problem’. Most generally speaking, an
AI is epistemically opaque if an observer cannot adopt a position from which to
discern either the operations of the system or their bearing on some world affair,
or both. There is a heterogeneous array of definitions and interpretations of this
problem, among which I identify three distinct classes:

I. There are approaches that consider epistemic opacity a fundamentally tech-
nical problem that is in principle resolvable within the framework of com-
putational methods. This is the domain of ‘Explainable AI’ (XAI), which
proposes methods of making the operations of AI systems better discernible.
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II. There are approaches that consider epistemic opacity an essential problem of
AI systems that cannot be resolved within the framework of computational
methods. These views fall into two distinct sub-classes:
a. Opacity might be essential for reasons that universally apply to the com-

putational method.
b. Opacity might be essential for more specific reasons that apply to more

specific types of AI systems.

The argument: I argue that the key to understanding the differences between the
previous approaches I. and II. lies in how they perceive, first, the nature and the
role of the epistemic agents to which an AI system could be epistemically opaque
or transparent. Opacity might be a property that mostly or exclusively pertains
to an AI system and its operations, or it might be more of a relational property
that depends on the means of epistemic access to the system that an agent has
at his or her disposal. Second, the differences between the above interpretations
I. and II. depend on how they perceive the relation between a set of algorithms,
data structures and computer architectures on the one hand and the models of
which they are part on the other. More precisely, the difference between the ‘ex-
plainable’ and the ‘essential’ accounts lies in how a model’s respective epistemic
properties are perceived to rest upon each other. Epistemic problems may arise
either from the degrees of complexity or tractability of computational processes
and structures, or from the ways in which they are applied in the construction
of models. Which of these factors is considered most relevant in turn partly
depends on the previously mentioned epistemological commitments that often
remain implicit but shall be briefly explicated in what follows.

Defining opacity: While a consensual and unified definition of epistemic opacity
in AI is missing in the literature, the earliest and most frequently cited definition
is the one proposed by Paul Humphreys (2009):

[. . . ] a process is epistemically opaque relative to a cognitive agent X at
time t just in case X does not know at t all of the epistemically relevant
elements of the process. A process is essentially epistemically opaque to
X if and only if it is impossible, given the nature of X, for X to know all
of the epistemically relevant elements of the process. (p. 618)

Conversely, the epistemic transparency of a model is understood as its ‘analytic
tractability’, defined as an epistemic agent’s ‘ability to decompose the process
between model inputs and outputs into modular steps, each of which is meth-
odologically acceptable both individually and in combination with the others’
(Humphreys, 2004, 148). The notable features of this twofold definition are, first,
that opacity in general and essential opacity are defined with respect to epistemic
agents. A process is epistemically opaque or transparent to a concrete agent in a
concrete epistemic situation. Second, Humphreys’ definition refers to processes
rather than systems, where these processes are in turn specified in terms of com-
putational processes that concern models, and where the degrees of epistemic
transparency versus opacity are framed in terms of analytic tractability as a
mathematical concept. Let me discuss these two features in turn.
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Agent-relativity: The degrees of epistemic transparency versus opacity are agent-
relative on an individual level because they depend on an agent’s conception of
the epistemically relevant elements of a given model or process. On the one
hand, the degrees of knowledge of that model or process might be at variance
between different agents, which makes a difference with respect to their abilities
of recognising the relevant elements. On the other hand, the agents’ various
interests in and expectations towards that model or process might be at variance,
too, with no benchmark or universal standard being available in many cases of
what counts as and needs to be recognised as epistemically relevant.

However, the degrees of opacity are agent-relative on a general level, too, in
terms of depending on the constraints on the volume, kind and complexity of
information that a specific epistemic agent or population of agents can process.
If only for the qualifier ‘given the nature of X’, ‘essential’ opacity is neither to be
understood as being firmly grounded in the properties of the process that is being
perceived or conceived of as opaque nor as a condition that holds in all or all
nearby (logically) possible worlds. Philosophical presuppositions of these kinds
will invite misunderstandings of a claim that is empirically more pertinent and
philosophical in a different way, namely that cognition is ‘bounded’ and ‘situated’
(see, for example, Robbins and Aydede, 2009). Epistemic opacity is a condition
that applies to concrete epistemic agents in relation to to concrete processes in
concrete real-world contexts. It is an essential condition precisely to the extent
that there are no realistic means for an epistemic agent of transcending a given
set of real-world constraints.

