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The Hong and Page ‘diversity trumps ability’ result has been used to argue for the more
general claim that a diverse set of agents is epistemically superior to a comparable group
of experts. Here we extend Hong and Page’s model to landscapes of different degrees of
randomness and demonstrate the sensitivity of the ‘diversity trumps ability’ result. This
analysis offers a more nuanced picture of how diversity, ability, and expertise may relate.
Although models of this sort can indeed be suggestive for diversity policies, we advise
against interpreting such results overly broadly.

A number of computational models of group inquiry have garered wide-
spread attention (e.g., Zollman 2007; Grim 2009; Alexander 2013). Within
a model of this type, Hong and Page (2004) demonstrate a ‘diversity trumps
ability’ (DTA) result: for a group of agents confronting a task, “a randomly
selected collection of problem solvers outperforms a collection of the best
individual problem solvers” (Page 2007, 162). Because this result suggests
that an organization is epistemically better off by recruiting a diverse set of
candidates instead of just selecting the best individual performers, the Hong-
Page result has been taken to have direct implications for policy. For exam-
ple, claims that the Hong-Page result provides evidence that increasing un-
derrepresented groups will result in disciplinary gains have been made in
computer science (Cheryan et al. 2013), biomedical engineering (Chesler
et al. 2010), biomedical science (Gibbs et al. 2014; Pickett et al. 2015), and
science, technology, engineering, and mathematics (STEM) fields generally
(Ferrini-Mundy 2013; Handley et al. 2015). The results have been cited in
support of specific scientific practices, such as developing programs to erad-
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DIVERSITY, ABILITY, AND EXPERTISE 99

icate tuberculosis (Quissell and Walt 2015). The work has been presented to
NASA, cited by the US Geological Survey, is one of four works cited in sup-
port of positive expected institutional effects of UCLA’s (2014) diversity
requirement, and has recently been appealed to in support of promoting di-
versity in the armed forces in a brief submitted to the Supreme Court (Fisher
v. University of Texas at Austin, 579 U.S. _ [2016]; Thompson 2014).
A number of philosophers have also taken the result to apply to the value
of epistemic diversity in scientific communities (e.g., Martini 2014; Stegenga
2016; Bright 2017).

In reviews and applications of their work, it is perhaps natural that the
Hong-Page results about ability are taken as part of a larger case against ex-
pertise (Landemore 2013; Gunn 2014; Weymark 2015). Princeton Univer-
sity Press’s book blurb characterizes Page’s The Difference as revealing “how
groups that display a range of perspectives outperform groups of like-minded
experts” (https://press.princeton.edu/titles/8757.html). Elizabeth Anderson
characterizes Hong and Page as showing “that diverse collections of non-
experts do a better job than experts in solving many problems,” supporting
the claim that “democracy, which allows everyone to have a hand in collec-
tive problem solving is epistemically superior to technocracy, or rule by ex-
perts” (2006, 12).

We regard the interpretational employment of the Hong-Page model as a
general argument for diversity against expertise as a mistake. In what follows
we replicate and then build on their work in order to evaluate claims about
diversity and ability using a richer notion of expertise than in the original:
in our view, genuine expertise requires being able to perform well on many
problems of the same type, not just on a single problem.

There is an important difference between the careful way that the Hong-
Page result is discussed by those who are sensitive to the details of the model
and by others who have interpreted and applied it in a broad range of social
contexts. Mayo-Wilson, Zollman, and Danks (2011) responsibly cite the re-
sult in support of the “independence thesis”—the claim that the properties of
an epistemic community can differ from the properties of their agents. Here
the claim is simply that the best epistemic groups are not necessarily com-
posed of the individually highest-performing agents. Such a claim is right
in line with the original conclusion that, under the right conditions, “a diverse
group can often outperforma group ofthe best” (Hong and Page 2004, 16386).
Other modelers have also been careful to retain the qualified claim that di-
versity can trump ability (Zollman 2011, 2013; Bright 2017).

But the result has also been cited in support of a much stronger claim: that
diversity is generally (or even necessarily) epistemically beneficial. Nunn
(2012) relies heavily on the result to argue that the medical community would
be better off if it moved away from evidence-based medicine and incorpo-
rated a plurality of “medical models” (e.g., narrative medicine, evolutionary
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100 PATRICK GRIM ET AL.

medicine, and complexity medicine). “It is not an a priori assumption or
mere hand-waving optimism to say that people working with many models
and their associated methods do better than those working with only a few
models and methods. Rather, itis a claimthat. . . is grounded in the modeling
experiments and theorems of Hong and Page” (Nunn 2012, 976). Our results
show that Hong and Page’s result does not support strong conclusions like
these.

We are not the first to critique the large literature on the Hong and Page
result. Thompson (2014) gives an influential critique of their original paper,
but responses to Thompson’s critique show that one part of it is easy to work
around (Page 2015) and that its other parts do not significantly undermine
how the result is used by political theorists (Kuehn 2017). One of Thomp-
son’s main claims is debunked by showing that there are diverse groups that
regularly outperform random groups, a point discussed further below. Pace
Thompson, our work supports Hong and Page’s original result about the per-
formance of groups of high-performing agents versus diverse groups. But by
extending their model to more plausibly include groups of genuine experts,
rather than mere high performers, we show that many popular conclusions
about the implications of the Hong and Page result for expertise are unwar-
ranted.

In section 1, we introduce and replicate the Hong-Page result, emphasiz-
ing its strength within its original parameters. In section 2, however, we ar-
gue against interpreting ‘best performing agents’ in the Hong-Page model as
‘experts’. In section 3, we expand the Hong-Page model by adding a param-
eter that ‘smooths’ the landscapes to shine light on a specific feature of ex-
pertise: portability of ability. In that modified model, measuring expertise by
transferability of ability from one problem to others of a similar smoothness,
it turns out that groups of experts typically outperform more diverse groups.
Within those parameters ‘ability trumps diversity’.

In sections 4 and 5, we show that whether diversity or expertise triumphs
is affected by other features as well, such as what method groups use to work
together and how large a set of problem-solving methods is available. Even
within the highly abstract models considered by Hong and Page, although
diversity does trump ability in some cases, ability trumps diversity in others.
Given that both diversity and ability have their place, unqualified assertions
of a general triumph of diversity over ability are unwarranted. In section 6
we survey implications of our results for model construction and model in-
terpretation regarding diversity and expertise.

