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Abstract 

Philosophers have long tried to understand scientific change in terms of a dynamics of revision 
within ‘theoretical frameworks,’ ‘disciplinary matrices,’ ‘scientific paradigms’ or ‘conceptual 
schemes.’  No-one, however, has made clear precisely how one might model such a conceptual 
scheme, nor what form change dynamics within such a structure could be expected to take.  In 
this paper we take some first steps in applying network theory to the issue, modeling conceptual 
schemes as simple networks and the dynamics of change as cascades on those networks.  The 
results allow a new understanding of two traditional approaches—Popper and Kuhn—as well as 
introducing the intriguing prospect of viewing scientific change using the metaphor of self-
organizing criticality.   

Introduction 

The attempt to understand science, its dynamics, and how it changes might call for any of 
various levels of analysis—and must ultimately include them all.  A psychologist might approach 
the issue with an eye to creativity and conformity.  An economist might approach the topic in 
terms of incentives for research, for innovation or exploitation of existing resources.  A 
sociologist might think of the task as primarily a social study, concentrating on research 
communities, structures of journal communication, and academic procedures for advancement 
and funding.   

Philosophers have typically thought of particular areas of scientific research as characterized by 
‘theoretical frameworks,’ disciplinary matrices,’ ‘scientific paradigms,’ or ‘conceptual schemes’ 
at a particular time, with scientific change to be understood as changes in those conceptual 
structures.  It is presumed that such schemes exist psychologically in some individual head, that 
they are shared and changed through the social dynamics of science, and that change may follow 
a form of both individual and social incentive.  The philosopher’s level of analysis, however, is 
the ‘theoretical framework,’ ‘disciplinary matrix,’ scientific paradigm,’ or ‘conceptual scheme’ 
itself, envisaged as something like an abstract object.  The philosopher’s presumption is that at 
least major aspects of scientific change will be understandable as broadly logical and boundedly 
rational changes in the scheme itself, though those changes play out in epistemic economics, 
through psychological mechanisms and in a social dynamics.  Under pressure of new evidence, 
theoretical frameworks and scientific paradigms can be expected to change.  The philosopher’s 
goal, at that level of analysis, is to better understand how. 

The work we offer here triangulates from familiar work by the two most influential and familiar 
philosophers of science of the 20th century: Karl Popper and Thomas S. Kuhn (Popper 1959, 
1963; Kuhn 1962, 1969, 1970).  If the influence of an academic discipline is measured by the 
extent to which its concepts are incorporated within the wider culture, 20th century philosophy of 
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science can boast of only two such successes.  The influence of logical positivism, logical 
empiricism, Carnap, Hempel, Goodman, Quine and Bayesian epistemology has been largely 
intra-discipline (Carnap 1966, 1969; Hempel 1966; Goodman 1955; Quine 1951, 1953; Bovens 
& Hartmann 2003).  Only two conceptual configurations have crossed disciplines to enter wider 
scientific discourse and the discourse of society at large.  Both of those influential philosophical 
achievements are theories of scientific change.   

Popper speaks of hypothesis and observation as always presupposing “a frame of reference: a 
frame of expectations: a frame of theories…a theoretical framework” (Popper 1963, p. 62).  
Kuhn is speaking at the same level of analysis when he refers to a ‘disciplinary matrix’ … a set 
of “shared beliefs, values, instruments, and techniques” (Kuhn 1969, p. 174).  His other term for 
a ‘disciplinary matrix,’ of course, is a ‘scientific paradigm.’  Popper and Kuhn clearly agree that 
in order to understand the dynamics of science we need to understand change within theoretical 
frameworks or disciplinary matrices: the structure and change of scientific paradigms.   