The agent-relativity of epistemic opacity might not be universally recognised
but is well-reflected in the literature, where one can detect various stages of spe-
cificity of the argument: Most broadly, Humphreys (2009) developed his concept
of opacity in view of human and other epistemic agents and their cognitive lim-
itations. In particular, he considered the possibility of forms of computer-based
science that remain inaccessible to human agents while being accessible to AI
systems. In contrast, Beisbart (2021) formulates an explication of epistemic opa-
city on the premiss that a process is opaque to the degree that it is difficult for
humans to know and to understand why its outcomes arise, with no other epi-
stemic agents being admitted to consideration. Here, the cognitive constitution
of human beings is viewed as exclusively relevant. On the most specific level,
several authors identify the cognitive constitution of situations of opacity as
specifically pertaining to concrete ‘stakeholders’, their knowledge and their in-
tentions in a given situation (Zednik, 2021; Páez, 2019; Langer et al., 2021).
Tomsett et al. (2018) consider agent-relativity the main reason why there is no
consensus among AI practitioners about the meaning of epistemic opacity in
the first place. Even though the authors discussed here might not agree whether
there is such a thing as essential opacity or whether there are means of resolving
opacity instead, they would all agree that it is an epistemic condition, that is, a
condition that affects the availability or acquisition of knowledge.

Models: There is a certain ambiguity in the literature between an understanding
of epistemic opacity as a problem with tracking the internal properties of an AI
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model, that is, its algorithms, its computational structure more generally or its
complexity, and an understanding of opacity as a problem with how the model
relates to a given world affair, that is, how and by what criteria data are clas-
sified, how and on what grounds a model generates a prediction. Boge (2021)
distinguishes between these forms of opacity as ‘h-opacity’ as a class of situations
where the observer has no insight into how a model operates, versus ‘w-opacity’
as a class of situations where the observer has no insight into what it represents.
He considers w-opacity as a specific characteristic of AI of Machine Learning-
based models in particular, to the extent it arises from unsupervised learning
processes in which the features learned by the model cannot be traced back to
the processes by which they were learned, and thus to the ‘how’ aspect. In similar
fashion, Facchini and Termine (2022, in this volume) distinguish between, on the
inward-looking side, ‘access opacity’ as a problem with ‘understanding the struc-
ture of a system’ and ‘informational opacity’ as an issue concerning ‘the format,
or setup, adopted by a system for storing and manipulating information’. On the
outward-looking side, they characterise ‘link opacity’ as ‘insufficient information
about the elements that are relevant for explaining, predicting and controlling
the considered phenomenon’ (see also Sullivan, 2019). Situations of opacity of
either kind are often de facto connected, but they are not related by necessity.
In boundary cases, an internally opaque model might result in intelligible pre-
dictions, while gaining information about the inner workings of a w-opaque or
link-opaque model might not suffice to make it intelligible.

In order to better understand why these two forms of epistemic opacity are
partly independent and why w- or link opacity is particularly pertinent to AI, it
will be important to recall the nature and function of models in scientific inquiry
more generally (classical and still valid philosophical accounts of models in sci-
ence include Black 1962; Hesse 1966; more contemporary ones include Morgan
and Morrison 1999; da Costa and French 2003; for an authoritative overview,
see Frigg and Hartmann 2020). According to Ludwig Boltzmann’s first modern
definition of of models, a model is ‘a tangible representation [. . . ] of an ob-
ject’ (Boltzmann, 1902), where that representation might exist purely ‘in the
head’, but typically assumes the shape either of verbal or formal descriptions or
of material objects. Since the mid-20th Century, implementing models in com-
puters has become an additional and increasingly important part of the scientific
method. The unifying and most general characteristic of models in the empirical
sciences is that ‘A model is an interpretative description of a phenomenon that
facilitates access to that phenomenon’ (Bailer-Jones, 2009, 1). Models are typ-
ically designed to be observed or manipulated in such a way that they provide
information about a phenomenon in situations where direct observation or ex-
perimental manipulation of that phenomenon is not possible, either in principle
or due to practical constraints.

