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Significance testing, a commonly used method for testing statistical hypotheses, has been
harshly criticized by philosophers. Howson and Urbach (1993, p. 208) claim that “the results of a
significance test, either of the Fisher or Neyman-Pearson variety, are often in flat contradiction to
the conclusions which an impartial scientist or ordinary observer would draw” and that “although
they are thoroughly fallacious, the methods of significance testing and classical estimation are
still being advocated in hundreds of books, required texts in thousands of institutions of higher
education, where hundreds of thousands of students are obliged to learn them.” (1993, p. 252)
While they make their criticisms of significance testing in the context of defending an
alternative, Bayesian approach to statistical inference, you don’t need to be a Bayesian true
believer to think that the reasoning used in significance tests is fallacious in at least two ways.'

Nevertheless, in practice, most of us treat studies that use significance tests as reliable,
and it seems as if we’re reasonable in doing so. We’re more likely to take a new drug if we read
that medical studies (which typically use significance tests) support the claim that it’s effective,
we’re more likely to vote for a new educational reform if statisticians tell us that it improves
literacy, etc. While Bayesians like Howson and Urbach have alternative methods that they’d like
to see used to evaluate statistical hypotheses, in the status quo these methods generally aren’t

used. In light of this, it looks as if those who are sympathetic to the criticisms of significance

' As Ill discuss later in the paper, Sober (2008) criticizes significance testing, though he is not a Bayesian, and
accepts some of the standard criticisms of Bayesianism made by defenders of orthodox statistical methods like
Mayo (1996).



testing made by Howson, Urbach, and others face an unpleasant choice: find fault with the
criticisms, or become skeptical about a wide range of empirical scientific conclusions. And even
if we're not worried about whether significance testing is reliable in practice (maybe a simple
inductive argument is enough to support this conclusion), insofar as we accept the standard
criticisms we might still be uncertain as to why. In this paper I’ll offer an explanation; while
significance testing seems to allow for hypotheses to receive spurious support, there are certain
conditions under which the fact that a significance test would have us accept some hypothesis
does constitute good grounds—both from a common-sense point of view, and a Bayesian one—
for believing it. Furthermore, I’1l argue that we have good reason to think that these conditions
are generally met when significance tests are actually used. If I’'m right, we can agree with the
Bayesian about there being theoretical/foundational problems with significance tests, without

being skeptical about empirical conclusions drawn on the basis of them.

The structure of this paper will be as follows. First, I’ll explain some of the foundational
views about probability that inspired the development of significance tests. I’ll then explain how
significance tests work. Next, I’ll introduce two prima facie problems with significance testing—
respects in which they apparently allow for hypotheses to receive spurious support. I’ll consider
each problem in turn, arguing that we have good reason to think that cases in which these

features of significance tests lead to flawed evaluations of our evidence will be quite atypical.

1. Frequentism and Bayesianism

The debate between defenders of classical statistical methods and their opponents is in
part a debate about in which contexts we can fruitfully use the notion of probability. To the

Bayesian, probabilities can represent degrees of belief, and the problem of testing statistical



hypotheses is understood as a problem of how to move from a prior state of belief with respect to
a hypothesis to a post-evidence state of belief. Defenders of significance testing tend to favor an
alternative view known as frequentism, according to which we can only fruitfully talk about
probabilities in the context of repeatable types of events; according to frequentists, the
probability of a token event of a repeatable event type should be identified with the relative
frequency with which that event would occur were the event repeated many times.” Frequentists
understand the problem of hypothesis testing quite differently from Bayesians, since except in
rare cases,” hypotheses aren’t the sort of things that should be assigned probabilities according to
a frequentist—because of this, the problem isn’t conceived in terms of moving from a pre-
evidence probability for a hypothesis to a post-evidence probability. Deborah Mayo explains this

distinction and endorses the frequentist approach:

As C.S. Peirce urged in anticipation of modern frequentists, what we really want to know
is not the probability of hypotheses, but the probability with which certain outcomes
would occur given that a specified experiment is performed. It was the genius of classical
statisticians, R.A. Fisher, Jerzy Neyman, Egon Pearson, and others, to have developed
approaches to experimental learning that did not depend on prior probabilities and where
probability refers only to relative frequencies of types of outcomes or events. (1996, p.
10)

The statisticians Mayo refers to were aware of the possibility of allowing probabilities to
represent degrees of belief. However, they tended to regard methods of statistical hypothesis

testing based on this approach as too subjective. According to R.A. Fisher:

Advocates of inverse probability [this was the traditional name for the use of Bayes
theorem to generate posterior probabilities] seem to regard mathematical probability...as

* There are many difficulties associated with expressing this idea precisely. For a discussion, see Mellor (2005,
chapter 3)

’ When hypotheses themselves are the outcomes of repeatable event types, (for instance, if our hypothesis is that a
given coin is fair, we may assign that hypothesis a probability if the coin was randomly drawn from a barrel of coins
with some known proportion of fair coins) frequentists are fine with assigning them probabilities, and they agree
with Bayesians about what should be said about such cases.



measuring merely psychological tendencies, theorems respecting which are useless for
scientific purposes. (Fisher, 1947, pp. 6-7, quoted in Howson and Urbach, 1993, p. 72)

Defenders of the Bayesian approach are often quick to point out that there are many respects in
which frequentist statistical methods call for subjective input on the part of the researcher, and to

argue that this vitiates any supposed objectivity advantage held by classical methods:

In order to derive a unique conclusion from a Fisherian test of significance, arbitrary
decisions need to be taken...As a leading advocate of Fisherian methods admitted,
“[t]here is no answer to [the question “Which significance test should one use?’]...except
a subjective one”, adding in parentheses that it was “curious that personal views intrude
always” (Kempthorne, 1971, p. 480). Indeed, it is curious, when one considers that
Fisherian methods arose from a dissatisfaction with the Bayesian approach on account of
its supposed subjectivity! (Howson and Urbach, 1993, pp. 192-3).

While I agree with Howson and Urbach, ultimately I’ll argue that in a sense, it’s the subjectivity
of the classical methods that saves them from the putative problems I’ll consider. That is, I'll
argue that it's only because of the discretion researchers have in deciding when to employ
significance tests, and the motives they have to only employ them when they're likely to lead to
favorable results, that the conditions under which they actually are used are also conditions under
which they are reliable. But 'm getting ahead of myself. Now that I’ve explained some of the

background views that motivate significance tests, I can explain how they work.
2. Significance Testing: Three Steps

Using significance testing to analyze the results of an experiment is a three step process.”
The first step involves formulating the null hypothesis. How do we decide which hypothesis is

the null hypothesis? Actually, this is sometimes a difficult question, and one strand of criticism

* In this paper I'll discuss Fisherian significance testing. While I think similar remarks would apply to Neyman-
Pearson methods, I don’t explicitly argue for this in the body of the paper. Readers suspicious that my arguments are
only of limited interest as a result should wait until they get to note 18 before making up their minds—I’1l give some
reasons to think that while discussing Neyman-Pearson methods would complicate things, it wouldn’t change the
main thrust of the argument.



of significance testing focuses on the arbitrariness involved in designating a particular hypothesis
as the null, and the ways in which our conclusions can depend on this seemingly arbitrary
choice.” I won’t address this worry about significance testing here, except to mention that in
many (perhaps most) cases, there’s a natural choice for the null hypothesis. Intuitively, the null
hypothesis is the boring hypothesis—the one according to which any apparently interesting
results in the experiment are just due to chance. If we’re interested in testing to see whether a
treatment for a disease is effective, and we have a control group and a treatment group, the null
hypothesis is the hypothesis according to which the treatment has no effect. What does it mean to
say that results are just due to chance? I can’t fully address this question here, but it should be
taken at least to imply that in cases involving a control group and a treatment group, any
discrepancies between the control group and the treatment group don’t reflect a causal impact of

the treatment.

The second step involves asking the following question:

Assuming that the null hypothesis is true, what is the probability of observing a value for
the test statistic that is at least as extreme as the value that was actually observed?™

The test statistic is just the quantity measured in the experiment (or a quantity obtained from
calculation using quantities directly measured in the experiment). In a study about whether the
children in Horseshoe Creek have stunted growth, the test statistic might be the difference
between the average height of children in that town and the national average. In some cases,

completing the second step is relatively simple. For instance, in the above case, suppose the null

* (Sober 2008, p. 62) However, I do think some of my arguments later in the paper will suggest that the choice of the
null hypothesis, while important, isn’t completely arbitrary. Also, later in the paper I discuss a case in which
Howson and Urbach argue that arbitrariness in the selection of the null leads to problems later in the paper, and I
argue that while they're right about that case, there are important respects in which it is atypical--cases like it are not
likely to arise in practice.

6 «Statistical Hypothesis Testing,” in Wikipedia, summarizing description in Sage Dictionary of Statistics (2004, p.
76)



hypothesis is that any differences in height between the children in Horseshoe Creek and the
national average are due to chance variation (and not, say, due to pollution in the creek). If we
know that that height in the national juvenile population follows a normal distribution, and we
know the standard deviation from the national mean, and sample sizes are sufficiently large, then
it’s not hard to complete step two.” When we don’t know these things (that is, when sample sizes
are too small for the sample mean to be distributed normally, or when we don’t know that the
distribution is normal, or when we know it’s normal, but don’t know the standard deviation)
things get more complex, and more sophisticated mathematical methods are used. But no matter
how sophisticated the mathematical methods used to complete step two, the basic three-step

structure of significance testing is the same.

The third step involves the decision of whether or not to reject the null hypothesis. This
decision depends on the answer to step two. If the probability obtained in step two is below some
predetermined critical threshold (often .05, or .01), the experimenter rejects the null hypothesis
(i.e. accepts that the null hypothesis is false). If it is above the critical threshold, the experimenter

does not reject the null hypothesis (which is not the same thing as accepting the null hypothesis).

