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Abstract 

In this paper, I outline and investigate the notion of computational beliefs: beliefs formed on the 

basis of a deliverance from a machine learning algorithm. Given the increased usage of such 

algorithms through smart devices, such beliefs are becoming increasingly common in everyday 

life. First, I argue that such beliefs can be successful (i.e. justified and true) by outlining particular 

examples that possess epistemic properties taken to be indicative of successful beliefs (i.e. being 

a reason for action, being reliable, being safe, and being sensitive). I then outline how 

computational beliefs are best understood as a form of what Sosa (2006) describes as instrumental 

beliefs. As such, it may be thought that computational beliefs hold little epistemological interest 

insofar as they are reducible to more basic epistemic processes that are already the focus of 

epistemological attention. However, in the final section, I argue that computational beliefs hold 

epistemological importance insofar as they have specific epistemically normative repercussions 

i.e. they give rise to epistemic responsibility gaps.  
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1. Introducing Computational Beliefs 

Social epistemology recognises that a full account of the epistemic agent as a knower and 

believer must make some appeal to the social environment that the epistemic agent is in. But the 

social environment we now find ourselves in as epistemic agents is changing as we become more 

reliant on technology. It is no secret that we are becoming more dependent on computational 

devices in many aspects of life, using our computers and phones to write, purchase, learn, play, 

meet, and more. Data are now easily produced, stored, transported, copied, analysed, and 

generally utilised for a variety of purposes. This is not least because the technology required to 

analyse such data has seen a dramatic improvement. Learning algorithms are now available that, at 

the most general level, adjust the parameters by which they operate so that they perform at some 

(often very high) minimally-optimal level. These algorithms no longer have to operate via a 

predefined method explicitly formulated by data scientists, and as a result can provide ways of 

processing data that would otherwise have been out of human reach.  

Today we are entering a situation whereby we are starting to rely on these algorithms as epistemic 

sources i.e. we form beliefs – justified beliefs – on the basis of the outcomes of such algorithms. 

The fact that this kind of belief has only recently become available should lead us to a prima facie 

position that it deserves philosophical attention in case it possesses epistemic features that are 

previously overlooked. Furthermore, it is reasonable to think that this kind of belief is on the rise 

not simply because the technology is available, but also because in some cases it is starting to 

replace other kinds of belief. Where previously we may have relied on testimony as a source of 

belief, there are now cases where we rely upon an algorithmic source. Philosophers ought to be 

sensitive to this kind of shift in our epistemic landscape and this is the second respect in which 

this new kind of belief via learning algorithm warrants inspection.  

In recent years, there has been an increased philosophical focus the way we form beliefs in a 

digital environment. In particular, a number of authors have investigated the way information is 

ranked and displayed in search engines and news feeds. For example, Miller & Record (2013, 

2017) have argued that the opacity of the algorithms used by search engines such as Google in 

order to provide search results can mean that the beliefs formed via those search results can 

sometimes be unjustified. Similarly, Simpson (2012) has argued that search engines effectively 

serve as ‘surrogate experts’, but that in doing so they fail to provide us with sufficient a level of 

objectivity due to the highly personalised results that the likes of Google now provide. 

Heersmink (2018) has argued from a virtue-epistemological perspective that there are a range of 

virtuous and vicious behaviours associated with such online inquiry. As we will see, the concerns 

of such authors are similar to my own. In particular, I will argue that the fact that we treat apps 

that employ learning algorithms as ‘surrogate experts’ on particular topics, combined with the 

opacity that such algorithms possess, leads to specific consequences regarding epistemic 

responsibility. But while the process of retrieving information via a search engine clearly will 

involve the kind of learning algorithms that are the topic of this paper, the beliefs formed via 

that process would not constitute a computational belief. Web pages tend to be human-authored 

documents, and so when one forms a belief based on a search engine result, there is an 

important sense in which this belief has a testimonial source, albeit mediated by a search engine. 

By contrast, this paper will be concerned with beliefs formed on the basis of a deliverance from a 

machine learning algorithm, and such beliefs will be referred to as computational beliefs.1 This is 

                                                 
1 I use the term ‘deliverance’ from (Sosa 2006), largely as a way of avoiding anthropomorphising these algorithms 
with talk of what they decide, say, state, etc. I use the term to refer to the proposition that an instrument presents as 
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clearly a very broad category, that would doubtless capture many beliefs formed in an academic 

setting, where machine learning algorithms may be employed during experimentation or data 

analysis. However, this paper is primarily concerned with the ordinary cases of computational 

beliefs, such as when we form beliefs based on the deliverances of our smart devices.  

In this paper, I will investigate the extent to which computational beliefs can be viewed as a 

distinctive form of belief, suitable for epistemological theorising. In the debate concerning 

testimonial knowledge, a great deal of the discussion has concerned whether testimony as an 

epistemic source can be reduced to other, more basic, epistemic sources. In this paper, I will 

argue that computational beliefs are reducible in this sense. Nevertheless, computational beliefs 

are a distinct form of belief, worthy of study in their own right, due to the distinctive kinds of 

normative repercussions they hold. In the following section, I will outline more precisely what I 

have in mind by the term ‘computational beliefs’. In section 3, I will attempt to motivate the idea 

that such beliefs can be justified and constitute knowledge. In section 4, I will consider the extent 

to which computational beliefs can be captured via more traditional epistemic sources e.g. 

perception, reason, and memory etc. There, I will argue that computational beliefs are best 

captured as what Sosa (2006) calls instrumental belief. In section 5, I will argue for reductionism 

about computational beliefs. Finally, in section 6, I will argue that computational beliefs are 

epistemologically interesting in their own right insofar as they give rise to epistemic responsibility 

gaps.  

