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1 The effect of transcription probability

Here we derive the equations of the curves in Figure 7 (reproduced below

as Figure 2) describing the effect of transcription probability on several in-

formational measures on RNA, DNA and transcription. For the ease of

presentation, we will ignore splicing.

To ease reading, we will write the variables RNA as R (with values ri),

transcription as T (with values th), and DNA as D (with values dj). Again,

hats on variables mean that their values are fixed by a surgical intervention.

1.1 The mutual information between RNA and transcription

We suppose that if there is no transcription (h = 0), there is no RNA

strand produced (i = 0), while if there is transcription (h = 1), there is one

RNA strand produced among n possible variants (i = 1 . . . n). This implies

that once a given value for RNA is obtained (either i = 0, i.e. absence,

or i = 1 . . . n) we also know whether transcription was on or off. In other

words, the joint probability for RNA and transcription is given as follows

(see Figure 1):

p(ri, t̂h) =


p(r0), if h = 0 and i = 0.

p(ri), for h = 1 and i = 1, 2, . . . , n.

0, otherwise.

(1)

Also, by computing the marginal probability of transcription, p(t̂h) =∑n
i=0 p(ri, t̂h), we can obtain that p(t̂0) = p(r0, t̂0) and p(t̂1) =

∑n
i=1 p(ri, t̂1).

Therefore,

p(t̂0) = p(r0) and p(t̂1) =
n∑

i=1

p(ri) (2)

Now, using (1) and (2), we can compute the mutual information between
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Figure 1: Diagram showing events with non-null probabilities in

our model of transcription, when splicing is ignored. Transcription

can be either on (h = 1), in which case a DNA strand j will deter-

ministically lead to a RNA strand j, or off (h = 0), in which case

any DNA strand will lead to a null RNA. (Probabilities assigned to

events are for illustratory purpose only, but notice that p(t0) and

p(t1) sum to 1.)
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Figure 2: Effects of changing probability of transcription on sev-

eral informational measures: the entropy of RNA (the effect), the

mutual information between RNA and DNA, and the mutual infor-

mation between RNA and the presence of polymerase.
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RNA and transcription.

I
(
R; T̂

)
=

1∑
h=0

n∑
i=0

p
(
ri, t̂h

)
log

p
(
ri, t̂h

)
p (ri) p

(
t̂h
) (3)

= p
(
r0,t̂0

)
log

p
(
r0,t̂0

)
p (r0) p

(
t̂0
) + n∑

i=1

p
(
ri, t̂1

)
log

p
(
ri, t̂1

)
p (ri) p

(
t̂1
) (4)

= p (r0) log
p (r0)

p (r0) p
(
t̂0
) + n∑

i=1

p (ri) log
p (ri)

p (ri) p
(
t̂1
) (5)

= p (r0) log
1

p
(
t̂0
) + n∑

i=1

p (ri) log
1

p
(
t̂1
) (6)

= p (r0) log
1

p
(
t̂0
) +( n∑

i=1

p (ri)

)
log

1

p
(
t̂1
) (7)

= p
(
t̂0
)
log

1

p
(
t̂0
) + p

(
t̂1
)
log

1

p
(
t̂1
) (8)

= H
(
T̂
)

(9)

That I
(
R; T̂

)
= H

(
T̂
)
simply reflects that there is a bijection between

having transcription set to on (respectively off ) and obtaining some non-null

(respectively null) RNA. In other words, none of the values for transcription

lead to convergent results: there is no loss of information about transcription

when it occurs (or not).

1.2 The mutual information between RNA and DNA

We suppose that if there is transcription (h = 1), a given strand of DNA

(j = 1...n) will deterministically lead to a given strand of RNA (i = 1. . .n).

If there is no transcription (h = 0), any strand of DNA will lead to no RNA

(i = 0) (see Figure 3). In other terms, there is a bijection between DNA and

RNA if and only if transcription is on, otherwise all values of DNA lead to

the same null result. We also suppose that state of the polymerase and the

choice of a DNA strand to transcribe are independent events.
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We begin with:

I
(
R; D̂

)
=

n∑
i=0

n∑
j=1

p
(
ri, d̂j

)
log

p
(
ri, d̂j

)
p (ri) p

(
d̂j

) (10)

We will consider now how this measure behaves when we take into ac-

count the probability of transcription.

To simplify writing, we will first notice that many joint events have null

probabilities, which makes them cancel out in the calculus of mutual infor-

mation. These joint events are (ri>0, dj 6=i) : it is impossible to get another

strand of RNA than the one the DNA strand codes for (whatever the tran-

scription state, see Figure 1).

