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A Primer on Probabilistic Inference

Probabilistic models aim to explain human cognition by appealing to the principles

of probability theory and statistics, which dictate how an agent should act rationally in

situations that involve uncertainty. While probability theory was originally developed as a

means of analyzing games of chance, it was quickly realized that probabilities could be

used to analyze rational actions in a wide range of contexts (e.g., Bayes, 1763/1958;

Laplace, 1795/1951). Probabilistic models have come to be used in many disciplines, and

are currently the method of choice for an enormous range of applications, including

artificial systems for medical inference, bio-informatics, and computer vision. Applying

probabilistic models to human cognition thus provides the opportunity to draw upon work

in computer science, engineering, mathematics, and statistics, often producing quite

surprising connections.

There are two challenges involved in developing probabilistic models of cognition.

The first challenge is specifying a suitable model. This requires considering the

computational problem faced by an agent, the knowledge available to that agent, and the

appropriate way to represent that knowledge. The second challenge is evaluating model

predictions. Probabilistic models can capture the structure of extremely complex

problems, but as the structure of the model becomes richer, probabilistic inference

becomes harder. Being able to compute the relevant probabilities is a practical issue that

arises when using probabilistic models, and also raises the question of how intelligent

agents might be able to make similar computations.

In this chapter, we introduce some of the tools that can be used to address these

challenges. By considering how probabilistic models can be defined and used, we aim to

provide some of the background relevant to the other chapters in this volume. The plan of

the chapter is as follows. First, we outline the fundamentals of Bayesian inference, which
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is at the heart of many probabilistic models. We then discuss how to define probabilistic

models that use richly structured probability distributions, introducing some of the key

ideas behind graphical models, which can be used to represent the dependencies among a

set of variables. Finally, we discuss two of the main algorithms that are used to evaluate

the predictions of probabilistic models – the Expectation-Maximization (EM) algorithm,

and Markov chain Monte Carlo (MCMC) – and some sophisticated probabilistic models

that exploit these algorithms. Several books provide a more detailed discussion of these

topics in the context of statistics (e.g., Berger, 1993; Bernardo & Smith, 1994; Gelman,

Carlin, Stern, & Rubin, 1995), machine learning (e.g., Bishop, 2006; Duda, Hart, & Stork,

2000; Hastie, Tibshirani, & Friedman, 2001; Mackay, 2003), and artificial intelligence (e.g.,

Korb & Nicholson, 2003; Pearl, 1988; Russell & Norvig, 2002). Griffiths, Kemp, and

Tenenbaum (in press) provide further information on some of the methods touched on in

this chapter, together with examples of applications of these methods in cognitive science.

Fundamentals of Bayesian inference

Probabilistic models of cognition are often referred to as Bayesian models, reflecting

the central role that Bayesian inference plays in reasoning under uncertainty. In this

section, we will introduce the basic ideas behind Bayesian inference, and discuss how it

can be used in different contexts.

Basic Bayes

Bayesian inference is based upon a simple formula known as Bayes’ rule (Bayes,

1763/1958). When stated in terms of abstract random variables, Bayes’ rule is a simple

tautology of probability theory. Assume we have two random variables, A and B.1 One of

the principles of probability theory (sometimes called the chain rule) allows us to write

the joint probability of these two variables taking on particular values a and b, P (a, b), as

the product of the conditional probability that A will take on value a given B takes on
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value b, P (a|b), and the marginal probability that B takes on value b, P (b). Thus, we have

P (a, b) = P (a|b)P (b). (1)

There was nothing special about the choice of A rather than B in factorizing the joint

probability in this way, so we can also write

P (a, b) = P (b|a)P (a). (2)

It follows from Equations 1 and 2 that P (a|b)P (b) = P (b|a)P (a), which can be rearranged

to give

P (b|a) =
P (a|b)P (b)

P (a)
. (3)

This expression is Bayes’ rule, which indicates how we can compute the conditional

probability of b given a from the conditional probability of a given b.

In the form given in Equation 3, Bayes’ rule seems relatively innocuous (and

perhaps rather uninteresting!). Bayes’ rule gets its strength, and its notoriety, by making

some assumptions about the variables we are considering and the meaning of probability.

Assume that we have an agent who is attempting to infer the process that was responsible

for generating some data, d. Let h be a hypothesis about this process, and P (h) indicate

the probability that the agent would have ascribed to h being the true generating process,

prior to seeing d (known as a prior probability). How should that agent go about changing

his beliefs in the light of the evidence provided by d? To answer this question, we need a

procedure for computing the posterior probability, P (h|d).

Bayes’ rule provides just such a procedure. If we are willing to consider the

hypotheses that agents entertain to be random variables, and allow probabilities to reflect

subjective degrees of belief, then Bayes’ rule indicates how an agent should update their

beliefs in light of evidence. Replacing a with d and b with h in Equation 3 gives

P (h|d) =
P (d|h)P (h)

P (d)
, (4)
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which is the form in which Bayes’ rule is normally presented. The probability of the data

given the hypothesis, P (d|h), is known as the likelihood.

Probability theory also allows us to compute the probability distribution associated

with a single variable (known as the marginal probability) by summing over the other

variables in a joint distribution (known as marginalization), e.g., P (b) =
∑

a P (a, b). Using

this principle, we can rewrite Equation 4 as

P (h|d) =
P (d|h)P (h)∑

h′∈H P (d|h′)P (h′)
, (5)

where H is the set of all hypotheses considered by the agent, sometimes referred to as the

hypothesis space. This formulation of Bayes’ rule makes it apparent that the posterior

probability of h is directly proportional to the product of the prior probability and the

likelihood. The sum in the denominator simply ensures that the resulting probabilities are

normalized to sum to one.

The use of probabilities to represent degrees of belief is known as subjectivism, as

opposed to frequentism, in which probabilities are viewed as the long-run relative

frequencies of the outcomes of non-deterministic experiments. Subjectivism is strongly

associated with Bayesian approaches to statistics, and has been a subject of great

controversy in foundational discussions on the nature of probability. A number of formal

arguments have been used to justify this position (e.g., Cox, 1961; Jaynes, 2003). In the

remainder of this section, we will focus on some of the practical applications of Bayes’ rule.

Comparing two simple hypotheses

The setting in which Bayes’ rule is usually discussed in introductory statistics

courses is for the comparison of two simple hypotheses. For example, imagine that you are

told that a box contains two coins: one that produces heads 50% of the time, and one that

produces heads 90% of the time. You choose a coin, and then flip it ten times, producing



Probability Primer 6

the sequence HHHHHHHHHH. Which coin did you pick? What would you think if you had

flipped HHTHTHTTHT instead?

