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Abstract
Inquisitive first order logic InqBQ is an extension of first order classical logic, intro-
ducing questions and studying the logical relations between questions and quantifiers.
It is not known whether InqBQ is recursively axiomatizable, even though an axiom-
atization has been found for fragments of the logic (Ciardelli, 2016). In this paper
we define the ClAnt—classical antecedent—fragment, together with an axiomatiza-
tion and a proof of its strong completeness. This result extends the ones presented in
the literature and introduces a new approach to study the axiomatization problem for
fragments of the logic.

Keywords Inquisitive logic · Completeness · Canonical model · Fragment

1 Introduction

Inquisitive semantics (Ciardelli et al. 2018) is a semantic framework that aims to rep-
resent statements and questions uniformly in a logical system and to analyze logical
relations between them. Inquisitive first order logic InqBQ is the inquisitive counter-
part of classical first order logic. In particular, it extends the usual first order language
by introducing question-forming operators to represent alternative questions (e.g.,
P

�

Q, which stands for “Does P hold or does Q hold?”) and witness questions (e.g.,
∃x .P(x), which stands for “What is an element with property P?”).

This augmented language captures concepts specific to questions—such as answer-
hood and dependency between questions—through the entailment of the logic; and
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it allows to study the complexity of these concepts from a formal point of view: for
example, is the dependency between questions recursively enumerable or compact?
An effective way to tackle these questions is to characterize the entailment in terms
of some fundamental principles and rules, that is, to axiomatize the logic.

Although a recursive axiomatization has been found for several propositional
inquisitive logics (Ciardelli 2014; Ciardelli et al. 2020; Ciardelli and Roelofsen 2011;
Punčochář 2015, 2019; Katsuhiko 2011), it is still not known whether InqBQ admits
one. A sound natural deduction system for it has been proposed in Ciardelli (2016, Ch.
4), togetherwith a conjecture of its completeness,which remains open.Ciardelli (2016,
Ch. 4) it is also shown that two fragments of the logic—the mention-some fragment
L∃ and the mention-all fragment L∀—can be recursively axiomatized. This leads to
the natural question whether there are other interesting fragments which are axioma-
tizable, and whether we can find general techniques to axiomatize them. This paper
introduces the classical antecedent fragment ClAnt, which extends L∀ and L∃, and
a new approach to the completeness problem applicable to ClAnt, giving a positive
answer to the first question and insights on the second.

ClAnt can be intuitively characterized as the fragment where questions are not
allowed in the antecedent of an implication. This fragment is particularly interesting
since it contains—modulo logical equivalence—all formulas corresponding to natural
language statements and several classes of formulas corresponding to natural language
questions: for example polar questions (“Will Joey come to the party?”), alternative
questions (“Is Joey coming to the party or is Chandler coming?”), mention-some and
mention-all questions (“What is an instance of a person coming to the party?”, “Who
is coming to the party?”), and their conditional versions (“If Chandler comes to the
party, will Joey come to the party too?”). We prove that the natural deduction system
proposed for InqBQ in Ciardelli (2016), restricted to ClAnt, provides a sound and
strongly complete axiomatization of InqBQ validities in the fragment.

The paper is organized as follows: In Sect. 2 we present InqBQ and some basic
properties wewill use throughout the paper; in Sect. 3 we introduce theClAnt fragment
of the logic; in Sect. 4 we study a deductive system suitable to capture entailment
between ClAnt formulas and show some of its main properties; Sect. 5 is devoted to
showing the main result of the paper, that is, the completeness of the deductive system
introduced. We conclude with some remarks and future research directions in Sect. 7.

2 Preliminaries

In this section we briefly present first order inquisitive logic (InqBQ) and state the
results we will use in this paper. An extensive introduction on the topic is presented
in Ciardelli (2016, Ch. 4).

123



Completeness for the Classical Antecedent Fragment of... 727

We start by fixing some notational conventions. With a first order signaturewe will
refer to a finite or countable set1

Σ = {R0, R1, . . . f0, f1, . . . }
where R0, R1, . . . and f0, f1, . . . are formal symbols, referred to as relation symbols
and function symbols respectively. Each symbol comes with an assigned arity, that is,
the number of arguments of its interpretation in a model. We will typically use the
symbols P , Q, P ′, P1…for relation symbols of arity 1 (also called unary relation
symbols), and the symbols c, c′, c1…for function symbols of arity 0 (also called
constants).

We fix a countable set of formal symbols Var, simply referred to as the variables.
We will typically use the symbols x , y, z, x ′, x1…to indicate elements of Var. With
terms of the signature Σ (or simply terms when Σ is clear from the context) we refer
to the standard inductively defined notion of first order term: either a constant in Σ , a
variable inVar or a formal combination f (t1, . . . , tn)where f is a function symbol of
arity n and t1, . . . , tn are terms previously defined. We will typically use the symbols
t , t ′, t1…to indicate terms. Closed terms (i.e., terms not containing occurrences of
variables) will play a special role in the rest of the paper: We indicate with TΣ the set
of closed terms of the signature Σ .

We are now ready to introduce InqBQ. The syntax of the logic is obtained by
augmenting the syntax of first order logic with additional operators, i.e. inquisitive
disjunction

�
and inquisitive existential quantifier ∃.

Definition 1 (Syntax of InqBQ) Fix a first order signature Σ . Formulas of InqBQ
are generated by the following grammar:

ϕ ::= ⊥|R(t1, . . . , tn)|ϕ ∧ ϕ|ϕ �

ϕ|ϕ → ϕ|∀x .ϕ|∃x .ϕ
where R is a relation symbol from Σ and t1, . . . , tn are terms of the signature Σ .
The concepts of free and bound occurrences of a variable, of closed formula, etc. are
analogous to those of first order logic. Notice that here we are not considering the
equality symbol as part of the syntax; for a treatment of the language with equality,
see Sect. 6.

We introduce the following shorthands:2

¬ϕ := ϕ → ⊥ ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ∃x .ϕ := ¬∀x .¬ϕ ?ϕ := ϕ

� ¬ϕ

As noticed before, the syntax of InqBQ is an extension of the syntax of first order
logic. This suggests the following definition.

1 The assumption of working with at most countable symbols is implicitly used in the proofs of Lemmas
30 and 33, so it is not dispensable in the current version of the manuscript. However, we strongly believe
that these proofs can be adapted to arbitrary signatures.
2 The reader might wonder why we do not introduce a symbol ∀ dual to the quantifier ∃, that is, defined by
the shorthand ∀x .ϕ := ¬∃x .¬ϕ. There are two main reasons. Firstly, the formulas ∀x .¬¬ϕ and ¬∃x .¬ϕ

are provably equivalent in InqBQ, thus making the addition of ∀ to the system redundant. Secondly, the
formula ∀x .ϕ so defined is always equivalent to a classical formula (Definition 2), and thus ∀ would not
play the role of a question-forming operator as the notation would suggest.
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728 G. Grilletti

Definition 2 (Classical formula) A classical formula is a formula not containing the
symbols

�

and ∃.
We will usually refer to classical formulas with the symbols α, β, γ—whereas we will
use ϕ,ψ, χ for arbitrary formulas. Notice that if α and β are classical formulas, then
so are ¬α, α ∨ β and ∃x .α.

There are twomotivations to adopt this evocative naming convention: firstly, entail-
ment between classical formulas in InqBQ coincides with first order logic entailment
(this will be clarified by Lemma 10); secondly, the natural language interpretation of
classical formulas is the same as the conventional one for their first order counterparts.
For instance the statement “If Ross is coming to the party, then everyone is coming
too” is represented by the classical formula C(r) → ∀x .C(x).

The new operators

�

and ∃ are used to introduce questions and logical relations
between them into the scope of the system. Inquisitive disjunction introduces alterna-
tive questions into the picture, such as “Will Joey come to the party?”, corresponding to
the formula ?C( j); while inquisitive existential quantifier is used to introduce witness
questions, such as “What is an instance of a person coming to the party?” corre-
sponding to the formula ∃x .C(x). A more detailed account of this intuition is given
in Ciardelli (2016, Ch. 4).

Since we shifted our attention from statements to sentences, we need to generalize
the semantics of classical first order logic also to encompass questions. The approach
adopted in InqBQ is to move from a truth-based account to an information-based one,
as the latter allows us to study logical relations between statements and questions in a
uniform way. To do so, we need to introduce a suitable concept of model to represent
information.