The basic idea of paradigms has a long and distinguished history.  The idea that science and 
cognition in general operate not in terms of isolated elements but a system is as old as Plato’s 
logos in the Theatetus, Aristotle’s scientia in the Posterior Analytics, the Medieval summa, and 
explicit attention to system in Descartes, Malebranche, Spinoza, Newton, and Leibniz. The 
concept continues beyond Kuhn in Imre Lakatos’s research programmes (Lakatos 1968), Larry 
Laudan’s research traditions (Laudan 1978), Willard van Orman Quine’s ‘webs of belief’ (Quine 
& Ullian 1978) and widespread contemporary references to ‘conceptual schemes,’ ‘conceptual 
frameworks,’ and ‘scientific worldviews’  

Despite this long philosophical tradition, thinking in terms of paradigms, theoretical frameworks, 
and conceptual schemes, however, no-one in the philosophical tradition has attempted to model a 
conceptual scheme or track its dynamics.  How precisely might one model a paradigm?  How 
might one track, even theoretically, the dynamics of paradigm shift?   

Our attempt here is to take some first steps by putting the tools of complex systems and network 
theory in particular to use in philosophy of science.  The science of complexity, we argue, carries 
important philosophical lessons regarding the complexity of science.   

I.  Scientific Paradigms: A First Model 

How might one model a paradigm?  As first step, consider a set of claims—the claims of a 
scientific theory, or of linked scientific theories within a discipline.  Those claims together 
compose the theoretical framework or scientific paradigm operative at a particular time.  But of 
course those parts of a paradigm don’t float independently: the claims of such a framework are 
linked by broadly logical connections.  Some claims follow from others.  Some are read as 
evidential instantiations of others.  Some are read as theoretical generalizations.  It is a set of 
claims bound by connections of mutual support that constitute a scientific paradigm.  It is the 

intuition that we can model scientific paradigms as networks that guides our work throughout.   

We start with a model of mutual support within elements of a paradigm using the simplest 
possible model: an undirected graph.  With even that simple picture, however, we can model two 
clear aspects of scientific dynamics.  Science grows.  And science changes.   

Consider a set of nodes with no connections.   Those are disparate observations, perhaps, 
hypotheses and conjectures, but have not yet been integrated into a systematic body of theory.  
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As a science develops, those claims become further integrated.  They start to form a larger 
whole—something that begins to deserve the name of science—the conceptual system that 
constitutes a paradigm.   That process of progressive integration, long observed in historical 
episodes of science, can be modelled by progressively adding links within our model.   As a 
discipline matures its integration increases: the network grows new links (Fig. 1). 

   

Fig. 1  Modeling progressive integration within a network 

But of course there are other aspects of scientific change.  Theories not only rise but fall.  
Paradigms form, but are also liable to collapse: the phenomenon of paradigm shift.   

II.  Modeling Popperian Falsification 

How does science change?  On the Popperian picture, science is a matter of conjectures in search 
of refutations.  Targeting advocates of Freud and Marx, Popper argues that finding apparent 
confirmations or verifications of a set of beliefs is all too easy.   With Einstein and the Eddington 
expeditions as a favored example, Popper argues that the mark of genuine science is not safety in 
vagueness but risk in precision.  The fundamental mechanism of scientific changes is crucial 
experimentation in which conceptual systems are falsified (Popper 1959, 1963). 

In a Popperian model, we let all nodes of our modeled conceptual system start with an 
‘established’ value: 1, for convenience.  But falsifications happen.  For modeling purposes, we 
suppose falsifications occur at random, somewhere in the conceptual structure.  Because a 
Popperian ‘theoretical structure’ is a structure of linked nodes, those falsifications may well 
spread.  If an observational consequence of a given claim is falsified, it is not merely that claim 
but any claim that entails it—any higher elements of theory—that are falsified as well.  
Falsification can be expected to spread through the conceptual structure (Fig. 2).   
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Fig. 2  Spreading falsification within a Popperian model 

What can we expect scientific change to look like on the Popperian picture?  That is a question 
within the philosophy of science.  A model allows us to make it more specific.  With a 
theoretical framework or conceptual system modeled as an undirected network, how much of 
that network can we expected to be affected by a random falsification?  How often and how large 
can we expect falsification cascades to be? 