To translate this problem into one of Bayesian inference, we need to identify the

hypothesis space, H, the prior probability of each hypothesis, P (h), and the probability of

the data under each hypothesis, P (d|h). We have two coins, and thus two hypotheses. If

we use θ to denote the probability that a coin produces heads, then h0 is the hypothesis

that θ = 0.5, and h1 is the hypothesis that θ = 0.9. Since we have no reason to believe

that we would be more likely to pick one coin than the other, the prior probabilities are

P (h0) = P (h1) = 0.5. The probability of a particular sequence of coinflips containing NH

heads and NT tails being generated by a coin which produces heads with probability θ is

P (d|θ) = θNH (1 − θ)NT . (6)

The likelihoods associated with h0 and h1 can thus be obtained by substituting the

appropriate value of θ into Equation 6.

We can take the prior and likelihoods defined in the previous paragraph, and plug

them directly into Equation 4 to compute the posterior probability of each of our two

hypotheses. However, when we have just two hypotheses it is often easier to work with the

posterior odds, which are just the ratio of the posterior probabilities. If we use Bayes’ rule

to find the posterior probability of h0 and h1, it follows that the posterior odds in favor of

h1 are

P (h1|d)

P (h0|d)
=
P (d|h1)

P (d|h0)

P (h1)

P (h0)
(7)

where we have used the fact that the denominator of Equation 4 is constant. The first and

second terms on the right hand side are called the likelihood ratio and the prior odds

respectively. Returning to our example, we can use Equation 7 to compute the posterior

odds of our two hypotheses for any observed sequence of heads and tails. Using the prior

and likelihoods from the previous paragraph gives odds of approximately 357:1 in favor of
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h1 for the sequence HHHHHHHHHH and 165:1 in favor of h0 for the sequence HHTHTHTTHT.

The form of Equation 7 helps to clarify how prior knowledge and new data are

combined in Bayesian inference. The two terms on the right hand side each express the

influence of one of these factors: the prior odds are determined entirely by the prior beliefs

of the agent, while the likelihood ratio expresses how these odds should be modified in

light of the data d. This relationship is made even more transparent if we examine the

expression for the log posterior odds,

log
P (h1|d)

P (h0|d)
= log

P (d|h1)

P (d|h0)
+ log

P (h1)

P (h0)
(8)

in which the extent to which one should favor h1 over h0 reduces to an additive

combination of a term reflecting prior beliefs (the log prior odds) and a term reflecting the

contribution of the data (the log likelihood ratio). Based upon this decomposition, the log

likelihood ratio in favor of h1 is often used as a measure of the evidence that d provides for

h1. The British mathematician Alan Turing, arguably one of the founders of cognitive

science, was also one of the first people to apply Bayesian inference in this fashion: he

used log likelihood ratios as part of a method for deciphering German naval codes during

World War II (Good, 1979).

Comparing infinitely many hypotheses

The analysis outlined above for two simple hypotheses generalizes naturally to any

finite set, although posterior odds are less useful when there are multiple alternatives to

be considered. However, Bayesian inference can also be applied in contexts where there

are (uncountably) infinitely many hypotheses to evaluate – a situation that arises

surprisingly often. For example, imagine that rather than choosing between two

alternatives for the probability that a coin produces heads, θ, we were willing to consider

any value of θ between 0 and 1. What should we infer about the value of θ from a

sequence such as HHHHHHHHHH?
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In frequentist statistics, from which much of the statistical doctrine used in the

analysis of psychology experiments derives, inferring θ is treated a problem of estimating a

fixed parameter of a probabilistic model, to which the standard solution is

maximum-likelihood estimation (see, e.g., Rice, 1995). The maximum-likelihood estimate

of θ is the value θ̂ that maximizes the probability of the data, as given in Equation 6. It is

straightforward to show that this is θ̂ = NH

NH+NT
, which gives θ̂ = 1.0 for the sequence

HHHHHHHHHH.

The case of inferring the bias of a coin can be used to illustrate some properties of

maximum-likelihood estimation that can be problematic. First of all, the value of θ that

maximizes the probability of the data might not provide the best basis for making

predictions about future data. To continue the example above, inferring that θ = 1.0 after

seeing the sequence HHHHHHHHHH implies that we should predict that the coin would never

produce tails. This might seem reasonable, but the same conclusion follows for any

sequence consisting entirely of heads. Would you predict that a coin would produce only

heads after seeing it produce a head on a single flip?

A second problem with maximum-likelihood estimation is that it does not take into

account other knowledge that we might have about θ. This is largely by design: the

frequentist approach to statistics was founded on the belief that subjective probabilities

are meaningless, and aimed to provide an “objective” system of statistical inference that

did not require prior probabilities. However, while such a goal of objectivity might be

desirable in certain scientific contexts, most intelligent agents have access to extensive

knowledge that constrains their inferences. For example, many of us might have strong

expectations that a coin would produce heads with a probability close to 0.5.

Both of these problems are addressed by the Bayesian approach to this problem, in

which inferring θ is treated just like any other Bayesian inference. If we assume that θ is a
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random variable, then we can apply Bayes’ rule to obtain

p(θ|d) =
P (d|θ)p(θ)

P (d)
(9)

where

P (d) =

∫ 1

0
P (d|θ)p(θ) dθ. (10)

The key difference from Bayesian inference with finitely many hypotheses is that the

posterior distribution is now characterized by a probability density, and the sum over

hypotheses becomes an integral.

The posterior distribution over θ contains more information than a single point

estimate: it indicates not just which values of θ are probable, but also how much

uncertainty there is about those values. Collapsing this distribution down to a single

number discards information, so Bayesians prefer to maintain distributions wherever

possible (this attitude is similar to Marr’s (1982, p. 106) “principle of least commitment”).

However, there are two methods that are commonly used to obtain a point estimate from

a posterior distribution. The first method is maximum a posteriori (MAP) estimation:

choosing the value of θ that maximizes the posterior probability, as given by Equation 9.

The second method is computing the posterior mean of the quantity in question. For

example, we could compute the posterior mean value of θ, which would be

θ̄ =

∫ 1

0
θ p(θ|d) dθ. (11)

For the case of coinflipping, the posterior mean also corresponds to the probability of

obtaining heads under the posterior predictive distribution: the probability with which one

should predict the next toss of the coin will produce heads.

The choice of which estimator to use for θ depends on the nature of the problem

being solved. Bayesian decision theory (e.g., Berger, 1993) approaches this problem by

introducing a loss function L(θ, α(d)) for the cost of making a decision α(d) when the
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input is d and the true value of the parameter is θ. From this perspective, we should select

the decision rule α∗(.) that minimizes the risk, or expected loss:

R(α) =
∑
θ,d

L(θ, α(d))p(θ, d). (12)

where the distribution on θ and d captures both the natural variation in d and the

uncertainty of the learner about θ given d, as represented in the posterior distribution.