Definition 3 (Information model) An information model M is a tuple

M = 〈
Mw | w ∈ W

〉

where W is a set—called the set of worlds of M—and Mw are first order models 3

over the signature Σ such that:

– The models Mw (with w ∈ W ) have the same domain D—called the domain of
M;

– The interpretation of each function symbol f of arity n is the same function
fM : Dn → D for each Mw (with w ∈ W ). This includes the interpretation of
constant symbols, that is, functions of arity 0.

For a relation symbol R, we indicate with Rw the interpretation of R in the first order
model Mw.

We call a function g : Var → D an assignment over the domain D. As a shorthand,
we write g[x 
→ d] for the assignment that maps the variable x ∈ Var to the element
d ∈ D, and otherwise coincides with g.

Given a term t (possibly containing free variables), we indicate with t 〈M,g〉 the
element corresponding to t , computed recursively in a standard way—notice that

3 In this context, a first-order model consists of a domain D and an interpretation of each relation (resp.
function) symbol of Σ as a relation (resp. function) symbol of Σ of the corresponding arity over D.
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Completeness for the Classical Antecedent Fragment of... 729

t 〈M,g〉 is well defined, since the valuation of constant and function symbols is the
same for every model Mw within the information model M. If the term t is closed
(i.e., if t ∈ TΣ ) its interpretation is independent from g, and so we will simply write
tM omitting the assignment.

If not otherwise specified, we will indicate with W and D the set of worlds and the
domain of the model under consideration respectively.

Definition 4 Given an information model M as above, we call a set s ⊆ W an infor-
mation state.

Information models are used to represent pieces of information. In this context, we
use the term piece of information to refer to any property I of first-order models in
the given signature. For example I1: “the interpretation of c is in the extension of
P” and I2: “the cardinality of the domain is finite and even” are considered pieces
of information. Given a model M we can encode a piece of information I with
the info state sI := {w ∈ W | Mw has property I }; that is, by selecting the worlds
corresponding to the first-order models having property I . So in the examples given
above, sI1 consists of all the worlds w ∈ W for which Mw satisfies P(c); and sI2 is
either W or ∅, depending on the cardinality of D.

We are now ready to present the semantics of InqBQ.

Definition 5 (Semantics of InqBQ) LetM be an informationmodel, s an information
state of M and g : Var → D an assignment. We define the support relation � over
formulas of InqBQ by the following inductive clauses:

M, s �g⊥ ⇐⇒ s = ∅
M, s �g R(t1, . . . , tn) ⇐⇒ For all w ∈ s it holds Rw( t 〈M,g〉

1 , . . . , t 〈M,g〉
n )

M, s �g ψ1 ∧ ψ2 ⇐⇒ M, s �g ψ1 and M, s �g ψ2
M, s �g ψ1

�

ψ2 ⇐⇒ M, s �g ψ1 or M, s �g ψ2
M, s �g ψ1 → ψ2 ⇐⇒ For all s′ ⊆ s, ifM, s′ �g ψ1 then M, s′ �g ψ2
M, s �g ∀x .ψ ⇐⇒ For all d ∈ D it holds M, s �g[x 
→d] ψ

M, s �g ∃x .ψ ⇐⇒ There exists d ∈ D such that M, s �g[x 
→d] ψ

IfM, s �g ϕ we say that s supports ϕ under g. We introduce the shorthandM �g ϕ

for M,W �g ϕ. It can be verified that, if ϕ is a sentence, then its semantics is
independent from the assignment g. In this case we will simply omit g.

In what follows, we will give a brief introduction to the support semantics, focusing
on the results instrumental for the rest of the paper. For a thorough description of the
support semantics, we point to Ciardelli (2016, Ch. 4). We start by stating one of the
main properties of this semantics.

Lemma 1 (Downward closure and empty state property) Let ϕ be a formula, s, s′
information states of M and g : D → Var an assignment. Then:

– IfM, s �g ϕ and s′ ⊆ s thenM, s′ �g ϕ;
– M,∅ �g ϕ.
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730 G. Grilletti

These two properties have an intuitive interpretation, in line with the one presented for
informationmodels: if a certain piece of information supports a sentence (M, s �g ϕ),
then any more specific information supports the same sentence too (if s′ ⊆ s then
M, s′ �g ϕ); and an inconsistent piece of information supports everything (M,∅ �g
ϕ).

Using Lemma 1, we can also easily derive a semantic clause for the operator ¬:

M, s �g ¬ϕ

⇐⇒ For all s′ ⊆ s, ifM, s′ �g ϕ then M, s′ �g ⊥
⇐⇒ For all s′ ⊆ s, M, s′

�g ϕ or s′ = ∅
⇐⇒ For all w ∈ s, M, {w} �g ϕ (By Lemma 1)

As usual, we associate to the semantics just introduced the corresponding concepts of
validity and entailment.

Definition 6 (Validity and entailment) We say that a formula ϕ is (semantically) valid
in InqBQ, and indicate it with � ϕ, iff for every modelM, every information state s
of M and every assignment g : Var → D, it holds M, s �g ϕ.

Given a set of formulasΦ∪{ψ}, we say thatΦ entailψ , and indicate it withΦ � ψ ,
iff for every M, s and g as above, ifM, s �g ϕ for every ϕ ∈ Φ, thenM, s �g ψ .

As an example, consider the formulas P(c)

� ¬P(c) and P(c) ∨ ¬P(c). Unraveling
the semantic clauses, we obtain the following support conditions for the two formulas.

M � P(c)

� ¬P(c)

⇐⇒ M � P(c) or M � ¬P(c)

⇐⇒ [∀w. Pw(cM) holds
]
or

[∀w. Pw(cM) does not hold
]

M � P(c) ∨ ¬P(c)

⇐⇒ M � ¬(¬P(c) ∧ ¬¬P(c))

⇐⇒ ∀w. M, {w} � ¬P(c) ∧ ¬¬P(c)

⇐⇒ ∀w. [ M, {w} � ¬P(c) or M, {w} � ¬¬P(c) ]

⇐⇒ ∀w.
[
Pw(cM) holds or M, {w} � ¬P(c)

]

⇐⇒ ∀w.
[
Pw(cM) holds or M, {w} � P(c)

]

⇐⇒ ∀w.
[
Pw(cM) holds or Pw(cM) does not hold

]

It is clear that the second condition is always true, since in every world the extension of
P is determined: that is, P(c)∨¬P(c) is valid in InqBQ. However, the first condition
is not tautological: It requires all worlds inM to agree on whether c is in the extension
of P .
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We observe a similar situation with the formulas ∃x .P(x) and ∃x .P(x), for which
the support conditions can be derived with a similar proof.

M � ∃x .P(x) ⇐⇒ there is d ∈ D such that for all w ∈ W , Pw(d) holds

M � ∃x .P(x) ⇐⇒ for all w ∈ W , there is dw ∈ D such that Pw(dw) holds

In this case, ∃x .P(x) requires that in every world there is an element with property
P—possibly depending on the world; while the formula ∃x .P(x) asks more, namely
that for a fixed element d, all the worlds agree on d being in the extension of P . So
the additional requirement is that we have a witness for the quantifier which all the
worlds agree on.

The differences between the operators

�

and ∨, and between the operators ∃ and ∃
are also witnessed by two peculiar properties of the support semantics: the disjunction
and existence properties for the inquisitive operators.

Theorem 7 (Theorems 4.1 and 4.2 in Grilletti (2019)) Fix a signature Σ . Given a set
of classical formulas Γ , for every formulas ϕ and ψ we have:

– If Γ � ϕ

�

ψ , then Γ � ϕ or Γ � ψ;
– If Γ � ∃x .ϕ, then Γ � ϕ[t/x] for some term t of Σ .

In particular, this highlights the constructive character of the inquisitive operators�

and ∃, in contrast with the operators ∨ and ∃ which behave classically.
However, if we restrict our attention to singleton information states, that is, infor-

mation states containing only one world, we can see that the support semantics is
a generalization of the usual semantics of first order classical logic. In this case the
support condition for

�

and ∨ coincide, the support condition for ∃ and ∃ also coin-
cide, and so a formula ϕ is supported in a state {w} if and only if its classical variant
ϕcl—obtained by substituting ∨ for

�

and ∃ for ∃ in ϕ—is true in Mw.
The following result generalizes the previous observation and connects classical

semantics and support semantics.Wewill indicatewith�cl both the standard semantics
relation of classical first order logic and the corresponding entailment relation between
classical formulas.