The basic question is one in philosophy of science.  But with a model in hand, it is complex 
systems and specifically network theory that offers us an answer.  The sizes of falsifiability 
cascades in a Popperian network will depend on the connectivity of the network—its 
characteristic degree or average number of links per node—and will depend on characteristic 
degree in very interesting ways.   

We start with data from simulation, turning to the analytic background for explanation. 

We start with a Popperian network of 50 nodes in which the average degree of our conceptual 
nodes is less than 1.  We consider 1000 random networks, each with characteristic degree—
average node degree—of .5.  Within each of those networks we drop a falsification at a random 
point in the structure.  We then track the sizes of ‘cascades’: the number of points out of 50 that 
must fall by Popperian falsification spreading from that initial spot (Fig. 3).   
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Fig. 3  Distribution of cascade sizes in Poppereian networks of characteristic degree 0.5 and 1.  
Note change in scale on y-axis.   

Falsification cascades on networks with a characteristic degree of 1 or less show something like 
a power law distribution.  That pattern changes dramatically for Popperian networks have greater 
integration, marked by higher characteristic degrees.  At a characteristic degree of 1.5 far fewer 
drops are isolated, with a distribution that clearly becomes bimodal.   At characteristic degree 2 
the pattern is even more noticeable.  Here the cascade sizes that are most frequent are cascades of 
41 or 42 nodes, with the bimodal distribution clearly dominated by large cascades at the right.  
At that degree of integration and above, the characteristic result of a single falsification is a 
widespread cascade throughout a major part of the network (Fig. 4).   
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Fig. 4  Distribution of cascade sizes in Popperian networks of characteristic degree 1.5 and 2.  
Note change in scale on y-axis.   

Although the specific application of these results lies within philosophy of science, the formal 
basis lies within classic network theory.  The formal basis for these results is the phenomenon of 
giant components, outlined in Erdös and Rényi’s classic work on random graphs (Erdös and 
Rényi 1959, Newman 2010).  Figure 5 shows the familiar graph of a phase transition to a giant 
component at a characteristic degree 1, with rapid increase in proportion of the network as 
characteristic degree increases.   
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Fig. 5  Formation of a giant component as percent of a network at different degrees within an 
undirected random network.  After Erdös and Rényi 1959.    

The crucial fact in application to philosophy of science is that a falsification in a Popperian 
network will affect all of the nodes to which it is connected.  If a ‘giant component’ occupies a 
certain proportion of the network, the probability that a single falsification will cascade through 
that proportion of the network will be the probability that an arbitrary node is within the giant 
component.  That probability, of course, will correspond to the proportion of the network 
occupied by the giant component.     

In order to gauge the potential size of falsification cascades on Popperian conceptual networks, 
in other words, all we really need to know is the characteristic degree of the network in question.  
Results correspond directly to the graphs of cascade sizes I’ve shown you.  Another aspect of 
this analysis, to which we will return in section VI, is that the proportion of the network occupied 
by a giant component is scale free, independent of network size n (Erdos & Renyi, Newman, 
Watts?) 

III.  Modeling Kuhnian Dynamics 

Despite the fact that Kuhn and Popper are often portrayed as antagonists, Kuhn writes quite 
explicitly of all that they have in common (Kuhn 1970).  But Kuhn emphasizes that scientific 
change is rarely if ever a matter of decisive falsification on the basis of a single crucial 
experiment.  A single anomaly—an unexplained phenomenon or apparent piece of counter-
evidence—is never fatal.  In 1827 Robert Brown noticed through a microscope that grains of 
pollens dance on the surface of water.  But Brownian motion remained simply an unexplained 
curiosity until incorporated into theories of molecular motion (Perrin 2005).  Copernican theory 
predicts stellar parallax: two closely separated stars ought to appear closer to each other at some 
times than at other times.  But from Copernicus’s time well into the nineteenth century no stellar 
parallax was observed—an anomaly that was shrugged off using an auxiliary hypothesis 
regarding the limits of available telescopes (Curd 1982).   
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Established paradigms resist change, maintained by explaining away apparent counter-evidence, 
impugning the expertise of critics, building ad hoc supplementary hypotheses.  But anomalies 
build up.  No single anomaly is fatal.  But anomalies can accumulate in such a way as to weaken 
confidence in one part of a theory, or one aspect of a paradigm.  That in turn can weaken 
confidence in another part of the theory or paradigm.  The build-up of anomalies across different 
areas of a paradigm can lead to crisis, signaling an imminent paradigm shift.   

