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Abstract We examine a notion of an elementary particle in classical physics and
suggest that its existence requires non-trivial homotopy of space-time. We show that
non-trivial homotopy may naturally arise for space-times in which metric relations are
generated by a canonical distance form factorized by aWeyl field. Some consequences
of the presence of a Weyl field are discussed.
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1 Introduction

Classical physics describes motion of particles under an action of classical fields.
Classical particles are usually assumed to be structurless material points. Classical
fields are produced by charges that attract or repel each other. It is conventionally
assumed that elementary charges (or simply elementary particles) of classical physics
are point-like and have vanishing spatial sizes. (This follows from the fact that classical
solutions with charge distributed in some area of space are normally not stable. Hence
unknown additional forces are needed to stabilise elementary particles if they were to
occupy some finite region in space.) The classical picture therefore contains a space
filledwith delta-like charges and fields described by field potentials everywhere except
the points of charge singularities [1].

It is also widely accepted that classical fields represent connections in a fibre bundle
associated with a particle representation transforming under Lorentz and a local sym-
metry group of particle interactions [2]. There exists an asymmetry in dealing with
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particle representations and connections in classical physics: connections enter the
scheme of classical physics (as field potentials) while particle representations (fibre
co-ordinates onwhich these connection in an appropriate associated form act) often do
not. For example, electromagnetic four-potential (that represents connection in a space
of complex particle representations) is an element of classical physics, while complex
particle representations are not. As a result, fields lose their geometrical meaning in
classical physics and appear to be ad-hoc assumptions of classical dynamics. In this
light, it seems natural to eliminate the asymmetry and restore geometrical meaning of
classical fields by adding an internal structure to a classical particle.

Recently we have discussed classical dynamics containing particle representations
that transform under Lorentz and local symmetry groups of particle interactions [1].
We have assumed that every point of our space-time has its own copy of the additional
particle coordinates (describing a state of the particle) and treated the space of classical
physics as a fibre bundle. The local co-ordinates of the (associated) fibre bundle were
(x , |ϕ〉), where x are the usual space-time co-ordinates and |ϕ〉 are thefibre co-ordinates
(that transform under representations of the Lorentz and local symmetry groups).

We assumed that locally physics is simple and the fibre space of one point of
space-time can be connected to that of an adjacent point by a linear connection. As
a result, field potential plays a role of a connection in the world fibre bundle while
a classical particle appears as a non-trivial state of the world fibre bundle described
by a globally non-trivial cross-section. Since any non-trivial state of a world fibre
bundle is accompanied by a non-trivial connection it implies that a classical parti-
cle is surrounded by fields and has some sort of singularity which is localised in
space.

In Ref. [1] we “simplified” a classical particle to one point and assigned a particle
representation vector to a point of its field singularity. The first conclusion of this
approach was the fact that the conventional definition of geodesics should be mod-
ified when applied to classical particles with an internal structure. We managed to
reformulate geodesics in terms of the parallel transport of the particle state vector |ϕ〉
(instead of the parallel transfer of a tangent vector) under the price that the distance
on a manifold, ds, should be determined by an eigenvalue of some operator-valued
distance one-form θ̂ : θ̂ (dx) |ϕ〉 = ds |ϕ〉 (instead of the conventional metric two-
form). The new definition of geodesics is as follows: geodesic is a curve such that the
parallel transport of the initial representation vector |ϕ〉 to any point along the curve
yields an eigenvector of the operator-valued distance form θ̂ (ẋ) taken at this point (in
accordance with the original definition where a geodesic is defined as a curve such
that the parallel transport of a tangent vector along the curve gives a displacement on
the manifold via the canonical forms θ i ), see [1–3].

It turned out that the conventional metric two-form can be replaced by the lin-
ear operator one-form defining the same metrical relations. This linear operator was
referred to as the canonical distance form (or simply the distance form) and has an anal-
ogy with the Finsler’s metric. The action principle based on the distance form readily
gives a description of classical particles with spin subject to Yang–Mills forces. The
particle state |ϕ〉 plays the role of the classical particle momentum in this description.
We have shown that motion of spinor particles in this formulation of classical physics
is affected by the space-time curvature.
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In case of the four-dimensional Lorentz space-time (which is an area of low energy
particles and fields) the canonical distance form can be written as θ̂s = γ̂aθ

a (where
γ̂a are the Dirac matrices and θa are canonical forms of linear connection taken with
respect to an orthogonal basis [1], θa = θaμdx