1. The Hong-Page Result. Hong and Page offer several variations of a for-
mal model of a group working together to solve a problem (Hong and Page
2004; Page 2007, 2011). In these models, agents use heuristics to explore an
epistemic landscape. The DTA result is that epistemic outcomes for groups
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DIVERSITY, ABILITY, AND EXPERTISE 101

of randomly chosen individuals will consistently exceed the performance of
groups composed solely of the best performing individuals.' In Hong and
Page’s original model, epistemic exploration proceeds along a looped land-
scape of 2,000 points (so, e.g., 10 points to the right of 1,995 is point 5). For
each of the 2,000 points of the landscape a height is assigned as a random
integer between 1 and 100; higher points are interpreted as better answers
to the question. Individual agents are identified by a heuristic, modeled as
an ordered set of kK numbers, each of which is a number between 1 and /. We
begin, following the Hong and Page original, with ordered sets of three num-
bers (k = 3) between 1 and 12 (/ = 12). With these parameters, there are
1,320 possible agents defined by distinct heuristics (respecting order but
avoiding duplication).

Individuals use their heuristics as follows. An agent starts at, say, loca-
tion 112 of the 2,000-point landscape, which carries a value (height) of 80.
The agent then applies the first number of its heuristic by asking: Does the
point that many steps to the right offer a higher value? If so, it moves to that
point. If not, it stays put. In either case, it then applies the second number of
its heuristic. Does that offer a point with a higher value? If so, it moves to that
point. It then uses the third number in the same way. Once the third number
has been tried, it starts over with the first number. An individual stops only
when none of its numbers can reach a higher point; that is, it has reached its
local maximum via applying the cycled heuristic from the initial point of
112. In exploring the landscape in this way, there is a determinant value that
the agent reaches starting at each of the 2,000 points. The average of those
constitutes an individual’s score, which we use to rank our 1,320 agents. The
nine ‘best’ individuals will be those with the nine highest scores.

As a model for discussion within a group, Hong and Page employ a se-
quential (‘relay’) activation of the agents. Consider a group of nine partic-
ipants. Starting from a given point, the first agent uses her heuristic to find
the highest point within her reach. Once she has found her maximum reach-
able height she “passes the baton” to the next agent who begins where she
left off. He then searches for a higher maximum by employing his heuristics
until his search is exhausted, at which point he passes the baton to the third
agent, and so forth, until all nine agents have exhausted their searches. At
that point the baton is again passed back to the first agent on the list, and the
agents are activated one by one in the same order. The final decision for the
group will be the local maximum from which none of the agents can find a
higher point. The discussion can be thought of as a conversational relay that
proceeds in orderly fashion around a circular table. The score for the group

1. Although accompanied by a mathematical theorem intended to offer partial under-
standing, the main result comes from simulations rather than a formal proof. As such,
we too focus on computational experiments.
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102 PATRICK GRIM ET AL.

will be the average height achieved using each of the 2,000 locations as start-
ing points.

What Hong and Page compare are the results of a modeled discussion of
this form for (@) a group composed of individuals with heuristics drawn at
random from the heuristics pool at large and (b) a group composed of those
with the ‘best’ heuristic sets—those with the highest individual scores. The
DTA result states that the random group consistently does better. In our re-
production of the Hong-Page result we compared the scores of (a) nine ran-
dom agents and (b) the nine agents with the highest individual scores. We
found the average of the maximal heights reached by the nine ‘best’ individ-
uals over 1,000 different random landscapes to be 92.53 (median 92.67).
This is compared to 94.82 (median 94.83) for a group of nine random indi-
viduals, indicating an improvement of roughly 2%. We found a higher score
achieved by random agents in 97.6% of the 1,000 runs.

We take the primary support for the claim that ‘diversity trumps ability’ in
Hong and Page (2004) to be the ‘computational experiment’ that is central to
their piece. They supplement that simulation with a mathematical theorem
offered as an explanation of “the logic behind the simulation results” (16386).
When a necessary condition regarding tie-breaking is added (Thompson
2014; Page 2015; Kuehn 2017), what the theorem shows is that given strict
conditions regarding group and population size, and specific definitions of
problem difficulty and group diversity, diversity trumps ability with proba-
bility 1. In both their ‘computational experiment’” and our replications, the
strict conditions required for the theorem are significantly weakened. Here
the probability falls below 1, but our replications above indicate that the cen-
tral result is still very strongly supported.

2. Interpreting Hong and Page: Best Performance, Ability, and Ex-
pertise. The Hong-Page result is extremely suggestive, and it has been of-
fered as support for a number of strong conclusions already mentioned. In
both their original work and in later applications, Hong and Page allude to
diversity as a value in affirmative action (Hong and Page 2004; Page 2007).
They also draw conclusions regarding business and research teams: “When
selecting a problem-solving team from a diverse population of intelligent
agents, a team of randomly selected agents outperforms a team comprised
of the best-performing agents” (Hong and Page 2004, 16385). It is to their
credit, we think, that Hong and Page tend not to use the term ‘experts’. In re-
views and applications of their work, however, their results are taken as part
of a larger case against expertise (Anderson 2006; Landemore 2013; Gunn
2014; Weymark 2015). As outlined below, however, there is an important
characteristic of expertise that is not captured in the original model. Results
differ in significant and interesting ways when the model is expanded to bet-
ter reflect that aspect of expertise.
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DIVERSITY, ABILITY, AND EXPERTISE 103

Following Hong and Page (2004; as well as Page 2007, 2011), we think
of a landscape as representing a specific problem or question; for example,
which of this year’s cars has the best gas mileage (Page 2007), or what is the
best combination of drugs to treat a particular illness? Importantly, Hong and
Page model these as completely random landscapes, where there is no cor-
relation between the heights of any positions on the landscapes and any
others. Because of that, different landscapes yield ‘best performing individ-
uals’ with very different heuristics, and an individual who is ‘best perform-
ing’ on one random landscape is likely to do extremely poorly on another. No
matter how linked two problems or the techniques for solving them may be
(e.g., calculating gas mileage not merely for 2016 models but for 2017 and
2018 as well), by modeling those problems as distinct random landscapes,
best performing heuristics cannot be expected to carry over from one prob-
lem to its close relatives. This spells trouble for interpreting the DTA result
as applying to experts.

