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The topics of modeling and information come together in at least two ways.  Computational 

modeling and simulation play an increasingly important role in science, across disciplines from 

mathematics through physics to economics and political science.  The philosophical questions at 

issue are questions as to what modeling and simulation are adding, altering, or amplifying in 

terms of scientific information.  What changes with regard to information acquisition, theoretical 

development, or empirical confirmation with contemporary tools of computational modeling?  In 

this sense the title of this article is read in the following way: What kind of information is 

modeling information?  What kind of information does modeling give us? 

 

Modeling and information also come together in a second way, however.  The character of 

information transfer is one of the topics to which computational models have been quite 

successfully applied.  Here the questions at issue are questions of informational dynamics.  How 

can we expect information to flow across a network of agents?  What characteristics of networks 

correlate with what aspects of that information flow—speed, for example, or accuracy?  In this 

sense the title of this article is read in a different way: an outline of ongoing efforts to model 

information. 

 

Because the topics come together in these two ways, this chapter will be divided into two parts.   

The first will be an examination of the particular informational role of computational modeling 

and simulation.  The second will survey some contemporary efforts to use computational tools in 

order to model information in general.   

 

Section I, then, offers a philosophical outline of a basically descriptive question across a range of 

scientific disciplines: how do models produce information?  Section II samples a range of 

modelling work exploring the flow of information in general.  Intriguingly, one aspect of this 

second section is a return to the scientific procedure but from a distinctly prescriptive angle: 

How, for particular epistemic purposes, might we best optimize scientific information networks?   

 

I.  What Kind of Information Do Models Give Us? 

  

Computational modeling and computer simulation represent a range of established techniques in 

the physical sciences (Gould, Tabochnik, & Christian 2006; Birdsall & Langton 1995) and are 

growing as tools in economics, political science, and sociology (Schelling 1978; Axelrod 1997; 

Kollman, Miller, & Page 1997; Wilhite 2001; Macy & Willer 2002; Cedarman 2003; Lustick & 

Miodownik 2009)).   

 

The speed, breadth, and unfamiliarity of these developments have led some to claim that 

computer simulation represents a radical break from a traditional conception of science.   



Stephen Wolfram claims the result is “a new kind of science” (Wolfram 2002).  Robert Axelrod 

(2005) follows Joshua Epstein and Robert Axtell (1996) in outlining agent-based simulation as a 

scientific technique beyond both deduction and induction.   

It can be argued that each of these claims is an exaggeration; that computational modeling and 

simulation are new because computers are new, but that the general informational structures used 

in computational modeling and simulation have a long and established pedigree in the long 

tradition of scientific modeling (Sterrett 2006; Grim, Eason, Selinger & Rosenberger 2007, 

Grim, Rosenberger, Rosenfeld, Anderson & Eason 2013). What complicates the equation, 

however, is that modelling information is not all of one kind.  Modeling and simulation, both 

before and within a computational guise, offer a range of informational techniques applicable at 

a number of levels for a variety of different scientific purposes.   

 

The purpose of a model is to simulate some aspect of an actual or potential reality—some actual 

or possible course of events.  ‘Simulation’ as a count noun is commonly used to refer to a 

specific run of a computational model of this sort.  But computational models are members of a 

wide and historically rich family, running from abstract models embedded in sets of equations to 

concrete physical models such as the Wright brothers’ wind tunnel and hydraulic simulations of 

the effects of Hurricane Katrina (Interagency Performance Evaluation Task Force 2006). An 

intriguing agent-based model of disease infection, long before the advent of computational 

modeling, used herds of mice physically transported in patterns of ‘migration’ by investigators 

(Greenwood, Hill, Topley & Wilson 1936). 

 

Models can be abstract not merely in instantiation but in informational target.  In some cases the 

attempt is to understand something as general as how complexity on a higher level can emerge 

from simple interactions on a lower level (Conway 1982; Wolfram 1983, 2002).  In other cases 

the target is as specific as the effect of containment measures on an influenza pandemic in 

Southeast Asia (Ferguson et. al. 2001) or even reconstruction of climate and cultural effects in 

the habitation patterns of the ancient Anasazi (Dean, Gumerman, Epstein, Axtell, Swedland, 

Parker, & McCarroll 1999).  Lustick and Miodownik track the range of information targets from 

‘abstractions’ through ‘ensembles’ to concrete ‘virtualizations’ (2009); Grimm and Railsbeck 

outline a roughly correlate classification in terms of ‘minimal’, ‘synthetic’ and ‘predictive’ 

models (2005), through the last category confuses the specificity of target with the scientific 

purpose of the model.     