Lemma 8 Let α be a classical formula. Then

M, s �g α ⇐⇒ ∀w ∈ s. M, {w} �g α ⇐⇒ ∀w ∈ s. Mw �cl
g α

In particular, a classical formula is valid for support semantics iff it is valid for the
classical semantics; and the entailment relations � and �cl coincide over classical
formulas.

With a slight abuse of notation (justified by the lemma), henceforth we will use the
symbol � both for support semantics (resp., entailment) and for the standard semantics
(resp., entailment) of classical first order logic, omitting the superscript cl.

This result has rather interesting consequences and will be used several times in the
current manuscript. For example we have the following: given a classical formula α, a
modelM and an assignment g, there is always a greatest information state satisfying
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732 G. Grilletti

α, namely the set |α| := {w ∈ W | Mw �cl
g α}; and given an information state s, the

state s ∩ |α| is the greatest substate of s supporting α.
Lemma 8 is particularly interesting under the information-based interpretation:

given an information state s, a certain statement—encoded by α—is supported by
s if and only if in every possible world in s the statement is true. Moreover, under
this interpretation |α| represents exactly the information conveyed by the statement
encoded by α.

Similarly, we can also talk about support for questions: a question is supported by
an information state s iff s resolves the issue raised by the question. So for example
C( j)

� ¬C( j), representing the alternative question “Will Joey come to the party or
not?”, is supported by s iff in all the possible worlds Joey will go to the party or in all
the possible worlds Joey will not go to the party; that is, the information encoded by s
must be enough to determine an answer to the question. For an exhaustive treatment
of the conceptual background of the logic we refer to Ciardelli (2016, Chs. 1, 2 and
4).
We conclude this section by presenting a sound natural deduction system for InqBQ
and some related concepts.

Definition 9 (Natural deduction system) Consider the natural deduction system in
Table 1. We say that a set of formulas Φ derives a formula ψ (in symbols Φ ψ) if
there is a derivation of ψ from Φ in the natural deduction system.

This system was presented in Ciardelli (2016, Ch. 4). It is still an open question if the
system is complete for InqBQ. What is known Ciardelli (2016, Proposition 4.4.3) is
that this system is complete for classical consequences. Given a set of formulas Φ,
defineΦcl := {ϕcl | ϕ ∈ Φ}. We will indicate with cl the standard provability relation
of classical first order logic.

Lemma 10 Let Φ be a set of inquisitive formulas and α a classical formula. Then

Φ α ⇐⇒ Φcl α ⇐⇒ Φcl cl α.

In particular, coincides with the usual classical entailment when Φ consists only of
classical formulas; and a classical formula is valid in InqBQ if and only if it is valid
in classical first order logic.

With slight abuse of notation (justified by the lemma), we will indicate with both the
provability relation from Definition 9 and the standard provability relation of classical
first order logic, omitting the superscript cl.

It is worth discussing two rules of this system, which play an essential role in
the rest of the paper: the

�

-split rule and the ∃-split rule. Notice that these rules
are natural counterparts of the disjunction and existence properties of the support
semantics. Moreover, these rules have a natural reading under the information-based
interpretation: if a statement resolves an alternative question (α → ψ

�

χ ), then it
supports one of the alternatives ((α → ψ)

�

(α → χ)); and if a statement resolves
a witness question (α → ∃x .ψ), then it provides enough information to pinpoint a
witness (∃x .(α → ψ)).
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Table 1 Natural deduction system for InqBQ

∧i ϕ ψ

ϕ ∧ ψ
∧e ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

�

i
ϕ

ϕ

�

ψ

ψ

ϕ

�

ψ

�

e
ϕ

�
ψ

[ϕ]
.
.
.
χ

[ψ]
.
.
.
χ

χ

→i

[ϕ]
.
.
.

ψ

ϕ → ψ

→e
ϕ ϕ → ψ

ψ

∀i ϕ[y/x]
∀x .ϕ ∀e ∀x .ϕ

ϕ[t/x]

∃i ϕ[t/x]
∃x .ϕ ∃e

∃x .ϕ

[ϕ[y/x]]
.
.
.

ψ

ψ

Ex Falso ⊥
ϕ

DNA ¬¬α
α

� −split
α → ψ

�

χ

(α → ψ)

�

(α → χ)
CD

∀x .(ϕ �

ψ)

∀x .ϕ �

ψ

∃-split α → ∃x .ψ
∃x .(α → ψ)

CN
¬ϕ

¬ϕcl

In (∀e) and (∃i), t must be free for x in ϕ; in (∀i), y must not occur free in any undischarged assumption;
in (∃e), y must not occur free in ψ or any undischarged assumption; in (DN A), α ranges over classical
formulas; in (

�

-split), α ranges over classical formulas; in (∃-split), α ranges over classical formulas and
x is not free in α; in (CD), x must not occur free in ψ ; in (CN ), ϕcl stands for the classical variant of ϕ

The proofs of soundness of the rules follow this same intuition. Let us show the
case of

�

-split as an example:

M, s �g α → ψ

�

χ

⇐⇒ For all s′ ⊆ s, ifM, s′ �g α then M, s′ �g ψ

�

χ

⇐⇒ M, s ∩ |α| �g ψ

�

χ by Lemma 1

⇐⇒ M, s ∩ |α| �g ψ or M, s ∩ |α| �g χ

⇐⇒ M, s �g α → ψ or M, s �g α → χ by Lemma 1

⇐⇒ M, s �g (α → ψ)

�

(α → χ)

Finally, notice that the rules are not sound without the restriction on the antecedent α
being classical. For example, consider the formula

(P(c)

� ¬P(c)) → (P(c)

� ¬P(c))
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734 G. Grilletti

which is trivially valid. If we could apply the rule to this formula, by the disjunction
property (Theorem 7) we would have that (P(c)

� ¬P(c)) → P(c) would be valid
or (P(c)

� ¬P(c)) → ¬P(c) would be valid. But this is clearly not the case, as it is
easy to produce counterexamples for both formulas.

3 ClAnt Fragment

In this sectionwe present themain protagonist of this paper, that is, theClAnt fragment.

Definition 11 (ClAnt fragment) The ClAnt fragment is generated by the following
grammar:

ϕ ::= ⊥ | R(t1, . . . , tn) | ϕ ∧ ϕ | ϕ

�
ϕ | α → ϕ | ∀x .ϕ | ∃x .ϕ

where α ranges over classical formulas.

In Ciardelli (2016, Ch. 4), two other fragments were presented and studied, namely
the mention-some (L∃) and the mention-all fragment (L∀). These two fragments are
generated by the following grammars:

L∃ Mention-some: ϕ ::= α | ϕ

�

ϕ | ∃x .ϕ | ϕ ∧ ϕ | α → ϕ

L∀ Mention-all: ϕ ::= α | ?α | ∀x .ϕ

where α ranges over classical formulas.
It was proven in Ciardelli (2016) that the support relation for inquisitive logic

restricted to both these fragments is axiomatizable. Interestingly, the proofs presented
are quite different and cannot, prima facie, be adapted to the other fragment. For the
mention-some fragment, the completeness proof uses a canonical model construction
similar to the one proposed for propositional inquisitive logic in Ciardelli (2016, Ch.
3), heavily relying on the existence of a disjunctive normal form for formulas. For
the mention-all fragment, the completeness proof passes through a translation in the
Logic of Interrogation (Groenendijk 1999; ten Cate and Shan 2007), a logic with a
partition-based semantics.

Notice that ClAnt subsumes both these fragments. So the axiomatization for ClAnt
and the corresponding completeness proof, presented in Sects. 4 and 5 respectively,
introduce a novel approach to axiomatize both L∃ and L∀. Moreover, ClAnt is strictly
more expressive than both these fragments, as shown by the following result.

Proposition 12 The sentence∀x .∃y.(P(x) ↔ ¬P(y)) is inClAntand it is not logically
equivalent to any formula in L∃ ∪ L∀ in the same signature.

This formula holds if for every element x there is an associated element y such that
exactly one of them has property P . This condition is particularly interesting in contexts
where epistemic identity does not correspond to ontological identity, like inquisitive
logic (see Ciardelli 2016, Sec. 4.3.4 for a small discussion on the topic).
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(a)

(b)

Fig. 1 The models used in the proof of Proposition 12

Proof In the scope of this proof, we will use the notation θ := ∀x .∃y.(P(x) ↔
¬P(y)). θ is clearly in ClAnt—notice that P(x) ↔ ¬P(y) is a classical formula.