Table 1 shows the top nine heuristic sets in 10 different model runs on dif-
ferent random landscapes. Notice that there is frequent redundancy of heuris-
tic numbers among the ‘best performing’ agents on each landscape. On the
first landscape, for example, the numbers 4 and 12 appear in every one of
the ‘best performing’ heuristic sets. The redundancy of the ‘best performing’
set is a major part of Hong and Page’s own analysis of both the formal results
and social implications: why hire five individuals with the same background
if you will just hear the same message five times? But there is clearly some-
thing arbitrary about the numbers that show up as part of a successful heuris-
tic. While the numbers 12 and 4 appear in all of the best performing heuristics
for the first landscape in table 1, neither number appears in any of the best
performing heuristics for the second or third landscapes.

TABLE 1. HEURISTIC SETS FOR THE ‘BEST PERFORMING’ AGENTS
OoN 10 DirrereNT FuLLY RANDOM LANDSCAPES

Landscape Heuristic Sets

(1245),(1224),(1254),(1242), (5 124), (4 122), (6 124), (45 12), (124 6)
(576),(1087), (87 10), (7 10 8), (75 6), (78 10), (11 108), (56 7), (10 11 8)
(1103),(162),(1310),(3110),(621),(103 1), (10 1 3), (1106), (75 3)
(1141),(1228), (112 12), (4 111), (11 14), (4 1 11), (12 112), (58 2), (8 122)
(612),361),(613),(127),362),(136),267),(712),(126)
(487),(348),(483),(748),(438),(187),(384), 387),(872)
(3121),(1312),(1213),(3112), (83 12),(11128),(1812),(1218),(123 1)
(2611),(1126),(6112),(1162),(6211), (96 11), (2 11 6), (119 6), (11 69)
(872),(827),(278),(867),(687),(764),(678),(786),(287)

0 (283),(832),(12113), (312 11), (12 3 11), (11 3 12), (2 3 8), (11 12 10),

(12 11 10)
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This content downloaded from 141.211.004.224 on May 07, 2020 06:42:37 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



104 PATRICK GRIM ET AL.

Table 2 shows the percentage of cases in which each of the 12 heuristic
numbers appears among the three heuristic numbers of the nine ‘best per-
forming’ agents on 100 random landscapes. Importantly, each heuristic num-
ber shows roughly equal representation across the random landscapes as a
whole. What this shows is that, although certain heuristics perform best on
individual random landscapes, the fact that a heuristic performs well on one
random landscape tells us nothing about how it will perform on another ran-
dom landscape. In the original Hong-Page model, the ‘best performing’ on a
specific landscape might therefore be better thought of as the ‘luckiest’ on
the landscape: those that happen to have heuristic sets attuned to that specific
case.

Agents who get things right only by luck hardly qualify as experts. A min-
imum requirement of genuine expertise is that experts can be expected to
perform well on new and different questions in their field of expertise. For
example, experts at judging car fuel efficiency should be expected to do well
not only on cars produced in 2016 but also on those produced in 2015 and
2017, since the same methods used to get a good estimate in one year should
work to find a good estimate in others years. Much of the literature on rely-
ing on experts presupposes this minimal criterion (e.g., Hardwig 1985; Elga
2007). Goldman argues explicitly for it: expertise, he tells us, “includes a ca-
pacity or disposition to deploy or exploit [a] fund of information to form be-
liefs in true answers to new questions that may be posed in the domain”
(2001, 91).

The same point applies to one natural conception of ‘ability’. While there
may be a weak notion of ability whereby one has ability when one can suc-
ceed at just a single instance of a task, a more natural conception of ability
treats the needed success as counterfactually robust or transportable: one has
an ability to ® only if one is likely to succeed at that task under a range of
conditions (although, of course, the breadth of that range is context depen-
dent). Someone who has the ability to judge the quality of livestock should
be able to give us reliable results across multiple herds, for example. An abil-

TABLE 2. PERCENTAGE OF CASES IN WHICH EAcH VALUE
APPEARS AMONG THE THREE HEURISTIC NUMBERS OF THE
NINE ‘BEST PERFORMERS’ ON 100 RANDOM LANDSCAPES

Heuristic No. % Heuristic No. %

1 22.0 7 29.7
2 20.0 8 25.6
3 24.5 9 29.1
4 20.4 10 25.8
5 25.5 11 29.2
6 21.3 12 26.9
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DIVERSITY, ABILITY, AND EXPERTISE 105

ity to predict the weather requires being disposed toward accuracy in more
than one case.

We suggest that Hong and Page’s best performing agents on random land-
scapes do not meet these requirements for expertise and ought not to be con-
sidered to have a general ability in the transportable sense. Below, we use
the term ‘ability’ as Hong and Page do, signaling high performance alone,
whether transportable or not. We restrict the term ‘expert’ to refer to only
those whose ability is transportable. In that terminology, our replication of
Hong and Page’s simulations shows that their formal result is secure on ran-
dom landscapes: there, diversity trumps ability. That does not entail, we will
show, that diversity trumps ability on other landscapes or that diversity
trumps expertise.

Below, we introduce variations in which landscapes possess regularity or
informational content beyond that of purely random landscapes. We consider
“smoothed” landscapes with correlation between values at successive points.
We then track the robustness of the Hong-Page result across such differences
in epistemic landscapes, finding areas in which the DTA results appears to be
reversed.

In line with the discussion above, we then model expertise as the trans-
portability of success from one landscape of a given smoothness to another.
‘Expertise’ appears when there are individuals whose performance on one
landscape can predict similar performance on another of a similar character.
The results of the next section outline a case in which this sense of expertise
appears only when diverse groups lose their advantage over groups of high-
performing agents.