To someone with broadly Bayesian sympathies, this talk of accepting and rejecting in
binary terms can seem strange—we might instead be interested in a method that lets us assign a
probability to the null hypothesis, rather than one that simply gives us a binary reject or don’t

reject answer. How to interpret the decision to reject the null hypothesis is actually a matter of

7 Basically, we’d see how far the sample mean was from the national mean. We’d then convert the difference
between the sample mean and the national mean into standard units (i.e., we’d see how many standard deviations the
sample mean was from the national mean). Suppose the difference was x standard units. We’d then check to see
what proportion of the area under the normal curve is more than x standard units away from the mean. That
proportion is the probability that we should observe a value for the test statistic at least as extreme as the one we did,
on the null hypothesis.



some controversy. Howson and Urbach bring a number of quotes from classical statisticians to
bear in defense of the interpretation according to which rejecting a hypothesis amounts to
resolving to behave as if it were definitely false, while not necessarily believing this. They go on
to point out that significance tests don’t rationalize such behavior—a hypothesis’ being rejected
in a significance test rarely warrants a scientist in betting his life on against a penny that it is
false, though such behavior would be appropriate were the scientist certain that the hypothesis

were false. (1993, pp. 203-6) However, Mayo is quick to argue against this interpretation:

The misunderstanding concerns the construal of “accept” and “reject” on the
behavioristic model. Actually, Neyman is quite clear on what he intends. Accept H,
Neyman says, means to take action A rather than B. Accept H does not mean believe H is
true. Accept H does not mean act as if you knew H was true, in the sense of behaving in
any and all of the ways you would if you knew that H was true...Neyman’s behavioristic
model literally identifies the acceptance of H with the adoption of a decision to take some
specific action 4 rather than B where A4 is set out at the start. (1993, pp. 369-70)

This interpretation of significance tests is often associated with their use in industry. A beer
brewer might be interested in ensuring that his beer is of sufficiently high quality before shipping
it to market. The brewer might designate the hypothesis that the beer is of acceptable quality the
null hypothesis, and might associate this hypothesis with the action of shipping the beer to
market. Rejecting the null would correspond to not shipping the beer and instead brewing a new
batch. The brewer might select a sample of the beer, perform a significance test based on an
analysis of its quality, and use this test to decide whether or not to accept the hypothesis that the

beer is ready to ship--i.e., whether or not to sell the beer."

¥ William Saley Gossett devised the t-test (a significance test designed for analysis of small sample sizes) based on
his work for the Guiness brewery in circumstances like the ones described above. The Student’s t-test (so-called
because Gossett published anonymously as “Student” in order to protect Guiness’ trade secrets) was used as a
method for cheaply monitoring beer quality. (Mankiewicz 2000, p. 158)



While this interpretation avoids the problems discussed by Howson and Urbach, it’s not
clear how well it justifies the uses to which we’d like to put significance tests. In many cases,
significance tests are used to justify an action 4 even when the decision to reject the null
hypothesis wasn’t associated with taking action 4 by the researchers who conducted the test.
Suppose a school board is interested in deciding whether or not to implement some new method
of instruction—call the action of implementing this method on a wide scale 4. They find a study
in which a significance test was used to analyze some experimental results in which the null
hypothesis that the method of instruction didn’t improve literacy was rejected. They decide to
take action 4, and the study is part of their grounds for doing so. This sounds like a paradigm
case of the use of statistical studies to guide action, and (hopefully) it can be reasonable even if
the researchers who performed the study had no idea that the school board was considering
action 4, and wouldn’t have taken the study to justify A. It could be that the researchers thought
that even if they rejected the null hypothesis in their study, taking action 4 would cost too much
money to be worthwhile. That the researchers were of this opinion shouldn’t undermine the
school board’s decision to use the study to support taking action 4, at least not if studies that use
significance tests are to be of much help to people other than the researchers who perform them.
If significance tests are to play the roles we’d like them to, they must be allowed to guide action
in a more general way than the one Mayo suggests; it’s not enough to only allow them to guide

us with respect to specific actions pre-set by the researchers.

Ultimately, Mayo rejects what she calls Neyman’s behavioristic construal of acceptance
and rejection spelled out above (though not for the reasons I’ve urged), in favor of an alternative,

more epistemological understanding.



The present account of testing licenses claims about hypotheses that are and are not
indicated by tests without assigning quantitative measures of support or probability to
those hypotheses...The Bayesian critic may persist that if I do not secretly mean to assign
some number to the inferences licensed by my tests, then what do I mean by evidence
indicating hypotheses? My answer is the one I have been giving throughout this book.
That data indicate hypothesis H means that the data indicate or signal that H is correct,
much as I might say that a scale reading indicates my weight...What does it mean to infer
that H is indicated by the data? It means that the data provide good grounds for the
correctness of H. (1996, pp. 409-10)

Perhaps uncharitably, I’1l interpret Mayo as arguing that when significance tests would have us
reject a hypothesis, we ought be relatively confident that the hypothesis is false (though the tests
don’t warrant any specific numerical degree of confidence). That is, on this interpretation
significance tests provide qualitative constraints on our levels of confidence in the hypotheses
they are applied to. I say that this is perhaps uncharitable because it may look too close to taking
the goal of hypothesis testing to be finding out which hypotheses are probably true/false, rather
than some other goal more congenial to the frequentist. However, without interpreting the upshot
of significance tests along these lines, I don’t see how they can be taken to guide action in the
ways they are typically thought to be able to. That is, an adequate interpretation of what it is to
accept that an educational method is effective should explain why taking such an attitude might
justify implementing the method on a wide scale, but not betting one’s life against a penny that
doing so will improve literacy. If accepting that an educational method is effective means
becoming pretty confident that it is effective while not being certain, then we have a
straightforward explanation. Furthermore, it should do these things without requiring that
accepting the hypothesis involves assigning it some precise probability. Perhaps it’s lack of
imagination, but other than my “qualitative constraints on levels of confidence,” interpretation,
I’m not sure what will do the job. In my defense, it’s possible to find similar interpretations

urged in classical statistics textbooks. For instance, in Principles of Statistics, M.G. Bulmer
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writes that “the rejection of a hypothesis...provides good reason, in the sense of rational degree
of belief, for supposing the hypothesis to be false, but no numerical value can be placed upon

this degree of belief.” (1979, p. 165)

So how would we use significance testing in the case of the children of Horseshoe Creek?
We’d formulate our null hypothesis—in this case, it would be the hypothesis that any differences
in height between the children of Horseshoe Creek and the national average were due to chance
variation. We’d then collect our results—we’d measure the children, or look at the results of
previously obtained measurements. Suppose we found that the children of Horseshoe Creek
were, on average, 2.7 inches shorter than the national average. We’d then compute the
probability that the difference between the average height of the children of Horseshoe Creek
and the national average height should be at least 2.7 inches, assuming that any differences in
height between these two populations are just due to chance variation. If this probability were
below the critical threshold we’d reject the null hypothesis, and conclude that probably, the
difference in height between these two populations is at least in part due to some factor(s) other
than chance variation. In the next section, I’ll consider some prima facie problems for this

method.
3. Two Apparent Fallacies in Significance Testing
Consider the following, deductively valid instance of modus tollens:
P1.  If the null hypothesis is true, then the value for the test statistic will not be at least
as extreme as x.

P2. The value for the test statistic is at least as extreme as x. Therefore:

C. The null hypothesis is false.
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If we’re warranted in being certain in P1 and P2, then we’re warranted in being certain in C. We
can see significance testing as moving from this uncontroversial (at least if appropriately hedged)
idea to the incorrect one that mere high probability in P1, combined with certainty in P2,
warrants high probability in C. That is, the argument in a significance test might be represented

as follows:

P1*. If the null hypothesis is true, then the value for the test statistic will probably not
be at least as extreme as x.

P2. The value for the test statistic is at least as extreme as x. Therefore:
C*.  Probably, the null hypothesis is false.

Elliott Sober calls this form of reasoning Probabilistic Modus Tolens, (hereafter PMT) and he
points out that it is invalid. (2008, pp. 48-51) I’ll go on to explain why, but first it’s worth noting
that what’s important isn’t how we represent the argument used in significance testing. A
significance tester might agree that the argument from P1* and P2 to C* is invalid, and insist that
his argument runs from P1 and P2 to C; he could do this if he allowed premises to be used in
arguments not just when they were certain, but also when they had high but sub-maximal
probability. His reasoning would be just as fallacious. The fallacy is committed whenever
someone takes an occurrence that was unlikely on the assumption that some hypothesis is true to
be enough to establish that the hypothesis is unlikely to be true—someone who makes this
mistake might represent their inference as moving from P1* and P2 to C*, or as moving from P1

and P2 to C.

But what’s wrong with PMT? I roll a die ten times. The sequence of numbers showing on
the face of the die is as follows: 4, 4, 1, 3, 1, 3, 6, 3, 4, 3. Call this sequence S. Now, consider the

hypothesis that the die is fair—each face is equally likely to come up, and the each roll is
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independent from the rest. The probability that I should obtain sequence S upon rolling the die 10
times, on the hypothesis that the die is fair, is quite low (in particular, it’s the same as the
probability for any other particular sequence, 1/6 to the tenth power). But I did obtain sequence
S. PMT would tell us to conclude that probably, the die isn’t fair. But this would be silly (full
disclosure: I actually obtained S using a random number generator). Given typical background
assumptions, if you saw a die produce the sequence S, it would be unreasonable for you to think
that it probably wasn’t fair.” Significance testing seems to rely on PMT, and PMT is a fallacious

form of argument, so we might worry that significance testing is unreliable.

One way of fleshing out this worry is that whether the occurrence of an event that was
unlikely according to some hypothesis H counts as strong evidence against H depends on things
that significance testing doesn’t seem to take into account, such as whether there are other
hypotheses that might explain the event, and how probable these hypotheses are relative to H.
For instance, if there are no alternative hypotheses that provide a better explanation of the event
than H, then the event may count as evidence in favor of H, rather than a reason to reject it, even
though on the supposition that H is true, the event was very improbable. In such circumstances, it
would seem that PMT-based significance testing would support spuriously rejecting the null
hypothesis. Before responding to this worry, I’d like to introduce the second main (apparent)

problem for significance testing I’ll consider in this paper.

When carrying out step two of a significance test, we don’t compute the probability that

we should observe the results we actually did observe on the assumption that the null hypothesis

? Sober considers other cases of probabilistic modus tollens leading to rejection of warranted hypotheses. In
particular, he points out that any probabilistic theory, given enough data, will assign a low probability to the total
dataset, and so would be rejected under PMT. (2008, p. 51)
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is true. Rather, we compute the probability that we should observe results at least as extreme as
the ones we actually did observe, on the assumption that the null hypothesis is true. That is,
rather than making our decision about whether or not to reject the null based on our actual
evidence, we use a strictly logically weaker description of that evidence (that the observed value
for the test statistic was x entails that it was at least as extreme as x, but the reverse entailment

does not hold).