Thus, without loss of generality, we can write, splitting the cases with

non-null (i > 0) and null (i = 0) RNA:

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

p
(
ri, d̂i

)
p (ri) p

(
d̂i

) +

n∑
j=1

p
(
r0,d̂j

)
log

p
(
r0,d̂j

)
p (r0) p

(
d̂j

)
(11)

Using the diagram in Figure 1, we can easily see the following relation-

ships:

(a) p(d̂i|ri) = 1, if i > 0.

(b) p(d̂j |r0) = p(d̂j), for j = 1, . . . n.

(c) p(ri|d̂i) = p(t̂1), if i > 0.
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Using these relationships, we can simplify I(R; D̂) as follows:

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

p
(
ri, d̂i

)
p (ri) p

(
d̂i

)
+

n∑
j=1

p
(
r0,d̂j

)
log

p
(
r0,d̂j

)
p (r0) p

(
d̂j

) (12)

=
n∑

i=1

p
(
ri, d̂i

)
log

p
(
d̂i|ri

)
p
(
d̂i

)
+

n∑
j=1

p
(
r0,d̂j

)
log

p
(
d̂j |r0

)
p
(
d̂j

) (13)

Due to relationships (a) and (b),

I
(
R; D̂

)
=

n∑
i=1

p
(
ri, d̂i

)
log

1

p
(
d̂i

) +

n∑
j=1

p
(
r0,d̂j

)
log

p
(
d̂j

)
p
(
d̂j

) (14)

=
n∑

i=1

p
(
ri, d̂i

)
log

1

p
(
d̂i

) (15)

=
n∑

i=1

p
(
ri|d̂i

)
p
(
d̂i

)
log

1

p
(
d̂i

) (16)

Due to relationship (c),

I
(
R; D̂

)
=

n∑
i=1

p(t̂1)p
(
d̂i

)
log

1

p
(
d̂i

) (17)

= p(t̂1)H(D̂) (18)

This equation reflects the fact that the informativity of DNA is condi-

tional upon the presence of transcription. If transcription were always on,

there would be a bijection between DNA and RNA. However, when the tran-

scription is sometimes off, there is a loss of information between DNA and

the RNA outputs, as several strands of DNA can lead to the same result (no

RNA) when there is no transcription. The information loss is simply this
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part of DNA entropy which is not present in the mutual information between

DNA and RNA, that is, H
(
D̂ |R

)
:

H
(
D̂ |R

)
= H

(
D̂
)
− I

(
R; D̂

)
(19)

=
(
1− p

(
t̂1
))

H
(
D̂
)

(20)

1.3 The entropy of RNA

Here we derive the entropy of RNA in terms of mutual information between

RNA and DNA and the entropy of transcription. We again split between the

cases where there is transcription (t̂1) or none (t̂0). We again use the fact

that and that p (ri) = p
(
d̂i

)
p
(
t̂i
)
. We also remark that

∑n
i=1 p

(
d̂i

)
p
(
t̂1
)

sums to p
(
t̂1
)
.

H (R) = −
n∑

i=0

p (ri) log p (ri) (21)

= −
n∑

i=1

p
(
d̂j

)
p
(
t̂1
)
log p

(
d̂j

)
p
(
t̂1
)
− p (r0) log p (r0) (22)

= −p (t1)

(
n∑

i=1

p
(
d̂j

)
log p

(
d̂j

)
+

n∑
i=1

p
(
d̂j

)
log p

(
t̂1
))

−p (r0) log p (r0) (23)

= −p (t1)
n∑

i=1

p
(
d̂j

)
log p

(
d̂j

)
− p

(
t̂1
)
log p

(
t̂1
)

−p
(
t̂0
)
log p

(
t̂0
)

(24)

We recognize:

H (R) = p
(
t̂1
)
H
(
D̂
)
+H

(
T̂
)

(25)

= I
(
R; D̂

)
+ I

(
R; T̂

)
(26)
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2 The mutual information between RNA and splic-

ing

2.1 When transcription is always on

Here we derive the equations for the mutual information between RNA and

splicing.

For the sake of simplicity, we shall first ignore transcription probability

and assume that p
(
t̂1
)
= 1. This amounts to relaxing the conditionalisation

upon transcription.

In the model considered here the splicing factor variants are recruited

only once a given strand of DNA has been transcribed. In addition, we sup-

pose that the transcription of a given DNA strand opens a set of possibilities

among a proper set of splicing factors (see Figure 3). This entails that the

information in splicing H
(
Ŝ
)
contains all the information in DNA, H

(
D̂
)
:

H
(
D̂, Ŝ

)
= H

(
Ŝ
)

(27)

In addition, we consider a bijective relationship between splicing factors

and RNA variants. This bijection entails that the mutual information be-

tween RNA and splicing is equal to the self-information of splicing (that is,

the entropy of splicing). We can then decompose the entropy of splicing

according to well known chain rules:

I
(
R; Ŝ

)
= I

(
Ŝ; Ŝ

)
(28)

= H
(
Ŝ
)

(29)

= H
(
D̂, Ŝ

)
(30)

= H
(
Ŝ
∣∣∣D̂)+H

(
D̂
)

(31)

From equation (18), we know that H
(
D̂
)

= I
(
R; D̂

)
, assuming that

transcription always occurs. In addition, the bijection between splicing and

RNA (including the null value) entails that the conditional entropy of splicing
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Figure 3: Diagram of our model of splicing, when transcription is

assumed to be on. A DNA strand deterministically leads to a

proper set of splicing factor variants, each of them deterministically

leading to a proper RNA strand.