Models accomplish this aim by bearing a variety of types of material and
formal representational relations to a given phenomenon, namely similarity,
structural isomorphism or sameness of properties. In order to establish these
representational relations, models are designed to address properties of the phe-
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nomena in a variety of ways, most notably approximation, abstraction and ideal-
isation. As far as the empirical sciences are concerned, models of all kinds mediate
perceptual or conceptual access to their pertinent phenomena by postulating re-
lations between selected elements of the model and selected elements of the phe-
nomenon, where the kinds of relations fall under one of the previously mentioned
classes. The selected elements are those which are considered most relevant to
the explanation or understanding of the phenomenon in question. These ‘posit-
ive’ analogies (in Hesse’s 1966 parlance) are to be distinguished from ‘negative’
analogies – relations that are known not to hold between them – and ‘neutral’
ones, where possible relations are yet to be explored and might turn out to be
informative at a later stage of inquiry. There are two distinct philosophical views
of the role of models in science: They might either serve an ancillary and sub-
ordinate function to axiomatic theories, in terms of making such theories more
intelligible, or they might be an independent and necessary precondition for
the formulation of axiomatic theories (cf. the dispute between Hesse’s fictional
‘Duhemist’ and ‘Campbellian’, 1966). On the latter view, models, despite being
idealising, approximative or in part even fictional, are foundational to science.

Given their purposeful partialness, models in science are designed in such a
way that their complexity is limited to a degree that matches human cognitive
skills while providing enough empirically adequate detail to enable an under-
standing of the phenomena. As the flip side of the same coin, the use of models
in science also involves some degree of acceptance of epistemic opacity concern-
ing those elements of a model which, at a given stage of inquiry, are deemed
irrelevant to an empirically adequate representation of the phenomenon under
investigation. However, as to the first point, simplification is not per se the aim of
modelling in science (unlike, for example, the discussion in Sullivan 2019 seems
to suggest). It is one among several possible ways of facilitating access to a phe-
nomenon among others, and only in some types of models it takes centre stage.
The relevant qualities of models are tailored to the aims and abilities of human
cognitive agents by whatever means suitable. As to the second point, epistemic
opacity is considered acceptable in a model only with respect to some of its
internal aspects, and only with respect to those aspects which are not expected
to interfere with proper recognition of the epistemically relevant elements, and
therefore the representational qualities of the model. Under the interpretations
outlined here, models are never supposed to be w-opaque or link-opaque, al-
though they might be h-opaque to a certain, methodically circumscribed extent.

Computer models: Computer models are in important ways at variance with the
kind of models described in the previous paragraphs. They rely on the distinctive
feature of the digital computer that, ‘without altering the design of the machine
itself, it can, in theory at any rate, be used as a model of any other machine, by
making it remember a suitable set of instructions’ (Turing, 1946, 1). Accordingly,
computer models may establish any kind of modelling relation that lies within
the domain of functions that are ‘effectively calculable’ or computable (Turing,
1936). Functions of this kind can be solved using a finite set of symbols, a finite
set of possible states, a transition function and a potentially infinite memory.
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A function is computable if and when these means jointly suffice to produce a
correct solution in a finite number of discrete steps. With respect to its use in
scientific modelling, the computational method is remarkable in at least three
ways:

c.1 It is precise and determinate in method and specification;
c.2 It is simple and uniform in its basic elements and principles;
c.3 It is ‘universal’ with respect to all phenomena that are amenable to the

requisite computational procedures.

In a relevant subset of cases, computational methods can be used to produce
numerical solutions to problems that are altogether unsolvable by the analytic
means of mathematics, in such a way that both the solutions and the paths
towards those solutions remain beyond the reach of human cognitive agents
(Humphreys, 2009).

If one goes by determinateness characteristic (c.1), one might expect com-
puter models to be paradigms of epistemic transparency. On a naive conception,
computer models should be more precise and more amenable to proof than the
analogy-based, expressly partial and sometimes deliberately distorted models of
pre-computational modern science. Given that epistemic opacity of AI is often
framed as opacity of algorithms, whereas algorithms are at the same time defined
as finite sequences of unequivocally defined discrete steps of effectively calculat-
ing a mathematical function (Markov, 1960; Kleene, 1967; Knuth, 1973), such a
naive conception might look problematic.

If one goes by the characteristic of simplicity and uniformity (c.2), which hold
on the level of basic operations, one might expect them to foster transparency
in principle. In practice, however, they might give way to various dimensions
and degrees of complexity and related problems with computational tractabil-
ity. The degrees of complexity vary with the degrees of attainable algorithmic
sophistication and computer power that affect the interactions between those
simple and uniform elements. Under this view, opacity problems are particu-
larly pertinent to computer models and complex AI applications that are not
specifically designed to be intelligible, interpretable or explainable to human ob-
servers. In Machine Learning, the demands of mathematical optimisation and
of human interpretability are expressly at cross purposes (Burrell, 2016). If and
when computational complexity of a model increases, its mathematical tractab-
ility diminishes, so that the algorithm’s operations and functions become more
difficult or practically impossible to discern. However, if complexity can be re-
duced or modelled, or if one can devise other means of interpreting or otherwise
meaningfully structuring that complexity, an opaque algorithm can be made
more transparent. This is the premiss of the Explainable AI (XAI) paradigm
(Gunning, 2019). Moreover, AI systems are designed under that paradigm to
either facilitate or directly provide explanations of their concrete paths to a
given solution.