2. Cases of Computational Beliefs 

The cases of interest are cases where an epistemic agent forms a belief based upon the 

deliverance of some app or program, and where that app or program uses a learning algorithm 

that analyses some large dataset in providing the output that it does. A learning algorithm is any 

algorithm that is able to optimise its own performance in ways that are not explicitly 

programmed. It will do so by ‘learning’ from a dataset. We can distinguish broadly between two 

different kinds of learning algorithm. A supervised learning algorithm is one that requires an 

annotated training set of data in order to undergo its learning phase. The training set is a sample 

of data that pairs the kind of data that the algorithm is designed to process with a desired set of 

outputs. For example, if a supervised learning algorithm is being designed to recognise scans of 

cancerous lungs, then the training set will consist of pairs of a lung scan plus a verdict on 

whether it is a cancerous scan or not. The algorithm will then go through a training phase 

whereby it will attempt to classify each input of the training set correctly and will continue to 

adjust its parameters until it succeeds in this task to some minimally optimal level. An unsupervised 

learning algorithm, on the other hand, does not require an annotated training set in order to 

proceed. Instead, it will recognise certain internal patterns present within the data. Clustering 

algorithms are a common example, whereby datapoints are organised into groups based on their 

statistical similarities.2 

Learning algorithms are of particular interest because they are at the forefront of many recent 

advances, and because these algorithms themselves possess philosophically interesting 

properties, chief among them being their opacity (Miller and Record 2013, p. 128). That is, it is 

                                                 
being the case, as they were designed to do. For computational beliefs, the instrument in question will rely upon a 
learning algorithm.  
2 A third kind of learning algorithm is a reinforcement learning algorithm. A reinforcement learning algorithm is one that 
learns ‘on-the-go’ in its final operating environment. The idea is that evaluations are assigned to the outcomes that 
the algorithm provides. As a result, the algorithm can continuously adjust its own parameters of operation 
(sometimes in a trial-and-error fashion) so as to optimise its ability to achieve positive evaluations.   
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often not possible for any given human agent, nor any set of human agents, to properly 

understand the manner in which the algorithm has processed the data and reached the outcome 

that it has. There are (at least) two reasons for this. First, the overall manner in which these 

algorithms operate is often not explicitly encoded in a human-friendly language that a 

programmer would be able to read off. This is most clear in the case of neural networks. Neural 

networks consist of layers of neurons that will simply send a signal to the neurons it is connected 

to depending upon the kind of input that it has received. If the weights associated with the 

neural connections are adjusted in an appropriate manner, a neural network is able to process 

data in an incredibly sophisticated way and perform tasks of surprising complexity. As just one 

example, Owens et al. (2015) produced a deep learning system that is able to take as input 

soundless videos of a drumstick hitting various objects (e.g. a gutter, a banister, a bush etc.) and 

insert an appropriate matching sound based purely on the visual data within the video. But 

importantly, beyond the weights assigned to each neuron and the initial framework of the 

network, there is no record to be had of how the network processes data. Instead, the best way 

for a programmer to understand how a neural network processes data is simply by exploring the 

types of outputs the network provides given certain types of input. Secondly, the manner in 

which the algorithm operates – the way in which it provides an output based on a given input – 

is often too complex for a human to comprehend. As stated, learning algorithms learn by 

adjusting their operational parameters until they have reached some minimally-optimal level of 

performance, and the number of parameters can be potentially huge. In the case of neural 

networks, the connection weights that hold between neurons can rise into the millions. Human 

agents are not be able to keep track of how each is adjusted, and so it seems the operation of 

such algorithms is simply beyond our ken.  

We are already coming to rely epistemically upon such algorithms. I will present three examples. 

If I want to know about traffic on a particular road, it used to be that I would either have to go 

see the road for myself or rely on some testimonial chain that leads back to someone who has 

been on the road themselves. I would have listened out for a traffic report, where a reporter will 

inform about the traffic on the road on the basis of further testimony, or on some kind of 

footage (e.g. CCTV), or perhaps from their own birds-eye view from a helicopter. Now, 

however, I tend to find out about traffic via Google Maps. Google Maps analyses the traffic on a 

given road on the basis of a huge set of constantly updated data points. In particular, it is able to 

estimate the average speed of their travelling customers on the basis of locational data of all 

android phones (with location services enabled), and all other smart devices with Google Maps 

running.3 From this dataset, it is able to provide an accurate estimate of the traffic in a given area, 

and it will notify a user via their smartphone if they are about to travel on a road with a high 

amount of traffic. In this way, we rely on the algorithms that are operative as part of Google 

Maps as an epistemic source with regard to traffic, and we form beliefs on the basis of what it 

tells us and act accordingly – possibly by changing our route so as to avoid a particularly busy 

road. It seems plausible also that we are justified in doing so, although I return to this issue in the 

next section.  

A second example concerns cancer diagnosis. In recent years, a great deal of research has been 

devoted to using various types of learning algorithms to identify the presence of cancerous cells 

                                                 
3 In the same way, Google Maps is able to identify when there is a running event on in a particular town i.e. when 
there are a huge number of highly-concentrated smart devices moving at a jogging pace through a town.  
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either via a scan or a tissue sample (Kuruvilla and Gunavathi 2014, Zhou et al. 2002).4 The 

exciting possibility of this research is that there is no principled reason to think that such an 

approach could not exceed expert human diagnostic abilities. Whether we are close to that 

situation or not, it seems easy to imagine a possibility where this type of highly accurate system is 

successfully produced and is then employed in a medical setting. In that case, when the 

diagnostic system informs a patient that their scan or biopsy has indicates the presence of 

cancerous cells, the patient would be using this system as an epistemic source and would then 

form a belief and adjust their behaviour accordingly.  