We can model the Kuhnian picture of scientific change by replacing simple values of 1 and 0 for 
our nodes with thresholds: the number of accumulated anomalies at which a specific component 
of the network will be abandoned.  The failure of one portion of a paradigm—a node or set of 
nodes—will pass the pressure of anomaly to other portions.  Often, as Kuhn notes, an anomaly 
may remain localized, without affecting the structure as a whole.  But in some contexts there will 
be a cascade of anomalies across the structure: the mark of a paradigm shift.   

We assign random node thresholds between 1 and 5, and then begin dropping ‘anomalies’ at 
random.  In Kuhnian fashion, anomalies accumulate, so we retain the same network throughout a 
consecutive sequence of drops.  When a node reaches its threshold, it drops anomalies to each of 
the other nodes to which it is connected.  The result may be simply a small number of anomalies 
distributed locally.  But under some conditions node after node may reach anomaly threshold, 
producing a cascade of anomaly-forced change across the network. 

It should be emphasized that a Kuhnian model differs in major ways from the Popperian.  There 
we dropped a single falsification on 1000 different networks.  Here we drop 1000 cumulative 
anomalies on a single network, though we then average results over 100 such networks.   

There are a number of variations possible in a Kuhnian model.  Here we offer two.  In a first 
case, when a node reaches its full threshold value it passes a single anomaly to the nodes to 
which it connected (one anomaly passed).  In this form of the model we measure a cascade in 
terms of the number of nodes that reach full threshold from an anomaly drop on a random node 
(a full tipping cascade).  We zero-out a node’s anomalies when it has ‘discharged’ an anomaly 
down the line. It becomes a new node, as it were, in a new paradigm. 

Paradigm shift cascades on a Kuhnian network, like falsification cascades on a Popperian 
network, will depend on the integration of the network. Results for a random network of degree 1 
are shown in Figure 6.  Most single anomalies will fail to tip even that node on which they drop.  
The highest number of drops will result in a single tip, with fewer that result in a cascade that 
tips two nodes, fewer still that tip three.  The result is a power law distribution at low node 
degree very much like that for Popperian networks.   
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Fig. 6  Cascades of fully tipped nodes in a Kuhnian network of degree 1, with 1 anomaly passed 
to neighboring nodes at threshold. 

Results with the same mechanism for Kuhnian networks of higher degree are shown in Figure 7.  
Despite the fact that the Kuhnian model uses a very different mechanism than the Popperian—
1000 successive anomalies dropped on single networks, rather than single falsifications dropped 
on 1000 different networks—the qualitative character of cascade distributions is very similar.  At 
low degree the pattern shows a power law.  At higher degree a clear bimodal pattern emerges, 
with global cascades across a large portion of  the network.   
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Fig. 7  Cascades of fully tipped nodes in a Kuhnian network of degree 1, with 1 anomaly passed 
to neighboring nodes at threshold. 

Patterns of global cascade in threshold networks roughly analogous to the Kuhnian model remain 
a topic of continuing research (Watts 2002, Chang & Lyuu 2009, Hurd, Gleeson & Melnick 
2017).  As Watts notes,  

Global cascades in social  and economic systems, as well as cascading failures in 
engineering networks, display two striking qualitative features: they occur rarely, but by 
definition are large when they do.  This general observation, however, presents an 
empirical mystery.  Both power-law and bimodal distributions of cascades would satisfy 
the claim of infrequent, large eents, but these distributions are otherwise quite different, 
and might require quite different explanations.  (Watts 2002, 5771) 

It is clear both here and in that continuing research that the clue to large cascades in threshold 
networks is not simply the formation of a giant component, as in the case of Popperian networks, 
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but the formation of a giant vulnerable component: a connected set of nodes all of which are a 
small component shy of threshold and thus ready to tip.  A clue to the qualitative similarity 
between Popperian and Kuhnian networks is the fact that the Popperian can be seen as a limiting 
case of the Kuhnian: a Kuhnian model in which node thresholds are set uniformly to 1. 