To show that θ is not equivalent to a formula in L∃, consider the models depicted
in Fig. 1a. It is straightforward to verify thatM � θ , whileN � θ . Assume towards a
contradiction that θ is equivalent to a formula in L∃. By the normal form described in
Ciardelli (2016, Proposition 4.7.2), this means that

θ ≡ ∃x1.α1

�

. . .

� ∃xn .αn

for some α1, . . . , αn classical formulas. In particular, this means that for some i ∈
{1, . . . , n} we have M � ∃xi .αi , that is,M �g αi for some assignment g.

Notice that the only atomic formulas available in the current language are ⊥ and
P(x) for x a variable. So if g(x) = b, the assignments g and g[x 
→ a] satisfy exactly
the same atomic formulas, and consequently the same complex formulas. And the
same applies for g and the assignment h defined as follows:

h(x) =
{
g(x) if g(x) ∈ {a, c}
a if g(x) = b

Since the image of h is contained in {a, c} andM �h αi , with a similar reasoning we
also obtain that N, {w} �h αi and N, {v} �h αi . Thus by Lemma 8 we have N �h αi
and consequently N � θ . And this is a contradiction, as wanted.
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To show that θ is not equivalent to a formula in L∀ we use Ciardelli (2016, Propo-
sition 4.8.4), which states that every formula ϕ ∈ L∀ is pair-distributive, that is:

M, s �g ϕ iff ∀s′ ⊆ s.
[ |s′| ≤ 2 �⇒ M, s′ �g ϕ

]

So we just need to show that θ is not pair-distributive: given the model in Fig. 1b,
every state s′ with at most two worlds satisfies θ , but the whole model does not. ��
We conclude this section with an alternative presentation of the ClAnt fragment.

Lemma 13 Every formula in ClAnt is equivalent to a formula generated by the follow-
ing grammar:

ϕ ::= α | ϕ ∧ ϕ | ϕ
�

ϕ | ∀x .ϕ | ∃x .ϕ

where α ranges over classical formulas.

Proof (Sketch) The main idea of the proof is to “massage” the implications toward
the classical formulas using the following equivalences, taking care of renaming the
bounded variables when necessary.

α → ϕ

�
ψ ≡ (α → ϕ)

�

(α → ψ)

α → ϕ ∧ ψ ≡ (α → ϕ) ∧ (α → ψ)

α → (β → ϕ) ≡ (α ∧ β) → ϕ

α → ∀x .ϕ ≡ ∀x .(α → ϕ) (For x not free in α)
α → ∃x .ϕ ≡ ∃x .(α → ϕ) (Forxnot free inα)

Notice that the equivalences read from left to right reduce the complexity of the
consequent of the implication. Consequently, after enough reduction steps all the
implications appear in subformulas of the formα → β, which are themselves classical
formulas. ��

This result tells us that we can dispense with implications outside of classical for-
mulas. At the level of expressive power this is a significant limitation, since → is the
only logical operator acting as a second-order quantifier for the semantics—compare
with Definition 5. It is not clear yet whether the completeness proof presented in
the following sections relies on this limitation or can be generalized to more expres-
sive fragments, or even the whole logic. What is known, is that ClAnt is strictly less
expressive than InqBQ, as the following result shows.

Claim The formula ∀x .?P(x) →?r (for P a unary relation symbol and r a 0-ary
relation symbol) is not logically equivalent to any formula in ClAnt.

The only proof known to the author of this result relies on Lemma 13, but uses also
a variation of the Ehrenfeucht-Fraïssé game for InqBQ introduced in Gianluca and
Ivano (2019), which has not yet been discussed in the literature. Since presenting and
discussing these results strides away from the intended objective of this paper, we leave
the claim unproven for now, with the promise to present the proof in future works.
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4 Deductive System

Definition 14 (Natural deduction system for ClAnt) For Φ ∪ {ψ} ClAnt formulas we
say that Φ derives ψ in ClAnt (in symbols Φ ∼ ψ) if there is a derivation of ψ from Φ

containing only ClAnt formulas.

Clearly ifΦ ∼ ψ thenΦ ψ , but a priori nothing ensures that if there exists a derivation
of ψ from Φ, then there exists also a derivation containing only ClAnt formulas.
However, we will show in Theorem 34 that this is indeed the case.

Notice that if we apply a rule in Table 1 to ClAnt formulas, the conclusion produced
is again a ClAnt formula, the only exception being (→ i). In particular, the conclusion
of (→ i) is a ClAnt formula iff the discharged assumption is a classical formula, that
is, if the rule is applied with the following side condition:

ClAnt →i

[α]
.
.
.

ψ

α → ψ

For α classical.

From this observation, it follows that ∼ can be characterized as the provability relation
of the natural deduction system obtained by replacing the rule (→i) with the rule
(ClAnt →i) in Table 1.

To study the properties of this system and the relations with the system presented
in Definition 9, we focus on theories of InqB and of ClAnt, that is, sets of formulas
in InqB and in ClAnt respectively. Since we need to be particularly careful when
handling free variables, we distinguish between sets of formulas and theories.

Definition 15 Let Σ be a fixed signature.

– A set of Σ-formulas is any set Φ of InqB formulas in the signature Σ .
– A Σ-theory is any set Φ of InqB sentences in the signature Σ .

So Σ-theories do not contain formulas with free variables, while sets of Σ-formulas
may. It is easy to transform a set of Σ-formulas in a corresponding theory, at the cost
of adding new constant symbols to the signature. For A a set of parameters—that we
assume disjoint from the set Σ—we define Σ(A) as the signature extending Σ with
the elements of A as fresh constant symbols.

Definition 16 Let Φ be a set of Σ-formulas and let V be the set of free variables
appearing in Φ. Consider a set Ṽ := { x̃ | x ∈ V } of distinct formal parameters. We
define the closure of Φ as the Σ(Ṽ )-theory Φ̃ obtained by substituting every free
occurrence of the variable x in Φ with x̃ , for every x ∈ V .

Proposition 17 Let Φ ∪ {ψ} be a set of Σ-formulas. Then4

Φ � ψ ⇐⇒ Φ̃ � ψ̃

4 If the set Φ and ψ have a common free variable, let us say x , Φ̃ and ψ̃ are obtained by substituting the
free occurrences of x with the same formal parameter x̃ .

123



738 G. Grilletti

The proof consists only in comparing the semantic clauses of the two entailments, and
it is therefore omitted. This proposition allows us to focus our attention on theories
and to highlight the role of the parameters in the proofs that follow.

To prove the completeness of the system introduced, we need to studymore in detail
three special classes of theories: saturated theories, classically saturated theories and
ClAnt-saturated theories. In what follows, we will indicate with A a fixed set of
constant symbols not appearing in the signature Σ .

Definition 18 (Saturated theory) A Σ(A)-theory Φ is called saturated (with respect
to A) if for every sentences ϕ,ψ of Σ(A) it satisfies:

• Coherence: Φ / ⊥;
• Deductive closure: if Φ ϕ then ϕ ∈ Φ;
• Disjunction property: If Φ ϕ

�

ψ then Φ ϕ or ψ ϕ;
• Existence property: If Φ ∃x .ϕ then Φ ϕ[t/x] for some t ∈ TΣ(A);
• Normality condition: If Φ / ∀x .ϕ then Φ / ϕ[t/x] for some t ∈ TΣ(A).

It is easy to produce examples of saturated theories: Consider an inquisitive model
M on the signature Σ(A) for which the interpretations of the terms in TΣ(A) cover
the whole domain, that is, {tM | t ∈ TΣ(A)} = D—henceforth we will call these
models TΣ(A)-covered. Given an information state s, define the theory of 〈M, s〉
as Th(M, s) = { ϕ sentence of Σ(A) |M, s � ϕ }. It is immediate to show that
Th(M, s) is a saturated Σ(A)-theory. In particular, the existence property and the
normality condition rely on the fact that the model is TΣ(A)-covered.

If we restrict our attention only to classical formulas, we can define the correspond-
ing concept of classically-saturated theory.

Definition 19 (Classical theories and classically saturated theories) A classical Σ-
theory is a Σ-theory containing only classical formulas.