Finally, a third example concerns machine translation, the most famous example being Google 

Translate. Suppose that while travelling to a conference in Germany, an exasperated train 

conductor calls me a ‘dummkopf’. Not knowing what this word means, I can then type the word 

into Google Translate, which informs me that the English translation is ‘idiot’. Here Google 

Translate serves as an epistemic source regarding certain linguistic facts i.e. facts about 

translations between two languages. Again, I can then justifiably form the belief that the train 

conductor called me an idiot and adjust my behaviour accordingly (i.e. look indignant and 

internalise negative feelings). But Google Translate does not operate via any kind of previously-

recorded translation dictionary. Instead, it relies on a vast corpus of linguistic data, as well as a 

vast corpus of translations between languages.5 Essentially, translations are reached via analysis 

of the properties of linguistic corpora rather than testimony from a translator.  

With these examples, we find that algorithms already serve as an epistemic source in ordinary life 

and will do so in areas of increasing significance, such as in medical settings. I take it to be highly 

plausible that, provided there are no relevant defeaters or other situational deficiencies, such 

cases are cases of justified belief and knowledge. There may be some, however, who are more 

suspicious of the quality of computational beliefs. Certainly, I do not want to claim that all cases 

where we find these algorithms playing the putative role of an epistemic source are cases where 

they do so successfully. It doesn’t seem plausible, for instance, that when e-Harmony states that I 

am well-matched with a given individual that I can then justifiably believe that I am well-matched 

romantically with that individual. Instead, I only want to claim that there are cases where we do 

rely on an algorithm as an epistemic source. In order to further assuage the concern that such 

beliefs are improperly formed, in the next section I will briefly examine the epistemic properties 

of computational beliefs in an effort to show that they do possess the same properties as more 

run-of-the-mill beliefs.  

3. Epistemic properties of computational belief  

The contemporary epistemological literature provides us with a range of interesting concepts that 

I intend to use here in a kind of diagnostic role. In the post-Gettier years, concepts such as 

sensitivity, safety, reliability, etc. have been proposed as part of an analysis of knowledge or 

justified belief. But while many consider the various proposals associated with these concepts to 

be deficient in some way, these concepts still have a use in epistemological theorising insofar as 

they do capture features common across a good number of the successful cases of belief. With 

that in mind, if we find that the given set of beliefs we are concerned with fall under the 

                                                 
4 Neural networks are particularly suitable for such a task as they are well-suited to processing visual data. In 
particular, convolutional neural networks – which possess an architecture specifically designed to process visual data – 
have produced a great deal of impressive results in recent years.  
5 Note that a corpus of translations does not amount to a translation dictionary. A translation dictionary will provide a 
list of words in one language accompanied by their meaning in another language. A body of text coupled with a 
translation of it obviously will not take this form.  
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application of such concepts, this gives us some reason to think that the beliefs we are concerned 

with are successful.6 Given this, I want to focus in this section on whether it is possible for 

computational beliefs to possess the following properties: being a reason for action, reliability, 

safety, and sensitivity.  

3.1. Being a reason for action 

Some have argued that there is an interesting relation between the beliefs we hold and the kinds 

of actions we are rationally-permitted to perform; that is, there is a normative relation between 

our justified beliefs and our actions. Stanley & Hawthorne (2008, p. 577) flesh this out in terms 

of their Action-Knowledge Principle:7 

Action-Knowledge Principle: Treat proposition p as a reason for acting only if 

you know that p.  

We can imagine this principle being adjusted in a number of ways, perhaps by replacing knowing 

that p with justifiably-believing that p, and there is plenty of interesting discussion to be had 

regarding how to correctly capture the wide variety of cases where we reason about how to act. 

Here I’ll assume the justified belief version of the principle as a kind of heuristic by assuming 

that if we have a case where an agent is right to treat p as a reason for acting, then this is good 

reason to think that they justifiably believe that p.  

In the three examples of computational belief considered above, we can ask: is there positive 

reason to act upon the beliefs in question? As I suggested, I believe in all three cases there can be 

positive reason to act. For example, suppose that I usually travel home via the King’s road, 

which is the quickest route provided that it doesn’t have one of its occasional traffic jams. While 

getting to the car, Google Maps alerts me that there is indeed a traffic jam on the King’s road. In 

that case, if I believe what Google Maps has stated, it seems that I would be justified in acting upon that 

belief. I will either take an alternative route home or contact anyone whose expecting me to be at 

home on time. Either way, my reason for acting is my belief that there is a traffic jam on the 

King’s road, and the source of this belief is Google Maps. So we find that computational beliefs 

can rightly play the role of reasons for action, and this is good reason to think that they are 

justified beliefs.  

3.2. Reliability 

Reliabilist theories of justification at least state that if S’s belief that p is formed on the basis of 

reliably truth-conducive belief-forming processes, then S’s belief that p is justified (Goldman 

1979). Whether reliabilism as a theory of justification is still considered plausible, the reliability of 

a belief is nevertheless considered an important property when considering the success of a given 

belief, and it is commonly thought that for a great deal of cases, the success or failure of a given 

belief will depend on its reliability. For the purposes of this paper, I am happy to view reliability 

as a necessary condition of justified belief. 

Computational beliefs can clearly be reliable. Algorithms are designed and tested to reach some 

minimal level of accuracy and so provide some level of guarantee over their own performance. 