μ and θaμ are vierbein fields) and the low-
est bi-spinor representation consists of the direct sum of the left and right components.
There exist very strong experimental indications that the left components of leptons
(which has been used for measuring of distances) transform as SU(2) doublets (La)

while the right components are SU(2) singlets (R). For example, the Standard Model
requires the following local Yang–Mills symmetry group G=SU(3)×SU(2)L×U(1)Y .
Many other theories of grand unification also suppose different actions of SU(2) group
on left and right particles. In this case the distance form written as θ̂s = θ̂RL ⊕ θ̂LR
connects together spaces of different irreducible representations of SU(2) group (Lα

is a SU(2) doublet and R is a SU(2) singlet, α = 1, 2) which is forbidden by Schur’s
lemma [4].

In order to remedy the situation by simplestmeans,we have introduced an additional
scalar field φα which transforms as SU(2) doublet and glues spaces of left and right
components of orthogonal representations. Then, the simplest canonical distance of
our space-time is

θ̂ = θ̂RLφα† ⊕ φαθ̂LR =
(
0 φαθ̂LR

θ̂RLφα† 0

)
. (1)

Eigenvalues of the distance form (1) can be found as

θ̂

(
Lα

R

)
= dλ

(
Lα

R

)
(2)

and yield the following length element dλ:

dλ2 = ∣∣φα
∣∣2 ηabθ

aθb = ∣∣φα
∣∣2 gikdxi dxk . (3)

It is clear that the field φα scales the distance measured with the help of the particle

that transforms as

(
Lα

R

)
. The idea to introduce a scaling factor into the length interval

is not new and was proposed some years ago by HermanWeyl in a brilliant conjecture
later transformed into the modern gauge theories [5]. The scalar doublet φa will be
referred to as the Weyl field. This gives an action for a classical electron as:

S =
∫ [

〈ϕ| θ̂ |ϕ〉 + i

2
χ(〈ϕ | ∇ϕ〉 − 〈∇ϕ | ϕ〉) − dλ(〈ϕ | ϕ〉 − 1)

]
,

where |ϕ〉 =
(
Lα

R

)
, ∇ = d +

(
ω̂LL 0
0 ω̂RR

)
+ �̂ +

(
ω̂YM
LL 0

0 ω̂YM
RR

)
(ω̂YM

LL , ω̂YM
RR are

the Yang–Mills connections for the left and right spinor components, �̂ is the Weyl
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form) and 〈ϕ| = ( R̄qα† L̄αqα ) is the contragradient counterpart of |ϕ〉 =
(
Lα

R

)

with qα being an SU(2) vector [1].
The purpose of this paper is to provide two additional arguments in favour of the

proposed distance form (1). Namely, we show that the distance (3) helps to solve
problems of particle existence and singularities, discussed in Sect. 2, and particle
energy and divergences, discussed in Sect. 3. We briefly discuss some other useful
properties of the Weyl field in the Appendix.

2 Particle Existence and Singularities

Created by the works of Weyl, Einstein, Cartan, Yang and Mills, gauge theories form
the basis of the modern physics. They appeal to natural knowledge that locally physics
is simple (there exists a local trivialisation of the world fibre bundle). Mathematically,
they reflect the fact that any reasonable dynamics produces a flow which can be paral-
lelised in appropriate coordinates (e.g., see the Darboux theorem [6]). Gauge theories
describe behaviour of fields and motion of test particles extremely well. However,
they lack one important ingredient, namely, a source of fields. A source of the field (a
particle) cannot be described in a framework of a gauge theory in a simply-connected
four-dimensional space-time. This follows from the following theorem:

Any principal fibre bundle with a homotopically trivial base M (or the structure
group G) is trivial.

Mathematical details connected with this “triviality” theorem are given in Ref. [7],
see Corollary 11.6. (Here we only note that M should be normal locally compact and
such that any covering by open sets is reducible to a countable covering. A manifold
is called homotopically trivial if it is contractible on itself to a point. A trivial fibre
bundle is defined as the product bundle or, equivalently, as the one that allows a global
cross section.) The manifold of our space-time is topologically identical to R4 and is
homotopically trivial. As a result, the triviality theorem forbids our space-time to have
non-trivial fibre principal bundles which could be associated with particles. (Here by a
trivial fibre bundle we imply one that allows a global cross section.) It is easy to show
that in a trivial fibre bundle charges are distributed in the space (the total charge in a
volume goes to zero when the volume goes to zero) and hence elementary particles
would require additional forces to stabilize them.