One loss function has the same penalty is paid for all wrong decisions: L(θ, α(d)) = 1 if

α(d) 6= θ and L(θ, α(d)) = 0 if α(d) = θ. For this loss function, the best decision rule is

the MAP estimator. Alternatively, if the loss function is the square of the error

L(θ, α(d)) = (θ − α(d))2 then the best decision rule is the posterior mean. This approach

can be extended to dynamical systems where decisions need to be made over time. This

leads to optimal control theory (Bertsekas, 2000) where the goal is to minimize a cost

functional to obtain a control law (analogous to the risk and the decision rule

respectively). Optimal control theory lays the groundwork for rational models of animal

learning and motor control.

Regardless of the estimator being used, different choices of the prior, p(θ), will lead

to different guesses at the value of θ. A first step might be to assume a uniform prior over

θ, with p(θ) being equal for all values of θ between 0 and 1. This case was first analyzed

by Laplace (1795/1951). Using a little calculus, it is possible to show that the posterior

distribution over θ produced by a sequence d with NH heads and NT tails is

p(θ|d) =
(NH +NT + 1)!

NH ! NT !
θNH (1 − θ)NT . (13)

This is actually a distribution of a well known form, being a beta distribution with

parameters NH + 1 and NT + 1, denoted Beta(NH + 1, NT + 1) (e.g., Pitman, 1993).

Using this prior, the MAP estimate for θ is the same as the maximum-likelihood estimate,

being NH

NH+NT
, but the posterior mean is NH+1

NH+NT +2 . Thus, the posterior mean is sensitive

to the fact that we might not want to put as much weight in a single head as a sequence of
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ten heads in a row: on seeing a single head, we should predict that the next toss will

produce a head with probability 2
3 , while a sequence of ten heads should lead us to predict

that the next toss will produce a head with probability 11
12 .

Finally, we can also use priors that encode stronger beliefs about the value of θ. For

example, we can take a Beta(VH + 1, VT + 1) distribution for p(θ), where VH and VT are

positive integers. This distribution has a mean at VH+1
VH+VT +2 , and gradually becomes more

concentrated around that mean as VH + VT becomes large. For instance, taking

VH = VT = 1000 would give a distribution that strongly favors values of θ close to 0.5.

Using such a prior, we obtain the posterior distribution

p(θ|d) =
(NH +NT + VH + VT + 1)!

(NH + VH)! (NT + VT )!
θNH+VH (1 − θ)NT +VT , (14)

which is Beta(NH + VH + 1, NT + VT + 1). Under this posterior distribution, the MAP

estimate of θ is NH+VH

NH+NT +VH+VT
, and the posterior mean is NH+VH+1

NH+NT +VH+VT +2 . Thus, if

VH = VT = 1000, seeing a sequence of ten heads in a row would induce a posterior

distribution over θ with a mean of 1011
2012 ≈ 0.5025.

Some reflection upon the results in the previous paragraph yields two observations:

first, that the prior and posterior are from the same family of distributions (both being

beta distributions), and second, that the parameters of the prior, VH and VT , act as

“virtual examples” of heads and tails, which are simply combined with the real examples

tallied in NH and NT to produce the posterior. These two properties are not accidental:

they are characteristic of a class of priors called conjugate priors (Bernardo & Smith,

1994). The likelihood determines whether a conjugate prior exists for a given problem,

and the form that the prior will take. The results we have given in this section exploit the

fact that the beta distribution is the conjugate prior for the Bernoulli or binomial

likelihood (Equation 6) – the uniform distribution on [0, 1] is also a beta distribution,

being Beta(1, 1). Conjugate priors exist for many of the distributions commonly used in
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probabilistic models, such as Gaussian, Poisson, and multinomial distributions, and

greatly simplify many Bayesian calculations. Using conjugate priors, posterior

distributions can be computed analytically, and the interpretation of the prior as

contributing virtual examples is intuitive.

The example of tossing a coin serves to illustrate how the posterior distribution

forms a compromise between the prior and the information provided by the data, even

when we move from a small number of hypotheses to a continuum. This compromise is

quite explicit in Equation 14 and the estimators based upon it, where the number of heads

and tails exhibited in the data combine directly with the number of heads and tails

expected under the prior. Conjugate priors yield this kind of result in many models, but

the underlying principle is more general: the posterior distribution will always represent a

synthesis of the data, filtered through the likelihood, and the expectations of the learner,

as reflected in the prior.

Comparing hypotheses that differ in complexity

Whether there were a finite number or not, the hypotheses that we have considered

so far were relatively homogeneous, each offering a single value for the parameter θ

characterizing our coin. However, many problems require comparing hypotheses that

differ in their complexity. For example, the problem of inferring whether a coin is fair or

biased based upon an observed sequence of heads and tails requires comparing a

hypothesis that gives a single value for θ – if the coin is fair, then θ = 0.5 – with a

hypothesis that allows θ to take on any value between 0 and 1.

Using observed data to chose between two probabilistic models that differ in their

complexity is often called the problem of model selection (Myung & Pitt, 1997; Myung,

Forster, & Browne, 2000). In frequentist statistics, this problem is addressed via

hypothesis testing, a complex and counter-intuitive method that will be familiar to many
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readers. In contrast, the Bayesian approach to model selection is a seamless application of

the methods discussed so far. Hypotheses that differ in their complexity can be compared

directly using Bayes’ rule, once they are reduced to probability distributions over the

observable data (see Kass & Raftery, 1995).

To illustrate this principle, assume that we have two hypotheses: h0 is the

hypothesis that θ = 0.5, and h1 is the hypothesis that θ takes a value drawn from a

uniform distribution on [0, 1]. If we have no a priori reason to favor one hypothesis over

the other, we can take P (h0) = P (h1) = 0.5. The likelihood of the data under h0 is

straightforward to compute, using Equation 6, giving P (d|h0) = 0.5NH+NT . But how

should we compute the likelihood of the data under h1, which does not make a

commitment to a single value of θ?