Of course, they are never 100% accurate, and so any belief-forming process based on their 

                                                 
6 We see this kind of approach in, for instance, (Lackey 2008).  
7 Stanley & Hawthorne actually strengthen their claim to one of necessity and sufficiency in the following principle: 
‘Where one’s choice is p-dependent, it is appropriate to treat the proposition that p as a reason for acting iff you 
know that p’ (p. 578).  
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accuracy will not be completely reliable, but it’s doubtful that there are many if any belief-

forming processes that would meet a perfect standard (even basic deductive reasoning goes 

wrong sometimes). Furthermore, as stated earlier, it seems plausible that for a great number of 

tasks, such algorithms will exceed human performance, and so as far as reliability is concerned, 

computational beliefs look very well-off. We may have quibbles with the particular examples I 

have used: perhaps your experience of Google Translate or Google Maps has rarely been a 

happy one. It is difficult to place an exact success rate on either app regarding the particular tasks 

I have in mind, and it is likewise difficult to place a precise figure on what constitutes the 

threshold of reliability. But if the real-life examples seem unsatisfactory, I am happy to appeal to 

future cases where a higher success rate has been achieved and more stringent standards of 

reliability are met.8 

3.3. Safety 

S’s belief that p is safe iff there are no nearby possibilities where S believes p and p is false (put in 

terms of subjunctives: if S were to believe p, p would not be false) (Sosa 1999). In the case of 

computational beliefs, the idea would be that there are no close-by or realistic possibilities 

whereby the app provides the deliverance that p, S subsequently believes p on that basis, and 

nevertheless p does not hold. Initially, it may seem that this condition doesn’t hold for some of 

the cases I am considering, such as the Google Maps case. However, it is important not to 

confuse cases where a system like Google Maps goes wrong as proof of lack of safety. Take the 

earlier example, where I believe that there is a traffic jam on the King’s Road. That belief was 

formed on the basis of a deliverance of Google Maps. Google Maps produced that deliverance 

on the basis of the available locational data and the analysis produced by the algorithm. But once 

we have the case fixed like this, and we ask whether there are nearby possibilities where Google 

Maps said that there was a traffic jam when there was none, this seems much more doubtful. 

The application will obviously proceed algorithmically, and there are no nearby possible worlds 

where the algorithm proceeded in a different manner. For the algorithm to have behaved 

differently we would need to go back to its design and training phases. In which case, in order 

for Google Maps to have provided an incorrect deliverance that there was a traffic jam when 

there was none, there would have to be a kind of anomalous situation in their locational data e.g. 

the distribution and movement of smart devices on the King’s road would be indicative of a 

traffic jam even if there was none. But this is a possibility far-removed from the actual world, 

involving many cars not being on the road and many smart devices in particular locations, and 

we ought not include this in the realm of nearby possibilities. For this reason, I think it is 

plausible to claim that the Google Maps case is a case of safe belief. I should emphasise, 

however, that all I intend to show here is that it is possible for computational beliefs to be safe, 

that there is nothing about computational beliefs that prevents from being safe.  

3.4. Sensitivity 

                                                 
8 A referee raises the point that it is difficult to see how reliability could be an independent criterion from being a 
reason for action, because it plausibly seems to be the case that the former is at least necessary for the latter. That 
may well be the case, but in this section I do not want to assume any such conceptual relations between the 
epistemic notions that I am using to diagnose the success of computational beliefs. This does put me in danger of 
double-counting the reasons in favour of thinking that computational beliefs are successful if it turns out that, say, a 
belief being reliable is the same thing as a belief being a reason for action. But I think that is a price worth paying in 
order to investigate the success of computational beliefs in a way that is consistent with a wide range of 
epistemological views. 
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The issue of sensitivity with regard to computational beliefs is not straightforward. S’s belief that 

p is sensitive iff in the nearest possible world where ¬p, S does not believe that p. In the Google 

Maps case, this would mean that in the nearest possible world where there was no traffic jam, 

Google Maps would not provide a deliverance that there is one; in the Google Translate case, 

this would mean that in the closest possible world where ‘dummkopf’ does not translate as 

‘idiot’, Google Translate would not provide the deliverance that it does; and in the cancer 

detection case, this would mean that in the closest possible world where an actually cancerous 

patient does not have cancer, the relevant system would not provide a deliverance that it does. 

One useful way to think about this is whether the system (app, program, etc.) would have 

provided a false positive in the closest possible world where the proposition is false. Machine 

learning systems tend to perform to sub-optimally, meaning that there will always be some 

chance of a false positives and false negatives. Nevertheless, I suggest that the three cases of 

computational belief differ with regard to their sensitivity.  

To take the Google Translate case first, it seems plausible that this belief is sensitive. Plausibly, 

the closest possible world in which it is not the case that ‘dummkopf’ translates into ‘idiot’ – i.e. 

where the linguistic facts about German or English are different – is one in which Google 

Translate would operate in the same way and would pick up on this difference. So this looks like 

a sensitive computational belief.  

Whether the Google Maps case is sensitive is, frankly, difficult to discern. It may be that one of 

the closest possible worlds where there is no traffic jam is one that would give rise to a false 

positive deliverance from Google Maps (perhaps because the nearest possible world where there is 

no traffic jam is one in which there is something very close to a traffic jam which the system would 

struggle with), but far more would have to be known about the system’s operation in order to 

make a call either way. For the purposes of this paper, I suggest it simply isn’t clear whether the 

belief is sensitive. 

The case of a cancer diagnosis is an interestingly different case with regards to sensitivity. 