3. Ability over Diversity on Smoother Epistemic Landscapes. On the
purely random landscape used in the original Hong-Page model, nearby
points on the landscape are uncorrelated. Although locations closer to each
other on a landscape are more likely to be within the reach of one of the
heuristic numbers of an agent, the assigned values or ‘answers’ at proximate
points may or may not have similar heights. If we introduce correlation be-
tween the heights of nearby points, we create ‘smoother’ landscapes. In this
section, we explore the robustness of the DTA result on such smoother land-
scapes.

The interpretation of these smoother landscapes is fairly natural if we con-
ceive of the heuristics as investigatory strategies. Some landscapes allow for
strategies that can ‘hill climb’, using heuristics that improve incrementally
from one answer to a superior one at a neighboring point. For these problems
aproper methodology allows a sense of incremental progress. Other problems
offer essentially no advantage to hill climbing: a move to a nearby solution is
just as likely to yield progress as moving to a completely remote part of the
landscape. It is this second kind of question, which we might call “strategy
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106 PATRICK GRIM ET AL.

resistant,” that is best represented by the random landscapes of Hong and
Page’s original model. Here we expand the original Hong and Page model
by introducing a parameter for the correlation of location and height (smooth-
ness) and vary this parameter in order to explore the relative success of groups
of diverse versus best performing agents on the wider class of problems rep-
resented by smoother landscapes.”

One way of smoothing a random landscape is to interpolate values be-
tween a number of randomly set points. For example, instead of assigning
a random value to each of 2,000 points, we could set the height of roughly
every third location and fill in the value of the intermediate points to create
straight lines between the randomly set spots. The result would be a land-
scape that is less random and less rugged than the original. For a still smoother
landscape, we might assign random values to every fifth point, or every tenth
point, and fill in the gaps by drawing descending or ascending lines between
the assigned points.’

To construct landscapes like this, we assign a random height value to
point 1. For a smoothing factor of x, we pick a random integer between 1
and 2x and assign a random height value to that point. The locations of our
assigned points therefore have an average distance of x.* Points between
the assigned ones are positioned on a line of ascending or descending values
between them (rounding the heights to integer values). Example epistemic
landscapes with smoothing factors 0of 0, 5, 10, and 20 are shown up to 200 po-
sitions in figure 1 to illustrate the effect.

We now ask how robust the DTA result is with increasing landscape
smoothness. As before, our agent heuristics consist of ordered sets of three

2. Smooth landscapes are by no means the only variation worth studying. Many
problems, for example, including many problems in science, might be better modeled
using NK landscapes (Alexander, Himmelreich, and Thompson 2015; Fontanari and
Rodrigues 2016).

3. Hong and Page emphasize a number of conditions on their result, one of which is that
the problem to be solved is ‘difficult’. Their specification for a ‘difficult’ problem is that
there be no individual problem solver who always finds the global maximum (Page
2007, 159). All the landscapes employed in our models count as difficult in this sense.
In the conditions outlined for the theorem they offer in explanation of their results, Hong
and Page (2004) specify as a third condition that agents are “diverse” in the sense that for
any point that is not the global maximum, there exists an agent who can improve the
solution. For many landscapes, given the limits of ‘reach’ defined by a largest heuristic
number, the models employed in our simulations will not satisfy that third condition.
That is also true of the simulation models in Hong and Page’s original, however. Our
simulations are patterned directly on theirs, with agents who will be diverse in every
sense that theirs are.

4. The use of randomized interval spacing rather than fixed-length intervals avoids po-
tential artifacts in the results, such as those heuristics that evenly divide a fixed-length
smoothing factor becoming overrepresented.

This content downloaded from 141.211.004.224 on May 07, 2020 06:42:37 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



DIVERSITY, ABILITY, AND EXPERTISE 107

Smoothness Factor 0

100F
80F
60F
aof
20F

1 50 100 150 200
Smoothness Factor 5

s0F
60F
a0fF
20F
0— 3 i g 3 1 i i : i 1 5 & . 5 1 2 i 5 n 1

1 50 100 150 200
Smoothness Factor 10

100F
80F
60
a0
zoi—

0E_. " i 8 i i . : . 1 h i i A R 2 i .
1 50 100 150 200
Smoothness Factor 20

100F
sofF
60f
4ok

(1) P i i i 1 i i i i 1 . i g ;i 1 i i i . v L
1 50 100 150 200

Figure 1. First 200 points of sample landscapes of length 2,000, created with
smoothness factors of 0, 5, 10, and 20. Color version available as an online en-
hancement.

numbers between 1 and 12, resulting in 1,320 possibilities. Over 100 distinct
landscapes, we average the values of the final heights reached when starting
from each of 2,000 points for (a) a relay group of nine random individuals
and (b) a relay group of the nine individuals who perform best individually.
For landscape smoothness factors from 0 to 20, figure 2 plots the difference
in performance (random group scores minus best performing group scores).
The crossover point at a smoothing factor of 4 indicates the point at which
the DTA result no longer holds. Below this value, random groups outper-
form groups of the highest performing individuals. In Hong and Page’s
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Figure 2. Differences in average performance over 100 different landscapes for

groups of nine individuals using three heuristics from a pool of 12. Color version
available as an online enhancement.

terms, ‘diversity trumps ability’. Above that value, it is groups of the highest
performers who do better. Here “ability’ trumps diversity.

When groups of the highest performing individuals do better, the advan-
tage is small: at a smoothness factor of 6, for example, the average perfor-
mance over 100 landscapes is 0.756 and 0.760 for random and ‘best’ groups,
respectively.” That small advantage of the best over the random is, however,
clear and robust beyond the crossover value of 4.

With these tools in hand we return to the issue of ability and expertise. If
we think of a landscape as representing a particular question within a partic-
ular discipline or subject matter, for the best performing agents to be consid-
ered to be experts, we would expect to see their skill as transportable: we
would expect them to perform roughly as well on other related questions.®

5. Performance of each is significantly lower than that reported for a purely random land-
scape in sec. 1, despite the fact that a smoother landscape might be thought to represent a
less “difficult’ problem. Increasing ‘smoothness’ encourages hill climbing, but increasing
smoothness with a fixed maximum of heuristic numbers can also create valleys more ‘dif-
ficult’ to cross. For that reason we have resisted interpreting ‘smoother’ landscapes as
modeling ‘less difficult’ problems in any simple sense

6. Thinking of alternative landscapes as different specific questions within the same
general problem space follows Page (2007, 2011). An interpretation that demands a con-
tent distinction between sets of questions in different fields would require significantly
more complex modeling assumptions.
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Figure 3. Average percentage of variance of performance of an agent on paired
landscapes of the same smoothness that is explained by individual heuristics. Color
version available as an online enhancement.