As noted, there are a range of variations possible in a Kuhnian model.  In a second variation we 
have nodes pass their full threshold values on saturation, rather than a single anomaly.  Here we 
measure a cascade as the number of nodes beyond the drop spot the contents of which are 
changed, whether or not those nodes reach full threshold.  With that different concept of 
cascades an intriguingly different pattern appears (Fig. 8).  
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Fig. 8  Cascades of affected nodes in Kuhnian networks, with full anomaly thresholds passed to 
neighboring nodes. 

In this form of the model distributions again start with a power law at low degree, with a cluster 
that moves slowly right in the pattern of a giant component.  At a characteristic degree of 4 and 
above, however, something importantly different occurs: a significant number of total or nearly 
total cascades at the extreme upper end.  These are cases in which virtually every node in the 
network is affected by a single drop.  At a characteristic degree of 6, moreover, those genuinely 
global cascades of change are among the most common.   

IV.  Modeling the History of Scientific Change: Popper and Kuhn 

We began by noting two aspects of scientific dynamics:.  Science grows, and science changes.  
The first element is an increasing integration of theory over time, modelable as an increasing 
characteristic degree of a conceptual network as links are added.  The second element is a 
dynamics of scientific change that we have seen to be dependent on degree of integration over 
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time: Popperian falsification cascades or Kuhnian paradigm shifts.  By bringing these two 
aspects together we can create models of science developing, crashing, and rebuilding over time.   

Here we take falsification for what it is: the failure of an entire set of links within a sub-network.  
On the advent of a cascade, we will treat all links involved in the cascade as broken.  As the 
process of scientific development proceeds, however, new links will be added.     

We start with a Popperian network of 50 nodes with characteristic degree 1, dropping a single 
falsification somewhere in the network at each iteration.  Links from ‘falsified’ elements are 
eliminated.  But at each iteration an additional random link is added somewhere in the network, 
representing the force of increased scientific integration.  We track the size of integrated 
scientific theory at a time by simply tracking the number of links in our model of a conceptual 
structure.  The development of science on that Popperian dynamics is shown in Fig. 9.   

 

Fig. 9.  Scientific change within a Popperian model over time.  All links within a falsification 
cascade are broken, with new links added at each iteration. 

Science builds and crashes.  On the Popperian picture the crashes are frequent.  The integrative 
links in our model only once peak above 20.        

In a similar model for Kuhnian dynamics, starting with same degree and number of nodes, we 
treat a build-up of anomalies beyond its threshold as ‘discrediting’ a node.  Links from that node 
disappear.  We replace it with a new node, with a new threshold, and again build up links.  
Figure 10 shows a Kuhnian picture of the development of science.   
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Fig. 10.  Scientific change within a Kuhnian model over time, using transfer of a single anomaly.  
All links from a node that reaches anomaly threshold are broken, with new links added at each 

iteration. 

The first thing to note in these two images is the difference in scale on the y axis.  In not to 20 
but to 50.  The crashes are both less frequent and more drastic.   

One might have thought that it would be the Popperian picture of scientific development as 
conjectures and refutations that would be more rugged.  But in fact it is the Kuhnian process that 
paints a more dramatic picture of progressive accumulations and dramatic crashes—the 
revolutionary collapses of massive paradigm shifts.    

V.  Directed Networks: A Second Model of Scientific Paradigms 

To this point we have envisaged conceptual systems and scientific paradigms as networks of 
mutual support between elements.  Hence the use of undirected graphs.  It can be argued, 
however, that a more realistic portrayal would use directed graphs instead.  We might think of a 
scientific theory, for example, as a complex of ‘if...then’ statements between observational 
phenomena and other conceptual elements.  On such a picture our links should be directed: if this 
holds, then this follows.  If this law applies, then this phenomenon is to be expected.  Given this 
as a cause, this can be an expected effect.   