Matthias (2004, p. 177), in discussion of Zhou et al.’s (2002) neural network ensemble for 

identifying cancerous biopsies, says ‘The system has been constructed so that false negative 

diagnoses are highly improbable (proclaiming the patient to be healthy when there are, in reality, 

cancer cells present), but there is accordingly much less precaution about false positiva.’ This is 

because the repercussions of a false negative diagnosis – a cancer unknowingly threatening the 

patient’s health – are far greater than the repercussions of a false positive diagnosis. As a result, 

the possibility of a false positive in the closest possibility world where one does not in fact have 

cancer may be significant, and so the sensitivity of such a belief is questionable. But this 

particular feature of this cancer diagnostic system raises an important point. Just as one could tilt 

a system towards producing fewer false negative results at the cost of producing more false 

positive results, one could also tilt a system towards producing fewer false positive results at the 

cost producing more false negative results – this would be to make the system more conservative 

in its deliverances rather than more liberal. It would then become more plausible that 

computational beliefs formed on the basis of such a system would be sensitive. The point of this 

is to show that there is nothing inherent in the nature of computational beliefs that prevents 

them from being sensitive. I take the Google Translate to show this, but we can also motivate 

this claim by considering a machine learning system that is by design very unlikely to produce 

false positives.  
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It is also worth keeping in mind that if it turns out that a particular set of computational beliefs 

are not sensitive, this does not entail that they are unsuccessful, as it has been argued elsewhere 

there are cases of insensitive knowledge. Vogel (2007, p. 82) presents the following case, among 

others: 

Hole-In-One Case: Sixty golfers are entered in the Wealth and Privilege Invitational 

Tournament. The course has a short but difficult hole, known as the 

“Heartbreaker”. Before the round begins, you think to yourself that, surely, not 

all sixty players will get a hole-in-one on the “Heartbreaker”.  

Here, you clearly do know that not all sixty players will get a hole in one, but in the closest 

possible world where ¬p is the case, you still believe that p, and so your belief is insensitive. 

Vogel generalises by arguing that sensitivity simply fails to capture cases of inductive knowledge, 

of which this is an instance. To this extent, it would not be surprising if computational beliefs are 

insensitive, as there is in some sense a process of induction that takes place, albeit by the 

algorithm rather than the user. 

To summarise this section, we have seen that computational beliefs can clearly be reasons for 

action, are highly reliable, they can be safe, and they can be sensitive. The point of this is to show 

that computational beliefs share many of the same properties as those beliefs typically taken to 

be successful.  

4. Epistemic sources 

Thus far I have spoken of learning algorithms that analyse large datasets as an epistemic source 

of our computational beliefs, insofar as it is the deliverances of such algorithms (or the 

applications that contain them) that we base our computational beliefs on. But a complete theory 

of epistemic sources may seek to properly delineate between only a limited number of sources 

and seek to account for all beliefs with only this limited number. As a starting point that I 

alluded to earlier, we may seek to distinguish between perception, inference, and memory as 

epistemic sources, as it is not plausible that beliefs generated from one can be accounted for via 

appeal to one or both of the other two. This issue has come into sharp focus more recently, 

particularly with regards to testimonial belief, and whether testimony ought to be viewed as a 

distinct kind of epistemic source, or whether the process of forming testimonial beliefs can be 

reduced to the employment of other epistemic sources. In this section, I will pose that question 

with regards to computational beliefs.  

When it comes to computational beliefs, the question is whether such beliefs can be captured 

using more basic epistemic sources, such as perception, inference, and memory. It doesn’t 

straightforwardly fit into any such category. Memory can be ruled out immediately, as the 

process of obtaining a computational belief is not akin to remembering a certain proposition to 

be the case. Nor does computational belief look akin to perceptual beliefs. Perceptual beliefs 

work in the following way: if I have a perceptual experience of a bottle in front of me, then 

absent defeaters, that perceptual experience justifies me in believing that there is a bottle in front of me. 

Granted this does oversimplify the matter regarding perceptual beliefs somewhat, as there is a 

great deal of controversy over the precise content of a justifiably-formed perceptual belief. But it 

does not seem to capture computational beliefs correctly to say that if I have a perceptual 

experience of an app (e.g. Google Translate) providing some deliverance, then in virtue of this 

perceptual experience I am justified in believing that deliverance. Instead, the perceptual 

experience justifies me at best in believing merely that there is an app before me providing some 
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deliverance. So computational beliefs aren’t going to be fully-captured as a form of perceptual 

belief.  

What about capturing computational beliefs as a form of inference? Certainly it does seem 

plausible that a kind of inference is made in the production of the computational belief, but it is 

not plausible that the epistemic agent is making all of them. For instance, the Google Maps case 

is one in which a kind of inference is made on the basis of vast amounts of locational data to a 

verdict about the traffic on a given road, which is then subsequently believed by the agent. But 

the agent did not draw those inferences, the heavy inferential work was done by the algorithm. 

This is reflected by the fact that the agent is not blameworthy if that inferential procedure goes 

wrong, nor is he worthy of credit when it succeeds (if were worthy of such credit, he would be 

worthy of doing something quite astounding for a human). So computational beliefs at first 

glance are not straightforwardly captured as inferential beliefs (although more will be said on 

this).  

Finally, what about testimonial beliefs? There is certainly an initial sense in which computational 

beliefs appear akin to testimonial beliefs. The app has used available data and processed it in a 

particular way such that it has reached a verdict relatively autonomously, and it will then inform 

us of this proposition. In this way, we’re treating the app as if they are epistemic agents that we 

can rely upon via testimony. I do think this is also somewhat reflected in the way in which we 

talk about such apps, by applying terms that usually apply to epistemic agents, such as what the 

app thinks is the case, what it says is the case, or how it might be tricked or fooled. But this can only 

be the product of anthropomorphisation. The app is not an epistemic agent, it does not have 

beliefs in any ordinary sense of the term. Nor is it really able to communicate, if we understand 

communication as something which requires intentions of a particular kind.9 For this reason, 

computational beliefs simply cannot be properly characterised as the product of a testimonial 

exchange. 