(conditioned on DNA) is the conditional mutual information of splicing and

RNA: H
(
Ŝ
∣∣∣D̂) = I

(
R; Ŝ

∣∣∣D̂) (as an immediate calculation would show).

We thus can rewrite equation (31) as:

I
(
R; Ŝ

)
= I

(
R; Ŝ

∣∣∣D̂)+ I
(
R; D̂

)
(32)

Readers familiar with information theory will recognize the decomposi-

tion of the mutual information I
(
R; Ŝ, D̂

)
which happens to be, in this

particular example, equal to I
(
R; Ŝ

)
. That is, knowing the value of DNA

does not bring us any information as regards RNA in addition to knowing

the value of splicing. Notice equation (32) also provides a decomposition of

the entropy of splicing, that is, H(S) = I
(
R; Ŝ

)
in virtue of the bijection

between RNA and splicing.
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2.2 When transcription can be either on or off

For the sake of completeness, we now give equation (32) in a version taking

into account the probability of transcription. The reasoning is grounded on

the hypothesis that a given splicing factor occurs only when there is tran-

scription and a given DNA strand has been choosen. Then, decomposition

of I(R; Ŝ) gives:

I
(
R; Ŝ

)
= I

(
Ŝ; Ŝ

)
(33)

= H
(
Ŝ
)

(34)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂, T̂

)
(35)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂

∣∣∣T̂ )+ I
(
Ŝ; T̂

)
(36)

Again, we take advantage of the bijection between splicing and RNA,

to replace H
(
Ŝ
∣∣∣D̂, T̂

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
. We also take advantage of the

fact that there is no interaction information between DNA, RNA, and tran-

scription, that is, I
(
R; D̂

∣∣∣T̂ ) = I
(
R; D̂

)
. This can be shown with the

calculation sketched below. We again use relationship (1) to simplify, hence

if i > 0 we have p(ri, dj , t1) = p(ri, dj) and p(ri, t1) = p(ri). A similar re-

placement method would hold for i = 0, but we directly simplify this term
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as it is null.

I
(
R; D̂

∣∣∣T̂ ) =
1∑

h=0

p(t̂h)
n∑

j=0

m∑
i=1

p
(
ri, d̂j

∣∣t̂h) log p
(
ri, d̂j

∣∣t̂h)
p
(
ri
∣∣t̂h ) p(d̂j ∣∣t̂h)(37)

= p(t̂0)
n∑

j=0

p
(
r0, d̂j

∣∣t̂0) log p
(
r0, d̂j

∣∣t̂0)
p
(
r0
∣∣t̂0 ) p(d̂j ∣∣t̂0) (38)

+p(t̂1)

n∑
j=0

m∑
i=1

p
(
ri, d̂j

∣∣t̂1) log p
(
ri, d̂j

∣∣t̂1)
p
(
ri
∣∣t̂1 ) p(d̂j ∣∣t̂1) (39)

= 0 +
n∑

j=0

m∑
i=1

p
(
ri, d̂j , t̂1

)
log

p
(
ri, d̂j , t̂1

)
p(t̂1)p

(
ri
∣∣t̂1 ) p(d̂j) (40)

=
n∑

j=0

m∑
i=1

p
(
ri, d̂j

)
log

p
(
ri, d̂j

)
p (ri) p

(
d̂j

) (41)

= I
(
R; D̂

)
(42)

Injecting these terms in equation (36), we obtain:

I
(
R; Ŝ

)
= H

(
Ŝ
∣∣∣D̂, T̂

)
+ I

(
Ŝ; D̂

)
+ I

(
Ŝ; T̂

)
(43)

= H
(
Ŝ
∣∣∣D̂, T̂

)
+ p

(
t̂1
)
H
(
D̂
)
+H

(
T̂
)

(44)

Again, noticing that H
(
Ŝ
∣∣∣D̂, T̂

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
, we retrieve an equa-

tion similar to equation (32):

I
(
R; Ŝ

)
= I

(
R; Ŝ

∣∣∣D̂, T̂
)
+ I

(
R; D̂

)
+ I

(
R; T̂

)
(45)

Readers familiar with information theory will recognize the decomposi-

tion of the mutual information I
(
R; Ŝ, D̂, T̂

)
which happens to be, in this

particular example, equal to I
(
R; Ŝ

)
. That is, knowing the value of DNA

and transcription does not bring us any more information as regards RNA

than just knowing the value of splicing. Notice that similarly to equation (32)

in the case where transcription is always on, equation (45) provides a decom-

position of the entropy of splicing, that is, H(S) = I
(
R; Ŝ

)
in virtue of the

bijection between RNA and splicing.
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To wrap up, in this model transcription adds variation in the set of

splicing factor variants (the absence of any factor now belongs to the set of

possibilities), which is independent from DNA.