In many cases, significance testing couldn’t get off the ground without this logically
weakened description of the evidence. This is because sometimes the null hypothesis entails that
each possible maximally specific result of the experiment is equally likely (for instance, the
hypothesis that the die is fair entails that each possible specific sequence of rolls is equally
likely). If we must make our decision about whether or not to reject the null based only on how
likely the exact result is on the assumption that the null is true, then in cases like these,
depending on the chosen threshold either every result would force us to reject the null, or none
would. For example, in a case where we rolled the die 10 times, and used significance testing
applied to the specific sequence of rolls, if our threshold was > (1/6)'° we’d always reject the
null. If the inequality went the other way, we’d never reject it. By using some logically weaker
description of the evidence (e.g., that there were four 3’s, three 4’s, one 6, and two 1°s) we can
ensure that some results will be more likely, given the null, than others; while each specific
sequence of rolls is equally likely, for combinatorial reasons, each distribution of numbers is not
(e.g. there are more ways to get a sequence with three 1°s, two 3’s, and five 5’s than there are to
get a sequence with ten 1°s). This way, whether we reject the null can depend what the outcome
of the experiment turns out to be, rather than being mandated by the fact that each possible

outcome is equally likely.
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However, the fact that significance testing couldn’t be fruitfully applied in certain cases
without using logically weakened descriptions of the results of an experiment doesn’t show that
reasoning with logically weakened versions of one’s evidence is legitimate. Two wrongs don’t
make a right—if significance testing didn’t use PMT, weakening the evidence wouldn’t be
necessary. In general, weakening the evidence isn’t ok.'® Consider the following case. I'm at a
party, and I can’t remember who’s hosting it, though it might be Sam. I pick a guest at random to
introduce myself to, and lo and behold, it’s Joe the plumber. I know that Sam hates plumbers and
tends not to invite them to his parties (at least, he invites them at far lower rates than do other
people who might be hosting the party). However, Sam loves Joe the plumber, and always
invites him to the parties he hosts. The natural thing to say about this case is that when I run into
Joe the plumber, I get evidence that the party is hosted by Sam (to make the case rock solid, we

may assume that the other people who might be hosting the party hate Joe the plumber).

However, if instead of reasoning with my actual evidence, I use a logically weaker
version of it, perhaps the proposition that I ran into some plumber or other, then my evidence
may seem to support rejecting the hypothesis that Sam is hosting the party. After all, if Sam were
hosting the party, the chance that a randomly selected guest would be a plumber would be quite a
good deal lower than if someone else were (Sam generally doesn’t like plumbers—other hosts
tend to invite more of them). In general, there’s no guarantee that in reasoning with weakened
versions of one’s evidence, one won’t find oneself rejecting hypotheses spuriously—i.e.,
rejecting them only because one isn’t taking into account one’s total evidence. Insofar as one

ought to accept or reject hypotheses based on what one’s total evidence supports, significance

' This has been pointed out by a number of authors. Sober (2008, p. 53) discusses weakening the evidence in the
context of Fisherian significance testing. White (2000) does so in the context of fine tuning arguments for multiple
universes, and Kotzen (Draft) does so in his paper “Multiple Studies and Evidential Defeat.”
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testing seems misguided. It looks as if it commits the epistemic sin of weakening the evidence.
Reasoning from the fact that some logically weakened version of one’s evidence supports
rejecting a hypothesis H to the conclusion that one’s total evidence supports rejecting H amounts

to committing the Fallacy of Weakening the Evidence.""

We’ve found two apparent fallacies that significance testing seems to commit: the PMT
Fallacy, and the Fallacy of Weakening the Evidence. Both of these fallacies seem to allow that a
significance test could recommend rejecting the null hypothesis—concluding that it is unlikely to
be true—when a reasonable evaluation of one’s evidence would point the other way. In what
follows, I’ll address these issues in turn. My response in both cases will be similar. First, I’ll
identify some conditions under which these forms of reasoning are valid—i.e., conditions such
that, when they hold, reasoning with PMT and weakening the evidence won’t lead you from true
premises to false conclusions. I’ll then argue that we have good reason to think that these

conditions tend to hold when significance testing is actually used.

Before moving on, however, I’d like to say a bit about what I won’t do. In this paper I'm
mainly interested in giving reasons to think that in practice, researchers who use null hypothesis
won’t reject the null when the evidence doesn’t warrant assigning it a low probability, i.e., won’t
commit are called type one errors. Statisticians are also concerned to design procedures that are
unlikely to fail to reject the null when it is in fact false—failing to reject the null when it’s false
is known as a type two error. % In this paper, ultimately I'm interested in arguing that when

significance tests tell us to reject the null, we should agree that the null is probably false—I

' Sober (2008, p. 53) lodges this complaint against significance testing, as do Howson and Urbach (1993, p. 176)
2 Mayo explains the distinction in her (1996, pp. 159-60)
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won’t take up the question of whether significance testing too often fails to recognize evidence

against the null."

4. PMT and Alternative Hypotheses

Let’s return to the Horseshoe Creek case. Suppose some parents, concerned about
chemicals in the creek (suppose that children in the town tend to swim in the creek), have asked
that studies be done to determine whether pollution is stunting the growth of their children. As
before, the difference between the mean height of children in Horseshoe Creek and the national
mean height is 2.7 inches. Now, suppose that given the number of children in Horseshoe Creek,
and given how small the standard deviation in national height is, the probability that the
difference between these means should be 2.7 inches, on the hypothesis that the difference is just
due to chance variation, is vanishingly small, say, .003. In this case, it seems quite natural to
think that good evidence has been obtained that some factor is stunting the children’s growth.

Why is this? Is there a way of explaining this that doesn’t just rely on PMT?

In this case, collecting some data produces some very improbable results, and it seems as
if we get strong evidence that the hypothesis that the results are just due to chance is false. In the
case where a die is rolled 10 times, we get a very improbable result, but we don’t get strong
evidence that the result isn’t due to chance. What’s the difference? I’ll first give an informal
explanation of the difference, which I’ll then put a Bayesian gloss on. In the Horseshoe Creek
case, there’s an alternative hypothesis—the hypothesis that something in the Creek is stunting

the children’s growth—which, if true, would make it quite likely that the results would be as they

1 Ultimately, I suspect that the most troubling criticisms Howson and Urbach have to offer of classical statistical are
the ones that suggest that significance testing is often too slow to recognize good evidence against the null
hypothesis, rather than ones that suggest that significance testing makes it too easy to reject the null. See especially
(Howson and Urbach 1993, sections 9.¢6, 10.c4, 11.e-f)
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actually are (i.e., that there would be a big difference between the Horseshoe Creek mean height
and the national mean height). Furthermore, this hypothesis, even before seeing the data, isn’t
antecedently extremely implausible. In the die case, this doesn’t hold. While there are alternative
hypotheses on which the sequence § is very likely to arise, (for instance, the hypothesis
according to which a genie is influencing the rolls, and he really loves that particular sequence)
these alternative hypotheses are extremely implausible.'* In general, when there’s an alternative
hypothesis according to which the evidence was quite likely, and that alternative hypothesis isn’t

itself too implausible, PMT is a good heuristic.

In Bayesian terms, when some hypothesis H assigns the evidence £ a low probability
(i.e., P(E|H) is low), and there’s some alternative hypothesis A’ such that P(E|H") is high, then if
the prior probability of A is high enough, then the posterior probability of H given E must be
low. To see this, take a simple case where the only two hypotheses assigned positive probability
are H and H’ (i.e., these are mutually exclusive and exhaustive hypotheses)'”. Let’s suppose that
P(E|H) = .05 (typically P(E|H) must be < .05 for results to be considered statistically significant,

which is usually a necessary condition for their being considered publishable). Furthermore, let’s

'* However plausible the genie hypothesis is, there are other genie hypotheses that are equally plausible that apply to
each specific sequence other than S. Because there are so many possible sequences, and none of the genie
hypotheses is much more probable than any other, none of the genie hypotheses can get assigned a non-negligible
probability.

You may challenge the claim that alternative hypotheses according to which S is likely to arise are
implausible. While I think that such hypotheses are very implausible relative to typical background assumptions, I
grant that one could have background information relative to which these alternative hypotheses would in fact not be
very implausible. But in cases like these, I submit that it will not be counterintuitive to say that given that the
sequence of rolls was S, one’s evidence supports rejecting the hypothesis that the die is fair.

' This assumption may seem unrealistic—why shouldn’t there by other hypotheses, besides the null and the
alternative hypothesis, that get positive probability? If we set up our null hypothesis as “any differences between the
control group and the experimental group are just due to chance variation” and our alternative hypothesis as “there
are differences between the control group and the experimental group that are due in part to some factor other than
chance variation”, it’s clear that they’ll be exclusive and exhaustive. Even if we don’t set up our alternative
hypothesis this way—we might set it up as claiming that differences are due to some particular factor—it needn’t be
unrealistic to set up a case in which any other hypotheses are improbable enough so as to be such that their inclusion
wouldn’t significantly change the analysis.
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assume that that P(E|H’) = .95, i.e., that the evidence is quite likely on the assumption of the
alternative hypothesis. The graph below plots the posterior probability for the null hypothesis H
against the prior probability for alternative hypothesis H’. The x axis represents the prior

probability of the alternative hypothesis H’, and the y axis represents the posterior probability

P(HIE).
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Figure 1

As the graph shows, even when the alternative hypothesis A has a relatively low prior
probability, if it makes the evidence £ much more likely than does the null hypothesis H, the null
hypothesis ends up strongly disconfirmed by E. As the prior probability of H” increases, the

posterior probability of the null hypothesis given the evidence falls lower and lower.

This observation isn’t new; many writers have noticed that the occurrence of an event

that is regarded as unlikely according to a hypothesis H counts as good evidence against H when
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there are plausible alternative hypotheses according to which the event is much more likely.
Under the conditions that there are alternative hypotheses that predict the evidence with much
higher probability, and these hypotheses aren’t themselves too implausible, PMT is a reliable
heuristic. Sober (2008, p. 57) makes essentially this point in his discussion of significance tests,
and he found the point in Hacking (who was himself quoting Gossett). However, this observation
isn’t yet enough to comfort critics of significance testing—while it should be uncontroversial
that under these conditions, a hypothesis’ being rejected in a significance test really does give us
good reason to regard it as unlikely to be true, we haven’t yet been given reason to think that
these conditions generally hold when significance tests are used. In the next section, I’1l try to

provide such reasons.
4.1 PMT, Predesignation, and the Decision to Perform a Significance Test

Before arguing directly that there’s generally a plausible alternative hypothesis that
assigns the results a high probability in cases where significance testing recommends rejecting
the null, I’ll need to take a brief detour. Results of experiments aren’t extreme simpliciter. They
are extreme in certain respects. Recall the sequence of die rolls S: 4,4, 1, 3, 1, 3, 6, 3, 4, 3. Is this
sequence extreme? The question is poorly formed. It is extreme with respect to how few 2’s and
5’s it contains—it couldn’t contain any fewer, and the probability that a sequence of 10 rolls of a
fair die should contain so few is quite low: (2/3)'°. However, it is not extreme at all with respect

to the sum of the members of the sequence.