Therefore, if we define a particle—a source of the gauge field—as a non-trivial
fibre-bundle over space-time manifold (with regular behaviour at infinity) and then
assume that the space-time is represented by R4, we have to conclude that such a
particle is impossible due to basic theory of fibre bundles. (It worth noting that all
experimental observations so far indicate that particles are indeed non-trivial fibre
bundles over space-timemanifold that do not permit a global cross section.) Even with
milder restrictions on what particles are, in classical physics particles are impossible,
e.g., due to infinite energy associated with particle-like solutions [8] while in quantum
physics particles are impossible, e.g., due to quantum triviality (a classical theory
describing interacting particles becomes a trivial theory of non-interacting particles
when realised as quantum theory [9,10]).
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Hence, in order to introduce classical particles, we have to either live with the
presence of singularities and infinite fields, which is not desirable, or accept that our
space-time is not homotopically simple. (In parenthesis we note that associated fibre
bundles could be non-trivial even over homotopically simple bases, but these bundles
would still lead to distributed charges and hence cannot be used to describe classical
elementary particles. Also, we assume here that the field distribution is regular at
infinity which excludes instanton-like or monopole-like solutions, where the limit of
the field could be different for different wordlines approaching infinity.)

Indeed, by removing a point from R4 (R4 is topologically identical to space-time),
we obtain a manifold R4\R0 which is topologically equivalent to the product S3 × R1

and which allows non-trivial fibre bundles (π3(S3 × R1) = π3(S3) = Z , where π3
is the homotopy group [7]). These fibre bundles could be associated with “photons”
of the field because they would have only one singular point in space-time: a point
of a “photon” creation or absorption. Analogously, by removing a singular line from
R4, we create a manifold R4\R1 topologically equivalent to S2 × R2 which is also
non-trivial (π2(S2 × R2) = π2(S2) = Z). Fibre bundles over this manifold could be
related to a particle and the singularity line R1 can be regarded as a particle world line.
Finally, by removing a singular plane from R4, we construct a manifold R4\R2 which
is equivalent to S1 × R3 with π1(S1 × R3) = π1(S1) = Z . Fibre bundles associated
with this manifold could be linked to the Dirac monopole or vortices since they would
have a singular line in three-dimensional space.

The triviality theorem is a generalisation of a well-known physical fact that the
charge density associated with an elementary particle is singular in classical physics
and that its charge is normally quantized. Hence an elementary particle cannot be
described by a trivial fibre bundle that generates finite charge density. Physicists
realised this problem a long time ago and various attempts have been made to develop
a singularity-free theory of matter [8]. These attempts did not lead to a consistent and
self-contained theory. As a result, several different approaches are now used to deal
with singularities.

The most common is a positivistic approach which admits that something is wrong
with a definition of an elementary particle but discards all difficulties. Physicist-
positivist states that the main task of science is to predict results of measurements.
Thus, scientists should not be interested in a detailed structure of nature as long as
we can calculate every measured quantity. The theory of renormalization (developed
by positivists) deals with infinities and singularities in exactly this vein. This is a
consistent and successful approach shared by many.

Another approach (proposed by Kaluza and Klein [11]) is based on additional
dimensions. This approach assumes that the base of our world fibre bundle is not
equivalent to simple R4 and introduces additional dimensions which are hiding from
our observations. Then, the base of the world fibre bundle could be topologically
non-trivial and hence non-trivial fibre bundles describing particles are possible. This
attractive view has its advocates in a number of modern string theories. However,
there is a difficulty connected with such an approach. Namely, using same arguments
of covering homotopy one can prove that [7]:

A fibre bundle P(M,G) with a homotopically simple baseM produced by a reduction
of a principal fibre bundle P(N,G) (M⊂N) is trivial.
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Thus, no matter how complex and non-trivial the fibre bundle is in the world with
additional dimensions it will be trivial after a reduction to R4 which is an area of low
energy particles and fields. It implies that additional compactified dimensions should
show themselves in observed space-time (in order to form a classical particle) for
which we simply do not have enough experimental evidence at present.