Smoother landscapes do exhibit this form of transportability of best perform-
ing heuristics. Interpreting ‘best performing’ as reflecting expertise thereby
becomes more plausible on smoother landscapes than on the random land-
scapes of Hong and Page’s original model.

Here is how we can tell: we generated pairs of landscapes of equal smooth-
ness and found the Pearson correlation of the performance of each of the
1,320 agents on those landscapes. This process was repeated 100 times to
obtain the average value for a given smoothness factor, and the entire pro-
cess was repeated for each smoothness factor from 0 to 20. The square of
the Pearson correlation (R?) tells us what percentage of the variance in per-
formance is explained by an individual’s heuristic and thus to what extent
performance on one landscape predicts performance on the next (fig. 3).

Figure 3 shows a clear and sudden initial jump in the correlation of indi-
vidual performance on one landscape to another of the same smoothness. It
is only at and after the jump, we propose, that interpreting results in terms
of ‘expertise’ becomes plausible, since it is only then that one’s performance
on one landscape is correlated with one’s performance on another.” In this

7. One might reject our understanding of expertise in this model and instead think that
ability needs only be transportable to different places in the same landscape to count as ex-
pertise. The same story plays out if we compare intralandscape performance, however. We
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case, we see the highest level of transferability occurs roughly when it is no
longer true that diverse groups are best performing. Moreover, as the figures
above suggest, in this case, viewing the highest performing agents as ex-
perts becomes more plausible as the relative strength of the random groups
decreases.®

By looking at who the experts are in these smoothed landscapes, we can
also say something more about what is involved in the expertise modeled.
Recall table 2 showing the percentage of cases in which each of our 12 num-
bers appears among the three heuristics of the nine ‘best performing’ agents
on 100 landscapes. In that case there appears to be no clear signature of the
transportability required for general ‘ability’ to exist: each heuristic number
occurs roughly equally across the random landscapes. Table 3 expands table 2
to show the percentage of cases in which each of our 12 numbers appears
among the three heuristic numbers of the nine ‘best performing’ agents on
100 landscapes with increasing smoothing factors.

While a purely random landscape (smoothness 0) shows no consistent
bias toward any specific heuristic numbers, a pattern immediately emerges
at smoothing factor 1; specifically, the heuristic 1 appears among all of the
best nine heuristics in nearly all cases. The largest heuristic number, 12, be-
comes increasingly prevalent as the smoothing factor increases, as do mid-
dle numbers initially around 7 but moving progressively toward shorter
steps. For example, the number 2 disappears entirely at smoothing factor 2,
joined by the number 3 and then 4 by smoothness 3, as the heuristic pool fo-
cuses on 6, 7, and 8. The upper numbers remain rare with further increases in
the smoothing factor, but the lower numbers recover their prevalence as the
set of weakly selected middle numbers shifts to the left. We also see a gradual
decrease in the prevalence of the heuristic 1 because these other low numbers
also work as sufficient hill climbers on smoother landscapes. Unlike the ran-
dom landscape, it is clear that there are certain patterns of heuristics in all
these cases—the ‘expert sets’—that tend to do the best quite generally across
most landscapes of a particular smoothness.

There are a number of at least partial explanations for why we see this cor-
relation between heuristic value and performance on these smoothing fac-
tors. The heuristic 1 is valuable because it is the ultimate hill climber: should
other numbers in rotation not interfere, repeated access to ‘1’ alone would
allow a heuristic to climb to the highest point on any incline to reach a local

tested the average percentage of variance of performance of an agent on the first half of a
landscape and the second half of the same landscape that can explained by individual heu-
ristics, and the graph was virtually identical to the one described above. Just as with cross-
landscape comparisons, it showed a clear and sudden initial jump in the correlation of in-
dividual performance on both halves of the landscape as smoothness increases.

8. As a generalization, this is, of course, subject to other parameters considered in the
following sections, including, for example, tournament dynamics.
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TABLE 3. PERCENTAGE OF CASES IN WHICH EACH NUMBER APPEARS AMONG
THE THREE HEURISTIC NUMBERS OF THE NINE ‘BEST PERFORMERS’
oN 100 LANDSCAPES FOR SMOOTHING FacTors 0—20

Heuristic Number

Smoothing

Factor 1 2 3 4 5 6 7 8 9 10 11 12
0 22.0 20.0 245 204 255 21.3 29.7 256 29.1 258 292 269
1 99.9 1 34 227 198 192 21.6 19.0 188 19.7 232 326
2 100.0 .0 .0 .1 96 305 393 188 32 89 278 619
3 100.0 .0 .0 .0 1.8 207 453 29.0 3.1 .8 140 852
4 9.6 4 .0 6 64 229 33.6 278 83 3 36 964
5 99.5 6 15 62 150 227 269 202 6.9 4 5 995
6 993 24 65 134 188 20.6 195 132 55 7 2999
7 992 55 112 172 202 18.7 146 89 3.8 .8 1999
8 98.8 95 166 214 202 148 98 58 23 7 999
9 979 13.0 19.6 229 194 124 82 43 19 5 .1 100.0
10 973 158 21.4 230 188 120 69 29 14 5 .1 100.0
11 964 183 224 238 183 100 6.0 29 13 5 2999
12 95.8 20.1 241 242 176 95 46 23 13 4 2 999
13 955 222 258 248 160 86 40 138 9 4 .1 100.0
14 95.0 227 257 251 173 76 39 18 .6 2 1999
15 93.9 23.0 263 254 17.0 81 37 1.7 7 2 1999
16 922 256 268 253 162 76 34 18 .6 3 1999
17 91.0 27.8 282 246 154 69 38 15 .6 2 2999
18 90.1 279 282 252 155 70 32 15 7 5 3998
19 89.4 30.1 289 260 148 64 26 1.0 .6 2 3998
20 884 32.0 28.0 249 148 69 29 12 4 2 30998