That experimental results are not extreme simpiciter, but are only extreme in certain
respects might seem to raise a worry about significance testing. Almost all realistic sets of data

will be extreme in some respect. Even for data that are intuitively “typical”, there will usually,
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nevertheless, be respects (perhaps unnatural, gerrymandered respects) in which they are quite
extreme, and in which it was improbable that they should’ve turned out to be so extreme. In the
coin case, this is obvious. We might worry that this means it’s too easy to reject the null when
it’s true: just run an experiment, look for a respect in which the results are improbably extreme
(there will almost always be at least one, even if the null is true), and then use a significance test
to conclude that the null ought to be rejected. If significance testing really were so easy to
exploit, we’d have reason to be worried. However, things are not so dire, and understanding why
they are not so dire will help us see why the conditions under which PMT is reliable are

generally met when significance testing is used.

In fact, statisticians are well aware that were it possible to inspect data after they had
been collected and only then decide which hypothesis to subject to a significance test, it would
be quite easy to reject the null; under such a testing regime, knowledge that a researcher had
rejected a hypothesis in a significance test would be poor evidence that it was false. Egon

Pearson (quoted by Mayo) writes:

To base the choice of the test of a statistical hypothesis upon an inspection of the
observations is a dangerous practice; a study of the configuration of a sample is almost
certain to reveal some feature, or features, which are exceptional if the [chance]
hypothesis is true. (Mayo 1996, p. 194)

This danger is typically guarded against by norms of predesignation, which require that
researchers decide which hypothesis to test before inspecting the data. While such norms don’t

forbid forming new hypotheses after inspecting the data, if such hypothesis are to be subjected to
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a significance test, they must be tested using a different set of data than the one that inspired

them.'¢

One way of understanding the function of norms of predesignation is as requiring the
following. Researchers must decide in advance which respect of extremity is such that, if and
only if the results are extreme in that respect, and it was improbable on the assumption of the
null that they should be so extreme in that respect, they’ll reject the null. This requirement rules
out using the process for automatically rejecting the null discussed above. Because researchers
must decide in advance how they’ll analyze their data, they can’t collect data and then look for

(possibly spurious) respects in which the results are improbably extreme.

Why does the fact that researchers must decide in advance what statistical test they’ll
apply to their data make it likely that the conditions under which PMT is reliable are generally
satisfied when significance testing is used? I submit that being required to decide in advance that
they’ll reject the null if and only if results are (with respect to the null) improbably extreme in
some particular respect R makes it probable that significance testers have in mind an alternative

hypothesis H’ that satisfies two conditions:

1. On the assumption of H’, it is highly probable that results should be improbably
extreme in respect R. (that is, improbably extreme with respect to the null)
2. H’itselfis relatively plausible.
Why is it natural to think that significance testers typically have in mind an alternative

hypothesis H’ that satisfies the two conditions above in mind? Just because if these conditions

hold, then analyzing your data with the policy of rejecting the null in case results are improbably

' Mayo (1996, chapter nine) discusses such norms at length. Bulmer also says that a hypothetical violation of
predesignation which he discusses “would clearly be cheating.” (1979, p. 143)
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extreme in respect R is a strategy that’s likely to lead to interesting, publishable results (i.e.,
results on which you reject the null). If either of these conditions fails to hold—if there are no
plausible alternative hypothesis according to which the results are likely to be improbably
extreme in respect R—then a policy of rejecting the null just in case results are improbably
extreme in respect R will look like a waste of time. That is, if the null hypothesis says that results
are unlikely to be extreme in respect R, and no other plausible hypotheses say that results are
likely to be extreme in respect R, then results are unlikely to be extreme in respect R, and running
a significance test that only rejects the null under these conditions is unlikely to lead to rejecting
the null.

The following example will help make this clear. Suppose there are two groups of people
who have some disease, the control group and a group that’s been given a treatment. The null
hypothesis is that the treatment is ineffective. Furthermore, suppose we have some quantitative
measure of how bad a given case of the disease is—days to recovery, perhaps. Assuming that the
null hypothesis is true, the difference between the average number of days to recovery among the
control group and the treatment group will probably be small. It’s quite unlikely (suppose the
probability is 5%) that it should be greater than two days (i.e., it’s unlikely that the treatment
group should recover on average more than two days faster than the control group, if the null
hypothesis is true). On the alternative hypothesis, the treatment is effective in shortening
recovery times, and it’s quite likely that the difference between the average time to recovery in
the control group and the treatment group will be at least two days. This situation is represented
in figure 2. The dark and light curves represent, respectively, probability distributions over the
difference between average recovery times in the two groups on the null hypothesis, and on the

alternative hypothesis. That the dark curve peaks at zero means that, according to the null
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hypothesis, the most likely difference between the two averages is zero days. That the light curve
peaks at three means that, on the alternative hypothesis, the most likely difference between the

two averages is three days.

= Null Hypothesis

Alternative Hypothesis

Figure 2

Now, suppose a researcher is interested in using a significance test with critical threshold
.05 to evaluate the effectiveness of the drug. That is, the null hypothesis will be rejected if the
treatment group recovers at least two days faster, on average, than the control group (remember,
there was only a 5% chance on the null hypothesis that this would happen). The area to the right
of the vertical line represents this “rejection region” i.e., the set of values for the difference
between the average times to recovery in the two groups such that, if the actual value is in that

set, the null hypothesis will be rejected."”

' In my example, the researcher would be using a one-tailed test—that is, the rejection region would comprise only
one tail of the null hypothesis. Fisher favored two-tailed tests. Were a two-tailed test applied to the above case, the
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Suppose the researcher thinks that the alternative hypothesis isn’t all that implausible. In
this case, performing a significance test will look like an attractive option. After all, on the
assumption of the alternative hypothesis, it’s quite probable that the result of the experiment will
lead to rejecting the null hypothesis—most of the area under the curve representing the
probability distribution on the alternative hypothesis is in the rejection region for the null
hypothesis. This fact wouldn’t be of interest if the alternative hypothesis were extremely
implausible, but if the researcher thinks that there’s a decent chance that the alternative
hypothesis is true, then performing a significance test will look like a promising strategy for

finding some interesting, publishable results.

But conditions like the ones described above are exactly the sort of conditions under
which, as argued earlier, PMT is reliable. That is, when there’s an alternative hypothesis
according to which the evidence (in this case, an average recovery time in the treatment group at
least two days faster than that in the control group) is quite likely, and that alternative hypothesis
isn’t too implausible, then it’s a good inference to move from the premise that the evidence is

improbable on the assumption of the null hypothesis to the conclusion that the null hypothesis

null would be rejected if the treatment group recovered on average at least two days faster, or at least two days
slower, than the control group. (Actually, it’d have to be more than 2 days to maintain the .05 significance level—if
a test were run that would reject the null if the average difference were more than 2 days in either direction, it would
only be significant at the .1 level) However, modern statistical practice recognizes both one-tailed and two-tailed
tests. If I’'m right, whether researchers opt for one-tailed or two-tailed tests will depend on what they consider likely
results of their experiments. A researcher who thinks it likely that a treatment will shorten recovery times, and very
unlikely that it will hasten them, will opt for a one-tailed test; doing so will maximize his probability of rejecting the
null. A researcher who thinks it both reasonably likely that a treatment will shorten recovery times, and reasonably
likely that treated patients will react badly and will be sick for longer, but unlikely that it will have little or no effect,
will opt for a two-tailed test. In Principles of Statistics, Bulmer offers some remarks along these lines: “A one sided
range of alternative hypotheses gives rise naturally to a one-tailed significance test and a two-sided range of
alternative hypotheses to a two-tailed test.” (1979, p. 143). While Bulmer doesn’t offer any explanation of these
remarks, I think my explanation is the right one—we should understand the practice Bulmer refers to as involving
researchers doing their best to design tests that will lead to significant, publishable results, in light of their judgments
about the plausibility of various alternative hypotheses and how the probability distributions on these hypotheses
differ from the probability distribution on the null. The decision of whether to use a one-tailed or two-tailed test is a
nice illustration of a case where something like researchers’ prior probabilities play an important (and salutary) role
in classical statistical practice, even if they’re not explicitly acknowledged.
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probably isn’t true. Because researchers must decide in advance what sort of extreme results
they’re looking for, and because they want to be able to publish interesting findings, (i.e., they
want to be able to reject the null) they have incentives to only do significance tests when there
are plausible alternative hypotheses according to which results are quite likely to be extreme in
the relevant respects. These are the conditions under which PMT is not a fallacious and confused

form of reasoning, but rather a reliable simplifying heuristic.'®"

'® Statistically sophisticated readers might worry that my explanation of why Fisherian significance testing is
epistemologically kosher is uninteresting, because Neyman-Pearson testing explicitly involves alternative
hypotheses. Haven’t I just said that Fisher tests implicitly involve what Neyman-Pearson tests explicitly do? No.
While Neyman-Pearson testing does involve bringing in an alternative hypothesis, it doesn’t bring in the prior
probability of the alternative hypothesis—in particular, it doesn’t require that the alternative hypothesis have a
sufficiently high probability—nor does it require that the probability that the test statistic should be in the rejection
region for the null, conditional on the alternative hypothesis, be high in absolute terms. My defense of Fisher testing,
however, involved claiming that it’s precisely because these conditions are met (even though they’re not explicitly
required) that Fisher testing doesn’t lead us astray in rejecting the null. Because Neyman-Pearson testing doesn’t
involve prior probabilities, criticisms along the lines of PMT can be mounted, and a defense along much the same
lines as the one I’ve given for Fisherian testing could be given. Similarly, Neyman-Pearson testing involves
weakening the evidence in much the same manner as Fisherian testing, and I believe that my discussion of
weakening the evidence in later sections of this paper would apply in much the same manner to Neyman-Pearson
testing.

" 1t’s also worth noting a point of contact between my argument above, and the debate about the epistemic
significance of predicting experimental results versus merely accommodating them. A number of authors have been
attracted to the idea that when a theory entails some experimental result, it counts more in favor of that theory if it
predicted the result, rather than merely accommodated it (i.e., if the theory was designed so that it would be
consistent with the result). See e.g., White (2003) and Lipton (2004). For authors on the other side, see e.g. Collins
(1994) and Achinstein (1994).

A familiar point from this debate is that theories that predict tend to be more elegant and less ad hoc than
theories that accommodate. After all, it’s easy to get an empirically adequate theory by adding epicycles, but one can
only do this when one is accommodating data—when predicting, one doesn’t know which ad hoc epicycles one
must add to end up with a theory that will entail the data.