We say that a classical Σ(A)-theory Γ is classically-saturated (with respect to A)
if for every classical sentences α, β of Σ(A) it satisfies:

• Coherence: Γ / ⊥;
• Deductive closure: If Γ α, then α ∈ Γ ;
• Classical disjunction property: If Γ α ∨ β then Γ α or Γ β;
• Classical existence property: If Γ ∃x .α then Γ α[t/x], for some

t ∈ TΣ(A).
A simple induction shows that, given Γ ∪ {α} classical formulas, Γ ∼ α if and only if
α is a consequence of Γ in classical first order logic. This observation, in conjunction
with deductive closure and the disjunction property, tells us that a classically-saturated
theory Γ is complete, that is, for every sentence α of Σ(A) we have either α ∈ Γ or
¬α ∈ Γ . And in turns, it follows that the condition corresponding to normality is also
satisfied:

Γ / ∀x .α
⇒ Γ ∃x .¬α

⇒ Γ ¬α[t/x], for some t ∈ TΣ(A)

⇒ Γ / α[t/x], for some t ∈ TΣ(A)
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Classically-saturated theories are examples of Hintikka sets for classical first order
logic (see for example Hodges1993, Sec. 2.3). This is particularly relevant, since
every Hintikka set Γ admits a first-order model MΓ , and it is thus satisfiable.

We will sketch the construction of MΓ for Γ a classically-saturated Σ(A)-theory,
essentially following the proof of Theorem 2.3.3 in Hodges (1993).

Definition 20 Given Γ a classically-saturated Σ(A)-theory, we define the model MΓ

by the following clauses:

– The domain of MΓ is the set TΣ(A);
– A constant symbol c ∈ Σ is interpreted as itself, that is, cMΓ = c. The same
applies for a parameter a ∈ A: aMΓ = a.

– An n-ary function symbol f different from a constant is interpreted as the corre-
sponding term combinator, that is:

f MΓ : (TΣ(A))
n → TΣ(A)〈

t1, . . . , tn
〉 
→ f (t1, . . . , tn)

– An n-ary relation symbol R is interpreted as the relation defined by the following
clause:

RMΓ (t1, . . . , tn) iff R(t1, . . . , tn) ∈ Γ

Notice that by construction themodelMΓ isTΣ(A)-covered. Another peculiar property
of MΓ is that it satisfies exactly the sentences in Γ , that is:

Lemma 21 (Truth Lemma) For every classical sentence α of Σ(A) we have

MΓ � α iff α ∈ Γ

The proof of this result (which we omit) consists of a simple structural induction on
α. As an example, we sketch the inductive step for the case α of the form ∃x .β.

MΓ � ∃x .β
⇐⇒ MΓ � β[t/x] for some t ∈ TΣ(A)

⇐⇒ β[t/x] ∈ Γ for some t ∈ TΣ(A) Inductive hypothesis

⇐⇒ ∃x .β ∈ Γ for some t ∈ TΣ(A) Existence property

It is useful to interpret these results on classically-saturated theories also in terms of
support semantics. To do this, we firstly introduce the concept of classical part of a
theory—and for later use, also the concept of ClAnt part of a theory.

Definition 22 (Classical part and ClAnt part of Φ) Let Φ be a theory. The classical
part of Φ (Φ�cl ) and the ClAnt part of Φ (Φ�ClAnt), are defined as the set of classical
formulas contained in Φ and the set of ClAnt formulas contained in Φ respectively.

Corollary 23 The followings hold:
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– Let M be a TΣ(A)-covered model on the signature Σ(A) and w a world of M.
Then Th(M, {w})�cl is a classically-saturated Σ(A)-theory.

– Let Γ be a classically-saturated Σ(A)-theory. Then there exists a model M on
the signature Σ(A) and a world w of M such that Γ = Th(M, {w})�cl .

If we restrict our attention to TΣ(A)-covered models in the signature Σ(A), Corollary
23 tells us that classically saturated theories are exactly the classical parts of theories
of singleton information states, that is, states of the form {w}.

It is worth noticing that for an arbitrary information state s, the set Th(M, s)�cl
is not necessarily classically-saturated. Take for example an enhanced version of the
information model N from Fig. 1a, obtained by

– extending the signature of N with the set of parameters A;
– interpreting the elements of A so as to cover the whole domain {a, b, c}.

Let us call this enhanced model N ′ and fix s := {w, v}. Since N ′, s � P(b) and
N ′, s � ¬P(b), we have that Th(N ′, s)�cl is not complete—independently from the
in terpretation of the new parameters—and consequently Th(N ′, s)�cl does not satisfy
the Classical disjunction property.

Finally, we restrict our attention only to ClAnt formulas, obtaining the concept of
ClAnt-saturated theory.

Definition 24 (ClAnt-theories and ClAnt-saturated theories) A ClAnt Σ-theory is a
Σ-theory containing only ClAnt formulas.

We say that a ClAnt Σ(A)-theory Φ is ClAnt-saturated (with respect to A) if for
every ClAnt sentences ϕ,ψ of Σ(A) it satisfies:

• Coherence: Φ /∼ ⊥;
• Deductive closure: If Φ ∼ ϕ, then ϕ ∈ Φ;
• Disjunction property: If Φ ∼ ϕ

�

ψ then Φ ∼ ϕ or Φ ∼ ψ ;
• Existence property: If Φ ∼ ∃x .ϕ then Φ ∼ ϕ[t/x] for some t ∈ TΣ(A);
• Normality condition: If Φ /∼ ∀x .ϕ then Φ /∼ ϕ[t/x] for some t ∈ TΣ(A).

From Definition 14 it follows readily that, given Φ a saturated Σ(A)-theory, the
subset of its ClAnt formulas is a ClAnt-saturated Σ(A)-theory. The converse—that
every ClAnt-saturated theory can be obtained by restricting a saturated theory in the
whole language—is not as obvious, but surprisingly it is the case.

Theorem 25 Let Φ be a ClAnt-saturated Σ(A)-theory. Then there exists a saturated
Σ(A)-theory Ψ such that Φ = Ψ �ClAnt.

The rest of this section is dedicated to proving this result. Henceforth, given a ClAnt-
theory Φ, we will indicate with Φ its deductive closure with respect to ∼—which is
again a ClAnt-theory.

Lemma 26 Given Φ a ClAnt-saturated Σ(A)-theory and α a classical sentence such
that Φ /∼ ¬α, then Φ ∪ {α} is ClAnt-saturated Σ(A)-theory.

Proof Let us call Θ := Φ ∪ {α}. Clearly Θ is deductively closed. Moreover it is
coherent, since Φ /∼ ¬α iff Φ,α /∼ ⊥:
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the left-to-right implication can be deduced using the rule (ClAnt → i); the right-
to-left implication can be deduced using the rule (→ e).

So we just need to show that Θ satisfies the disjunction property, the existence
property and the normality condition.
Disjunction property

Θ ∼ ϕ

�

ψ

�⇒ Φ ∼ α → ϕ

�

ψ (ClAnt → i)

�⇒ Φ ∼(α → ϕ)

�

(α → ψ) (

� −spli t)

�⇒ Φ ∼ α → ϕ or Φ ∼ α → ψ Disjunction property of Φ

�⇒ Θ ∼ ϕ or Θ ∼ ψ (→ e)

Existence property
Notice that since α is a sentence, x does not appear free in α.

Θ ∼ ∃x .ϕ
�⇒ Φ ∼ α → ∃x .ϕ (→ i)

�⇒ Φ ∼ ∃x .(α → ϕ) (∃ − spli t)

�⇒ Φ ∼ α → ϕ[t/x] for some t ∈ TΣ(A) Existence property of Φ

�⇒ Θ ∼ ϕ[t/x] for some t ∈ TΣ(A) (→ e)

Normality condition
Notice that since α is a sentence and Θ is a theory, x and y do not appear free in α

nor Θ .

Θ ∼ ϕ[t/x] for all t ∈ TΣ(A)

�⇒ Φ ∼ α → ϕ[t/x] for all t ∈ TΣ(A) (ClAnt → i)

�⇒ Φ ∼ ∀x .(α → ϕ) Normality condition of Φ

�⇒ Φ ∼ α → ϕ[y/x] (∀e)
�⇒ Θ ∼ ϕ[y/x] (→ e)

�⇒ Θ ∼ ∀x .ϕ (∀i)

��

Lemma 27 Let Φ,Ψ be two ClAnt-saturated Σ(A)-theories such that Φ�cl = Ψ �cl .
Then Φ = Ψ .

