Skip to main content
Log in

Probabilities and Quantum Reality: Are There Correlata?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Any attempt to introduce probabilities into quantum mechanics faces difficulties due to the mathematical structure of Hilbert space, as reflected in Birkhoff and von Neumann's proposal for a quantum logic. The (consistent or decoherent) histories solution is provided by its single framework rule, an approach that includes conventional (Copenhagen) quantum theory as a special case. Mermin's Ithaca interpretation addresses the same problem by defining probabilities which make no reference to a sample space or event algebra (“correlations without correlata”). But this leads to severe conceptual difficulties, which almost inevitably couple quantum theory to unresolved problems of human consciousness. Using histories allows a sharper quantum description than is possible with a density matrix, suggesting that the latter provides an ensemble rather than an irreducible single-system description as claimed by Mermin. The histories approach satisfies the first five of Mermin's desiderata for a good interpretation of quantum mechanics, including Einstein locality, but the Ithaca interpretation seems to have difficulty with the first (independence of observers) and the third (describing individual systems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. D. Mermin, “The Ithaca interpretation of quantum mechanics, ” Pramana 51, 549(1998).

    Google Scholar 

  2. N. D. Mermin, “What is quantum mechanics trying to tell us?, ” Amer. J. Phys. 66, 753(1998).

    Google Scholar 

  3. N. D. Mermin, “What do these correlations know about reality? Nonlocality and the absurd, ” Found. Phys. 29, 571(1999).

    Google Scholar 

  4. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932),English translation: Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  5. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics, ” Ann. Math. 37, 823(1936).

    Google Scholar 

  6. R. Omnès, “Consistent interpretations of quantum mechanics, ” Rev. Mod. Phys. 64, 339(1992).

    Google Scholar 

  7. R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1994).

    Google Scholar 

  8. R. Omnès, Understanding Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1999).

    Google Scholar 

  9. R. B. Griffiths, “Consistent histories and the interpretation of quantum mechanics, ” J. Stat. Phys. 36, 219(1984).

    Google Scholar 

  10. R. B. Griffiths, “Consistent histories and quantum reasoning, ” Phys. Rev. A 54, 2759(1996).

    Google Scholar 

  11. R. B. Griffiths, “Choice of consistent family, and quantum incompatibility, ” Phys. Rev. A 57, 1604(1998).

    Google Scholar 

  12. R. B. Griffiths, Consistent Quantum Theory (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  13. M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology, ” in Complexity, Entropy, and the Physics of Information, W. H. Zurek, ed. (Addison–Wesley, 1990), pp. 425-458.

  14. M. Gell-Mann and J. B. Hartle, “Classical equations for quantum systems, ” Phys. Rev. D 47, 3345(1993).

    Google Scholar 

  15. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  16. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edn. (Wiley, New York, 1968).

    Google Scholar 

  17. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?, ” Phys. Rev. 47, 777(1935).

    Google Scholar 

  18. E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik, ” Naturwiss. 23, 807(1935); for an English translation, see [19].

    Google Scholar 

  19. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, Princeton, NJ, 1983).

    Google Scholar 

  20. J. A. Wheeler, “On recognizing ‘law without law’, ” Am. J. Phys. 51, 398(1983).

    Google Scholar 

  21. J. S. Bell, “Against measurement, ” in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990), pp. 17-31.

    Google Scholar 

  22. K. Gottfried, Quantum Mechanics (Benjamin, New York, 1966).

    Google Scholar 

  23. R. B. Griffiths, “Consistent resolution of some relativistic quantum paradoxes, ” Phys. Rev. A 66, 062101(2002).

    Google Scholar 

  24. L. Hardy, “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories, ” Phys. Rev. Lett. 68, 2981(1992).

    Google Scholar 

  25. N. D. Mermin, “Quantum mysteries refined, ” Am. J. Phys. 62, 880(1994).

    Google Scholar 

  26. T. A. Brun, “Quasiclassical equations of motion for nonlinear Brownian systems, ” Phys. Rev. D 47, 3383(1993).

    Google Scholar 

  27. T. A. Brun, Applications of the Decoherence Formalism, Ph.D. thesis, California Institute of Technology, 1994.

  28. R. Omnès, “Quantum-classical correspondence using projection operators, ” J. Math. Phys. 38, 697(1997).

    Google Scholar 

  29. M. Redhead, Incompleteness, Nonlocality, and Realism (Oxford University Press, Oxford, 1987).

    Google Scholar 

  30. N. D. Mermin, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, R.B. Probabilities and Quantum Reality: Are There Correlata?. Foundations of Physics 33, 1423–1459 (2003). https://doi.org/10.1023/A:1026092212820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026092212820

Navigation