3 Alternative splicing in Drosophila Dscam

The Drosophila receptor DSCAM (Down Syndrome Cell Adhesion Molecule),

a member of the immunoglobulin (Ig) superfamily, is a remarkable exam-

ple of homophilic binding specificity that functions in important biological

processes, such as innate immunity and neural wiring. In insects and also

crustaceans (e.g. Daphnia) 4 of the 24 exons of the Dscam gene are ar-

ranged in large tandem arrays, whose regulation is an example of mutually

exclusive splicing. In Drosophila one block has 2 exons - leading to 1 of 2

alternative transmembrane segments, the others contain respectively 12, 48

and 33 alternative exons - leading to 19,008 different ecto-domains. Together

they produce, 38,016 alternative protein isoforms, within a genome of 15,016

protein-coding genes [1]. There are several interesting aspects about this

case:

1. For each block of exons there seem to exist a unique mechanism that

ensures that exclusively only one of the alternative axons is included

in the final transcript. Only two of the mechanisms are known in some

detail. Researchers have identified specific cis-acting sequences and

trans-acting splicing factors that tightly regulate splicing of exon 4.2,

but for most others the details are again not yet known [4, 3].

2. It is not only the large number of alternative transcripts that allow

for high diversity of functions, but in addition most alternative exons

are expressed in neurons and found in many combinations. Neurons

express up 50 variants at a time, which makes for an even larger combi-

natorial spectrum of neuron differentiation. This ensures that branches
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from different neurons will share, at most, a few isoforms in common.

This diversity of function enables branches of neurons to distinguish

between sister branches and branches of other neurons, and also for

patterning of neural circuits [8].

3. There seem to be distinct ways of regulating isoforms in the two differ-

ent functions. For self-recognition purposes, neurons seem to express

DSCAM isoforms in a stochastic yet biased fashion. Which isoform is

expressed in a single neuron is unimportant as long as it sufficiently dif-

ferent from its neighbour. It might simply be an indirect consequence

of the expression of different splicing factors in different neurons that

leads to this bias. For appropriate branching patterns, however, the

research to date suggests that the expression of Dscam isoforms in

some neurons is under tight developmental control. So we find a con-

trolled mix of stochasticity and regulation in the expression of Dscam

in drosophila [9].

4. Dscam is homologous between almost all animals, which places its ori-

gin to over 600 million years ago before the split between the deuteros-

tomes and protostomes [2]. But while in vertebrates their two homol-

ogous genes, Dscam and DscamL1 do not encode multiple isoforms, in

arthropods the single gene is highly enriched with alternative exons.

That leads to the interesting hypothesis that while in simple animals

cell adhesion and cell recognition is controlled by complex genes, in

complex animals this is done by relatively simple genes. This raises

the question of how to address the difficulty of accounting for a molec-

ular diversity large enough to provide specificity for the extraordinary

large number of neurons in the more complex vertebrate brains [5].

Vertebrates seem to manage their increase in cell recognition specifici-

ties through the combinatorial association of different recognition systems
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such as gene duplication and the successive divergence of other loci, and via

the graded expression of recognition proteins [9]. There exists a large range

of cell adhesion, recognition and surface receptor genes in vertebrates: the

calcium-independent Ig superfamily, and calcium-dependent integrins, cad-

herins, and selectins. The human immunoglobulins (Ig) are the products

of three unlinked sets of genes: the immunoglobulin heavy (IGH), the im-

munoglobulin (IGK), and the immunoglobulin (IGL) genes, with a total of

about 150 functional genes. A large number of cadherin superfamily genes

have been identified to date, and most of them seem to be expressed in the

CNS. At least 80 members of the cadherin superfamily have been shown to

be expressed within a single mammalian species. Integrins have two different

chains, the (alpha) and (beta) subunits of which mammals possess eighteen

and eight subunits, while Drosophila has five and two subunits.

This genetic diversity is combined with complex regulatory patterns. One

example are the neurexin and neuroligin proteins in humans which are all

encoded by multiple genes. Neurexin is encoded by three genes controlled

each by two promoters which produce 6 main forms of neurexin. Both genes

display relative extensive alternative splicing, a process that can potentially

generate thousands of neurexin isoforms alone [2, 6]. Splice form diversity is

most extensive in the mammalian brain [7].
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