Proof We start with a sub-lemma: given any Φ and Ψ as in the hypothesis, then
for every classical formula α it holds (Φ ∪ {α})�cl = (Ψ ∪ {α})�cl . The proof is
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straightforward:

β ∈ Φ ∪ {α}
�⇒ α → β ∈ Φ (→ i)

�⇒ α → β ∈ Ψ Assumption

�⇒ β ∈ Ψ ∪ {α} (→ e)

Using this technical result, we can show by induction on the length of the ClAnt
sentence θ—intended as the number of symbols appearing in θ—that θ ∈ Φ ⇐⇒
θ ∈ Ψ .

• If θ is an atom, the result follows by hypothesis—atoms are classical formulas.
• If θ ≡ ψ ∧ χ , then

θ ∈ Φ

⇐⇒ ψ ∈ Φ and χ ∈ Φ Deductive closure of Φ

⇐⇒ ψ ∈ Ψ and χ ∈ Ψ Inductive hypothesis

⇐⇒ θ ∈ Ψ Deductive closure of Ψ

• If θ ≡ ψ

�

χ , then

θ ∈ Φ

⇐⇒ ψ ∈ Φ or χ ∈ Φ Deductive closure and Disjunction property of Φ

⇐⇒ ψ ∈ Ψ or χ ∈ Ψ Inductive hypothesis

⇐⇒ θ ∈ Ψ Deductive closure and Disjunction property of Ψ

• If θ ≡ α → ψ , then

θ ∈ Φ

⇐⇒ ψ ∈ Φ ∪ {α} (ClAnt → i) and (→ e)

⇐⇒ ψ ∈ Ψ ∪ {α} Inductive hypothesis applied to Φ ∪ {α} and Ψ ∪ {α}
⇐⇒ θ ∈ Ψ (ClAnt → i) and (→ e)

Notice that we can apply the inductive hypothesis to the theories Φ ∪ {α} and
Ψ ∪ {α} since by Lemma 26 they are ClAnt-saturated theories, and we showed at
the beginning of the proof that Φ ∪ {α}�cl = Ψ ∪ {α}�cl .

• If θ ≡ ∃x .ψ , then

θ ∈ Φ

⇐⇒ ψ[t/x] ∈ Φ for some t ∈ TΣ(A) Existence property for Φ

⇐⇒ ψ[t/x] ∈ Ψ for some t ∈ TΣ(A) Inductive hypothesis

⇐⇒ θ ∈ Ψ Existence property for Ψ
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• If θ ≡ ∀x .ψ , then

θ ∈ Φ

⇐⇒ ϕ[t/x] ∈ Φ for all t ∈ TΣ(A) Normality condition for Φ

⇐⇒ ψ[t/x] ∈ Ψ for all t ∈ TΣ(A) Inductive hypothesis

⇐⇒ θ ∈ Ψ Normality condition for Ψ

��
To obtain a result analogous to Corollary 23, we need to introduce a construction
resembling the canonical models for intuitionistic logic.

Definition 28 (Canonical model) We defineMc the canonical model of Σ(A) by the
following clauses:

– The set of worlds is Wc, the set of classically-saturated Σ(A)-theories;
– The common domain of the structures is Dc := TΣ(A);
– The model corresponding to world Γ is MΓ —introduced in Definition 20.

As a direct consequence of Definition 28 and of Lemma 21, we have that
Th(Mc, {Γ })�cl = Γ for every Γ ∈ Wc. From this observation we obtain the follow-
ing Lemma.

Lemma 29 Let s ⊆ Wc and Γ a classical theory. Then

Mc, s � Γ ⇐⇒ ∀Θ ∈ s. Γ ⊆ Θ

Proof For every α ∈ Γ we have

Mc, s � α ⇐⇒ ∀Θ ∈ s. α ∈ Th(Mc, {Θ}) (By Lemma 8)

⇐⇒ ∀Θ ∈ s. α ∈ Θ

��
Given a coherent classical Σ(A)-theory Θ it is not generally true that there exists a
world of the canonical model satisfyingΘ . A simple example, for P a unary predicate
symbol, is Θ := { ¬∀x .P(x) } ∪ { P(t) | t ∈ TΣ(A) }. The problem in this case is that
for every theory Γ of a world of the canonical model—that is, by Lemma 29, for every
classically-saturated Σ(A)-theory Γ—if Γ / ∀x .P(x) then there must be a witness
t ∈ TΣ(A) for which Γ / P(t).

So the normality condition is necessary for such a world to exist. The following
lemma shows that it is also a sufficient condition.5

Lemma 30 (Classical saturation lemma) Let Θ be a coherent classical Σ(A)-theory
such that for every sentence α in the signature Σ(A) it holds:

Normality condition: Θ / ∀x .α �⇒ Θ / α[t/x], for some t ∈ TΣ(A).

5 Recall that, by Lemma 10, amounts to classical entailment when restricted to classical formulas.
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Then there exists a classically-saturated Σ(A)-theory Γ such that Θ ⊆ Γ .

Proof This proof is an adaptation of the proof of Theorem (Gabbay 1981, Sec. 3.3,
Theorem 2) for the intuitionistic case.

We start by showing a useful property, that we will later refer to as (∗)-property:
given β a classical sentence of Σ(A), if Δ is a classical theory that satisfies the
normality condition above then Δ ∪ {β} also satisfies the condition. In fact for any
classical formula α we have

Δ ∪ {β} ∀x .α �⇒ Δ β → ∀x .α
�⇒ Δ ∀x .(β → α)

�⇒ Δ β → α[t/x] for some t ∈ TΣ(A)

�⇒ Δ ∪ {β} α[t/x] for some t ∈ TΣ(A)

Now we go back to the main proof. Fix an enumeration B0, B1, . . . of the classical
sentences in the signatureΣ(A). We will define inductively a chain of classicalΣ(A)-
theories Γi indexed by N such that:

1. Γi is coherent, that is, Γi / ⊥.
2. For every index i , Γi ⊆ Γi+1.
3. For every index i , Γi respects the normality condition.

The plan is to take Γ := ∪i∈N Γi . During the construction we will impose some
additional conditions to ensure Γ to be a classically-saturated Σ(A)-theory. We start
the construction by definingΓ0 := Θ . By hypothesis conditions 1 and 3 are respected;
condition 2 is trivially respected.

Suppose we already defined Γn with the properties above. We proceed by cases.

– Case Γn / ¬Bn and Bn �= ∃x .α. Define Γn+1 := Γn ∪ {Bn}. Condition 1 follows
from Γn / ¬Bn ; condition 2 is trivially satisfied; condition 3 follows from the
(∗)-property.

– CaseΓn / ¬Bn and Bn = ∃x .α. Notice thatΓn∪{∃x .α} / ∀x .¬α. So by condition 3
and the (∗)-property, there exists a term t ∈ TΣ(A) such thatΓn∪{∃x .α} / ¬α[t/x].
Define Γn+1 := Γn ∪ {Bn, α[t/x]}. Condition 1 follows from Γn / ¬Bn and Γn ∪
{Bn} / ¬α[t/x]; Condition 2 trivially holds; Condition 3 follows from the (∗)-
property.

– Case Γn ¬Bn . Define Γn+1 := Γn . Conditions 1,2 and 3 trivially hold.

Define Γ := ∪i∈N Γi . By Condition 2, Θ ⊆ Γ . So it remains to show that Γ is
classically-saturated. First of all, Γ is coherent since Γ ⊥ iff there exists an index
i ∈ N such that Γi ⊥, but the latter would contradict condition 1. Moreover Γ is
deductively closed, since if Γ Bn for some n ∈ N, then Γn / ¬Bn and so Bn ∈
Γn+1 ⊆ Γ .

To show the classical disjunction property, suppose that Γ Bm ∨ Bn . This implies
that Γ / ¬Bm or Γ / ¬Bn ; without loss of generality, suppose the former is the case.
Then Γm / ¬Bm , and by construction Bm ∈ Γm+1 ⊆ Γ . Finally, to show the classical
existence property suppose that Γ ∃x .α and let Bn be the enumeration of ∃x .α.
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Then Γ / ¬∃x .α, and consequently Γn / ¬∃x .α. By construction, there exists a term
t ∈ TΣ(A) such that α[t/x] ∈ Γn+1 ⊆ Γ .