A third common approach consists in ignoring problems connected with sources of
fields on the basis that classical theory is not satisfactory anyway and quantum physics
is needed for adequate description of our world. However, this approach just moves the
problem of singularities deeper and deeper into quantum physics (from non-relativistic
quantum mechanics to relativistic one, then to quantum theory of fields and then to
a string theory) and finally leaves it without an answer at the point where we are not
sure what are space-time, fields or particles. Also, this line of considerations fails for
the Einstein theory of General Relativity, which can be formulated as a self-consistent
classical gauge theory, where the problem of singularities attracted a lot of attention
through the works of Penrose and Hawking [12].

The length element (3) described in introduction provides a natural way of solving
the problem connected with particle existence in classical physics. Indeed, the Weyl
field described in Sect. I scales the measured distance and therefore whenever the
modulus of the scalarWeyl field goes to zero (|φα| = 0) themetric relations (and hence
any other relation) are not defined. It is important to emphasize that parametrization
of space-time and measurements of space-time are two different physical notions.
The parameters (x , t)—that we normally use to map space-time—are just parameters.
They become space-time continuum only if we devise a way to measure them. We
suggested [1] that distance/separation should be measured as an eigenvalue of the
canonical distance form (instead of the metric two-form) scaled with the Weyl field.
Hence some points of the parameter space (where theWeyl field goes to zero) become
unreachable for themeasurements and therefore the space-time—the base of the world
fibre bundle—is not simple R4 in the presence of regions with the zero modulus of
the Weyl field. Such a base possesses non-trivial homotopy and hence non-trivial
fibre bundles (particles) over it are possible. Therefore, Weyl formalism allows one
to solve the physical problem of how to model particles and provides a “dynamical”
explanation for the particle existence.

In accordance with the discussion above, a fibre bundle in which the Weyl field φa

is zero at some point could be identified with a “photon” of the field, a fibre bundle
which contains a region where the Weyl field equals zero along some line could be
identified with a particle and a fibre bundle with |φα| = 0 over some plane in R4could
be identified with a monopole or a vortex. We still need a homotopically non-trivial
group in order to generate a non-trivial fibre bundle. The local symmetry group G =
SU(3) × SU(2)L × U(1)Y after retracting the remaining electromagnetic symme-
try Uem(1) is good enough to ensure non-trivial particle-like principal fibre bundles
because π2(G/Uem(1)) = π1(Uem(1)) = Z . These bundles even have a topological
charge.

It is worth stressing that particles in this picture appear at places where the magni-
tude of theWeyl field goes to zero. This is in a stark contrast with standardHiggs-based
models where the mass of elementary particles is produced by a non-zero value of the
magnitude of Higgs field. A contribution of the Weyl field to particle energy is always
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non-zero which means that elementary particles which are described by a line where
the Weyl field is zero should have non-zero masses. The close physical analogy to the
proposed model of a particle is a vortex in type-II superconductors. The “universe” of
superconductor is described by a wave-function of Cooper-pair condensate [13]. This
universe allows non-trivial fibre bundles with the structure group U(1) whenever the
condensate density is zero in some region of superconductor. Due to symmetry, these
fibre bundles are topologically stable when a region of vanishing condensate density
is a line in R3 (or a plane in R4).

3 Particle Energy Divergences

The distance form (1) and the length element (3) also ensure that the energy connected
with particle singular regions is finite. Indeed, according to (3), the volume element is
proportional to |φα|4 which goes to zero and cancels an apparent divergence of energy
of fields generated by the particle in the places of singular regions where |φα| → 0.

It is necessary to note that the tetrad defined by the distance form (1) is orthogonal
but is not orthonormal. We can rewrite (1) as

θ̂ = ˜̂
θRL

φα†

|φα| ⊕ φα

|φα|
˜̂
θLR (4)

and the length element as
dλ2 = ηabθ̃

a θ̃b, (5)

where θ̃a(φα) is an orthonormal tetrad that depends on theWeyl field. It is a canonical
form of the length element of classical physics except for our knowledge that the tetrad
is also defined by some scalar field. If we assume that this dependence is absent and
the field φα is constant, we return to the case where particle fibre bundle are impossible
and energies connected with “manufactured” particles are infinite.