The solution to this problem is to compute the marginal probability of the data

under h1. As discussed above, given a joint distribution over a set of variables, we can

always sum out variables until we obtain a distribution over just the variables that

interest us. In this case, we define the joint distribution over d and θ given h1, and then

integrate over θ to obtain

P (d|h1) =

∫ 1

0
P (d|θ, h1)p(θ|h1) dθ (15)

where p(θ|h1) is the distribution over θ assumed under h1 – in this case, a uniform

distribution over [0, 1]. This does not require any new concepts – it is exactly the same

kind of computation as we needed to perform to compute the normalizing constant for the

posterior distribution over θ (Equation 10). Performing this computation, we obtain

P (d|h1) = NH ! NT !
(NH+NT +1)! , where again the fact that we have a conjugate prior on θ provides

us with a neat analytic result. Having computed this likelihood, we can apply Bayes’ rule

just as we did for two simple hypotheses. Figure 1 (a) shows how the log posterior odds in

favor of h1 change as NH and NT vary for sequences of length 10.
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The ease with which hypotheses differing in complexity can be compared using

Bayes’ rule conceals the fact that this is actually a very challenging problem. Complex

hypotheses have more degrees of freedom that can be adapted to the data, and can thus

always be made to fit the data better than simple hypotheses. For example, for any

sequence of heads and tails, we can always find a value of θ that would give higher

probability to that sequence than the hypothesis that θ = 0.5. It seems like a complex

hypothesis would thus have a big advantage over a simple hypothesis. The Bayesian

solution to the problem of comparing hypotheses that differ in their complexity takes this

into account. More degrees of freedom provide the opportunity to find a better fit to the

data, but this greater flexibility also makes a worse fit possible. For example, for d

consisting of the sequence HHTHTTHHHT, P (d|θ, h1) is greater than P (d|h0) for

θ ∈ (0.5, 0.694], but is less than P (d|h0) outside that range. Marginalizing over θ averages

these gains and losses: a more complex hypothesis will be favored only if its greater

complexity consistently provides a better account of the data. This penalization of more

complex models is known as the “Bayesian Occam’s razor” (Jeffreys & Berger, 1992;

Mackay, 2003), and is illustrated in Figure 1 (b).

Representing structured probability distributions

Probabilistic models go beyond “hypotheses” and “data”. More generally, a

probabilistic model defines the joint distribution for a set of random variables. For

example, imagine that a friend of yours claims to possess psychic powers – in particular,

the power of psychokinesis. He proposes to demonstrate these powers by flipping a coin,

and influencing the outcome to produce heads. You suggest that a better test might be to

see if he can levitate a pencil, since the coin producing heads could also be explained by

some kind of sleight of hand, such as substituting a two-headed coin. We can express all

possible outcomes of the proposed tests, as well as their causes, using the binary random
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variables X1, X2, X3, and X4 to represent (respectively) the truth of the coin being

flipped and producing heads, the pencil levitating, your friend having psychic powers, and

the use of a two-headed coin. Any set of of beliefs about these outcomes can be encoded

in a joint probability distribution, P (x1, x2, x3, x4). For example, the probability that the

coin comes up heads (x1 = 1) should be higher if your friend actually does have psychic

powers (x3 = 1).

Once we have defined a joint distribution on X1, X2, X3, and X4, we can reason

about the implications of events involving these variables. For example, if flipping the coin

produces heads (x1 = 1), then the probability distribution over the remaining variables is

P (x2, x3, x4|x1 = 1) =
P (x1 = 1, x2, x3, x4)

P (x1 = 1)
. (16)

This equation can be interpreted as an application of Bayes’ rule, with X1 being the data,

and X2, X3, X4 being the hypotheses. However, in this setting, as with most probabilistic

models, any variable can act as data or hypothesis. In the general case, we use

probabilistic inference to compute the probability distribution over a set of unobserved

variables (here, X2, X3, X4) conditioned on a set of observed variables (here, X1).

While the rules of probability can, in principle, be used to define and reason about

probabilistic models involving any number of variables, two factors can make large

probabilistic models difficult to use. First, it is hard to simply write down a joint

distribution over a set of variables which expresses the assumptions that we want to make

in a probabilistic model. Second, the resources required to represent and reason about

probability distributions increases exponentially in the number of variables involved. A

probability distribution over four binary random variables requires 24 − 1 = 15 numbers to

specify, which might seem quite reasonable. If we double the number of random variables

to eight, we would need to provide 28 − 1 = 255 numbers to fully specify the joint

distribution over those variables, a much more challenging task!
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Fortunately, the widespread use of probabilistic models in statistics and computer

science has led to the development of a powerful formal language for describing

probability distributions which is extremely intuitive, and simplifies both representing and

reasoning about those distributions. This is the language of graphical models, in which the

statistical dependencies that exist among a set of variables are represented graphically.

We will discuss two kinds of graphical models: directed graphical models, and undirected

graphical models.

Directed graphical models

Directed graphical models, also known as Bayesian networks or Bayes nets, consist

of a set of nodes, representing random variables, together with a set of directed edges from

one node to another, which can be used to identify statistical dependencies between

variables (e.g., Pearl, 1988). Typically, nodes are drawn as circles, and the existence of a

directed edge from one node to another is indicated with an arrow between the

corresponding nodes. If an edge exists from node A to node B, then A is referred to as the

“parent” of B, and B is the “child” of A. This genealogical relation is often extended to

identify the “ancestors” and “descendants” of a node.

The directed graph used in a Bayes net has one node for each random variable in

the associated probability distribution. The edges express the statistical dependencies

between the variables in a fashion consistent with the Markov condition: conditioned on

its parents, each variable is independent of all other variables except its descendants

(Pearl, 1988; Spirtes, Glymour, & Schienes, 1993). This has an important implication: a

Bayes net specifies a canonical factorization of a probability distribution into the product

of the conditional distribution for each variable conditioned on its parents. Thus, for a set

of variables X1, X2, . . . , XM , we can write P (x1, x2, . . . , xM ) =
∏

i P (xi|Pa(Xi)) where

Pa(Xi) is the set of parents of Xi.
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Figure 2 shows a Bayes net for the example of the friend who claims to have psychic

powers. This Bayes net identifies a number of assumptions about the relationship between

the variables involved in this situation. For example, X1 and X2 are assumed to be

independent given X3, indicating that once it was known whether or not your friend was

psychic, the outcomes of the coin flip and the levitation experiments would be completely

unrelated. By the Markov condition, we can write

P (x1, x2, x3, x4) = P (x1|x3, x4)P (x2|x3)P (x3)P (x4). This factorization allows us to use

fewer numbers in specifying the distribution over these four variables: we only need one

number for each variable, conditioned on each set of values taken on by its parents. In this

case, this adds up to 8 numbers rather than 15. Furthermore, recognizing the structure in

this probability distribution simplifies some of the computations we might want to

perform. For example, in order to evaluate Equation 16, we need to compute

P (x1 = 1) =
∑
x2

∑
x3

∑
x4

P (x1 = 1, x2, x3, x4)

=
∑
x2

∑
x3

∑
x4

P (x1 = 1|x3, x4)P (x2|x3)P (x3)P (x4)

=
∑
x3

∑
x4

P (x1 = 1|x3, x4)P (x3)P (x4) (17)

where we were able to sum out X2 directly as a result of its independence from X1 when

conditioned on X3.