This shows that Γ is a classically-saturated Σ(A)-theory as wanted. ��
Combining the results above, we can show the connection between ClAnt-saturated
theories and the semantics of the logic.

Theorem 31 Given Φ a ClAnt-saturated Σ(A)-theory, there exists a state EΦ ofMc

such that for every ClAnt formula ψ of Σ(A):

ψ ∈ Φ ⇐⇒ Mc, EΦ � ψ

Proof Define the state EΦ := {
Γ ∈ Wc

∣∣ Φ�cl ⊆ Γ
}
and consider the theory of this

state Ψ := Th(Mc, EΦ). By Lemma 29, Φ�cl ⊆ Ψ �cl . We want to show that also the
other inclusion holds.

Fix a classical formula α ∈ Ψ and suppose toward a contradiction that α /∈ Φ�cl .
In particular, α is not a consequence of Φ�cl in classical first-order logic—since Φ�cl
is classically-saturated. By Lemma 30, then there exists a classically-saturated Σ(A)-
theory Θ such that Φ�cl ⊆ Θ and α /∈ Θ . But this leads to a contradiction, since we
have:

α ∈ Ψ �⇒ ∀Γ ∈ EΦ. α ∈ Γ (by Lemma 29)
�⇒ ∀Γ ⊇ Φ�cl . α ∈ Γ

So we established that α ∈ Φ�cl , and since α was an arbitrary classical formula in Ψ ,
we also established that Ψ �cl ⊆ Ψ �cl .

By Lemma 27, since Φ�cl = Ψ �cl , we obtain that Φ = Ψ �ClAnt, from which the
result follows. ��
From the previous result, Theorem 25 follows trivially.

Proof (Theorem 25) Consider Ψ := Th(Mc, EΦ). SinceMc is TΣ(A)-covered, Ψ is
a saturated Σ(A)-theory. Moreover, by Theorem 31, Φ = Ψ �ClAnt, as wanted. ��
This result, together with the saturation lemma presented in Sect. 5, leads to the com-
pleteness of the natural deduction system introduced for ClAnt.

5 Completeness

This section is completely devoted to the proof of completeness for the ClAnt frag-
ment. To lighten the notation in the proofs of the following lemmas, we introduce the
following convention for inferences with multiple conclusions: let Φ and Ψ be sets
of ClAnt formulas; we write Φ ∼ Ψ to indicate that there exists ψ1, . . . , ψn ∈ Ψ such
that Φ ∼ ψ1

�

. . .

�

ψn or, in case Ψ is empty, that Φ ∼ ⊥.

Lemma 32 LetΦ∪Ψ ∪{χ} be a set of ClAnt formulas. IfΦ∪{χ} ∼ Ψ andΦ ∼ Ψ ∪{χ},
then Φ ∼ Ψ .
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Proof By hypothesis, for some ϕi , ϕ
′
i ′ ∈ Φ and ψ j , ψ

′
j ′ ∈ Ψ , we have6

ϕ1 · · · ϕh χ
T1

ψ1

�

. . .

�

ψk
and

ϕ′
1 · · · ϕ′

h′
T2

ψ ′
1

�

. . .

�

ψ ′
k′

�

χ

Combining the two proofs together we get

ϕ′
1 · · · ϕ′

h′
T2

ψ ′
1

�

. . .

�

ψ ′
k′

�

χ

[ψ ′
1

�

. . .

�

ψ ′
k′ ] �

i
ψ1

�

. . .

�

ψk

�

ψ ′
1

�

. . .
�

ψ ′
k′

ϕ1 · · · ϕh [χ ]
T1

ψ1

�

. . .

�

ψk �

i
ψ1

�

. . .

�

ψk

�

ψ ′
1

�

. . .

�

ψ ′
k′ �

e
ψ1

�

. . .

�

ψk
�

ψ ′
1

�
. . .

�

ψ ′
k′

and thus Φ ∼ Ψ , as wanted. ��
Lemma 33 (Saturation lemma) Consider Φ ∪ {ψ} a set of ClAnt Σ-formulas such
that Φ /∼ ψ . Consider the objects Ṽ , Φ̃ and ψ̃ as defined in Definition 16. Then given
A a countable set of parameters disjoint from Σ(Ṽ ), there exists a ClAnt-saturated
Σ(A ∪ Ṽ )-theory Δ such that Φ̃ ⊆ Δ and ψ̃ /∈ Δ.

Proof This proof is an adaptation of the proof of Theorem 2 in Gabbay (1981, Sec.
3.3), developed for intuitionistic logic.

First of all, by Proposition 17 we can assume thatΦ ∪{ψ} contains only sentences,
and that we just need to find a ClAnt-saturated Σ(A)-theory Δ such that Φ ⊆ Δ

and ψ /∈ Δ. Fix an enumeration B1, B2, . . . of the ClAnt sentences in the signature
Σ(A).7 We will define inductively a chain of pairs of Σ(A)-theories

〈
Δi ,Θi

〉
indexed

by i ∈ N such that:

1. Δi /∼ Θi .
2. For every index i , Δi ⊆ Δi+1 and Θi ⊆ Θi+1.
3. Bn ∈ Δn+1 ∪ Θn+1.

The plan is to take Δ := ∪i∈N Δi . During the construction we will impose some
additional conditions to ensure Δ to be a ClAnt-saturated Σ(A)-theory.

We start the construction by defining
〈
Δ0,Θ0

〉 := 〈Φ, {ψ}〉. By hypothesis con-
dition 1 is respected; conditions 2 and 3 are trivially respected.

Suppose we already defined
〈
Δn,Θn

〉
with the properties above.

By Lemma 32, we cannot have both that Δn ∼ Θn ∪ {Bn} and that Δn ∪ {Bn} ∼ Θn .
So we continue the proof by considering two possible (non mutually exclusive) cases:
if Δn /∼ Θn ∪ {Bn} and if Δn ∪ {Bn} /∼ Θn .

6 In the natural deduction proofs that follow we will use a single line for the application of an instance of
a rule; while we will use a double line for a subproof. On the right of a single line we will write the name
of the rule applied; on the right of a double line we will write a label naming the subproof.
7 Notice that this can be done without the use of the axiom of choice since we are considering a countable
signature Σ and a countable set A.
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1. Case Δn /∼ Θn ∪ {Bn}. We distinguish two sub-cases, depending on whether Bn is
of the form ∀x .ϕ or not.

(a) Case Bn = ∀x .ϕ. Consider a fresh parameter a ∈ A (that is, an element not
appearing in Δn ∪ Θn ∪ {Bn}) and define Δn+1 := Δn and Θn+1 := Δn ∪
{Bn, ϕ[a/x]}.
Clearly conditions 2 and 3 are respected. Moreover also condition 1 holds, i.e.
Δn+1 /∼ Θn+1; for otherwise, for some δ1, . . . , δh ∈ Δn and some θ1, . . . , θk ∈
Θn , we would have:

δ1 · · · δh

θ1

�

. . .

�

θk

� ∀x .ϕ �
(ϕ[a/x]) ∀i∀x .(θ1 �

. . .

�

θk
� ∀x .ϕ �

ϕ)
CD

θ1

�

. . .

�

θk

� ∀x .ϕ � ∀x .ϕ
So in particular Δn ∼ Θn ∪ {Bn}, which is a contradiction.

(b) Case Bn �= ∀x .ϕ. In this casewe simply defineΔn+1 := Δn andΘn+1 := Θn∪
{Bn}. Conditions 1, 2 and 3 follow by construction.

2. CaseΔn ∪{Bn} /∼ Θn . Once again, we distinguish two sub-cases, this time depend-
ing on whether Bn is of the form ∃x .ϕ or not.

(a) Case Bn = ∃x .ϕ Consider a fresh parameter a ∈ A and define Δn+1 := Δn ∪
{Bn, ϕ[a/x]} and Θn+1 := Θn .
Clearly conditions 2 and 3 are respected. Also condition 1 holds, for otherwise:

δ1 · · · δh ∃x .ϕ ϕ[a/x]
T

θ1

�

. . .

�

θk
and so

∃x .ϕ(x)

δ1 · · · δh

[ ϕ[y/x] ] ∃i∃x .ϕ [ ϕ[y/x] ]
T [y/a]

θ1

�

. . .