A category that does capture computational beliefs is what Sosa (2006) calls instrumental belief i.e. 

belief formation via the use of an instrument. Instruments – calculators, thermometers, 

compasses – can provide deliverances, and we are able to form beliefs on the basis of those 

deliverances. Not all instruments perform this role, of course, and to this extent we can 

distinguish between epistemic instruments – calculators, telescopes, abacuses – and practical 

instruments – hammers, kettles, and bicycles. We can view computational beliefs as the result of 

employing an app as an epistemic instrument, in the same way that we employ an epistemic 

instrument when we use a thermometer to form a belief about the temperature. Clearly when we 

engage with such instruments, it is because we seek to find out something about the world and 

we have some awareness that the instrument can provide it. Sosa is clear that epistemic reliability 

is a necessary condition for the success of an instrumental belief. He states: 

A deliverance of a proposition by an instrument is epistemically reliable only if 

that proposition belongs to a field, and that instrument is so constituted and 

situated, that not easily would it then deliver any falsehood in that field (p. 117) 

As stated in the previous section, these algorithms certainly possess reliability within their given 

field, and so it is clear that this condition is met in the case of computational beliefs. Sosa argues 

further that in using such instruments, we make manifest an assumption we hold regarding their 

                                                 
9 This is particularly relevant if one holds the view, as Lackey (2006) does, that testimony is a case of forming a 
belief based upon a communicative act rather than the particular beliefs held by the testifier.  
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reliability. But he falls short of claiming that instrumental beliefs come about inferentially. 

Instead, he is merely claiming that instrumental beliefs require that the instrument be 

epistemically reliable, and that the agent holds an implicit assumption that this is so.10 

Nevertheless, I think it is plausible that successful computational beliefs are the product of a 

kind of inference that appeals to beliefs about the instrument in question. In the next section, I 

will say more about the inferential makeup of computational beliefs. In doing so, I will consider 

whether computational beliefs can be reduced to a form of inferential belief.  

5. Reductionism about Computational Belief 

As stated earlier, a great deal of the literature on testimony has focused on whether testimonial 

beliefs are, as a kind, reducible to more basic kinds of belief. Abstracting away from testimony in 

particular, the question of reductionism can be phrased in the following way: is a belief that is 

generated on the basis of a particular epistemic source provided a kind of justification distinctive 

of that epistemic source, or do further positive reasons have to be present in order to justify that 

belief. If one claims that a kind of belief is afforded some justification purely on the basis of its 

source, then one advocates anti-reductionism about that kind of belief. If one claims that there is 

no such justification, then one advocates anti-reductionism.  

Reductionism about testimony has proven to be a controversial topic. For the purposes of this 

essay, understanding a few key considerations on either side of the debate will prove useful for 

thinking about reductionism in the case of computational beliefs. Reductionists have argued, on 

the one hand, that the idea that we have a default justification to believe what we are told would 

simply make justified testimonial belief too easy, given the clear possibility of error or 

misdirection on behalf of the testifier. For example, Fricker states: 

…does not mere logic, plus our commonsense knowledge of what kind of act an 

assertion is, and what other people are like, entail that we should not just believe 

whatever we are told, without critically assessing the speaker for trustworthiness? 

We know too much about human nature to want to trust anyone, let alone 

everyone, uncritically. (Fricker 1995, p. 400) 

On this basis, they argue that some inferential procedure is required in order to justify a belief 

based on testimony. Such an inference will appeal to the trustworthiness or reliability either of 

the specific testifier (local reductionism) or of testimony in general (global reductionism). 

Anti-reductionists, on the other hand, argue that it is not plausible that agents regularly do have 

the kind of positive reasons that reductionists would require. In the case of global reductionism, 

if there is even a true claim to be known about the general reliability of testimony, it seems 

doubtful that we could ever come to know such a claim given the severely limited sample of total 

number of testimonial exchanges we are exposed to (Coady 1994). And even in the case of local 

reductionism, the claim that we must constantly possess prior beliefs about our testifiers in order 

to hold justified testimonial beliefs is in danger of rendering a great number of our beliefs as 

unjustified. 

I won’t seek to make any positive claim about the nature of testimony here. Instead, I want to 

apply the question to computational beliefs: is it the case that a computational belief can be 

                                                 
10 In the terms of section 5, Sosa does seem to endorse reductionism about instrumental beliefs. He contrasts 
instrumental beliefs to perceptual beliefs in the following way: ‘…we are default-justified in accepting the 
deliverances of our senses, but we need a rational basis for accepting the deliverances of our instruments’ (p. 123). 
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justified (absent defeaters) merely in virtue of its status as a computational belief? I think the 

answer should be negative. First, notice that the supposed deficiencies of reductionism in the 

case of testimony do not apply here. It is plausibly the case that a given user could hold certain 

beliefs about the reliability of computational sources, and this could be at a more local or more 

global level. For instance, I might hold the belief that anything that any huge tech firm releases is 

going to be reliable, or I may hold a belief only about the products of Google in particular, or I 

may only hold a belief about the reliability of a given app.  

Notice also that while it seems like the positive reason I require to trust an app will have to 

account for the reliability of that app, this positive reason can itself be formed in a number of 

ways. First, it might be the case that I form it on an inductive basis: I may use Google Maps a 

few times with no particular view as to its reliability, and consistently find it to produce the right 

answer, such that I eventually infer that the deliverances from Google Maps are reliable. 

Alternatively, it may be that I acquire a belief about the reliability of a given application via 

testimony. If Google advertises that their app is 98% accurate, then (provided I trust what they 

say) they are providing a testimonial basis to believe that the app is 98% accurate. Or if my 

trusted friend tells me that the app is extremely reliable, then, again, I form a belief about its 

reliability via testimony. Finally, one can form a belief about the reliability of a given app on the 

basis that it was designed to be reliable and it would not have been released if it were not so. 