Bayes nets make it easy to define probability distributions, and speed up

probabilistic inference. There are a number of specialized algorithms for efficient

probabilistic inference in Bayes nets, which make use of the dependencies among variables

(see Pearl, 1988; Russell & Norvig, 2002). In particular, if the underlying graph is a tree

(i.e. it has no closed loops), dynamic programming algorithms (e.g., Bertsekas, 2000) can

be used to exploit this structure. The intuition behind dynamic programming can be

illustrated by planning the shortest route for a trip from Los Angeles to Boston. To

determine the cost of going via Chicago, you only need to calculate the shortest route
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from LA to Chicago and then, independently, from Chicago to Boston. Decomposing the

route in this way, and taking into account the linear nature of the trip, gives an efficient

algorithm with convergence rates which are polynomial in the number of nodes and hence

are often feasible for computation. Equation 17 is one illustration for how the dynamic

programming can exploit the structure of the problem to simplify the computation. These

methods are put to particularly good use in hidden Markov models, which we discuss in

further detail later in the chapter.

With a little practice, and a few simple rules (e.g., Schachter, 1998), it is easy to

read the dependencies among a set of variables from a Bayes net, and to identify how

variables will influence one another. One common pattern of influence is explaining away.

Imagine that your friend flipped the coin, and it came up heads (x1 = 1). The

propositions that he has psychic powers (x3 = 1) and that it is a two-headed coin (x4 = 1)

might both become more likely. However, while these two variables were independent

before seeing the outcome of the coinflip, they are now dependent: if you were to go on to

discover that the coin has two heads, the hypothesis of psychic powers would return to its

baseline probability – the evidence for psychic powers was “explained away” by the

presence of the two-headed coin.

Different aspects of directed graphical models are emphasized in their use in the

artificial intelligence and statistics communities. In the artificial intelligence community

(e.g., Korb & Nicholson, 2003; Pearl, 1988; Russell & Norvig, 2002), the emphasis is on

Bayes nets as a form of knowledge representation and an engine for probabilistic

reasoning. In statistics, graphical models tend to be used to clarify the dependencies

among a set of variables, and to identify the generative model assumed by a particular

analysis. A generative model is a step-by-step procedure by which a set of variables are

assumed to take their values, defining a probability distribution over those variables. Any

Bayes net specifies such a procedure: each variable without parents is sampled, then each
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successive variable is sampled conditioned on the values of its parents. By considering the

process by which observable data are generated, it becomes possible to postulate that the

structure contained in those data is the result of underlying unobserved variables. The use

of such latent variables is extremely common in probabilistic models, as we discuss further

later in the chapter.

Recently, research has begun to explore the use of graphical models for the

representation of causal relationships. Causal graphical models augment standard directed

graphical models with a stronger assumption about the relationship indicated by an edge

between two nodes: rather than indicating statistical dependency, such an edge is assumed

to indicate a direct causal relationship (Pearl, 2000; Spirtes et al., 1993). This assumption

allows causal graphical models to represent not just the probabilities of events that one

might observe, but also the probabilities of events that one can produce through

intervening on a system. The implications of an event can differ strongly, depending on

whether it was the result of observation or intervention. For example, observing that

nothing happened when your friend attempted to levitate a pencil would provide evidence

against his claim of having psychic powers; intervening to hold the pencil down, and thus

guaranteeing that it did not move during his attempted act of levitation, would remove

any opportunity for this event to provide such evidence.

In causal graphical models, the consequences of intervening on a particular variable

are be assessed by removing all incoming edges to the variable that was intervened on, and

performing probabilistic inference in the resulting “mutilated” model (Pearl, 2000). This

procedure produces results that align with our intuitions in the psychic powers example:

intervening on X2 breaks its connection with X3, rendering the two variables independent.

As a consequence, X2 cannot provide evidence as to the value of X3. Introductions to

causal graphical models that consider applications to human cognition are provided by

Glymour (2001) and Sloman (2005). There are also several good resources for more
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technical discussions of learning the structure of causal graphical models (Heckerman,

1998; Glymour & Cooper, 1999).

Undirected graphical models

Undirected graphical models, also known as Markov Random Fields (MRFs),

consist of a set of nodes, representing random variables, and a set of undirected edges,

defining neighborhood structure on the graph which indicates the probabilistic

dependencies of the variables at the nodes (e.g., Pearl, 1988). Each set of fully-connected

neighbors (known as a clique) is associated with a potential function, which varies as the

associated random variables take on different values. When multiplied together, these

potential functions give the probability distribution over all the variables. Unlike directed

graphical models, there need be no simple relationship between these potentials and the

local conditional probability distributions. Moreover, undirected graphical models usually

have closed loops (if they do not, then they can be reformulated as directed graphical

models (e.g., Pearl, 1988)).

In many unsupervised learning problems, the observable data are believed to reflect

some kind of underlying latent structure. For example, in a clustering problem, we might

only see the location of each point, but believe that each point was generated from one of

a small number of clusters. Associating the observed data with random variables Xi and

the latent variables with random variables Yi, we might want to define a probabilistic

model for Xi that explicitly takes into account the latent structure Yi. Such a model can

ultimately be used to make inferences about the latent structure associated with new

datapoints, as well as providing a more accurate model of the distribution of Xi. In the

following sections we will use Xi to refer to variables whose values can be directed

observed and Yi to refer to latent, or hidden, variables whose values can only be inferred.

We will use the vector notation ~x and ~y to represent the values taken by these random
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variables, being x1, x2, . . . and y1, y2, . . . respectively.

A standard model used in computer vision is of form: P (~x|~y) = (
∏

i P (xi|yi))P (~y)

where the prior distribution on the latent variables is an MRF,

P (~y) =
1

Z

∏
i,j∈Λ

ψij(yi, yj)
∏

i

ψi(yi) (18)

where Z is a normalizing constant ensuring that the resulting distribution sums to 1 (e.g.,

Geman & Geman, 1984). Here, ψij(·, ·) and ψi(·) are the potential functions, and the

underlying graph is a lattice, with Λ being the set of connected pairs of nodes (see Figure

3). This model has many applications. For example, ~x can be taken to be the observed

intensity values of a corrupted image and ~y the true image intensity, with P (xi|yi)

modeling the corruption of these intensity values. The prior P (~y) is used to put prior

probabilities on the true intensity, for example that neighboring intensity values are

similar (e.g. that the intensity is spatially smooth). A similar model can be used for

binocular stereopsis, where the ~x correspond to the image intensities in the left and right

eyes and ~y denotes the depth of the surface in space that generates the two images. The

prior on ~y can assume that the depth is a spatially smoothly varying function.