While this observation doesn’t settle the prediction/accommodation debate (authors are typically interested
in whether prediction is better evidence for a theory than accommodation /olding fixed things like how simple and
elegant the theory is), it is relevant to my point. The illegitimate applications of significance testing discussed above,
in which researchers first collect data and then look for respects in which they are extreme, are in a sense very much
like the practice of accommodating rather than predicting data. Take a case where researchers first collect their data
and then find only gerrymandered, unnatural respects in which the data are extreme with respect to the predictions of
the null. In such a case, running a significance test and claiming that we should reject the null because the results are
so improbably extreme is highly reminiscent of claiming support for a theory that accommodates a datum by
incorporating ad hoc, baroque epicycles. My arguments in the text suggest a reason why—if rejecting the null is
justified only when there’s an alternative hypothesis that is itself relatively plausible that better explains the results,
and hypotheses that predict that the results should be extreme in ad hoc, baroque respects tend to be implausible,
then the reasons why snooping for significance can lead to spurious rejections of the null are much the same as the
reasons why accommodating data by adding complex epicycles to theories can lead to spurious confirmation.
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The above argument depends on taking the plausibility judgments of researchers to be
generally reliable. In cases where this assumption fails, it’s possible that a researcher might run a
significance test because he has in mind an alternative hypothesis A’ that he takes to be relatively
plausible (but which in fact is not), and on which it is quite probable that the results of the test
should be in the rejection region for the null. In such a case, the test might lead to rejecting the
null (after all, flukes happen), even though there is no alternative hypothesis satisfying the two
conditions mentioned earlier. In this case, the null would be rejected, even though a Bayesian
would deny that good evidence against the null had been obtained. So the above considerations
should comfort us only if we take researchers’ judgments of the prima facie plausibility of the
hypotheses they’re interested in testing to be reliable. But I take it that this assumption is

reasonable.

However, that the response to the PMT worry depends on such an assumption is
significant for the foundational debates I mentioned earlier in the paper. As I noted in section 1,
frequentists sometimes criticize Bayesianism for its supposed subjectivity. However, this
criticism is dialectically ineffective if, in order to respond to the worry about probabilistic modus
tolens, frequentists themselves need to appeal to considerations that are intuitively just as
subjective as anything Bayesians require. And the assumption that researchers’ prior probability
judgments about the hypotheses they subject to significance tests are typically reliable seems to
be just that. While it perhaps isn’t subjective in exactly the same way that assigning prior
probabilities to hypotheses is thought to be—it seems to amount to much the same thing; it

amounts to relying on the reliability of the prior probability assignments of researchers.
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The preceding considerations should allay the worry that significance testing leads to
spuriously rejecting the null because it uses PMT. In the next section I’ll take up the worry that

significance testing may have us spuriously reject the null by weakening the evidence.

5. Weakening the Evidence

As the example of Joe the Plumber showed, sometimes one’s total evidence can fail to
support rejecting a hypothesis, even though a weakened version of one’s evidence would support
rejecting that hypothesis. Because significance testing seems to involve weakening the evidence,
we might worry that it often leads researchers to reject the null hypothesis in situations when,
were they to take their total evidence into account, they would not be reasonable in rejecting the
null. In this section, I’ll argue that this worry is misplaced—the cases where significance testing
is typically used are importantly unlike the case of Joe the Plumber, where weakening the

evidence significantly changes the direction in which the evidence points.

Let’s consider a case in which weakening the evidence is uncontroversially harmless.
Suppose one has a coin of constant but unknown bias—the probability of heads is unknown, but
it is known that the probability doesn’t vary from toss to toss. We toss the coin ten times in order
to get some evidence about the bias of the coin. In this case, if we describe our evidence just in
terms of how many heads and tails there were (rather than specifying the exact sequence
obtained) and reason about how well our evidence supports various hypotheses about the coin’s

bias, we won’t be making any mistake. The degree to which various hypothesis about the coin’s
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bias are supported or disconfirmed by evidence about how the coin landed depends only on how

many heads and tails there were—not on the order in which they arose.”’

There’s a nice explanation of why this holds in the coin case. Take a logically weakened
description of a sequence of tosses—that there were four heads and six tails, for instance. Each
of the hypotheses under consideration (hypotheses about the direction and strength of the coin’s
bias) will agree that each possible specific sequence consistent with there having been four heads
and six tails is equally likely. While they’ll disagree on just how likely each of these sequences
are, (e.g., the hypothesis that the coin is biased 0.6 in favor of tails will say that they’re more
likely than will the hypothesis that the coin is biased 0.9 in favor of heads) none of them will say
that some of these sequences are more probable than others. When all the hypotheses under
consideration agree that each possible specific body of evidence consistent with some logically
weakened description of a body evidence is equally likely, then it doesn’t make a difference
whether we reason with the weakened description of our evidence or with the more specific

version—the same hypotheses will be supported to the same degree either way.”!

%% Sober has a helpful explanation of this case. (2008, pp. 46-8) Classical statisticians would put this by saying that
subject to the assumption that the probability of heads is constant from toss to toss, the proportion of heads is a
sufficient statistic for estimating the bias—once the proportion of heads in a sample of tosses is known, no more
information can be obtained from the sample that would help better estimate the bias of the coin. See Bulmer (1979,
pp. 196-7) for a discussion of sufficient statistics. Howson and Urbach (1993) discuss sufficient statistics in a
number of places, both to criticize the classical explanations of why they should be used when possible, and to offer
what they take to be a more illuminating Bayesian alternative.
*!' PROOF:

Assume E is our weakened evidence, and there are n possible pairwise incompatible strengthenings of E:
E\, E,... E,. Furthermore, for each of the m hypothesis under consideration (i.e., each hypothesis that gets positive
probability) H;, P(E/|H;) = P(E,|H)... =P(E,|H;), though they needn’t all agree on what the value for this probability
is. We want to show that for each hypothesis H;, P(H;|E) = P(E;) for each E;—that is, whether we update on the
weakened evidence, or on some particular strengthening of it, the posterior probabilities of the hypotheses under
consideration will be unchanged.

First, we’ll prove that for each H,, P(H||E;) = P(H||E>)...= P(H||E,). For any given H,, for each E;, by Bayes
theorem P(H\|E;) = P(Ei|H\)P(H)/P(E;). By the setup of the problem, P(Ej|H,) is the same for each £; and P(H,) is a
constant, so if we can show that P(E)) is the same for each E;, then we’ll have shown that P(E}|H\)P(H\)/P(E;) is the
same for each E;. For any given Ey, P(Ey) = P(E\|H,) + P(EyH,)...+ P(EH,). But by the setup of the problem,



29

In the Joe the plumber case, it is not the case that all the hypotheses under consideration
(that it’s Sam hosting the party, and that it’s someone else) regard each possible specific body of
evidence consistent with the evidence that I ran into a plumber as equally likely. On the contrary,
assuming that Sam is throwing the party, some propositions you get by strengthening the claim
that I ran into a plumber are much more probable than others. (That is, it’s much more probable,
assuming that Sam is throwing the party, that I should run into Joe the plumber than it is that I
should run into Suzy the plumber, or Steve the plumber, etc.) When some of the hypotheses
under consideration regard some possible strengthenings of a weakened description of one’s
evidence as more likely than others, there’s no guarantee that reasoning with the weakened
version of one’s evidence is legitimate—some hypotheses might be confirmed, even though
they’d be disconfirmed (or confirmed to a significantly smaller degree) if you reasoned with your

total evidence.

It would be nice to be able to apply this lesson straightforwardly to the case significance
testing. Sadly, things aren’t so easy. In a significance test, it’s almost never the case that all
hypotheses under consideration agree that each way of strengthening the claim that the test
statistic was at least as extreme as x is equally likely. Nevertheless, I’ll argue that something

almost as good holds.

Let’s return to the case represented in figure 2. Suppose the treatment group actually

recovered 2.5 days faster, on average, than the control group. In this case, a significance tester

conditional on each H;, P(E;) = P(E,)...=P(E,). So the values of the terms in the series P(E;|H;) + P(E}|H>)...+
P(E;|H,) must be the same for each E;. So P(E;|H)P(Hy)/P(E)) is the same for each E;, so P(Hi|E|) = P(H}|E,)...=
P(H|E,).

Now, For each hypothesis under consideration H;, P(Hi|E) = Z,"P(H;|E;). By the result of the previous
paragraph, this implies that P(H}|E) = P(H;|E;)n. Also, P(E) = P(E;n for each E;. This is because each E; has the same
probability, they are pairwise incompatible, and their disjunction is equivalent to E. So P(Hi|E) = P(E|H;)P(H;)/P(E)
= P(E|H)P(H,)/P(E)n = P(E{|H,)(n)P(H)/P(E)n = P(E|H)P(H)/P(E;) = P(H|E;). QED
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will compute the probability that the difference was at least as extreme as 2.5 days. Figure 3 is
just like figure 2, but with the shaded region representing the set of values for the difference that
are at least as extreme as 2.5 days. All the points in the shaded region are to the right of the
vertical line—this is because all the points in the shaded region are in the rejection region for the
null—if the value for the difference lies in the shaded region, the null will be rejected. If the
shaded region represents the weakened version of the evidence, particular vertical lines in the
shaded region would represent the possible strengthenings of this evidence—e.g., that the

difference between the average times to recovery was 3 days, 3.5 days, 4 days, etc.

= Null Hypothesis

Alternative Hypothesis

Figure 3

It’s clear that, unlike in the coin flipping case, the hypotheses under consideration don’t
regard the various possible strengthenings of the weakened version of the evidence as equally
probable. For instance, on the alternative hypotheses it’s more probable that the difference

should be 4 days than it is that the difference should be 6 days, and we can see this by noting that
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the curve representing the probability distribution on the alternative hypothesis is higher when x
= 4 than when x = 6. Similarly, on the null hypothesis, it’s more likely that the treatment group
should recover on average 2.5 days faster than the control group than it is that they should

recover 4 days faster.

However, if we just focus on the shaded region, we notice an interesting property. For
each value in the shaded region, the probability that the difference in average recovery times
should take that value is significantly higher on the alternative hypothesis than on the null
hypothesis. If we assume that the actual value is in the shaded region, then how much the
alternative hypothesis is supported over the null won’t change much depending on where in that
region it is. When only two hypotheses H and H’ are in play, what matters (in addition to their
prior probabilities) for determining how likely they are in light of some body of evidence E isn’t
the absolute probabilities they assigned to that body of evidence, but instead the likelihood ratio
P(E|H)/P(E|H’). In particular, if all the specific values x for the difference in average recovery
time compatible with the claim that the value is in the shaded region are such that the probability
of x given the alternative hypothesis is much higher than the probability of x given the null
hypothesis, then it won’t matter much whether we update with the evidence about the specific

value, or just the weaker evidence that it was somewhere in the shaded region.

I take it that in this case, it’s clear that rejecting the null based on weakened evidence
isn’t problematic; any strengthening of the evidence would also lead to rejecting the null because
of the points made about the likelihood ratio above. But why should we think that this case is

typical in that respect? This is the question I’ll be concerned with in the remainder of the paper.
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First, most of the area under the curve representing the probability distribution on the
alternative hypothesis is to the right of the vertical line—it’s in the rejection region for the null
hypothesis. This just means that it’s quite probable, on the alternative hypothesis, that the result
of the experiment will be (relative to the null hypothesis) improbably extreme. For the reasons
discussed in the previous section, there’s good reason to think that this feature of the example
will be typical—normally, most of the area under the curve representing the probability
distribution on the alternative hypothesis will be in one of the tails of the curve representing the

distribution on the null.

