Skip to main content
Log in

An electrophysiological approach to investigations of sensory dysfunction in schizophrenia

  • Focus
  • Published:
Poiesis & Praxis

Abstract

Sensory dysfunction has been shown to be a part of the pathophysiology of schizophrenia. Nowadays we have an objective, non-invasive tool with which to measure neural manifestations of sensory dysfunction. Defined as time-locked changes to external stimuli in the EEG, event-related potentials (ERPs) provide an objective index of information processing in the human brain. Importantly, ERPs may be analyzed through a variety of approaches such as conventional ERP analysis, analysis in the time-frequency domain, microstate segmentation and topographical analysis, as well as source localisation analysis. Each of the methods gives distinct information; they also supplement each other. Here, an attempt is made to verify the validity of combining different approaches to study sensory dysfunction in neuropsychiatric disorders. For example, the data from a schizophrenic patient and an age- and sex-matched healthy subject generate a picture of the events which emerges after visual, proprioceptive and simultaneous presentation of stimuli in both modalities. This approach, though time-consuming, allows the visualisation of changes appearing in the malfunctioning brain as compared to the healthy brain. These methods could ultimately lead to a better establishment of one or more endophenotypes for the schizophrenic disorders. They might also serve as a way to track changes in response to various medications and therapies.

Zusammenfassung

Es hat sich gezeigt, dass die sensorische Dysfunktion Teil der pathologischen Physiologie der Schizophrenie ist. Heute steht uns ein objektives nichtinvasives Instrument zur Messung neuraler Manifestationen sensorischer Dysfunktion zur Verfügung. Definiert als streng zeitlich gebundene Veränderungen externer Stimuli im EEG, bieten ereigniskorrelierte Potentiale (EKP) einen objektiven Index der Informationsverarbeitung im menschlichen Gehirn. Es ist wichtig, dass EKPs auf ganz verschiedene Weise analysiert werden können, z.B. mit der konventionellen EKP-Analyse, der Analyse im Zeit-Frequenz-Bereich, der Microstate Segmentierung und topografischen Analyse und der Analyse der Lokalisation von Geräuschquellen. Jede dieser Methoden liefert konkrete Informationen, und sie ergänzen sich gegenseitig. Wir wollen hier versuchen, die Aussagekraft einer Kombination verschiedener Methoden für die Untersuchung sensorischer Dysfunktion bei neuropsychiatrischen Störungen nachzuweisen. Zum Beispiel liefert der Vergleich der Daten eines an Schizophrenie leidenden Patienten mit einem gesunden Menschen gleichen Alters und Geschlechts ein Bild der Ereignisse, die nach der visuellen, propriozeptiven und simultanen Stimuluspräsentation in beiden Modalitäten auftreten. Dieser Ansatz ist zwar zeitintensiv, erlaubt aber eine Visualisierung der Veränderungen in einem nicht voll funktionsfähigen Gehirn und den Vergleich mit einem gesunden Gehirn. Diese Methoden könnten schließlich zu einer besseren Bestimmung eines oder mehrerer Endophänotypen für schizophrener Erkrankungen führen und ein Mittel sein, Veränderungen als Reaktion auf unterschiedliche Medikamente und Therapien nachvollziehbar zu machen.

Résumé

Il a été démontré que la dysfonction sensorielle fait partie de la physiopathologie de la schizophrénie. Nous avons aujourd’hui un outil objectif et non-invasif pour en mesurer les manifestations. Il s’agit des “potentiels évoqués cognitifs” (P.E.C.), qui correspondent à des modifications dans l’EEG, dus à des stimuli externes et qui nous donnent un répertoire objectif des informations traitées dans le cerveau humain. Il est à noter que les P.E.C. peuvent être analysés sous divers angles, telle l’analyse conventionnelle, l’analyse par les paramètres temps et fréquence, la technique de segmentation du signal et la cartographie, ainsi que l’analyse par localisation des sources. Chacune de ces méthodes donne des informations différentes et complémentaires. Nous tentons, ici, de vérifier la pertinence de combiner ces différentes approches afin d’étudier la dysfonction sensorielle dans les désordres neuropsychiatriques. Une expérience qui consiste à présenter simultanément des stimuli visuels et proprioceptifs à un patient schizophrène et à un sujet sain de même age et de même sexe produit une image des effets encourus et nous apporte ainsi certaines données. Cette approche, même si elle prend du temps, nous permet de visualiser toute variation provenant du cerveau atteint en comparaison avec le cerveau sain. En conséquence, ces méthodes pourraient nous amener à mieux établir un ou plusieurs endophénotypes des désordres schizophréniques. Elles pourraient également nous servir à dépister tout changement dans la réaction à diverses médications et thérapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnfred SM (2005) Proprioceptive event related potentials: gating and task effects. Clin Neurophysiol 116:849–860

    Article  Google Scholar 

  • Arnfred S, Chen AC, Eder D, Glenthoj B, Hemmingsen R (2000) Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand. Neurosci Lett 288:11–114

    Article  Google Scholar 

  • Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158:1126–1133. doi:10.1176/appi.ajp.158.7.1126

    Article  Google Scholar 

  • de Gelder B, Vroomen J, Annen L, Masthof E, Hodiamont P (2003) Audio-visual integration in schizophrenia. Schizophr Res 59:211–218

    Article  Google Scholar 

  • de Gelder B, Vroomen J, de Jong SJ, Masthoff ED, Trompenaars FJ, Hodiamont P (2005) Multisensory integration of emotional faces and voices in schizophrenics. Schizophr Res 72:195–203

    Article  Google Scholar 

  • Demiralp T, Ucok A, Devrim M, Isoglu-Alkac U, Tecer A, Polich J (2002) N2 and P3 components of event-related potential in first-episode schizophrenic patients: scalp topography, medication, and latency effects. Psychiatry Res 111:167–179