There exists a good reason for moving the Weyl field φ into a “geometry” part of
the action and writing the length element in the form (2) conventional for classical
physics. Let us consider a generic example of a scalar field φ that defines the length
element coupled to a gauge field of connection A (we assume for simplicity that the
contribution from fermionic fields can be neglected). The field action for this system
could be written as

S = Sφ + SA =
∫ [

χDφ† ∧ ∗(Dφ) + V (φ)dη
]

+ 1

4

∫
trF ∧ ∗F, (6)

where χ is a constant, V (φ) is a potential of the field φ, dη is the volume element,
F = DA is the field strength (curvature) and the star denotes the Hodge operator.
From (3) we get the following set of Maxwell equations:

D ∗ F = ∗ j
D ∗ j = 0
DA = F
DF = 0

, (7)
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where δASφ = ∫
trδA ∧ ∗ j ( j is the current). Suppose that we know the solution φ of

the system (4). Introducing a decomposition φ = T (g)φ0 |φ| (T (g) is an element of
the local symmetry group and φ0 is a fixed normalised vector), we find that the current
associated with φ, is distributed in space since in general |φ| is not constant.

We note, however, that there is no a clear way of separating a contribution from
the Weyl field to an experimentally measured length interval. Also, this contribution
could be different in different points of space-time reflecting different choice of units
for theWeyl fields in different points. Hence, we have reasons to believe that the action
for the Weyl field φ should be scale invariant and allow local conformal symmetry.
The arguments in favour of a conformal invariance of underlying physics have been
already suggested by Weyl himself [5], see other works in the review [14]. Let us,
therefore, consider a generic conformal invariant action given by [14]

S =
∫ [

χDφ† ∧ ∗(Dφ) − |φ|2
2

Rab ∧ ηab + �

4
|φ|4 dη

]
+ 1

4

∫
trF ∧ ∗F, (8)

where Rab is the Ricci tensor. The action for the Weyl field φ contains the kinetic

term
∫

χDφ† ∧ ∗(Dφ), the Penrose–Chernikov–Tagirov term
∫ |φ|2

2 Rab ∧ ηab and
the term proportional to the total volume of the space-time

∫
�
4 |φ|4 dη. In this con-

formal case, we can use a “geometry” trick and move a problem of |φ| variation into
the coordinate part of the action. Instead of

δASφ =
∫

trδA ∧ ∗ j (9)

we write

δASφ =
∫

trδA ∧ ∗̃ j, (10)

where the Hodge operator of the new metric relations is produced by the conformal
group transformation of φ̃ = Cφ with

C = |φ0|
|φ| . (11)

Under this conformal transformation, the transformed Weyl field is given by φ̃ =
T (g)φ0 whenever |φ| 
= 0. Hence the variation of this field in space outside the regions
of |φ| 
= 0 can be removed locally by the gauge transformation T (g) resulting in the
zero current. In this case Maxwell equations well outside the regions of |φ| = 0
would have a simple solution A = T−1dT + � + A0, where A0 is the solution of
the homogeneous equation D ∗ F = 0 in R4 with exclusion of the points |φ| = 0
and � is the Weyl field that corresponds to the conformal group transformation of
φ̃ = Cφ. This implies that particles and their gauge field are formed near the regions
of |φ| = 0 in agreement with the fact that the base of fibre bundle is not topologically
simple when the regions of |φ| = 0 are present. We arrive at almost a classical picture
of “singular” particles with particle world lines being the lines of |φ| = 0. Again, we
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notice some analogywith theory of superconductivity, where a singular-freeGinzburg-
Landau description of a vortex becomes a singular London description near the region
of the zero line of the condensate wave-function if we assume that the value of the
modulus of the condensate wave-function is constant and then forget about this choice
[13].

The “geometry” trick simplifies the field part of the action (3) considerably. Let
Fm be a part of the field strength produced by m-region of |φ| = 0 and Am is the
corresponding part of the connection. Then we have (in new coordinates)

∫
trF ∧ ∗F =

∑
m,n

∫
trFm ∧ ∗Fn =

∑
m,n

∫
trDAm ∧ ∗Fn

= −
∑
m,n

∫
trAm ∧ D ∗ Fn

= −
∑
m,n

∫
trAm ∧ ∗ jn = −

∑
m

trAm Im −
∑
m,n
m 
=n

trAm In,

(12)

where Im is a linear current connected with jm . (Integrations by parts and motion
equations have been used.) The field part of the action is now represented as a local
action connected with regions (lines for simplicity) of zero modulus of the Weyl field.
The self-interaction term trAm Im is finite and makes contribution to kinetic energy
contributing to themass of a particle. The term trAm In(m 
= n) describes an interaction
between regions of |φ| = 0. (The wrong sign is connected with the fact that we
choose for connection A anti-Hermitian operators.) To complete the classical picture
we should forget about the difference between the new and the old metric relations.
This can be justified when the places of the Weyl field variations are well localised.
It is worth noting that the Weyl field would provide Poincare stresses introduced with
an idea to stabilize elementary particles.