 

Whether abstract or concrete, in either instantiation or target, models track the effect of an 

independent on a dependent variable.  Typically, though not inevitably, that effect plays out as a 

causal sequence of events over time.  With simulation of a course of events in mind, the central 

informational structure can be envisaged in terms of three simple parts: input conditions, 

mechanism, and output.  The ‘input conditions’ represent the configuration of simulation 

components or parameter values at the outset of a model run.  The ‘mechanism’ includes all 

inner workings of the model—all the means by which input is changed or transformed in the 

course of a simulation.  In cases in which a simulation works in terms of a set of coupled 

equations, those equations constitute part of the mechanism.  Where a simulation tracks 

population changes within an agent-based computational model, the mechanism includes the 

program-instantiated algorithm through which parameters of individual ‘agents’ at one stage 

result in shifted parameters of agents at the next.  The ‘output’ of a simulation is its result: either 



an end-state of parameter values that result from the operation of mechanism on input, or a 

progressive history of states of the system over time.  It should be emphasized that models are 

constructed for specific epistemic purposes, and that each of our three categories—input, 

mechanism, and output—are issues of interpretation relative to purpose.  The purpose of any 

model is the investigator’s purpose, and what is taken or read as input, output, or mechanism is 

relative to that purpose.   

 

The various scientific purposes to which models are put can be outlined in terms of this basic 

three-part structure.  Here we will track four such purposes: prediction, retrodiction, explanation, 

and what might be termed ‘emergence explanation.’  Although the tripartite structure of models 

remains the same in each case, that structure is exploited in different ways for different 

informational purposes.  Different aspects of the structure are interpreted as given information in 

each case, intended to correspond to ways we already know the world to be.  Different aspects 

are taken as points of new information—those points at which the model is taken to tell us 

something new (Fig 1).   

 

 Prediction 

 

Explanation Retrodiction Emergence 

Explanation 

 

Input X X O O 

Mechanism X O X O 

Output O X X X 

   

Figure 1. Prediction, explanation, retrodiction and emergence explanation: uses of simulation in 

terms of information assumed and gained through a tripartite structure of input, mechanism, and 

output.  X = Aspect of assumed correspondence, O = Aspect of new information. 

 

Use of a model for prediction involves reading off new information from its output.  For 

purposes of prediction we set up input conditions intended to correspond to the world at a 

particular point in time, while designing the mechanisms of our model to reflect how the world 

works.  Output conditions are then read as a prediction of the state of the world at a later point.  

Weather prediction is a clear case: input conditions reflect barometric pressures, temperatures, 

and wind directions at noon today, the mechanism is a program instantiating equations that 

reflect what we take to be processes of weather change, and the output conditions represent a 

prediction of conditions tomorrow: heavy rain along the East Coast.   

 

Use of a model for purposes of explanation, though it exhibits the same tripartite structure, is 

importantly different.  Here new information is read off the simulation’s mechanism.  Input 

conditions are set to correspond to conditions we know to obtain in the world at a particular time.   

We are looking for output conditions which we know to correspond to conditions at a later time.  

If in the simulation out input conditions successfully generate those output conditions, we take 

the mechanism of the simulation to offer a potential explanation of how things in the world 

actually work.  Consider, for example, a weather simulation that repeatedly and accurately 

transforms weather data on any given day over the last century into weather data for the 

following day.  The fact that its input and output conditions match known weather data gives us 



reason to suspect that the simulational mechanism may also accurately represent the way real 

weather patterns work.   

  

A retrodictive simulation uses the same tripartite structure in a third way: in order to yield new 

knowledge at the point of input conditions.  In a retrodictive simulation, researchers know the 

contemporary state of the world and take themselves to have a basic idea of how the world 

works.  What they seek to determine is what the state of the world was at some point in the past; 

what the past may (or must) have been in order for the present to be as it is.  Simulation input 

conditions that do produce an output corresponding to the present are taken as candidates for 

how the past may indeed have been.  Simulation input conditions that do not generate a realistic 

contemporary output can be ruled out.   

 

We include as a fourth category ambitious attempts at very general explanation that might be 

‘emergence explanations.’ Here the fact that simple rules operating on specific inputs may 

generate certain patterns is offered as an explanation for those patterns in nature or reality.  