Directed network models for conceptual systems have precedent in the long but varied history of 
conceptual maps.  In 1913, John Henry Wigmore developed a ‘chart method’ for analyzing 
evidence in a legal case (Wigmore 1913). Wigmore’s ‘chart method’ uses a directed graph (Fig 
11).  In the 1970s, Robert Axelrod sketched cognitive maps as signed digraphs (Axelrod 1976); 
generalizations employing continuous values appear in the fuzzy cognitive maps of Bart Kosko 
(Kosko 1986, 1994, 1997).  Cognitive maps as directed graphs have been used extensively as 
heuristics for group discussion regarding complex issues (Hobbs, Ludsin, Knight, Ryan, 
Bilberhofer & Ciborowski 2002; van Vliet, Kok & Veldkamp 2010; Soler, Kok, Câmara & 
Veldkamp 2012; Cakmak, Dudu, Eruygur, Ger, Onurlu & Tonguç 2013; Jeter & Sperry 2013).   
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Fig 11.  Wigmore’s 1913 outline of legal reasoning in terms of a directed graph 
 

How do the modeling phenomena we’ve noted play out when our picture of scientific paradigms 
or conceptual systems in general takes the form of directed as opposed to undirected graphs?  
Here again the key will be integration of a network measured in terms of characteristic degree.  
We’ll count in-links and out-links together as node degree: average degree is the average of both 
together.   

Figure 12 shows cascade sizes from falsification for directed Popperian networks of increasing 
degree, with results averaged over 1000 networks.   
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Fig. 12  Distribution of cascade sizes in directed Popperian networks of increasing degree.  Note 
change in scale on y-axis.   

The basic Popperian pattern remains the same as in the undirected case: a power-law like 
distribution at low degree, with the appearance of a clearly bimodal distribution as the 
integration of a conceptual network increases.   

Figure 13 shows the results for a Kuhnian model employing a directed network.   We drop 1000 
‘anomalies’ consecutively on nodes with random thresholds between 0 and 5, passing a single 
anomaly to neighboring nodes when a node reaches its threshold.  Cascades are measured as 
number of nodes fully tipped by a single dropped anomaly.     

 

 

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

N
u

m
b

e
r 

o
f 

C
a

sc
a

d
e

s

Cascade Size

Full Tipping Cascades in Kuhnian directed network, 1 

anomaly passed, characteristic degree 4 



18 
 

 

 

Fig. 13  Distribution of cascade sizes in directed Kuhnian networks of increasing degree.  Note 
change in scale on y-axis.   

For both Popper and Kuhn we see the same patterns on both network types: Popperian and 
Kuhnian dynamics are robust across representations of conceptual networks as either undirected 
or directed networks.   

A formal network analysis in terms of giant components available for the case of directed 
networks as it was for the case of undirected, though for directed networks one needs to consider 
not a single giant component but three elements of a ‘bow-tie’ diagram.  The core is a ‘strongly 
connected component’, in which any node has a directed path to every other in the component.  
In the case of directed graphs, however, we also need to track in-links and out-links. 
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                 Fig. 14  The bow-tie diagram of components in a directed graph                                               

Despite the fact that we’ve gone from undirected to directed graphs, the path to a giant 
component—here a strongly connected component abetted by in- and out- links—is remarkably 
similar.   

 

Fig. 15  Formation of strongly connected components, in-component and out-components as 
percent of a network at different degrees within a directed random network.                                                                                   

Adapted from James B. Glattfelder 2013 

The simple message is that here again it is the sudden and dramatic growth of that central 
component that explains much of the cascade distributions we see in our graphs.  Another aspect 
of this analysis, to which we will return in section VI, is that the proportion of the network 
occupied by strongly connected components in directed graphs is scale free, independent of 
network size.   