The example (8)–(12) is a simple illustration of howclassical physics can be realised
due to non-trivial topology of a space-time provided by the Weyl field in conformal
invariant theory. The previous attempt to explain classical physics using non-simply
connected space-time is described in [15]. The possibility that the Weyl field can
replace dynamical Higgs field was studied, e.g., in [16]. In a more complicated sce-
nario, a separate dilaton field could be added to the theory (or the modulus of Weyl
field may be regarded as a dilaton field), see references in [14]. The presence of an
additional Higgs field (that would generate masses of particles and should have much
higher expectation value than the Weyl/dilaton fields) may be unnecessary as masses
of particles could be generated by self-interaction term i.e., by the energy of the field
produced by the particle—the point of view shared by Poincare. It is worth noting
that the process of particle-antiparticle annihilation provides a strong indication in
favour of this hypothesis. By doing Lorentz transformation of a particle-like solution
where the Weyl field equals to zero along the world line (t , 0) and using the Lorenz
invariance of the theory, we can easily check that the relativistic energy-momentum
relation holds in both global (as the integrals over the space) and local (as the property
of the particle world-lines). The mass of the particle-like solution is proportional to
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the total energy of the system. Different masses of different particles could correspond
to different structures of nodes of the Weyl field.

The fermion part of the action has some subtlety. The conform invariant action can
be written as

S = Sψ + SA =
∫ [

ψ̄ ∗ θ̂s ∧ Dψ + Dψ̄ ∧ ∗θ̂sψ
]

+ 1

4

∫
trF ∧ ∗F (13)

with the current
J = −iψ̄ ∗ θ̂sψ. (14)

When space-time has nontrivial topology produced by regions of zeros of the Weyl
field, non-trivial associated fibre bundles of spinor fields are possible. Here, the geom-
etry trick can be used to make the density of the charge being constant in the space
(in agreement with Dirac “sea of electrons”). As a result, the energy of a fermion
will be produced by the energy of self-interacting fields plus small additional energy
connected with spin degree of freedom (which corresponds to deviation from the uni-
formly charged space.) The field contribution to the total energy in this case can still
be written in a simple form (12).

4 Conclusions

We have shown that the canonical distance form factorized by the Weyl field suggests
a way to solve the problem of particles existence in gauge theories. In this approach,
elementary particles represent non-trivial associated fibre bundles realised around
regions of space-time where the modulus of the Weyl field is zero and the metric
relations are not defined. We have discussed how a conformal invariant theory of the
Weyl field provides a background for the classical treatment of particles.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Here we briefly discuss some other useful properties of the Weyl field in a confor-
mal invariant theory. First, we observe that the Weyl field is bosonic field, which
follows from the fact that (1) is a scalar with respect to Lorentz transformations. It
is worth noting that normally it is gauge fields that are bosonic (which follows from
the Lorentz invariance of T̂a Aa

μdx
μ and the fact that dxμ is transformed by bosonic

(1/2,1/2) Lorentz representation [17]), while elementary fields of matter are fermionic.
Therefore, if the Weyl field does exist it might be a composite field (in an analogy
with a superconductive condensate). Second, the conformal invariant action (8) may

naturally provide Einstein gravity (the term |φ|2
2 Rab∧ηab) as well as the cosmological
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constant (the volume term �
4 |φ|4 dη), which was noticed by many authors [14]. Com-

bined together, these two terms could yield spontaneous symmetry breaking [18] and
a nonzero mass for an elementary particle (that is not a gauge particle) in the presence
of non-trivial curvature. Third, the curvature of space time is connected to the presence
of matter and hence to density of regions with zero modulus of the Weyl field. The
particle creation and annihilation and their dynamics is an evolution of zero-Weyl-field
regions.
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