Steven Wolfram displays a pattern generated from random input according to a specific rule in 

one-dimensional cellular automata and compares the result to shell patterns in mollusks, with the 

clear implication that the pattern of mollusk shells may be formed precisely in terms of such a 

rule (Wolfram 2002).  Both the structure and relative weakness of emergence explanation are 

evident from its tripartite representation.  Here the attempt is to draw new information at not one 

but two points of the structure—as information regarding both mechanism (as in explanation) 

and input (as in retroduction)—on the basis only of a match at the point of output.   

 

What kind of information do models give us?  The answer appears to be that models do not offer 

merely one kind of information.  Although the various applications of computational models, 

like their scientific predecessors, can be interpreted in terms of the same 3-part structure, one 

application of that structure offers predictive information, another retroductive information, and 

a third information in the form of explanation.   

 

Rodney Brooks has been credited with the quip that ‘the problem with simulations is that they 

are doomed to succeed.’  Computational models have sometimes been impugned on the grounds 

that ‘you can prove anything with simulation’ or that ‘you can produce any result you want by 

tweaking parameters.’  If simulational techniques were genuinely immune from failure, of 

course, they would be informationally useless.  But ‘you can prove anything by tweaking 

parameters,’ seems to assume that models are tied to the world only at output rather than open 

for various purposes to critique at input and mechanism as well.  Such an attack seems legitimate 

only against ‘emergence explanation’ as outlined above.  What the tripartite structure seems to 

emphasize is that there are in fact many ways that models can fail.  Critique on grounds that a 

model does not exhibit relevant correspondence is possible at any of the outlined points of 

assumed or ‘new’ information.  It can be argued, in fact, that models have a full scientific range 

of failure as a very real option.  Models can fail in all the ways that theories can fail.  Simulations 

can fail in all the ways that experiments can fail (Grim, Rosenberger, Rosenfeld, Anderson & 

Eason 2013). 

 

II.  Modeling Information Flow 

 



Under various names, using various techniques, a range of attempts have been in different 

disciplines to capture important aspects of information dynamics.  Here we can only offer a 

sampling of attempts to model information flow, emphasizing current research trajectories and 

more recent philosophical development. 

 

Some of the oldest models appear in analogies taken from physics.  The Ising model in statistical 

mechanics is a mathematical model of ferromagnetism.  It is often envisaged in terms of a two-

dimensional array of points, each of which can be in one of two states— +1 or -1 —and each of 

which is pushed to align with its neighbors.  Reinterpretation takes the Ising model from physical 

to social application.  If interpretation in terms of physical interaction of bordering magnetic 

states is replaced with interpretation in terms of cultural interaction between agents in terms of 

social status, cultural traits, belief, opinion, or information states, one has a first very simple 

model in which one might attempt to track patterns of cultural influence or information flow 

across a spatialized population (Galam, Gefen & Shapir 1982; Galam & Moscovici 1991; Galam 

1997; Castellano, Fortunato, & Loreto 2009).   

 

‘Sociodynamics’ represents one class of physics-based models which operate in terms of 

equation-based transitions within a society as a whole (Helbing 1991, Wiedlich 1971, 1991, 

2002).  ‘Sociophysics’ represents a closely related class which characteristically applies the tools 

of statistical mechanics to derive society-level results from probabilities at the individual level 

(Galam 2012).   

 

A strong tradition in terms of applicability to information flow follows the general pattern 

anticipated in the Ising model.  In a large class of cellular automata models, the social relations 

between individuals are envisaged in terms of neighborhood relations within a two-dimensional 

array.  Each individual in such an array is thought of as having a particular cultural trait—a 

belief, perhaps, or a piece of information.  In step-wise evolution of the array, individuals update 

their information in terms of the states of their immediate neighbors.  One simple version is the 

voter model.  At the beginning of a run, each agent in a two-dimensional array has some binary 

value of +1 or -1.  At each time step, a single agent and one of its neighbors is chosen at random, 

and the agent adopts or ‘imitates’ the value of its neighbor.  Importantly, it is the local 

‘information’ of an immediate neighbor—rather than any social-level reflection of majority 

view, for example—that produces the effect.  Evolution of typical arrays is shown in Fig. 2.   

 



 
 

Figure 2.  Evolution of a cellular automata ‘voter’ model, from an initial circular concentration 

of the like-minded (top) and a random array (bottom).  (Dornic, Chaté, Chave & Hinrichsen 

2001) 

 

The voter model has been studied extensively with the tools of statistical physics, as have 

variations in which there are a sprinkling of stubborn individuals (Mobilia, 2003) and in which 

the range of states or opinions is expanded (Vásquez, Krapivsky & Redner 2003).  Majority rule 

models consider variations in which majorities or structured minorities are required for 

conversion (Galam 2002).  Social impact theory attempts to include persuasiveness of 

individuals and groups within cellular automata models as well (Latané 1981; Nowak, Szamrej 

& Latané 1990).   