Even this seems to me to be an adequate basis from which to reach the belief that the app is 

reliable in its deliverances, although such an inference would be on shakier grounds where one is 

less sure of the provenance of the app. But the important point here is that whereas we have 

reason to doubt whether we could plausibly be in a position to know the reliability of a given 

testifier or of testimony as whole, apps are comparatively more stable in their behaviour (their 

behaviour is algorithmic and is also not affected by intentions to mislead), and so we can 

plausibly form beliefs about their reliability through a variety of different means.11 

A second reason in favour of reductionism for computational beliefs is that it better captures our 

intuitions in particular cases. Suppose that an app turns up on Bertrand’s phone, and it claims 

that it will tell Bertrand not only whether someone has read one of his journal articles, but 

whether that person enjoyed the article as well. However, the app provides no information about 

how it works, nor does it claim to be accurate to any level, nor is it obviously made by a big tech 

firm that regularly produces reliable apps. It simply says things like ‘Someone in California read 

your paper but was not particularly impressed!’ The question is: in this situation, does Bertrand 

have a default justification in believing what the app says? I claim he does not, and to this extent 

anti-reductionism is implausible.  

Finally, it could be argued that the positive reasons in favour of anti-reductionism about 

testimony are absent in the case of computational beliefs. For example, Burge (1993) has argued 

                                                 
11 The above is not necessarily supposed to serve as a psychological description of how ordinary people come to 
form such beliefs. The question of reductionism is a question of the justification of our beliefs, not the causal story 
of how they were formed. It may well be the case that ordinary practice takes a few inferential shortcuts where 
possible, and this can at least be tolerated provided the justification for a given belief is properly based within a 
wider set of beliefs. It is for this reason that Schiffer states: ‘Whether knowing p is based on knowing q, isn’t about 
the actual movement of thought, the considerations one actually ponders; it’s about the structure of beliefs that 
sustains one’s conclusion.’ (Schiffer 2003, p. 303, fn. 2). In that respect, reductionism about computational beliefs 
does not amount to the view that we infer in this way each time we use such an app. As such apps become 
increasingly part of our epistemic lives, it seems plausible that our reliance on them will skip this explicit inferential 
procedure.  
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that we have a default a priori prima facie entitlement to belief testimony because of a prior 

assumption that when propositions are presented as true, they derive from a rational source. 

Burge’s argument is fascinating in its own right, and I don’t hope to provide an evaluation of it 

here. Instead, I merely want to note that the argument does not straightforwardly transfer to the 

case of computational beliefs. Whereas in the case of testimony, truth-telling is arguably a core 

behaviour that one has to display to some extent in order to properly engage as a rational 

member of the community, the apps from which we receive such deliverances are under no such 

constraint simply because they are not rational members of the community. With this in mind, it 

doesn’t seem like the a priori prima facie entitlement that Burge defends could apply to 

computational beliefs.  

If all this is right, it seems plausible that computational beliefs do require further positive reason 

in order to be justified i.e. reductionism about computational beliefs is true. For many, the 

motivation behind debates concerning reductionism is the implicit assumption that if a kind of 

belief is reducible, then it does not warrant epistemological study. After all, if epistemologists can 

provide an account of the non-reductive kinds of belief, they will in indirectly provide some 

account of all reductive kinds of beliefs also. Notably, however, Goldberg (2006)  has argued to 

the contrary in the case of testimony. He has argued that even if reductionism about testimony is 

true, testimonial beliefs still merit epistemological attention because they give rise to distinctive 

kinds of epistemic harms. In the next section, I will argue in the same way for computational 

beliefs. Although they do appear to be reducible to a kind of inferential, instrumental belief, they 

warrant their own epistemological attention because they have important epistemically normative 

consequences. In particular, they give rise to epistemic responsibility gaps.  

6. Computational beliefs and epistemic responsibility 

To summarise thus far, we have found the following: computational beliefs possess a range of 

epistemic properties usually associated with successful beliefs; they can be viewed as a form of 

instrumental belief; and that one requires further positive reason in order to trust computational 

beliefs (i.e. they are reducible to a particular kind of inferential process). In this section, I will 

outline a normative ramification of computational beliefs, that are particularly important to keep 

in mind when considering the fact computational beliefs are on the rise. I will argue that the rise 

in computational beliefs where previously beliefs would have had a testimonial source gives rise 

to a kind of responsibility gap, analogous to the moral responsibility gap argued for by Matthias 

(2004).  

Matthias argues that in cases of learning algorithms making decisions that would otherwise be 

made by a human agent, a responsibility gap arises. His argument for this claim is fairly simple. In 

order to be held morally responsible for a decision or action, an agent must at least have control 

over that action. In the case of actions via instruments, an agent is morally responsible for the 

operation of that instrument only if they have control over the operation of the instrument. 

When a programmer encodes the operation of a computer, they have control over the operation 

of that computer, and so for that time at least, she is morally responsible for any morally 

significant outcomes associated with the computer. When we buy a computer, the computer 

company provides us with control by informing us of how it operates (via a user manual). At 

that point, we then become responsible for the operation of the computer and for any significant 

outcomes associated with it.  