maximum. With 1 present, 2 is at best redundant on landscapes with smooth-
ing factor 1, and potentially disruptive—pushing one over the top of a local
maximum to a decline on the other side—hence, its total disappearance at
smoothing factor 1. This phenomenon also accounts for the disappearance
of 2 and 3 given a smoothing factor of 2, and of 2, 3, and 4 given a smoothing
factor of 3. The value of 12—the highest number available—is that it offers
the best hope of leaping over declines to an incline on the other side of a val-
ley. Because the widths of valleys widen as the smoothing factor increases,
this capability becomes increasingly important. Values in the middle are plau-
sibly useful for jumping over more narrow valleys. These may be weakly se-
lected for as a third number that will put an agent in the top nine once 1 and
12 anchor high performance at the ends. We do not have a full explanation for
the specific pattern of middle value shift that we see in the data, however.
Those details aside, the broader lesson of these results is a warning against
accepting the DTA result without a qualification regarding the character of
the epistemic landscape at issue. Keeping other values in the Hong and Page
simulation constant, groups of random agents do better than groups of high-
performing individuals only for a narrow range of highly random landscapes.
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For smoother landscapes, those on which successful individuals are more
plausibly viewed as experts, it is the groups of high-performing individuals
that do better. Given the other assumptions in play, it is ability that trumps
diversity when that ability is portable.

4. Diversity over Ability with Larger Heuristic Pools. In the previous
section, we showed that with a heuristic pool limited to numbers between 1
and 12, there is a crossover in favor of experts past a smoothness factor of
4. Beyond that point, DTA no longer holds. What happens when the heuristics
can be any triplet of numbers from 1 to 16 or from 1 to 20, instead of 1-12
though? What we see is that diversity again shows its strength. We explore that
variation on the model here.

Recall that at a smoothness of 8, for example, the best performing do better
than a random group when the three numbers of heuristics are chosen from a
set of 12 numbers (see fig. 2). When heuristic numbers are chosen from the
set 1-24 (or more), however, the group of random heuristics again does better
at this smoothness. Figure 4 shows the difference in average score for groups
of random heuristics minus the best performing as we increase the size of the
heuristic pool for a smoothing factor of 8.

A similar crossover occurs for other smoothing factors, and as we vary the
smoothness we have found a very rough ‘rule of three’ for the value where this
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Figure 4. Using a smoothness of 8 as an example, a crossover in favor of random
groups occurs when the maximum heuristic number is 24. Differences in averages
over 100 landscapes shown. Color version available as an online enhancement.
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crossover occurs: for heuristic pools that are less than three times the smooth-
ing factor of the landscape, the best performing outperform random groups
(as outlined in the previous section). For heuristic pools roughly three times
the smoothing factor or greater, we once again see a DTA effect. Although in-
creases in landscape smoothness favor groups of the best performing, such an
advantage is always relative to the maximum value in the heuristic pool from
which strategies are drawn.

The virtues of diversity and ‘ability’ are therefore relative to the interac-
tion of at least two important factors: landscape smoothness and the heuristic
pool. Figures 5—7 show a parameter sweep across both variables, indicating
distinct areas of relative strength for diverse groups as opposed to groups of
the individually best performing.

Figure 5 presents the data in the roughest form, showing those areas in
which the average score for each is greater over 100 landscapes. Figures 6
and 7 show the more nuanced reality behind this result. Even when an av-
erage over 100 runs is higher for diversity as opposed to ‘ability’, the differ-
ence may be very slight. Figure 6 shows the same data mapped in terms of
the difference in the average scores. Figure 7 shows the percentage of 100 runs
in which a random group or group of the best performing does better at each
setting of maximum heuristic and landscape smoothness. This demonstrates
that even in combinations for which best performer or random groups gener-
ally win out, there are still some landscapes for which the other set does better.

Maximum Heuristic

01 23456 789 1011121314151617 181920 21 22 23 24 25 26 27 28 29 30
Smoothing Factor

Figure 5. Parameter combinations for which groups of random heuristics do better
(light gray) and areas in which groups of the best performing perform better (dark
gray). Color version available as an online enhancement.
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Figure 6. Differences in average scores for groups of random heuristics and groups
of the best performing over 100 landscapes at different combinations of smoothing
factors and heuristic pools. Positive values (bottom right) show higher averages for
groups of the best performing. Negative values (upper lefi) show higher averages
for groups of random heuristics. Color version available as an online enhancement.

If we think of the heuristic pool as representing the conceptual or problem-
solving resources available to tackle the problem, what these results suggest
is that there are different niches in which groups of the best performing and
diverse groups are each of particular value. Groups of the best performing are
better for a wide range of smoothness but only where the available conceptual
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Figure 7. Percentages of runs in which groups of the best performing do better than
groups of random heuristics. Color version available as an online enhancement.
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resources are relatively limited. With a wider pool of conceptual resources, a
diverse group will do better even on problems of that same character.’

One key factor to understanding many of these results, we think, is the extent
ofheuristic coverage represented in groups. On landscapes of any smoothness,
the best performing individuals are very much alike, as indicated in tables 1
and 3. So, the group of the best performing will show high redundancy: their
collective numbers will cover little of the space of heuristic numbers. Thomp-
son (2014) suggests that it is the random group’s randomness that explains
their epistemic virtue. As she sees it, the random group’s success is an instance
of a greater ability of random algorithms to outperform deterministic ones in
many applications (1028). We do not think this explanation works, however.

In our tests, deterministically generated groups that maximize their cov-
erage of the heuristic space significantly outperform the random groups. We
suggest that it is not the randomness that is an epistemic virtue of random
groups but the extent to which their heuristics collectively cover the avail-
able space. Among all the members, a group of random strategies will have
more numbers to try on average, and so have a prospect of reaching higher
peaks by avoiding getting stuck at local maxima.

This supports the claim of Hong and Page in their original work that the
greater coverage of diverse groups helps explain the success of groups of ran-
dom heuristics on random landscapes. Because their measure of diversity
(Hong and Page 2004, 16386) does not closely track the coverage of a group’s
collective heuristic numbers in the space of all heuristic numbers, Thompson
is able to show that maximally diverse groups in that sense do not generally
beat out random groups (Thompson 2014; Abigail Thompson, pers. comm.,
2017). That is not true when maximally diverse groups are thought of as
groups that maximally cover the space of heuristic numbers."