Another feature of this example is that the alternative hypothesis assigns a significantly
higher probability than the null hypothesis to all the values in the right-hand portion of the
shaded region. This feature of the example is critical—in cases where it fails, it can be the case
that the weakened version of the evidence (i.e., the fact that the value for the test statistic was in
the shaded region) supports rejecting the null, while the actual evidence would not. Consider a

different example represented by the following chart:



33

Null Hypothesis

Alternative Hypothesis

/

Figure 4

In this case, the actual value for the test statistic was 2.5. The weakened version of the
evidence—that the value for the test statistic was at least as extreme as 2.5—supports the
alternative hypothesis. The region in which the value for the test statistic is at least as extreme as
2.5 is shaded, and it’s clear that there’s far more area in that region under the curve representing
the probability distribution on the alternative hypothesis than there is under the curve
representing the probability distribution on the null hypothesis. However, the actual evidence—
that the value for the test statistic was 2.5—does not support the alternative hypothesis. The
probability distribution for the alternative hypothesis takes a nose dive at 2.5. In fact, while it’s
quite unlikely on the null hypothesis that the test statistic should take the value of 2.5, it’s even
more unlikely on the alternative hypothesis. This case is like the example of Joe the plumber—
the weakened version of the evidence supports rejecting the null, but the actual evidence does
not—in fact, it supports rejecting the alternative hypothesis in favor of the null. We should hope

that cases like these aren’t typical—if they are, then significance testing will lead us astray when
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the test statistic takes a value x such that values at least as extreme as x are more likely on the
alternative hypothesis, but x itself is more likely on the null. In the remainder of this section, I’d
like to consider some examples that will hopefully make it plausible that cases like the one
represented in figure 4 are unusual—that is, realistic cases will be ones where the probability

distribution on the alternative hypothesis doesn’t have any steep valleys.

Suppose we took figure 4 to represent a case like the one in figure 3—one involving a
treatment group and a control group, where the test statistic is the difference in average recovery
times. In this case, the valley in the curve representing the probability distribution on the
alternative hypothesis would mean that according to the alternative hypothesis, the following is
the case: it’s not that unlikely that people should recover about two days faster if they take the
treatment, and it’s quite likely that they should recover three or four days faster if they take the
treatment, but it’s extremely unlikely that people should recover in the neighborhood of two and
a half days faster if they take the treatment. I take it that this is a bizarre hypothesis—normal

drugs don’t work this way. Let’s consider some other examples.

Suppose figure 4 represented a case like the Horsheshoe Creek one. In this case,
according to the alternative hypothesis, it would be quite likely that children from Horseshoe
Creek should be on average three or four inches shorter than the national average, and not that
unlikely that they should be two inches shorter, but extremely unlikely that they should be two
and a half inches shorter. Again, this would be a bizarre hypothesis. Pollutants don’t affect
people’s heights in such an irregular manner. Lastly, suppose figure 4 represented a case
involving two groups of students, each of which was given a test, one of which was taught using

an experimental educational method, and the other of which was a control group. The null
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hypothesis would be that the method doesn’t improve test scores. The test statistic would be the
difference between the average score in the control group and the average score in the
experimental group. Here, the alternative hypothesis would be that the educational method was
pretty likely to improve scores by three or four points on average, and not unlikely to improve
scores by two points, but extremely unlikely to improve scores by two and a half points. It’s hard
to imagine a realistic case where this could be a reasonable hypothesis about the likely effects an

educational method might have.

Why is it that typical cases don’t involve alternative hypothesis on which there are large
regions of values for the test statistic that are very favorable to the alternative hypothesis, but
smaller regions within those large regions that are much less favorable to the alternative
hypothesis (or even favorable to the null)? Why aren’t narrow valleys more common? An
unsatisfying answer would involve pointing out that many of the probability distributions of
interest to empirical researchers are (approximately) normal, and normal distributions never have
valleys.”> Why is this answer unsatisfying? For one, in some cases on some hypotheses under
consideration the probability distribution for the test statistic will not be approximately normal.
But even typical non-normal distributions studied by statisticians (such as the Cauchy
distribution) don’t have steep valleys of the sort represented by the probability distribution on the
alternative hypothesis in figure 4. What we’d like would be a general explanation of why we
should expect narrow valleys to be rare—one whose assumptions about the character of the
hypotheses under consideration are as minimal as possible. I believe such an explanation is

available, and I’ll introduce the machinery necessary to give it in the next section.

22 Any discussion of the Central Limit Theorem, such as that in Bulmer (1979, pp. 115-20) will shed some light on
why so many distributions are normal.
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5.1 Natural Properties and Natural Quantities

The idea that certain ways of grouping objects are more natural than others—that some
but not other classifications “cut nature at its joints”—has an old pedigree in philosophy.*®
Another way of putting the idea that some classifications are more natural than others is by
saying that certain respects of similarity are distinguished compared to others. For instance, we
might think that two objects that are both electrons, or both horses, are truly similar to one
another, but two objects that were both once within seven yards of someone with a moustache
are not (or at least, they aren’t similar just by virtue of sharing that property). I think that
something along the lines of this idea can help answer the question of why cases like the one
represented in figure 4 are atypical—that it can explain why we shouldn’t worry that weakening

the evidence in the context of significance testing will lead to spuriously rejecting the null.

What’s supposed to follow from the thought that certain respects of similarity are
distinguished? Some philosophers have put this idea to quite controversial uses.* But many
philosophers—even some who would probably balk at the more metaphysically loaded
applications of this notion—have thought that this idea is helpful in thinking about induction. *’

Consider the following argument schema:

P1. Objects 01, 0;...04 are all both F and G
P2. Object 0441 18 F
C. Object 0441 1s G

It goes back to Plato’s Phaedrus:
And what is the other principle, Socrates?
That of dividing things again by classes, where the natural joints are, and not trying to break any part, after
the manner of a bad carver. (Plato 1925, 265d-¢)

* E.g., Lewis (1984), Sider (Forthcoming)
» E.g, Quine (1969)
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It’s plausible that P1 and P2 typically provide good inductive support for C when F and G are
natural properties—properties the sharing of which makes for real similarity—but not when one
of F or G is not a natural property. For instance, suppose we think that being an emerald and
being green are natural properties, but that being grue—green if observed before January 1, 2050
and blue if observed afterwards—is not. Furthermore, suppose it’s January 1, 2050, and we’re
about to check the color of a previously unobserved emerald (all previously observed emeralds
have been green). If we plug in “emerald” for “F” and “green” for G, we get an inductive
argument that looks like a good one; if the case is typical, it is reasonable for us to expect the
new emerald to be green. But if we plug in “grue” for G, we get what looks like a bad argument;

we shouldn’t expect the new emerald to be blue.

I suggest that it may be fruitful to apply something like this idea not just to binary
properties that objects either have or don't, but also to quantities such as mass or volume. How
would this work? Well, suppose some object o, has » units of some quantity, 0, has n + 1 units of
this quantity, and o3 has n + 10 units of this quantity. If the quantity is a natural one, then o, is
more similar to 0, in a natural respect than it is to 03;. But if the quantity is not a natural one, then
we won't think that 0,'s differing from o0, only by one unit of the quantity really makes it any
more similar to 0, than to 03. So far this is very vague—what's the cash value of such intuitions

about similarity? The following example will help.

Suppose we've taken a number of measurements of a class of objects, and the following

graph represents the data compiled so far.
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Figure 5

In this case, it seems natural to predict new data points by fitting a linear curve to the data—we
might expect that if we measure an object in this class whose x value is 4 units, the y value will
also be 4 units. In fact, there are sophisticated methods for fitting curves to sets of data points
like the one above to make predictions about new data points, and such methods often favor
curves that require fewer parameters to specify—if they fit the data equally well, a line will be
preferred over a parabola, which will be preferred over yet more complex curves.”® But
judgments based on such methods are only credible—even with appropriate ceteris paribus
hedges—when the quantities represented on the x and y axes are natural quantities. For instance,
suppose the data comes from an experiment in which hamsters were fed various amounts of
food, and then weighed. Suppose the x axis represents the amount of food the hamsters were fed

each day (in ounces), and the y axis represents weight in ounces after one year. In this case,

26 Elliott Sober offers a sympathetic discussion of one such method—the Akaike Information Criterion. (Sober 2008,
pp. 82-96)
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ceteris paribus, it seems quite reasonable to infer that a hamster fed 4 units of food per day will
weigh 4 ounces after one year. But suppose the y axis doesn’t represent weight, but instead

represents queight. An object’s queight is defined as follows:

Queight(x) = 100 quounds if weight(x) = 4 ounces,
4 quounces if weight(x) = 100 pounds
Weight(x) otherwise

That is, most objects weigh exactly as much in pounds as they queigh in quounds, but objects
that weigh 4 ounces queigh 100 quounds and vice versa. If the x axis represents ounces of food
per day, and the y axis represents values for queight, it would be quite unreasonable to fit the
data with a straight line running through all the points. That is, if the hypothetical data set above
would make it reasonable to expect that a hamster fed 4 ounces of food a day will weigh 4
ounces, then if our graph plotting units of food per day against queight, we won’t want to fit our
data with a line, even though doing so would hit all the data points exactly. Except in very
atypical circumstances, we shouldn’t expect that feeding a hamster 4 units of food a day will
produce a behemoth, while feeding it slightly more or slightly less food will not. I hope it will
also seem plausible that queight is not a natural quantity. Take three objects, x, y, and z, which
weigh 3.99 ounces, 100 pounds, and 4.01 ounces respectively. Intuitively, x and z are quite
similar to one another, and both of them are quite dissimilar to y. If we measure similarity by
queight, the three objects are practically peas in a pod, and y counts as more similar to z than x

does.

As outlined above, one potential application of the idea that some quantities are more
natural than others is that it’s only when our axes represent relatively natural quantities that we

should try to predict future data points by fitting simple curves to already collected data. This
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isn’t the application, however, that I’1l suggest can aid in explaining why we needn’t worry about
weakening the evidence in the context of significance testing; I introduced the above application
to make it plausible that using the notion of natural quantities in thinking about inductive

practices isn’t an unmotivated, ad hoc move.