Another example of an MRF is the Boltzmann Machine, which has been very

influential in the neural network community (Dayan & Abbott, 2001; Mackay, 2003). In

this model the components xi and yi of the observed and latent variables ~x and ~y all take

on values 0 or 1. The standard model is

P (~y, ~x|~ω) =
1

Z
exp{−E(~y, ~x, ~ω)/T} (19)

where T is a parameter reflecting the “temperature” of the system, and E depends on

unknown parameters ~ω which are weighted connections ωh
ij between hidden variables yi, yj

and ωo
ij between observed and hidden variables xi, yj ,

E(~y, ~x, ~ω) =
∑
ij

ωo
ijxiyj +

∑
ij

ωh
ijyiyj . (20)
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In this model, the potential functions are of the form exp{−ωo
ijxiyj} and exp{−ωh

ijyiyj},

and the underlying graph connects pairs of observed and hidden variables and pairs of

hidden variables (see Figure 3). Training the Boltzmann Machine involves identifying the

correct potential functions, learning the parameters ~ω from training examples. Viewing

Equation 19 as specifying the likelihood of a statistical model, inferring ~ω can be

formulated as a problem of Bayesian inference of the kind discussed above.

Algorithms for inference

The presence of latent variables in a model poses two challenges: inferring the

values of the latent variables, conditioned on observable data (i.e. computing P (~y|~x)), and

learning the probability distribution P (~x, ~y) from training data (e.g., learning the

parameters ~ω of the Boltzmann Machine). In the probabilistic framework, both these

forms of inference reduce to inferring the values of unknown variables, conditioned on

known variables. This is conceptually straightforward but the computations involved are

difficult and can require complex algorithms (unless the problem has a simple graph

structure which allows dynamic programming to be used). In this section, we will discuss

two algorithms that can be used to solve this problem.

The Expectation-Maximization algorithm

A standard approach to solving the problem of estimating probability distributions

involving latent variables from training data is the Expectation-Maximization (EM)

algorithm (Dempster, Laird, & Rubin, 1977). Imagine we have a model for data ~x that has

parameters θ, and latent variables ~y. A mixture model is one example of such a model, in

which the distribution of Xi is assumed to be a mixture of several other distributions,

each responsible for a cluster of observations. For example, we might believe that our data

were generated from two clusters, each associated with a different Gaussian (i.e. normal)

distribution. If we let yi denote the cluster from which the datapoint xi was generated,



Probability Primer 23

and assume that there are K such clusters, then the probability distribution over xi is

P (xi) =
K∑

k=1

P (xi|yi = k)P (yi = k) (21)

where P (xi|yi = k) is the distribution associated with cluster k, and P (yi = k) is the

probability that a point would be generated from that cluster. If we can estimate the

parameters that characterize these distributions, we can infer the probable cluster

membership (yi) for any datapoint (xi).

The likelihood for a mixture model is P (~x|θ) =
∑

~y P (~x, ~y|θ) where the latent

variables ~y are unknown. The EM algorithm is a procedure for obtaining a

maximum-likelihood (or MAP estimate) for θ, without resorting to generic methods such

as differentiating logP (~x|θ). The key idea is that if we knew the values of the latent

variables ~y, then we could find θ by using the standard methods for estimation discussed

above. Even though we might not have perfect knowledge of ~y, we can still assign

probabilities to ~y based on ~x and our current guess of θ, P (~y|~x, θ). The EM algorithm for

maximum-likelihood estimation proceeds by repeatedly alternating between two steps:

evaluating the expectation of the “complete log-likelihood” logP (~x, ~y|θ) with respect to

P (~y|~x, θ) (the E-step), and maximizing the resulting quantity with respect to θ (the

M-step). For many commonly used distributions, it is possible to compute the expectation

in the E-step without enumerating all possible values for ~y. The EM algorithm is

guaranteed to converge to a local maximum of P (~x|θ) (Dempster et al., 1977), and both

steps can be interpreted as performing hillclimbing on a single “free energy” function (Neal

& Hinton, 1998). An illustration of EM for a mixture of Gaussians appears in Figure 4 (a).

Markov chain Monte Carlo

The EM algorithm represents an intuitive solution to the problem of parameter

estimation with latent variables, and is effective for a range of applications, but it only

provides a solution to one of the inference problems faced in probabilistic models. Indeed,
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the EM algorithm requires that we be able to solve the other problem – computing

P (~y|~x, θ) – in order to be able to perform the E-step (although see Jordan, Ghahramani,

Jaakkola, & Saul, 1999, for methods for dealing with this issue in complex probabilistic

models). Another class of algorithms, Markov chain Monte Carlo (MCMC) methods,

provide a means of obtaining samples from complex distributions, which can be used both

for inferring the values of latent variables and for identifying the parameters of models.

MCMC algorithms were originally developed to solve problems in statistical physics

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953), and are now widely used

both in physics (e.g., Newman & Barkema, 1999) and in statistics (e.g., Gilks, Richardson,

& Spiegelhalter, 1996; Mackay, 2003; Neal, 1993). As the name suggests, Markov chain

Monte Carlo is based upon the theory of Markov chains – sequences of random variables

in which each variable is independent of all of its predecessors given the variable that

immediately precedes it (e.g., Norris, 1997). The probability that a variable in a Markov

chain takes on a particular value conditioned on the value of the preceding variable is

determined by the transition kernel for that Markov chain. One well known property of

Markov chains is their tendency to converge to a stationary distribution: as the length of a

Markov chain increases, the probability that a variable in that chain takes on a particular

value converges to a fixed quantity determined by the transition kernel.

In MCMC, a Markov chain is constructed such that its stationary distribution is the

distribution from which we want to generate samples. Since these methods are designed

for arbitrary probability distributions, we will stop differentiating between observed and

latent variables, and just treat the distribution of interest as P (~x). An MCMC algorithm

is defined by a transition kernel K(~x|~x′) which gives the probability of moving from state

~x to state ~x′. In order for the Markov chain to have the target distribution P (~x) as its

stationary distribution, the transition kernel must be chosen so that the P (~x) is invariant

to the kernel. Mathematically this is expressed by the condition
∑

~x P (~x)K(~x|~x′) = P (~x′).
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If this is the case, once the probability that the chain is in a particular state is equal to

P (~x), it will continue to be equal to P (~x) – hence the term “stationary distribution”. A

variety of standard methods exist for constructing transition kernels that satisfy this

criterion, including Gibbs sampling and the Metropolis-Hastings algorithm (see Gilks et al.,

1996). The algorithm then proceeds by repeatedly sampling from the transition kernel

K(~x|~x′), starting from any initial configuration ~x. The theory of Markov chains

guarantees that the states of the chain will ultimately be samples from the distribution

P (~x). These samples enable us to estimate properties of the distribution such as the most

probable state or the average state. The results of an MCMC algorithm (in this case,

Gibbs sampling) for mixtures of Gaussians are shown in Figure 4 (b).