 

Game theory has its own historical trajectory, largely separate from the modeling tradition within 

statistical physics.  Assumptions regarding information are standardly built into game theoretic 

models.  An assumption of complete information is common, for example, in which all players 

know the matrix of potential payoffs to each player from each possible combination of moves.  

Game theory generally builds in imperfect information in the sense that each player does not 

know the history of all previous plays for all players.   

 

Game theory can also be used as something more: as a model for how semantic information can 

develop in the first place.  Here the seminal contribution is David Lewis’s signaling games 

(1969).  Developed in answer to Quine’s critique of analytic truth by convention, Lewis develops 

a formal model of communicative coordination between players who share the same cooperative 

goals.  Such a coordination, Lewis suggests, offers a way of understanding meaning, a 

suggestion carried further in work by Brian Skyrms (1996, 2010) and Hutteger, Skyrms, Smead 

& Zollman (2010). 

  

Game theory joins cellular automata modeling in a range of work on the emergence of game-

theoretic cooperation in iterated games (Nowak, Bonhoeffer, May 2994).  Development of 

semantic information can then be modeled as the emergence of collaborative communicative 

strategies within arrays of mutually interactive agents (Floridi 2011).  In Grim, Kokalis, Tafti, 

Kilb & St. Denis (2004) the model is one in which individuals are stable in a cellular automata 



grid, but food items and predators wander in a random walk across the grid.  Agents initially 

have one of a set of random communication strategies in terms of arbitrary sounds: perhaps 

making a sound s1 heard by themselves and neighbors when they are hit by a predator, for 

example, sound s2 when a food item comes their way.  When agents pursuing purely their own 

interest update on the strategies of successful neighbors, Grim et. al. show that a simple 

semantics in which particular sounds have particular meaning emerge.  Figure 3, for example, 

shows the emergence of specific dialects by a mechanism of partial neural net training on the 

behavior of successful neighbors.  In Grim (2011) the same mechanism is shown to be capable of 

producing pragmatic information transfer in the manner of Grice (1989). 

 

    

     



    
Fig. 3  Emergence of communicative dialects in arrays of simple neural nets training up on 

behavior of successful neighbors in an environment of migraing food sources and predators. 

(Grim, Kokalis, Tafti, Kilb & St. Denis 2004) 

 

These results emphasize the emergence of cooperation and communication across cellular 

automata arrays.  The point is to show how semantic information, for example, can converge in 

the form of a uniform language across a population.  Bounded confidence models, initially 

instantiated as cellular automata as well, have been used for a complementary purpose: to show 

how information can fail to converge; how agents can come not to agree regarding a particular 

body of information but to disagree.  In Deffuant models (Deffuant, Neau, Amblard & Weisbuch 

2000), agents embedded in an array have beliefs modelled as continuous values between 0 and 1.  

They update on the beliefs of their neighbors, approaching closer to those beliefs, but only in 

cases in which the neighbor’s belief falls within a certain threshold of their own.  The result is 

formation of increasingly isolated opinion clusters across the array: a picture of a configuration 

across which information can no longer flow.  The Hegselmann Krause (2002) model of 

polarization is similar, though it drops the localized assumption: agents interact with all others in 

the population within the range of their bounded confidence.  Different confidence levels turn 

out to be important for the formation of either informational convergence or informational 

polarization (Fig. 4). 

 



 
 

 
 

 
 

Fig. 4   Images of different patterns of information convergence or polarization for individuals 

with random beliefs modeled as 0 through 1 and updating on neighbors with similar views within 

a threshold ε.  (Hegselmann & Krause 2002). 

 

A final model worthy of note in the cellular automata tradition is Axelrod’s cultural diffusion 

model (Axelrod 1996).  Most of the models discussed to this point can be thought of as modeling 

the flow of a single piece of information (Grim et al 2004 is a marginal exception).  Almost 



uniquely, Axelrod’s model can be interpreted as modelling the dynamics of sets of pieces of 

information.  Axelrod considers a 10 x 10 cellular automata array in which each agent has one of 

10 ‘traits’ on each of 5 ‘features.’  Axelrod thinks of these as cultural options within categories: 

types of music or forms of marriage, for example.  But they might also be thought as possible 

beliefs within particular information categories: beliefs as to the location of the treasure, for 

example, or when the next hurricane will hit.   