Employing coverage, rather than randomness, also helps explain why groups
of'the best performing do better with smaller heuristic pools but random groups
pull ahead with an expanded heuristic pool: in the larger heuristic pool, the per-
centage of ‘expert’ numbers is smaller. Even groups of random heuristics have
some redundancy, but in a larger heuristic pool that expected redundancy will
be smaller. At least one reason why random groups do better with increased
heuristic pools than do groups of the best performing seems to be because their
coverage of available heuristic numbers increases with a larger pool.

9. As documented in the appendix, we have tested the robustness of these results with
groups of size 3, 6, and 9. The smaller the group, the greater the advantage for groups of
the best performing. The larger the group, all else being equal, the greater the advantage
for groups of random heuristics.

10. For further details, see our discussion of mixed groups in the appendix. Additional ex-
ploration of this result as it pertains to debates about the epistemic merits of democracy
between Landemore (2013) and Brennan (2017) can be found in Holman et al. (2018).
For a discussion of how the result undermines Thompson, see Singer (2019).
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5. Discussion Dynamics: Diversity and Expertise. There is a further fac-
tor that surprisingly and dramatically favors diverse groups and is largely ig-
nored in other discussions of the Hong-Page result. The original Hong-Page
model uses a ‘relay’ dynamics, as we have done above. Starting from a given
point, the first agent in the group finds the highest point her heuristic will reach.
The second agent then starts from that point in search of a higher one and so
forth. Once all members of the group have sequentially sought for the highest
point from the last point of their predecessor, the baton is passed again to the
first agent of the group.

A clear alternative to ‘relay’ dynamics is a ‘tournament’ in which all agents
of a group simultaneously strive to identify the point on the landscape that
earns them the highest value. In tournament dynamics, the point with the high-
est value that any agent could identify in the first round then becomes the start-
ing point for everyone in the next go-round. What is eliminated in tournament
dynamics is the around-the-table sequencing of a relay. Hong and Page con-
sider both dynamics, saying that their results “do not seem to depend on which
structure was assumed” (2004, 16386). Yet our results across varied smooth-
ness factors and numbers of available heuristics do depend on which dynamic
is used. Specifically, the use of tournament dynamics generally favors diverse
groups over relay dynamics. In comparison with relay results in figures 57,
figures 8—10 show the corresponding results for a tournament. For a maxi-
mum heuristic over 10, ‘tournament’ rather than ‘relay’ updating gives a strong
advantage to random groups. Indeed, the tournament group dynamic dramat-
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Figure 8. Tournament results corresponding to figure 5’s relay results showing pa-
rameter combinations in which groups of random (/ight gray) and groups of best
performing (dark gray) do best. Color version available as an online enhancement.
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Figure 9. Tournament results corresponding to figure 6’s relay results showing dif-
ferences in averages over 100 landscapes, with positive values (bottom right) show-
ing advantage to the best performing and negative values (upper left) for random
groups. Color version available as an online enhancement.

ically reduces the advantage possessed by groups of the best performing on
smoother landscapes with the relay dynamic. Again here, these are areas in
which one can more reasonably interpret best performance as expertise."'
So group dynamics in the form of a tournament make an important difference
in the relative value of diversity and expertise; specifically, when there are
more available heuristics, the tournament style makes greater coverage of
the heuristic pool more valuable than redundant collections of the most gen-
erally useful heuristics.

In additional work (available online in an appendix), we explore other var-
iations of the Hong-Page model.'? As opposed to groups composed exclu-
sively of the best performing agents or random agents, we look at the perfor-
mance of mixed groups, consisting of both kinds of agent. What we see there
is that, in many respects, mixed groups do better than either kind of pure group,
but their performance is importantly affected by the group dynamics. We also
explore the performance of groups of different sizes. We find that smaller
groups are more advantaged by having the best performers, but random agents

11. As documented in the appendix, we have tested the robustness of these results with
groups of size 3, 6, and 9. The smaller the group, for tournament as well as relay dynamics,
the greater the advantage for groups of the best performing. The larger the group, all else
being equal, the greater the advantage for groups of random heuristics.

12. Some elements of our results here are used as a platform for a more general discus-
sion of philosophical interpretation of agent-based models in Holman et al. (2018).
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Figure 10. Tournament results corresponding to figure 7°s relay results showing per-
centages of runs in which each group does better, with bottom most values reflecting
more wins by best performing and upper values reflecting groups using random heu-
ristics. Color version available as an online enhancement.

do best for larger groups. As above, this is naturally explained by the amount
of heuristic coverage offered by the agents in the group.

6. On the Broader Implications of These Results. Despite the accolades
and applications of Hong and Page’s result, both its validity and soundness
have been critiqued, most prominently by Thompson (2014), echoed in Bren-
nan (2017). Responses appear in Megginson (2015), Page (2015), and Kuehn
(2017), with a deeper critique ongoing.'* We think our results start to address
that continuing controversy, but they also take us further by emphasizing ques-
tions of diversity and expertise that demand a richer model. In this section we
offer some reflections on Thompson and review the ways in which our results
allow us to distinguish the types of claims that the Hong-Page result genuinely
supports from some of the overstated conclusions that have sometimes been
drawn from it. In so doing, we hope to refocus the debate onto what additional
research is needed for a better understanding of the epistemic roles of diver-
sity and expertise.

In evaluating the controversy fueled by Thompson, it is important to dis-
tinguish the ‘computational experiment’ of Hong and Page (2004) from the

13. Singer (2019) shows that Thompson’s claim that randomness rather than diversity is at
issue in the Hong and Page results is unwarranted in light of recent developments in com-
plexity research. Singer goes on to show that on some ways of measuring diversity, diverse
groups are indisputably stronger than random groups, which undermines Thompson’s ar-
gument.
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mathematical theorem they offer as explaining “the logic behind [the] result.”
We take the core of Hong and Page to be the ‘computational experiment’, rep-
licated in section 1. Thompson focuses on the theorem, noting the lack of a
required tie-breaking condition. She offers a minor correction that leaves the
main result standing, however, although Page (2007) had already added an
assumption sufficient to deal with the problem.