Applying MCMC methods to distributions with latent variables, or treating the

parameters of a distribution as a random variable in itself (as is standard in Bayesian

statistics, as discussed above), makes it possible to solve both of the problems of inference

faced by users of probabilistic models. The main problems with MCMC methods are that

they can require a long time to converge to the target distribution, and assessing

convergence is often difficult. Designing an MCMC algorithm is more of an art than a

science. A poorly designed algorithm will take a very long time to converge. There are,

however, design principles which often lead to fast MCMC. For example, transition kernels

can be carefully constructed to guide the Markov chain so that it explores important parts

of the space of possible ~x.

More complex probabilistic models

The basic ideas outlined in the previous section can translate into some quite

expressive and powerful probabilistic models. In this section, we will illustrate this by

briefly reviewing two of these models: hidden Markov models and probabilistic

context-free grammars. These models have largely been used in computational linguistics,
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so we will focus on their application to language, but the underlying principles can be

used to define probabilistic models in any domain. A more detailed account of the

implications of probabilistic models of language appears in Chater and Manning (2006).

Hidden Markov models

Hidden Markov models (or HMMs) are an important class of graphical models that

have been used for problems such as speech and language processing. For example, in

speech recognition a hidden Markov model might be used to capture the pattern of speech

sounds that make up an individual word. As shown in Figure 5 (a), the HMM for a word

W assumes that there is a sequence of T observations {xt : t = 1, ..., T} (taking L values)

generated by a set of hidden states {yt : t = 1, ..., T} (taking K values). The joint

probability distribution is defined by

P ({yt}, {xt},W ) = P (W )P (y1|W )P (x1|y1,W )
∏T

t=2 P (yt|yt−1,W )P (xt|yt,W ). The HMM

for W is defined by the probability distributions P (y1|W ), the K ×K probability

transition matrix P (yt|yt−1,W ), the K × L observation probabilty matrix P (xt|yt,W ),

and the prior probability of the word P (W ). Using hidden Markov models to recognize

words requires solving three related inference tasks. First, we need to learn the models

(i.e. P (xt|yt,W ) and P (yt|yt−1,W )) for each word W . Second, we need to evaluate the

probability P ({xt},W ) =
∑

{yt}
P ({yt}, {xt},W ) for the observation sequence {xt} for

each word W . Third, we must recognize the word by model selection to estimate

W ∗ = arg maxW

∑
{yt}

P ({yt},W |{xt}). These problems can be solved using probabilistic

inference algorithms based on dynamic programming and the principles behind the EM

algorithm (Rabiner, 1989).

Figure 5 (b) shows a simple example of a hidden Markov model. The representation

of the HMM used in this panel is not a graphical model, as in Figure 5 (a), but a state

transition diagram, indicating the states of the model, the observations these states
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generate, and the probabilities of transitioning between states and producing observations.

In this model, it is assumed that somebody has two coins, one biased and the other fair,

and produces a sequence of heads and tails by flipping these coins, with the coins being

switched occasionally. The observable values 0 and 1 indicate whether the coin comes up

heads or tails. The hidden states A and B indicate which coin is used on a given flip.

There are (unknown) transition probabilities between the hidden states A and B, and

(unknown) probabilities for the observations 0, 1 conditioned on the hidden states. Given

this structure, the learning, or training, task of the HMM is to estimate the probabilities

from a sequence of measurements. The HMM can then be used to estimate the hidden

states and the probability that the model generated a particular sequence of observations

(so that it can be compared to alternative models for classification).

Hidden Markov models were first described by Baum and Petrie (1966). HMMs are

widely used for processing text and speech (e.g., Charniak, 1993; Jurafsky & Martin,

2000). One of their most successful applications, other than speech recognition, is

part-of-speech tagging (e.g., Charniak, Hendrickson, Jacobson, & Perkowitz, 1993), in

which the latent states are trained to match the syntactic categories, such as nouns and

verbs, that comprise the most basic level of linguistic structure. These analyses are similar

to the “distributional clustering” methods that cognitive scientists have claimed may play

a role in the acquisition of syntactic categories by children (e.g., Redington, Chater, &

Finch, 1998).

Probabilistic context-free grammars

Hidden Markov models are equivalent to probabilistic finite state automata, and

consequently are a form of probabilistic regular grammar (e.g., Manning & Shutze, 1999).

Generative models can be defined in terms of probabilistic versions of other grammars in

Chomsky’s (1956) hierarchy of formal languages. In particular, computational linguists
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have explored probabilistic context-free grammars (PCFGs; Baker, 1979, Charniak 1993,

Jurafsky & Martin, 2000, Manning & Shutze, 1999, Geman & Johnson, 2004). A PCFG

can be used to generate sentences and to parse them. The probability of a sentence, or a

parse, is defined to be the product of the probabilities of the production rules used to

generate the sentence.

For example, we can define a PCFG as follows (see Figure 5 (c)). We define

non-terminal nodes S,NP, V P,AT,NNS, V BD,PP, IN,DT,NN where S is a sentence,

V P is a verb phrase, V BD is a verb,NP is a noun phrase, NN is a noun, and so on (for

more details, see Manning & Schütze, 1999). The terminal nodes are words from a

dictionary (e.g. “the”, “cat”, “sat”, “on”, “mat”.) We define production rules which are

applied to non-terminal nodes to generate child nodes (e.g. S 7→ NP, V P or

NN 7→ “cat”). Finally, we specify probabilities for the production rules, so that the

probabilities assigned to production rules with the same non-terminal symbol on the left

hand side sum to one.

These production rules enable us to generate a sentence starting from the root node

S. We sample a production rule from the distribution over rules with S on the left hand

side, and apply it to generate child nodes. We repeat this process on the child nodes and

stop when all the nodes are terminal (i.e. all are words). The result is a “parse tree” of

the kind shown in Figure 5 (c) – a hierarchical representation of the structure of a

sentence. As a result of following this procedure for generating parse trees, the probability

of obtaining a particular parse tree (with an accompanying sequence of words) is just the

product of the probabilities of the rules that produce that parse tree. Multiple parse trees

can result in the same sequence of words. To parse an input sentence, we use dynamic

programming to compute the most probable way that sequence of words could have been

generated by the production rules.