If, however, one goes by the characteristic of universality (c.3), epistemic opa-
city starts at a more basic level of computer models and is harder if not impossible
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to resolve. Universality creates a specific epistemic problem that manifests even
if and when the previous condition of simplicity and uniformity is fulfilled on the
level of elementary operations of the computer model. Accordingly, higher-level
complexity is not the beginning of the problem. If a multitude of types of phe-
nomena can be modelled by the same limited set of computational tools, provided
that the phenomenon in question is amenable to computational modelling at all,
and if there is no similarity, isomorphism or sameness relation that one can reas-
onably expect to hold between that limited set of elements and the phenomenon,
and if understanding a model requires a grasp of such relations, epistemic opa-
city is inherent to computer models as such. With one notable exception that
I will discuss in the next paragraph, the computational method’s indifference
towards what human observers might learn from it is more fundamental under
the condition of universality than in the case of complexity. To obtain modelling
relations that rely on isomorphism or similarity as in non-computational models,
the computer model’s output will need to be interpreted, through visualisations
or in other forms suitable to human epistemic agents. Thus, there is no repres-
entational relation between the elements of the model and elements of the target
system that could be specified already on the basic computational level and that
would match non-computational modelling relations.

In computer models, the epistemically relevant modelling relations can there-
fore be and need to be established only on the higher levels of interpreted out-
put, which leads to two forms of underdetermination that are widely discussed
in the literature on computational methods (Turing, 1936; Putnam, 1967, 1960):
In the first case, ‘Turing Universality’, one can decompose various complex,
higher-order operations into sets of computational elements that, as such, are
type-identical. This is the type of relation indicated in the Turing (1946) quote
on p. 5 above. In the second case, known as ‘Multiple Realisability’, one can
decompose one complex, higher-order operation or set of operations into various
sets of distinct computational elements that jointly perform the same functions.
In either case, the properties of the computational elements of the model do not
unequivocally determine the model’s higher-level properties. An at least partial
exception to these two underdetermination problems holds if and when some of
the computational operations in the model are supposed to bear isomorphism,
similarity or sameness relations to a given phenomenon. In this kind of case,
the assumption is that the modelled phenomenon itself is in a relevant sense
computational or that some of its key elements have key properties in common
with computational processes.

One might object against this line of reasoning that it will be equally difficult
to infer the properties of an analogue model from the properties of its elements,
but the relevant difference is this: An analogue model and its elements are chosen
or designed in light of a perceived or expected similarity, isomorphism or same-
ness relation to a phenomenon. The elements are selected because some of their
properties are expected to do some specific part of the representational work
of the model as a whole. In contrast, there is no selection for such representa-
tional qualities in the computational elements of a computer model, that is, the
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algorithms, data sets or computer architecture. Their relevant representational
qualities can only be and must be entirely derived from the overall structure of
the model. To use an analogy: Where the elements of an analogue model play a
representational role that is similar to that of the elements of an image, where
one stroke of a brush might ideally suffice to represent an object or feature, so
that those elements individually carry some meaning and jointly shape the mean-
ing of the overall image, the role of the computational elements of a computer
model is more like that of the letters of an alphabet, which individually carry
no such meaning. Only the words and sentences in a language that uses these
letters do so. Only from there, the role of the individual exemplars of letters in
carrying that meaning can be reconstructed. Otherwise, there is little about the
language that one could infer from the limited set of letters of an alphabet alone.

The connection: If we map the previous analysis on the question of epistemic
opacity, it seems to fall into two distinct but related problems (see I. and II.,
p. 1–2 above):

I′. Complexity: If opacity is mainly a problem of complexity or computational
tractability more generally, it concerns the internal properties of a model.
To the extent that complexity can be reduced or modelled, opacity can also
be resolved on the level of internal properties. The expectation is that if and
to the extent that problems with the internal properties of the model (h-
opacity) can be resolved, opacity on the representational level (and therefore
w-opacity) can be resolved, too.