On the interpretational level, Thompson charges the model with artifici-
ality—identifying the number sets with human abilities, for example. Such
a critique could be applied with equal justification against almost any com-
putational model in the social sciences. Rejecting this blanket condemnation,
we believe a more nuanced critique saves some of the implications of the
Hong-Page result and points the way forward to adjudicate the difficult, yet
socially important, empirical questions.

First and foremost, our results show that even at the abstract level of agent-
based modeling, whether diverse groups outperform groups of the best per-
forming agents depends on a number of parameters in the model—smoothness,
deliberation dynamic, and heuristic pool among them. But despite the param-
eter sensitivity of the model, nothing we have shown here threatens the more
guarded claim for which the Hong-Page result has been cited: diversity can
trump ability. What this means is that, in some cases, diverse groups do per-
form better than groups of best performers. This more guarded claim is typical
of the use of a number of other modelers (Mayo-Wilson et al. 2011; Zollman
2011, 2013; Bright 2017) and is of significant importance. The Hong-Page
model is an early example of what Mayo-Wilson et al. (2011) call the inde-
pendence thesis, for example, the claim that the properties of an epistemic com-
munity can differ from the properties of its agents. It thus aligns with other for-
mal models supporting the independence thesis, including Kitcher’s (1993)
classic argument that scientists selfishly trying to promote their own careers
in a properly structured community may nevertheless maximize the commu-
nity’s chances of discovering the truth. Although we have argued against in-
terpreting the original Hong-Page model in terms of expertise, our results
indicate that there are closely related models that more plausibly sustain an
interpretation in terms of expertise and in which the DTA result remains.

But, our results indicate that the slogan ‘diversity trumps ability’ is often
overstated. For simple expansions of the original Hong-Page model to a wider
variety of landscapes, the DTA result of random groups outperforming groups
of the best performing holds only within a small window of low landscape
smoothness. Within roughly that same window, moreover, the success of the
best performing heuristics on a specific landscape is limited to that specific land-
scape: success on one random landscape cannot be expected to yield success
on another. The suggestion for such models is that ‘diversity trumps ability’
only in those cases in which it is unclear that best performance should really
be considered expertise.
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On smoother landscapes, there is a connection between performance on
one landscape and another. Interpreting a set of landscapes as specific ques-
tions within a given domain, successful heuristics have a strong claim to be
capturing a natural notion of expertise, and it is here that expertise shows its
value. For landscape smoothness above 4, using the Hong-Page relay dynam-
ics, groups of the individually best performing agents outperform groups of
random agents. With an increase in landscape smoothness, leaving other pa-
rameters in place, it is ability that trumps diversity.

Diversity again shows its strength, however, when other parameters are
changed. Widening the pool from which heuristic numbers are drawn increases
the advantage for random groups. All else being equal, groups of random
agents perform better (relative to groups of the best performing) as we increase
the size of the heuristic pool.

Contrary to Hong and Page’s indication of little difference between the re-
lay dynamics used in their simulation and an alternative ‘tournament’ dynam-
ics, we find a major difference between the two. In ‘tournament’ dynamics,
agents deliberate and navigate a problem landscape with simultaneous sugges-
tions from the floor rather than in a round-the-table ‘relay’. It turns out that a
tournament dynamic further favors the value of diversity. Many of the points
at which groups of the best performing show an advantage within a relay dy-
namic disappear in favor of groups of random heuristics once the dynamic is
changed to a simultaneous tournament.

Parameter sensitivities across the range of models point to a far more sub-
tle conclusion regarding epistemic phenomena of ability and diversity than
has often been drawn from the Hong-Page model. The fact that diversity can
trump ability within particular parameters of epistemic landscape, heuristic pool,
group size and composition, and deliberation dynamics by no means indi-
cates that diversity will trump ability within other parameters or in general.
That diversity trumps ability in some situations clearly does not entail that it will
do so in any particular situation, yet this is precisely what the Hong-Page re-
sult has been taken to imply by those who cite it in support of a particular pol-
icy. For example, whether increased gender diversity will “translate into greater
STEM discovery, education, and achievement” (Handley et al. 2015, 13205)
is no more supported by Hong and Page (2004) than do the results in section 3
provide evidence that increased diversity would hinder STEM discovery.
What is lacking between the formal model and the policy implications—in
this as in other cases—is a sustained research program studying the character-
istics of the target system and assessing the degree to which important aspects
of'it are adequately captured by specific models in question (Alexandrova and
Northcott 2009).

A research program of such a type, if successful, linking modeling to ex-
periment, to empirical data and policy specifics, would quiet concerns that
the model at issue fails to capture the target phenomena (like those brought
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up by Thompson). Whether the Hong-Page model, or extensions explored
here, succeeds in that task remains a challenging and open question, but it is
one that might reasonably be pursued. Our modeling results indicate that di-
versity is most beneficial in larger groups, for example, but this is especially
true for tournament dynamics. Our results similarly indicate that it is mixed
groups of experts and nonexperts, rather than homogeneous groups of either,
that will be optimal for specific kinds of problems.'* Both of these modeling
results immediately suggest hypotheses suitable for empirical investigation.
That further investigation would be required, however, in order to responsi-
bly support specific policy implementations.

7. Conclusion. The variety and sensitivity of our results show that the per-
vasive uncritical applications of the Hong-Page result are risky. What our re-
sults emphasize is that diversity does not always trump ability. Our attempt
has been to take some first steps toward understanding a range of parameters
relevant to the interplay between diversity and expertise.

Policy makers across the board must consider the specific character of the
problem sets at issue and the decision procedures to be employed. Here, as
elsewhere, moving from formal results to real world applications is a long, la-
borious, and, most importantly, empirical process (Alexandrova and North-
cott 2009). Policy makers wishing to assess whether a particular issue might
benefit from a more diverse community have a significant amount of addi-
tional bridgework to engage in before they can derive support for policies from
these modeling results (for details, see Grim et al. 2013). Our results show that
diversity is not always epistemically beneficial, even at the model level. Di-
verse groups and groups of the individually best performing both have a place.
Our expanded model of group inquiry reveals a nuanced interplay between
them and points toward a greater understanding of the strengths of each.
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