5.2 Natural Quantities and Weakening the Evidence

In his paper “Inferring Probabilities from Symmetries”, (1998) Michael Strevens
addresses questions such as how it is that we manage to correctly infer that a die is as likely to
land on any one of its faces as on any other when tossed (a claim about probabilities) from the
fact that it is perfectly symmetrical (a claim about physical symmetries). In the context of
discussing such questions, he introduces the notion of a probability distribution being “smooth,
in the sense that it does not fluctuate rapidly.” (1998, p. 237) In particular, a smooth probability
distribution wouldn’t display any narrow valleys like the probability distribution for the test
statistic on the alternative hypothesis in figure 4, nor would it display steep climbs to pointy
peaks. He goes on to make some general remarks that I believe are directly applicable to the

issue discussed in this paper:

Call the kinds of variables in terms of which we usually work our “standard” variables. It
seems to be the case that, for whatever reason, our standard variables are usually
smoothly distributed. If we go ahead and generalize from this observation (by
enumerative induction), we arrive at the conclusion that most standard variable
distributions are smooth. We may consequently take ourselves to have empirical grounds
for adopting a revised and differently deployed “Principle of Insufficient Reason” of the
following form:

In the absence of any reason to think otherwise, assume that any standard
variable is fairly smoothly distributed. (Strevens 1998, p. 241)

I take it that Strevens is making claims both about standard variables being smoothly objectively

distributed, and smoothly subjectively distributed. That is, Strevens is claiming that typically,
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physical systems produce outcomes such that the objective probability distributions over those
outcomes (when the outcomes are described using standard variables) are smooth, and that we
know this by induction. Furthermore, because we know this, and because we accept something
like Lewis’ Principal Principle (Lewis 1987),% our subjective probability distributions over the
outcomes of chance setups should also typically be smooth when those outcomes are described
in standard variables and when we don’t have any special information about the outcomes (e.g.,

we haven’t yet observed them).

While I take this to be the correct interpretation of Strevens, and by and large I agree with
the claims I take Strevens to be making, it does raise some questions—for instance, we might
have a notion of objective chance such that there can be no non-trivial objective chances in a
deterministic universe. If this is our notion of objective chance, then Strevens’ claim that
standard variables are typically smoothly objectively distributed will look highly contentious—it
will imply indeterminism. For this reason, I suspect Strevens is working with a notion of
objective chance such that non-trivial objective chances are compatible with determinism.*®
Luckily, details like this won’t affect my project—for my purposes, all that’s important is that it
typically be the case that our subjective probabilities over standard variables should be smoothly
distributed. I take it that this claim is plausible independently of whether or not it can be

supported by claims about objective probabilities being smoothly distributed together with the

Principal Principle.

%7 Roughly, the Principal Principle requires that in the absence of special information, our beliefs about the objective
probabilities of various outcomes should line up with the subjective probabilities we assign those outcomes

2 Roger White suggests that we have a notion of objective chance that’s compatible with determinism, (2007, p.4)
and I’'m inclined to agree, but I don’t think I need to commit myself one way or the other for my purposes here.
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Using the terminology already developed, I’d say that our standard variables typically
represent natural quantities, and that best hypotheses typically induce smooth subjective
probability distributions over natural quantities (whether this is because the Principal Principle
holds, and physical systems typically produce objective probability distributions that are smooth
over natural quantities, is not a position I intend to take a stand on). If this idea is right, then the
application to the case of weakening the evidence is relatively straightforward. If the test
statistics used in significance tests represent natural quantities, and natural quantities are
typically subjectively smoothly distributed, then cases in which some of the hypotheses under
consideration induce subjective probability distributions on the test statistic that display narrow

valleys—cases like those represented by figure 4—will be atypical.

None of what I’ve written so far commits me to any particular view about the
metaphysical status of natural quantities. Strevens writes: “let me stress that I am not proposing
that our “standard” variables have any special logical status. They are simply the variables with
which we prefer to operate, and which are, conveniently for us, for the most part smoothly
distributed.” (1998, p. 241) I agree—it doesn’t matter for my purposes whether we think that
natural quantities represent objective metaphysical joints in nature. We might instead think that
all it is for some quantity to be a natural quantity is for it to play a certain role in our best
scientific theories. Alexander Bird and Emma Tobin (2008) suggest that Quine’s view about

natural properties was something like this:

Quine thinks that in due course science will obviate the need for a general notion of
similarity or kind: in each area of science more specific notions will take the place of the
generic notion; this is a sign of the maturity of a branch of science. For example, in
zoology we may replace talk of the similarity between two animals by discussion of the
historical proximity of their closest common ancestor.
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One could take a similar line about natural quantities—that is, one might think that whether a
quantity is a natural one is a domain-relative question. Mass might be a natural quantity in the
context of physics, but not in the context of psychology, where knowing that two people are

roughly equally massive sheds little light on what psychological properties they might share.

Either way, debates about the metaphysical status of natural quantities aren’t directly
germane to the applications I want to make of them. All that’s required for my purposes is that
test statistics in significance tests (such as the difference in average time to recovery between a
control group and a treatment group) measure natural quantities, and that our best hypotheses
typically induce smooth probability distributions on potential values for natural quantities. How

does this help significance testing with its putative problem of weakened evidence?

If my claims about smoothness and natural quantities are right, then typical cases won’t
have alternatives to the null that induce probability distributions that take nose dives over small
regions in the tails of the null hypothesis—typical cases won’t look like figure 4. Rather, typical
cases will be such that if the alternative hypothesis makes it much more likely that the value for
the test statistic should be in the rejection region for the null, each of the sub-regions within the
rejection region for the null will also be such that it’s a good deal more likely that the value for
the test statistic should be in that sub-region on the alternative hypothesis than on the null. In
such cases, whether we reason with our actual evidence or weakened evidence of the sort used in

significance tests won’t substantially affect our conclusions.”

%% What about atypical cases where some of our best hypotheses don’t induce smooth probability distributions on the
test statistic? Whether this is because the test statistic doesn’t measure a natural quantity, or because some of our
best hypotheses induce non-smooth distributions on a natural quantity, I’m inclined to think that such cases will be
cooked-up philosophers examples. While possible, they’ll be recognizably strange enough that realistically,
wouldn’t be inclined to use straightforward applications of significance tests to analyze their data.
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Actually, that last step was a bit quick. It’s not obvious that ruling out cases where some
of the hypotheses under consideration display steep peaks and valleys is sufficient to rule out the
possibility of hypotheses receiving spurious support from weakened evidence. While it is
sufficient to rule out cases like the one represented in figure 4, mightn’t there be other cases
where weakening the evidence is a problem, but where non-smooth probability distributions

aren’t involved? At first blush, the answer seems to be yes. Consider the following figure:

Null Hypothesis
Alternative Hypothesis

Figure 6

The shaded region represents the rejection region for the null hypothesis, and the lefthand
border of the shaded region represents the measured value for the test statistic. On the
assumption of the null hypothesis, it’s highly unlikely that the test statistic should take a value in
the shaded region, while on the assumption of the alternative hypothesis, this is highly likely.

That is, the weakened evidence that the measured value for the test statistic was in the shaded
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region strongly supports the alternative hypothesis. However, while the observed value is in the
shaded region and is unlikely on the null hypothesis, is even less likely on the alternative
hypothesis. The stronger evidence—that the test statistic took the value it actually did—supports
the null hypothesis. In this respect, the case represented in figure 6 is like the case represented in
figure 4—weakening the evidence leads to spurious rejection of the null. However, neither the
null hypothesis nor the alternative hypothesis induces a non-smooth distribution on the test

statistic.

This case is inspired by one discussed by Howson and Urbach (1993, p. 206) in a section
of their book entitled “A Well-Supported Hypothesis Rejected in a Significance Test.” Their
discussion is of Neyman-Pearson significance testing, but the example is relevant to my
discussion with only slight modifications. A researcher knows that a coin has either bias 0.4 in
favor of heads, or 0.6 in favor of heads. He decides to flip the coin 1,000,000 times and observe
the proportion of heads to find out which. He designates the hypothesis that the coin is biased 0.4
in favor of heads the null hypothesis—so he determines to reject the null if the proportion of
heads observed is such that it is less than 5% likely (on the assumption that the bias of the coin is
0.4) that there should be at least that many heads in the sequence. He performs his experiment
and observes that the proportion of heads in the sequence is 0.45. Intuitively, he has obtained
very strong evidence that the bias of the coin is 0.4. After all, while it was extremely unlikely on
the null hypothesis that there should be so many heads, it was far, far less likely on the
alternative hypothesis that there should be so few heads. However, the researcher’s significance
test would have him reject the null hypothesis because it was far less than 5% likely on the null
hypothesis that the obtained frequency of heads should be at least 0.45—under my interpretation

of rejection, significance testing would have him become less confident that the coin’s bias is
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0.4, surely an absurd result. Furthermore, if I’d designated the hypothesis that the coin’s bias was

0.6 the null, I’d have obtained the opposite result. Not only absurdity, but arbitrariness too.

Were we to draw out the probability distributions for the proportion of heads on the null
hypothesis and on the alternative hypothesis, they’d look something like figure 6. What’s
distinctive about cases like figure 6 is that there’s a sizable region between the peaks of the two
probability distributions such that both hypotheses imply that it’s unlikely that the test statistic
should take a value in this region. This means that the rejection region for the null overlaps with
the left tail of the probability distribution on the alternative hypothesis. This wasn’t the case in
figures 2 and 3, the ones we took to represent typical cases. In those cases, the probability
density on the alternative hypothesis is already relatively high by the time we reach the rejection
region for the null. There is no region between the peaks of the hypotheses such that both
hypotheses imply that it is very unlikely that the test statistic should take a value in that region.
I’ve already argued that typical cases won’t look like figure 4. But why shouldn’t they look like
figure 6?7 At first blush, these seem like very different questions, and it seems implausible that a
solution to one should imply a solution to another. Ultimately, however, I think that smoothness
considerations along much the same lines as those discussed above can also explain why cases
represented by figure 6 are atypical. Before arguing for this, I want to try to motivate this
strategy by giving some examples of just what real world cases (as opposed to idealized ones like
Howson and Urbach’s coin case) would have to be like for them to be accurately represented by
figure 6. I suspect that not only will it be plausible that such cases are atypical, but it will be
plausible that the reasons that they’re atypical are by and large the same as the reasons that cases

accurately represented by figure 4 are atypical.
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Let’s consider the pollution, education, and medical cases. What would it take for cases
like these to be accurately represented by figure 62 In the pollution case, it would have to be that
there was some n with the following properties. On the hypothesis that children in Horseshoe
Creek don’t have their growth stunted by pollution in the creek, it is very unlikely that they
should be on average n inches shorter than the national mean. However, it’s also very unlikely on
the hypothesis that their growth is stunted by the creek that they should be » inches shorter than
the national mean. But there is an m > n such that, on the hypothesis that their growth is stunted
by the creek, it’s quite likely that they should be m inches shorter than the national mean. It’s
hard to imagine what realistic body of evidence could make it reasonable to think that if the
creek was stunting their growth, it might make them 4 inches shorter than the national mean, but

it couldn’t make them only two inches shorter.