As with hidden Markov models, we can learn the probabilities associated with
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production rules from a set of observed sentences. This can be done in a supervised

fashion, using sentences for which the true parse structure is known, or an unsupervised

fashion, working just from the sentences. The supervised learning problem is similar to

the problem of estimating the probability with which a coin will produce heads, although

on a much larger scale. The unsupervised learning problem involves latent variables – the

parse trees – making it an attractive target for methods related to the EM algorithm (Lari

& Young, 1990) and Markov chain Monte Carlo (Johnson, Griffiths, & Goldwater, 2007).

Probabilistic context-free grammars are used throughout computational linguistics,

and are the subject of many formal results concerning the tractability of language

acquisition (e.g., Horning, 1969; Angluin, 1988). The formalism is also beginning to be

used in psycholinguistics, in modeling people’s treatment of phenomena disambiguation

and attachment (e.g., Baldewein & Keller, 2004; Jurafsky, 1996). Recent work in

bioinformatics has also begun to exploit the capacity of PCFGs to capture complex

dependencies among the elements of sequences (e.g., Ding, Chan, & Lawrence, 2005).

However, the strong independent assumptions that underlie PCFGs, as well as their

restriction to context-free languages, mean that they are largely a convenient

approximation to the structure of human languages, and linguists continue to explore new

probabilistic models that remove some of these constraints.

Conclusion

Probabilistic models provide a unique opportunity to develop a rational account of

human cognition that combines statistical learning with structured representations.

However, specifying and using these models can be challenging. The widespread use of

probabilistic models in computer science and statistics has led to the development of

valuable tools that address some of these challenges. Graphical models provide a simple

and intuitive way of expressing a probability distribution, making clear the assumptions
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about how a set of variables are related, and can greatly speed up probabilistic inference.

The EM algorithm and Markov chain Monte Carlo can be used to estimate the

parameters of models that incorporate latent variables, and to work with complicated

probability distributions of the kind that often arise in Bayesian inference. These tools

make it possible to work with richly structured probabilistic models, such as hidden

Markov models and probabilistic context-free grammars. Current work in computer

science and statistics is extending the scope of probabilistic models yet further, exploring

models in which the number of clusters or features expressed in a dataset is unbounded

(e.g., Neal, 1998; Griffiths & Ghahramani, 2005), where hypotheses are defined at multiple

levels of abstraction (resulting in “hierarchical” Bayesian models) allowing information to

be generalized across datasets (e.g., Tenenbaum, Griffiths, & Kemp, 2006), and where the

properties of an object depend probabilistically both on other properties of that object

and on properties of related objects (e.g., Friedman, Getoor, Koller, & Pfeffer, 1999;

Kemp, Griffiths, & Tenenbaum, 2004). One of the great strengths of probabilistic models

is this capacity to combine structured representations with statistical methods, providing

a set of tools that can be used to explore how structure and statistics are combined. By

using these tools and continuing to draw on advances in the many disciplines where

probabilistic models are used, it may ultimately become possible to define models that can

capture the complexity of human cognition.
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Author Note

This chapter is an extended version of Griffiths and Yuille (2006), a tutorial on

probabilistic inference that appeared as an online supplement to a special issue of Trends

in Cognitive Sciences on probabilistic models of cognition (Volume 10, Issue 7).
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Footnotes

1We will use uppercase letters to indicate random variables, and matching lowercase

variables to indicate the values those variables take on. When defining probability

distributions, the random variables will remain implicit. For example, P (a) refers to the

probability that the variable A takes on the value a, which could also be written

P (A = a). We will write joint probabilities in the form P (a, b). Other notations for joint

probabilities include P (a&b) and P (a ∩ b).



Probability Primer 39

Figure Captions

Figure 1. Comparing hypotheses about the weight of a coin. (a) The vertical axis shows

log posterior odds in favor of h1, the hypothesis that the probability of heads (θ) is drawn

from a uniform distribution on [0, 1], over h0, the hypothesis that the probability of heads

is 0.5. The horizontal axis shows the number of heads, NH , in a sequence of 10 flips. As

NH deviates from 5, the posterior odds in favor of h1 increase. (b) The posterior odds

shown in (a) are computed by averaging over the values of θ with respect to the prior,

p(θ), which in this case is the uniform distribution on [0, 1]. This averaging takes into

account the fact that hypotheses with greater flexibility – such as the free-ranging θ

parameter in h1 – can produce both better and worse predictions, implementing an

automatic “Bayesian Occam’s razor”. The solid line shows the probability of the sequence

HHTHTTHHHT for different values of θ, while the dotted line is the probabiltiy of any

sequence of length 10 under h0 (equivalent to θ = 0.5). While there are some values of θ

that result in a higher probability for the sequence, on average the greater flexibility of h1

results in lower probabilities. Consequently, h0 is favored over h1 (this sequence has

NH = 6). In contrast, a wide range of values of θ result in higher probability for for the

sequence HHTHHHTHHH, as shown by the dashed line. Consequently, h1 is favored over h0,

(this sequence has NH = 8).

Figure 2. Directed graphical model (Bayes net) showing the dependencies among variables

in the “psychic friend” example discussed in the text.

Figure 3. Markov random fields. (a) The undirected graph associated with a Markov

random field where Λ = {(1, 2), (2, 3), (3, 4), (4, 1)}. (b) The undirected graph associated

with a Boltzmann Machine, as discussed in the text.

Figure 4. Expectation-Maximization (EM) and Markov chain Monte Carlo (MCMC)
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algorithms applied to a Gaussian mixture model with two clusters. Colors indicate the

assignment of points to clusters (black and white), with intermediate greys representing

probabilistic assignments. The ellipses are a single probability contour for the Gaussian

distributions reflecting the current parameter values for the two clusters. (a) The EM

algorithm assigns datapoints probabilistically to the two clusters, and converges to a single

solution that is guaranteed to be a local maximum of the log-likelihood. (b) In contrast,

an MCMC algorithm samples cluster assignments, so each datapoint is assigned to a

cluster at each iteration, and samples parameter values conditioned on those assignments.

This process converges to the posterior distribution over cluster assignments and

parameters: more iterations simply result in more samples from this posterior distribution.

Figure 5. Probabilistic models of language. (a) The graphical model representation for a

hidden Markov model (HMM). The Yi are latent states, and the Xi observations. (b) A

state transition diagram represetnation for an HMM. The circles represent the states of

the model, with arrows connecting circles indicating transitions between states. Each state

can also produce observations (in this case 0 and 1), with further arcs indicating the

possible observations. The probabilities on the arcs represent the parameters of the model.

(c) A parse tree from a probabilistic context-free grammar (PCFG).
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