The problem with learning algorithms is that, due to their opacity, it is often the case that no-one 

is directly in control of the decisions they make. For any given output of a learning algorithm, it 
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is not plausible to pin the responsibility of that particular output on a given individual. To 

illustrate this, consider the following parallel cases. In Darlington, officer Euan is given the job 

of deciding whether suspects should be released from custody, and in one case, he decides a 

suspect to be low risk and suitable for bail, when in fact the person is quite dangerous and 

subsequently reoffends. In nearby Hartlepool, where there is a much more enterprising police 

force, they have recruited a Harm Assessment Risk Tool (HART) in order to decide whether a 

given suspect should be released on bail.12 The HART is a learning algorithm that takes into 

account years of previous police records and estimates whether a given suspect would be likely 

to reoffend if released, based on the information available about that suspect. Suppose that 

HART decides someone to be low risk and suitable for bail, when in fact the person is quite 

dangerous and subsequently reoffends. Now in both cases there are background responsibilities 

held by others related to the role. Darlington’s senior officer who placed Euan in his role is 

responsible for having done so. Equally, Hartlepool’s senior officer who employed HART for 

the role is responsible for having done so. But there is an important difference between the two 

cases. Officer Euan has moral responsibility over the particular decisions he makes. Having 

released someone that subsequently reoffended, Euan must justify his decision to prove that he 

has not done something wrong, otherwise he is due some level of blame. But in Hartlepool, 

there is no such agent that takes on the blame when a similarly harmful outcome is reached. 

There is no agent that takes the equivalent role of Euan, nor is it plausible that the senior officer 

can take the responsibility simply because they did not have control over that decision. The 

responsibility has simply gone, and this is the moral responsibility gap that Matthias is concerned 

with.  

A similar responsibility gap arises in the epistemic realm. Consider two more cases based on 

Google Maps. In one case, I look to Google Maps to see whether there is traffic on the King’s 

Road, and Google Maps tells me there is no jam when in fact there is, and so I am very late 

home. In the second case, instead of asking Google Maps, I ask a colleague who has only 

recently come into work whether there was a traffic jam along the King’s Road. Despite the fact 

that there was and there still is, my colleague says there is no traffic jam, and so I am home late. 

In the second case, my colleague holds epistemic responsibility as a testifier, and the fact that he failed 

as a testifier on this occasion – whether it be through maliciousness or error – means that he is 

open to a particular form of blame. But in the Google Maps case, there is no-one that takes the 

equivalent responsibility for the outcome. Just as in the ethical scenarios, there are background 

responsibilities common to both cases. I am responsible for choosing to appeal to either Google 

Maps or to my colleague, given the reliability that both exhibit. But in addition to this 

background responsibility, my colleague has responsibility over his testimony for which there is 

no equivalent in the Google Maps case. This form of epistemic responsibility is captured well in 

the following quote from Goldberg (2006), who considers the difference between instrumental 

and testimonial belief:  

A rational being engages in the project of shaping its beliefs to fit the evidence it 

has. Because this project is to some degree under the being’s own rational 

control, this shaping process can be done in better and worse ways 

(epistemologically speaking), in ways that are epistemically sanctioned, and in 

ways that are not. Consequently, the notion of epistemic responsibility finds a 

home here. The result is that, in relying on a rational being’s testimony, one is 

relying on that being to have lived up to her relevant epistemic responsibilities. A 

                                                 
12 Durham police force employ such a tool on an advisory basis: http://www.bbc.co.uk/news/technology-39857645 

http://www.bbc.co.uk/news/technology-39857645
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merely reliable instrument, by contrast, operates according to the laws of nature. 

Because there is no rational control to speak of, the notion of epistemic 

responsibility has no home here. (Goldberg 2006, p. 136) 

This highlights the differences in terms of epistemic responsibility between testimonial beliefs 

and instrumental beliefs – of which computational beliefs fall under. Yet this doesn’t quite 

capture the distinctive normative properties of computational beliefs in particular.  

When we form instrumental beliefs, we are relying on an inferential process that partly appeals to 

the operation of an instrument. When we do this, we may or may not be aware of how the 

instrument works. If we are aware of how the instrument works – for example, I know how the 

mercury comes to rise and fall in my thermometer – then the epistemic responsibility lies entirely 

with the believer. But we can also form instrumental beliefs using instruments the workings of 

which we do not understand – you might do this when you search for your GPS location, for 

example. Importantly in such cases, as mitigation for the fact that my inference relies on an 

instrument the workings of which I do not understand, I have something in the social epistemic 

realm that I can fall back on. That is, I am part of an epistemic community that contains 

members who do understand the workings of my instrument, and this is reflected by the fact 

that I could appeal to that epistemic community if my instrumental inferences seem to go awry. 

Indeed, there is an important sense in which, in using instruments that I do not understand, I am 

reliant upon my epistemic community. But computational beliefs depend upon autonomous 

learning algorithms, the opacity of which prevents any member or any set of members from 

understanding how exactly they operate. Because of this, when we form computational beliefs, 

we cannot properly rely on our epistemic community as mitigation for the fact that we do not 

understand on what basis our belief was formed. So not only do computational beliefs give rise 

to a kind of responsibility gap, but there is also the lack of an appeal to the epistemic community 

as kind of fall-back. 

One further point speaks in favour of computational beliefs warranting epistemological interest. 

As stated earlier, computational beliefs are on the rise. In particular, there seems to be a general 

trend of computational beliefs replacing testimonial beliefs. Whereas before I would ask others 

for directions, now I ask a smart device; whereas before I would consult a translation dictionary, 

now I ask a machine translation service; whereas before we ask doctors for medical opinions on 

scans, now we ask image processing software. Considering that testimonial beliefs give rise to a 

distinctive structure of epistemic responsibility relations that is lacking in the case of 

computational beliefs, this rise in computational beliefs constitutes a shift in the epistemically 

normative relations that hold between agents, of which social epistemology has done so much to 

shed light on. We ought to investigate what this new picture of social epistemic relations is going 

to look like.  

7. Conclusion 

In this paper, I have introduced and argued for the legitimacy of computational beliefs. 

Computational beliefs are able to possess many of the epistemic features commonly associated 

with successful beliefs. They are best understood as a form of instrumental belief. Finally, 

although they are reducible to more basic forms of belief in the sense that there is not a 
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distinctive form of justification associated with computational beliefs, they nevertheless warrant 

epistemological attention in their own right due to their normative implications.13 
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