�

θk ∃eθ1

�

. . .

�

θk

where T [y/a] is the proof obtained by substituting a fresh variable y for a in the proof
T . Thus Δn ∪ {Bn} ∼ Θn , which is a contradiction.

(b) Case Bn �= ∃x .ϕ. Define Δn+1 := Δn ∪ {Bn} and Θn+1 := Θn ; clearly con-
ditions 1, 2 and 3 are respected.

Thus we built the sequence
〈
Δi ,Θi

〉
for i ∈ N, as wanted. Define Δ := ∪i∈N Δi and

Θ := ∪i∈N Θi . We want to show now that Δ is ClAnt-saturated, that Φ ⊆ Δ and that
ψ /∈ Δ.

First of all, notice thatΦ ⊆ Δ0 ⊆ Δ.Moreover by condition 1 and 2we haveΔ /∼ Θ ,
for otherwise there would be a finite n such thatΔn ∼ Θn . Consequentlyψ ∈ Θ0 ⊆ Θ ,
and so ψ /∈ Δ. What is left to show is that Δ is ClAnt-saturated.

By condition 3, we have that every sentence in ClAnt is an element of Δ∪Θ . This,
together with Δ /∼ Θ and Θ �= ∅, ensures that Δ is deductively closed and ⊥ /∈ Δ.
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As for the Disjunction property, suppose Δ∼ ϕ

�

ψ . By contradiction, assume
ϕ,ψ /∈ Δ, which in turn implies ϕ,ψ ∈ Θ . In particular we would have Δ∼ Θ ,
which is a contradiction; thus at least one among ϕ and ψ has to be in Δ.

For the Existence property, suppose ∃x .ϕ ∈ Δ. Let Bn = ∃x .ϕ be the enumeration
given to this sentence.

We have Bn ∈ Δn+1 ∪ Θn+1 by condition 3. But if Bn ∈ Θn+1 were the case, we
would haveΔ ∼ Θn+1 and consequentlyΔ∼ Θ , which is a contradiction. So it follows
that Bn ∈ Δn+1. In particular, following the inductive construction presented above
(case 2a), we have that Δn+1 := Δn ∪ {Bn, ϕ[a/x]} for some a ∈ A ⊆ TΣ(A). And
so we have ϕ[a/x] ∈ Δn+1 ⊆ Δ. Since ∃x .ϕ is an arbitrary existential sentence, it
follows that Δ has the existence property.

The normality condition follows from considerations completely analogous to the
one in the previous paragraph. ��
Using the results we collected so far, we can completely characterize the connection
between the relation ∼ and the relations and �.
Theorem 34 Let Φ ∪ {ψ} be ClAnt formulas. Then it holds:

Φ ∼ ψ ⇐⇒ Φ ψ

Proof The left-to-right implication follows trivially, since every derivation in the
deductive system for ClAnt is also a derivation for the deductive system for InqBQ.

For the right-to-left implication, we show the contrapositive. Suppose that Φ /∼ ψ .
Then by Lemma 33 there exists a ClAnt-saturated theory Δ (in an extended signature)
such that Φ ⊆ Δ and ψ /∈ Δ. By Theorem 25, there exists a saturated theory Ψ such
that Δ = Ψ �ClAnt, and so in particular Φ ⊆ Ψ and ψ /∈ Ψ . Since Ψ is deductively
closed with respect to , it follows that Φ / ψ . ��
Theorem 35 (Completeness) Let Φ ∪ {ψ} be ClAnt formulas. Then it holds:

Φ � ψ �⇒ Φ ∼ ψ

Proof We prove the result by contraposition: suppose thatΦ /∼ ψ . By Lemma 33, given
A a countable set of fresh parameters there exists a ClAnt-saturated Σ(Ṽ ∪ A)-theory
Δ such that Φ̃ ⊆ Δ and ψ̃ /∈ Δ. By Theorem 31, given Mc the canonical model
for the signature Σ(Ṽ ∪ A), we have Th(Mc, EΔ)�ClAnt = Δ. Thus in particular
Mc, EΔ � Φ̃ and Mc, EΔ � ψ̃ .

Define the assignment g : V → D such that g(x) = (̃x)M. An easy induction
shows that, for every formula χ in the signature Σ with free variables in V we have
Mc, EΔ �g χ iff Mc, EΔ � χ̃ . In particular, it follows that Mc, EΔ �g Φ and
Mc, EΔ �g ψ . Thus Φ � ψ , as wanted. ��

6 Language with Equality

Notice that in defining the syntax of InqBQ (Definition 1) we did not consider the
equality symbol. There are at least two ways to enhance the semantics of InqBQwith
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an equality symbol: we can consider a rigid or a non-rigid interpretation. Both are
described in detail in Ciardelli (2016, Ch. 4). 8

In the rigid interpretation, the semantic clause for equality is

M, s �g t1 = t2 ⇐⇒ t g1 = t g2 . (1)

That is, t1 = t2 holds if and only if the two elements are interpreted as the same
element of DM.

In the second case, we want the interpretation of equality to be world-dependent,
like the interpretation of other relation symbols. To achieve this, we need a small gen-
eralization of the notion of first-order model described in Footnote 3: additionally, we
require a first-order model to specify an equivalence relation ∼ (the interpretation of
the equality symbol) that is required to be a congruence with respect to the interpre-
tation of the function and relation symbols. In this case, the corresponding semantical
clause for equality is

M, s �g t1 = t2 ⇐⇒ ∀w ∈ s. t g1 ∼w t g2 . (2)

That is, t1 and t2 are interpreted as elements of DM which every world in s consider
to be identical.

Let us refer to �= and �∼ as the semantical relations corresponding to Clauses 1
and 2 respectively. To account for these two extensions of the language, we canmodify
the deductive system in Definition 9 by adding rules 1-3 for the rigid equality; and
rules 1–2 for the non-rigid equality.9

1 t = t
ϕ[t/x] t = t ′

2
ϕ[t ′/x]

3 ∀x, y. ?x = y

As for the case without equality, it is still an open question whether these deductive
systems are complete. However, we can show that the corresponding restricted systems
for ClAnt are complete.

Theorem 36 (Completeness for the language with equality) Consider the natural
deduction systems ∼= and ∼∼ obtained by adding to the system in Definition 14 Rules
1–3 and Rules 1–2 respectively. Then, given Φ ∪{ψ} a set of ClAnt formulas (possibly
containing =), we have:

Φ �= ψ �⇒ Φ ∼=
ψ Φ �∼ ψ �⇒ Φ ∼∼

ψ

Proof (Sketch) We want to prove analogues of Theorem 35 for the new relations
introduced. To achieve this, we need analogues of Definition 20 and Lemma 21 for

8 In Ciardelli (2016), the standard interpretation of equality is the non-rigid one, defined in Ciardelli (2016,
Definition 4.1.5). The rigid interpretation (called id-entailment) is described in Ciardelli (2016, Definition
4.5.2).
9 Rules 1–2 are the standard rules for equality found in natural deduction systems for intuitionistic logic,
while Rule 3 is thoroughly discussed in Ciardelli (2016, Sec. 4.5).
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the case with rigid and non-rigid equality, which follow again by adapting the proof
of Theorem 2.3.3 in Hodges (1993). All the other proofs in this paper are independent
from the equality symbols being in the language, including the proof of Theorem 35.

��

7 Conclusions

In this paper we introduced the ClAnt fragment of InqBQ, extending the mention-
some and mention-all fragments. We presented a natural deduction system for ClAnt,
specializing the one proposed in Ciardelli (2016, Ch. 4) for InqBQ. We introduced
ClAnt-saturated theories,which stem from thededuction systempresented, and showed
(1) these theories are characterized by their classical fragment and (2) they are exactly
the restrictions to the ClAnt fragment of saturated theories for the whole language.
This allowed us to prove the main result of the paper, that is, the completeness of the
natural deduction system through a canonical model construction.

The protagonists in the proof abovementioned are the ClAnt-saturated theories: by
studying their properties, we were able to adapt the canonical model technique to (a
fragment of) InqBQ. The same approach can be applied to fragments of the logic
satisfying properties (1) and (2) above, obtaining analogous completeness results;
as of now it is not known if a proper extension of ClAnt with said properties exists.
Potentially, a variationof the approach could be applied to the logicInqBQ, although it
is not knownwhether property (1) holds for the whole language. Further investigations
in this direction are left for future work.
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