    Article  Google Scholar 

  • Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. NeuroReport 12:2915–2918

    Article  Google Scholar 

  • Ford JM, White PM, Csernansky JG, Faustman WO, Roth WT, Pfefferbaum A (1994) ERPs in schizophrenia: effects of antipsychotic medication. Biol Psychiatry 36:153–170

    Article  Google Scholar 

  • Foxe JJ, Doniger GM, Javitt DC (2001) Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. NeuroReport 12:3815–3820

    Article  Google Scholar 

  • Foxe JJ, Murray MM, Javitt DC (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15:1914–1927. doi:10.1093/cercor/bhi069

    Article  Google Scholar 

  • Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874

    Article  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645. doi:10.1176/appi.ajp.160.4.636

    Article  Google Scholar 

  • Griskova I, Dapsys K, Andruskevicius S, Ruksenas O (2005) Does electroconvulsive therapy (ECT) affect cognitive components of auditory evoked P300? Acta Neurobiol Exp (Wars) 65:73–77

    Google Scholar 

  • Griskova I, Morup M, Parnas J, Ruksenas O, Arnfred SM (2007) The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal. Exp Brain Res 183:133–138

    Article  Google Scholar 

  • Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116:2719–2733

    Article  Google Scholar 

  • Herrmann CS, Grigutsch M, Busch NA (2004a) EEG oscillations and wavelet analysis. In: Handy TC (ed) Event-related potentials: a methods handbook. MIT Press, Cambrige, pp 229–259

    Google Scholar 

  • Herrmann CS, Lenz D, Junge S, Busch NA, Maess B (2004b) Memory-matches evoke human gamma-responses. BMC Neurosci 5:13

    Article  Google Scholar 

  • Hong LE, Summerfelt A, McMahon R, Adami H, Francis G, Elliott A, Buchanan RW, Thaker GK (2004) Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 70:293–302

    Article  Google Scholar 

  • Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11:190–208

    Article  Google Scholar 

  • Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, Hasselmo ME, Potts GF, Shenton ME, McCarley RW (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56:1001–1005. doi:10.1001/archpsyc.56.11.1001

    Article  Google Scholar 

  • Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60:1231–1240

    Article  Google Scholar 

  • Michel CM, Seeck M, Landis T (1999) Spatiotemporal dynamics of human cognition. News Physiol Sci 14:206–214

    Google Scholar 

  • Morup M, Hansen LK, Herrmann CS, Parnas J, Arnfred SM (2006) Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. Neuroimage 29:938–947

    Article  Google Scholar 

  • Morup M, Hansen LK, Arnfred SM (2007) ERPWAVELAB a toolbox for multi-channel analysis of time-frequency transformed event related potentials. J Neurosci Methods 161:361–368

    Article  Google Scholar 

  • Murphy C, Nordin S, de Wijk RA, Cain WS, Polich J (1994) Olfactory-evoked potentials: assessment of young and elderly, and comparison to psychophysical threshold. Chem Senses 19:47–56

    Article  Google Scholar 

  • Murray MM, Foxe JJ, Wylie GR (2005) The brain uses single-trial multisensory memories to discriminate without awareness. Neuroimage 27:473–478

    Article  Google Scholar 

  • Reite M, Teale P, Rojas DC, Benkers TL, Carlson J (2003) Anomalous somatosensory cortical localization in schizophrenia. Am J Psychiatry 160:2148–2153. doi:10.1176/appi.ajp.160.12.2148

    Article  Google Scholar 

  • Salisbury DF, Shenton ME, McCarley RW (1999) P300 topography differs in schizophrenia and manic psychosis. Biol Psychiatry 45:98–106

    Article  Google Scholar 

  • Seiss E, Hesse CW, Drane S, Oostenveld R, Wing AM, Praamstra P (2002) Proprioception-related evoked potentials: origin and sensitivity to movement parameters. Neuroimage 17:461–468

    Article  Google Scholar 

  • Shagass C (1976) An electrophysiological view of schizophrenia. Biol Psychiatry 11:3–30

    Google Scholar 

  • Siedenberg R, Treede RD (1996) Laser-evoked potentials: exogenous and endogenous components. Electroencephalogr Clin Neurophysiol 100:40–249

    Article  Google Scholar 

  • Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411

    Google Scholar 

  • Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33:69–94. doi:10.1093/schbul/sbl060

    Article  Google Scholar 

  • Wang J, Hirayasu Y, Hokama H, Tanaka S, Kondo T, Zhang M, Xiao Z (2005) Influence of duration of untreated psychosis on auditory P300 in drug-naive and first-episode schizophrenia. Psychiatry Clin Neurosci 59:209–214

    Article  Google Scholar 

  • Yeap S, Kelly SP, Sehatpour P, Magno E, Javitt DC, Garavan H, Thakore JH, Foxe JJ (2006) Early visual sensory deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63:1180–1188. doi:10.1001/archpsyc.63.11.1180

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Lundbeck Foundation, the Gangsted Foundation, the Novo Nordic Foundation, the Danish Research Council, and the Cirius and Gerbert Ruf Stiftung. We wish to thank Sv. Christoffersen and Ch. Tarrild for the proprioceptive stimulation apparatus and software development; Prof. Ch. Herrmann for pictures used in the visual classification task; M. Morup and Prof. Ch. Michel for their help with data analysis; and Prof. J. Parnas and Prof. O. Ruksenas for their comments on the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Griskova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griskova, I., Arnfred, S.M. An electrophysiological approach to investigations of sensory dysfunction in schizophrenia. Poiesis Prax 6, 175–189 (2009). https://doi.org/10.1007/s10202-008-0063-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10202-008-0063-1

Keywords

Navigation