 

The dynamics of information flow within the Axelrod model is driven by a pair of intuitions: that 

(a) agents tend to interact with those more like them, and (b) they come to be more like those 

with whom they interact.  Both can be given an informational interpretation.  In the evolution of 

the array, an agent chosen at random interacts with a randomly chosen neighbor with a 

probability correlate to the number of features on which they share the same trait.  On 

interaction, that agent adopts one of the neighbor’s traits on which the two disagree.  The result 

is a dynamics driven by convergence of cultural information, but which for particular values—

and in a manner amazingly fragile in terms of those values—shows the emergence of polarized 

communities in the manner of the Deflluant and Hegselmann Krause models as well. 

 

In original form, flow of information is envisaged in all the spatialized models above as flow 

across an Ising-like or cellular automata array.  More recently much of this work has been 

extended to much wider classes of networks, allowing for questions regarding how information 

will flow differently across different types of social network.   

 

Information, after all, is characteristically social: socially instantiated and socially transferred. 

How can we expect information to flow across a social network?  A strong research trajectory 

within contemporary computational uses resources from graph and network theory, representing 

individuals as nodes (or vertices) connected by communication links (or edges).  Working with 

abstract rather than full social networks, how can we expect information to flow across networks 

of different structures such as those in Figure 5?   
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Fig. 5   How will information flow across different abstract networks? 

 

It has long been tempting to draw an analogy between information transfer and the dynamics of 

infection (Le Bon 1897; De Tarde 1903; Park 1904, Park & Burgess 1921; Blumer 1951, 1969).  

Douglas Hofstadter, Richard Dawkins, and Daniel Dennett all speak of information transfer in 

terms of memes spreading socially, competing for fitness and mutating on the model of viruses 

(Dawkins 1976, 1993; Hofstadter 1983; Dennett 1991).  Gladwell 2000 makes the comparison 

explicit: “Ideas and products and messages and behaviors spread like viruses do.” Lynch 1996, 

Blackmore 2000, and Brodie 2009 are all book-length elaborations of infection models of 

information flow.  Network and complexity researchers have also followed this line.  Gross, 

D’Lima & Blasius (2006) claim that work on disease propagation across networks can be carried 

over has implications for “the spreading of information, opinions and beliefs in a population” 

because memes “can be described in a similar way.”   

 

Within such a model, only one link to a single ‘infected’ node is required for transmission.  The 

contagion dynamic that results produces a range of intriguing network effects, notable among 

which are the strength of weak ties (Granovetter 1973) and the small world phenomenon (Watts 

& Strogatz 1998, Watts 1999).  Replacement of a very few short-range ties with a few long ones, 

as in the change from the ring to the small world in Figure 5, can speed up the rate of transfer 

across a network in which transmission would otherwise be local and slow.  In the illustration 

from Watts and Strogatz (Fig. 6), using a log plot for probability of rewiring, speed to total 

infection follows esssentially the descending curve of solid dots mapping shortest average path 

length between randomly chosen nodes.  As Granovetter put it, “whatever is to be diffused can 

reach a larger number of people, and traverse a greater social distance,” with the addition of a 

few weak long-range ties (Granovetter 1973, 1366). 
 

 



Fig. 6  Rewiring of links in a regular ring network (left) with even a small 

probability p produces a small world network with a much higher speed to total 

infection.  (Watts & Strogatz 1998) 

 

In mapping the flow of information there is reason to be suspicious of a simple infection model, 

however.  Centola and Macy 2007 point out that information transfer often demands something 

more than the mere acquaintance suggested by an infection model.  In many cases it requires the 

reinforcement effect of multiple information sources that Centola and Macy call ‘complex 

contagion.’  In cases of information that are best construed in terms of complex rather than 

simple contagion, it will be broad bands of influence rather than single strands that will be 

required for information to flow. 

 

The emphasis on different dynamics for different sorts of information has been carried further in 

Grim 2009 and related work (Grim, Reade, Singer, Fisher & Majewicz 2010a, 2010b).  This 

work uses a richer model of reinforcement in which the information at each node is modeled as a 

value between 0 and 1 and in which agents update in terms of an average of all of those with 

whom they are in contact.  Concentration is also on linked sub-networks, reflecting a common 

feature of real social networks (Fig. 7).   