II′. Universality: If opacity is mainly a problem of the universal applicability
of the computational method, a different kind of epistemic uncertainty is
intrinsic to computer models. It manifests on the level of a model’s internal
properties, but it directly affects the representational properties of the model
as a whole (and therefore is w-opaque). If and to the extent that this type of
opacity is inherent to computer models, it can either be resolved by recourse
to external resources for interpreting the model’s output and its relation to
some phenomenon, or it cannot be resolved at all.

The universality condition is conceptually independent of the complexity con-
dition. In practice, they frequently interact though. The basic diagnosis is this:
Under both I′. and II′., each computational element of a model might individu-
ally be or be made epistemically (h-) transparent. It might be possible to know
how and by what rules that element operates, and how it interacts with the
other computational elements. However, this knowledge alone does not ensure
the model’s overall epistemic transparency under an internal perspective. Ac-
cording to I′., the interactions between the elements might be too complex. Nor
does that knowledge suffice to infer the representational relations of the model
as a whole. According to II′., this condition is imposed by the model’s compu-
tational nature and cannot be resolved by internal means.

The most pertinent case of interactions between the complexity and the uni-
versality variable are Deep Neural Network approaches in AI (DNNs; Goodfel-
low et al. 2016; Krizhevsky et al. 2012; LeCun et al. 2015; Schmidhuber 2015),
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where complex and intentionally biologically implausible connectionist architec-
tures are used to generate classifications or predictions from large data sets. DNN
methods accomplish this in two distinctive ways: First, their models are ‘gener-
ative’, that is, produced by the networks themselves rather than being explicitly
provided to them. Second, DNN architectures purposefully abstain from plaus-
ible analogies to natural forms of neuronal information processing. By virtue of
these features, above and beyond their complexity, DNNs provide little guidance
to human observers as to how they arrive at a certain classification or prediction,
and how it is supposed to represent aspects of the phenomenon in question. For
being maximally complex on top of being exquisitely computational, they ap-
pear to be inaccessible to the external means of fixing representational relations
that make other forms of computer models empirically meaningful. Reducing or
modelling their complexity in view of a certain epistemic aim is a difficult task
if that epistemic aim itself remains uncertain.

Conversely, the most pertinent case of an approach that assumes an analogy-
based modelling relation between some of its computational elements and the
phenomenon under investigation is the Predictive Processing paradigm (PP;
Clark 2013; Dayan et al. 1995; Hohwy 2013, 2020). It uses connectionist models
that are in terms of computational architecture closely related to DNNs in order
to explain the functional principles of cortical information processing in humans
and other higher animals. In the PP context, cortical information processing is
modelled as a bi-directional hierarchical process of prediction error minimisation
between sensory input and higher-order dynamic world models. Sensory inform-
ation and world models are respectively understood as the input and output
layers of a neural network. In similar fashion to DNNs, PP networks involve
a generative model-building process, but unlike DNNs, their network architec-
tures and their elements are geared towards biological realism. In turn, the error
minimisation strategies in PP networks are modelled on probabilistic techniques
of data compression in computer engineering. Accordingly, cortical information
processing is modelled as a sui generis computational process, with pertinent
analogies holding, if not on the level of elementary computations, then on higher
levels of computational architectures and operational principles.

Conclusion: Models are entities that work for concrete epistemic agents. Their
purpose is to make phenomena intelligible for those agents. Whereas the com-
putational method is supposedly universal, its very universality makes computer
models prima facie indifferent to the needs and aims of concrete epistemic agents.
Where PP is an approach that postulates partial analogies between computa-
tional architectures and cortical information processing, and thereby propose a
model that seeks to facilitate epistemic access to a certain circumscribed domain
of phenomena in cognitive inquiries, DNNs, along with other Machine Learning
approaches, are the paradigm of an approach to computer modelling where in-
difference towards the needs and aims of human epistemic agents is elevated to
an operational principle. If we go by the complexity condition outlined in I′.
above, all their internal opacity-qua-complexity might be resolvable in principle,
but the requisite solutions might not be reachable or useful for human epistemic
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agents. If we go by the universality condition in II′. above, human epistemic
agents might not be the natural addressee of those models. In limiting cases,
the solutions offered are per se beyond the scope of human-made analysis. In
some cases and under certain conditions, the models might be tailored to human
epistemic purposes by establishing some form of analogy relation and thereby
be made more transparent and scientifically useful. In other cases, this aim will
remain stubbornly elusive.
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