Similar considerations apply in the education and medical cases. Realistic bodies of
evidence won’t make it reasonable to think that a new instructional method might improve scores
on average by 20 points, but would almost certainly not improve scores on average by only 10
points. Lastly, typical cases will be such that if it’s reasonable to think that a treatment for a
disease might shorten recovery time by n days, there won’t be an m < n such that the treatment

might not instead shorten recovery time by only n — m days.

Why think that a smoothness-based strategy along the lines laid out above could help
explain why these cases are atypical? The short answer is as follows—just as it’s plausible that
quantities like heights or lengths of recovery times are natural quantities (and so are typically
smoothly distributed), it’s also plausible that quantities like the degree to which pollution stunts

children’s growth, or the degree to which a treatment shortens recovery times, are also natural
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quantities and should also be smoothly distributed. This claim is quite plausible when we think
about variations on Howson and Urbach’s coin case. They stipulate that the researcher only
allows for the possibilities that the bias is 0.4 or 0.6. Given the right background knowledge, this
could be reasonable. But imagine a case where one comes across an ancient Greek coin on a
beach—I stipulate that it’s an ancient Greek coin because I know nothing about whether or not
ancient Greek methods were precise enough to produce symmetrical coins, and I suspect my
reader doesn’t either. If it’s plausible that natural quantities are typically smoothly distributed, I
submit that it’s also plausible in this case that one’s probability distribution over possible values
for the bias of the coin should also be smooth. Why is this? Well, presumably the sorts of factors
that contribute to the coin’s having the bias that it does—e.g., the distribution of mass—are
themselves expressible as natural quantities, and are such that our best hypotheses will induce
smooth probability distributions on them. If the reader doesn’t find this plausible, imagine that
the coin is actually just a roughly disc-shaped object produced by some natural process—perhaps
a very smooth, very thin rock—imagine that it looks roughly symmetrical, but one doesn’t have
any reason to think that it was produced by somebody trying to guarantee this. If the quantities
that determine the coin/rock’s bias are themselves smoothly distributed, so will the bias for the

coin/rock itself (barring any unusual dependencies).”

I take it that similar considerations make it plausible that quantities like the degree to
which an educational method improves test scores, or the degree to which a treatment shortens

recovery times, should also be smoothly distributed. The factors that affect just how the

%% Imagine a case where some quantity x is determined by two other quantities y and z, such that x = |y — z|. One
might have a smooth distribution for y that was symmetrical around some value », and likewise for z, but have an
unsmooth distribution for x that assigned probability 1 to x’s taking the value n, and assigned probability 0 to x’s
taking any other value. This would be possible if one were sure that for every m, whenever y took the value n + m, z
took the value n — m. However, I take it that such dependencies would be implausible in the coin case, and in most
natural cases.
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educational method affects test scores—how much more information the students retain when
taught using the method, how much more focused they are, etc.—are themselves plausibly
expressible as natural quantities, and should themselves be smoothly distributed. Mutatis

mutandis for the other cases.

Why does this mean that typical cases won’t be like that represented in figure 6?
Consider the following figure, which represents an unrealistic version of the medical treatment
case in which it’s quite likely that the treatment should shorten recovery times by 2 days on

average, but not by 1.

Number of Days X such that Treatment has
Propensity to Shorten Recovery Time by X
Days on Average

Number of Days X such that
Treatment has Propensity to
Shorten Recovery Time by X
Days on Average

Figure 7

Because the null hypothesis is relatively plausible, there’s a peak at 0—there’s a decent chance
that the treatment doesn’t tend to shorten recovery time at all. Because the alternative hypothesis

is also relatively plausible, there’s a peak at 2—there’s a decent chance that the treatment tends
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to shorten recovery time by roughly two days. But because the case is unrealistic—Ilike that in
figure 6—there’s no chance the treatment tends to shorten recovery time by one day. That’s not
to say there’s no chance the difference in recovery times in some particular case will be one
day—it’s just to say that if it is, it’s because such a case was an improbable result of a treatment
that, on average, tends to shorten recovery times a by less (0 days) or more (2 days) than one
day. In this case, an observed difference in recovery times of half a day could lead to rejecting
the null in a significance test, even though it is really evidence for it. However, the probability
distribution represented above is clearly unsmooth. A more realistic case would look something

like the following:

Number of Days X such that Treatment has
Propensity to Shorten Recovery Time by X
Days on Average

Number of Days X such that
Treatment has Propensity to
Shorten Recovery Time by X
Days on Average

Figure 8

Clearly, in a case like this one, no observation to the effect that the difference in average

recovery time between the two groups was n days is such that it is very improbable on the null
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hypothesis (X = 0, in figure 8), but also very improbable on the alternative hypothesis (X > 0),
and such that there is some m > n such that it was quite probable on the alternative hypothesis
that the difference should’ve been n days. That is, cases like the above one will be cases where
weakening the evidence is unproblematic. And the above case is one in which a natural quantity
(the number of days such that the treatment has a propensity to shorten recovery times by that

many days) is smoothly distributed.

I don’t mean to say that there couldn’t be any realistic cases with the same structure as
Howson and Urbach’s coin case. We might imagine a variant on the Horsheshoe Creek case,
where it’s known that a boat carrying a tremendous quantity of pollutants passed through the
creek, and what’s unknown is whether or not it had a spill. We might imagine that boats like this
one spill a /ot if they spill at all, and the pollutants are known to have very substantial growth-
stunting effects. Lastly, we might imagine that it’s known that there are no other potential growth
stunting factors in the town. In this case, finding that the children were significantly shorter than
the national mean might actually be evidence for the null hypothesis that nothing is stunting their
growth; this would hold if the difference were still too small to be consistent with the hypothesis
that the lake was polluted. While the above case is not a science fiction scenario, it did require
quite a lot of caveats, and I hope the considerations I suggested above make it plausible that
cases like it shouldn’t be typical. Moreover, while I don’t have the space to defend this claim
here, I suspect that in cases that do have the same structure as the Howson and Urbach coin case,
savvy researchers could find classical methods other than significance testing to analyze their
data; sticking to classical methods would not force them to run a significance test and risk

spuriously rejecting the null.
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Of course, any smoothness-based argument for the conclusion cases in which weakening
the evidence leads to spurious rejections of the null are atypical must be merely qualitative and
somewhat rough, since the notion of “smoothness” it appeals to is itself qualitative, and
somewhat rough. But I don’t believe that this robs my argument of its interest. The cases
represented by figures 4 and 6 seem to be paradigm instances where weakening the evidence
leads to straightforwardly spurious rejection of the null, and smoothness considerations really do
tell against taking these cases to be typical. While I can’t provide a general argument that every
case in which the null would be spuriously rejected is a case like figure 4 or 6, I suspect that once
one recognizes the importance of the smoothness considerations I’ve discussed, it becomes much
less plausible that spurious rejections of null hypotheses based on weakened evidence are an

important source of error in statistical practice.

6. Conclusions

I’ve considered two ways in which significance testing might seem prone to lead to
flawed evaluations of the probative force of a body of evidence—ways in which significance
testing might have us conclude that some hypothesis is probably not true, when a rational
evaluation of the evidence would not. I’ve argued that neither apparent threat is real—we needn’t

worry that significance testers irrationally reject hypotheses.

First, I considered the worry that significance testing involves committing the fallacy of
probabilistic modus tollens—inferring that a hypothesis is improbable because an event that was
improbable according to the hypothesis occurred. I argued that there are conditions under which

such events really do count as strong evidence against a hypothesis—when there are plausible
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alternative hypothesis that assign the event a higher probability—and that these conditions are

also exactly the conditions under which researchers are likely to perform significance tests.

Second, I considered the worry that significance testing involves committing the fallacy
of weakening the evidence—concluding that a hypothesis is probably not true because some
description of one’s evidence that’s logically weaker than one’s total evidence would count
strongly against it. I argued that there are conditions under which concluding that some
hypothesis is probably false based on a weakened version of one’s evidence is harmless—when
each of the potential strengthenings compatible with the weakened version of one’s evidence are
also much less likely on the assumption of the rejected hypothesis than on some alternative. |
argued that because test statistics in significance tests represent natural quantities, and our best
hypotheses induce smooth distributions on natural quantities, whether we use the evidence that
the value for the test statistic was at least as extreme as x, or the evidence that it was x, our
conclusions are unlikely to be substantially affected. This is because paradigm cases in which
updating with the evidence that the value for the test statistic was actually x (rather than just at
least as extreme as x) changes whether or not we ought become less confident in the null are
cases that involve unsmooth probability distributions over a natural quantity. Sometimes that
natural quantity is the test statistic itself (as in cases represented by figure 4), and sometimes it is
a quantity that represents the propensity of the system being studied to produce particular values
for the test statistic (as in cases represented by figure 6). Either way, if typical cases where
significance testing is used involve smooth distributions over natural quantities, the most obvious
ways for significance testers to commit the fallacy of weakening the evidence are unlikely to

arise in practice.
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Hopefully, the considerations I’ve raised make it plausible that Bayesians need not regard
significance testing as quite as hopelessly flawed as the Howson and Urbach quotes at the
beginning of this paper suggest they should. While Bayesians who accept my arguments may
still think that the frequentist approach to statistical hypothesis testing is bad epistemology, they
needn’t worry that the practical application of this bad epistemology in the form of significance
testing is likely to lead us to reject hypotheses when a rational evaluation of the evidence would

have us retain them.

This result is congenial to the Bayesian in a number of ways. First, it lets the Bayesian
avoid the skeptical threat I mentioned at the beginning of this paper. Furthermore, if other non-
frequentist approaches to statistical inference (e.g., Sober’s Likelihoodism) are unable to appeal
to the arguments I’ve offered here to explain why significance testing is generally reliable, this
may give the Bayesian a leg up over other non-classical schools of thought about statistical
inference—it may be that not all non-frequentists can avail themselves of my anti-skeptical

escape route.

More generally, it counts in favor of the Bayesian approach to statistical inference if it
can not only improve upon orthodox methods where they fail, but also explain why they work
when they do. It’s a commonplace in the philosophy of science that when a new theory can both
accommodate the anomalies that afflict an old one, and explain why the old one works as well as
it does in a limited domain (perhaps by showing that the old theory is a limiting case of the new
one), that counts strongly in favor of the new theory.>' That general relativity could both explain

the precession of the perihelion of Mercury when Newtonian mechanics could not, and explain

31 See Kuhn (1996)
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why Newtonian mechanics worked so well in low mass, low speed environments, counted
doubly in its favor. Analogously, it should count doubly in favor of Bayesianism that it can
explain why significance testing gets certain cases wrong (e.g., by explaining why probabilistic
modus tolens and weakening the evidence are fallacious methods of reasoning), and explain why
it works as well as it does in the conditions when it’s generally used (by appealing to the
arguments I’ve offered in this paper). Ultimately, what at first looked like a potential skeptical

problem for Bayesianism turns out to be an opportunity for it to shine.
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