 

 
 

Fig. 7  Linked ring, small world, and random sub-networks 

 

Within such a model, dramatic differences appear between infection dynamics on a given 

network and information transfer through reinforcement on the same network.  For sub-networks 

with few links between them, infection dynamics measured in terms of time to full infection are 

particularly sensitive to the structure of the sub-networks involved.  For infection, links between 

those sub-networks prove of relatively minor importance.  In the case of information transfer, 

measured in terms of time to full information across the network, the situation is reversed.  For 

information, it is the links between sub-networks that prove of primary importance.  In later 

work, the dynamics of germs, genes, and memes are studied as distinct types of information with 

their own characteristic forms of transfer (Grim, Singer, Reade & Fisher forthcoming).  There is, 

the authors conclude, no one way that information flows.  In order to know how information will 

transfer across a network, the authors conclude, one must know not only the structure of the 



network involved but the specific type of information and characteristic forms of information 

transfer at issue.   

 

Scientific information and scientific networks constitute a particular area of interest.  A 

descriptive question in philosophy of science is how scientific information be expected to flow 

across communication or information networks.  An intriguing prescriptive question is close by: 

how might we optimize scientific networks in order to best facilitate the growth, spread, and 

application of scientific information? 

 

Kevin Zollman (2007, 2010, 2013) considers simple networks in which each node is a scientific 

agent who uses Bayesian reasoning in a ‘bandit problem,’ updating beliefs about whether state s1 

or state s2 holds in the world on the basis of observed results of action in both his own case and 

that of other agents to which he is connected in the network.  In a central result for social 

epistemology, the probability of epistemic success—of discovering the truth—turns out to be 

higher in a ring network than a wheel, higher in a wheel than in a total network.  Convergence to 

an agreed result is far quicker with total connectivity within a network, but accuracy of 

information within a community as a whole may be facilitated when information available to 

individual members of the community is limited by network structure.  Grim, Singer, Fisher, 

Bramson, Berger, Reade, Flocken & Sales (2013) explore a similar model in which agents hold 

hypotheses modeled on a full [0,1] spectrum, for a wider class of networks, and with an enriched 

notion of ‘epistemic landscapes’ that represent problems of different degrees of difficulty.  

Results on epistemic success parallel Zollman’s: the scientific community may learn more when 

individual scientists learn less.   

 

Epistemic landscapes appear in a different sense in a model by Weisberg and Muldoon (2009).  

Here investigators are envisaged as agents traversing a landscape of scientific significance, 

following different strategies in the attempt to find the highest peaks.  Information of their 

explorations is left ‘in the world,’ as it were—that a specific patch has been visited is left with a 

publication marker—but it is only through that information that agents are networked.  Weisberg 

and Muldoon compare agents with three different strategies.  ‘Hill climbers with 

experimentation’ function alone, exploring for neighboring patches with a higher significance 

and continuing along that trajectory. ‘Followers’ and ‘mavericks’ both use the social information 

left in a landscape, but with different biases. Followers choose neighboring paths that have been 

explored, in search of higher significance.  Mavericks deliberately choose neighboring paths that 

have been unexplored.  Weisberg and Muldoon report that mavericks do the best of the three, but 

that a heterogenous combination of followers with mavericks does better still, “making 

polymorphic populations of mavericks and followers ideal in many research domains” (225).   

 

While a range of work supports claims for the epistemic benefit of diversity (Zollman 2007, 

Kitcher 1990, 2002; Strevens 2003), it turns out that Weisberg and Muldoon’s model is seriously 

flawed.  Alexander, Himmelreich and Thompson (forthcoming) demonstrate significant 

programming errors in the implementation of the model.  When re-run with corrections, success 

within a heterogeneous population of mavericks and followers appears to be due not to the 

combination of strategies but to the success of the mavericks alone.  Alexander, Himmelreich 

and Thompson also introduce extremely successful populations of ‘swarm’ agents which 



navigate an epistemic landscape in ways inspired by work in animal foraging  (Couzin, Krause, 

James, Ruxton and Franks 2002; Couzin, Krause, Franks & Levin 2005).    

 

How does information flow?  Just as there is not merely one kind of information offered in 

models, there is not merely one way that information flows.  A range of different models have 

been constructed for information flow, probably best interpreted as capturing different aspects of 

the phenomenon: the way information can be expected to flow as a single piece of information 

across an imitative array, as a coordinated set of bits, in either convergence or polarization across 

a community, for example.  The best available models, it can be suggested, show major 

characteristics of information to depend on at least two major factors: the social structure of 

information transfer and the specific dynamics characteristic of the particular type of information 

at issue.    
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