We can also model the developmental history of science within Popperian and Kuhnian models 
of scientific change (Fig. 16).   
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Fig. 16.  The history of science in Popperian and Kuhnian models using directed conceptual 
networks.  Beyond the use of directed in place of undirected graphs all parameters are the same 

as in figures 9 and 10. 

One might have thought that we would see a smoother development of models of history in the 
directed than in the undirected case, since in the latter case cascades must percolate through a 
more elaborate pattern of directed links.  It turns out, however, that the history of science as a 
series of paradigm shifts is at least as dramatic when conceptual systems are envisaged as 
directed networks.  Here again our results prove robust across this variation in basic modeling of 
conceptual systems.   

VI.  Science and Self-organized Criticality 

We have one final concept from complex systems to add to the mix: that of self-organized 
criticality, which finds a new application here.     
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Self-organized criticality first appears in Bak, Tang & Weisenfeld 1988.  In Bak’s words, 
“...many composite systems naturally evolve to a critical state in which a minor event starts a 
chain reaction that can affect any number of elements in the system.”  “Large iterative systems 
perpetually organize themselves to a critical state in which a minor event starts a chain reaction 
that can lead to a catastrophe” (Bak & Chen 1991).   

Avalanches in a sand pile constitute the primary model in Bak’s original presentation.  Drop a 
single grain on a sandpile and little or nothing may happen...until something does. Drop a further 
grain, and a further...and one will have avalanches both small and large.  The core idea is that the 
pile will ‘self-organize’ toward criticality: without any outside tuning of parameters, the system 
itself evolves to the point that it’s ‘ready’ for a major avalanche.  And it does so again and again.   

Self-organized criticality has found wide application both within its original home in physics—
with applications in solar, magnetospheric and fusion plasma instabilities—and well beyond.  It 
has emerged as a strong explanatory candidate for patterns of earthquakes, solar flares, and forest 
fires.  It has been proposed as an element of explanation for fluctuations in economic models and 
for punctuated equilibria in biological evolution (Watkins, Pruessner, Chapman, Crosby & 
Jensen 2016).   Most tantalizing with an eye to conceptual networks and philosophy of science, 
perhaps, self-organized criticality has both been proposed within the computer sciences as an 
efficient mechanism of search and within the brain sciences as a crucial mechanism in the 
functioning brain (Levina, Herrmann & Geisel 2007, 2009; Brochini, Costa, Abadi, Roque, Stofli 
& Kinouchi 2016; Hoffman & Payton 2018). 

What our results seem to hint is that the process of science may be self-organizing as well.  
Science itself may be an informational instantiation of self-organizing criticality. 

It must be admitted that the concept of self-organized criticality has yet no established 
mathematical formalism or generally accepted definition.  Even in Bak’s original presentations, 
the concept is outlined not by strict definition but in terms of ‘marks’ of self-organized criticality  

One of those marks is ‘flicker noise’ or 1/f noise.  White or random noise shows no correlation 
from point to point.  In flicker noise, ubiquitous in natural systems, there is a strong correlation 
between points and their predecessors—a clear indication of a path-dependent dynamics.  
Correlation of that type is clear throughout the phenomena we’ve tracked in both Popperian and 
Kuhnian networks.   

Bak’s other major mark of self-organized criticality is the fractal characteristic of scale-
invariance.  In theory, the relative size of cascades should be the same in sand piles regardless of 
size. That characteristic is also clear here.   

Our model results throughout have used networks of 50 nodes.  But they didn’t have to.  Beyond 
a critical point, our results scale up regardless of the size of the network.  Figure 17 compares 
cascades on Popperian networks of 50 and 100 nodes.  Although more finely tuned in the second 
case, with results across more options for cascade sizes, the same clear pattern appears.   
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Fig. 17  Comparative cascade sizes in Popperian networks of 50 and 100 nodes 

As we’ve indicated, a core explanation for the cascade patterns tracked here is in the emergence 
of giant components in networks, both undirected and directed.  It is because giant components 
of a particular size appear—tied directly to the characteristic degree of a network—that cascades 
of that size dominate our graphs.  What is of importance here is the proportion of a network 
occupied by a giant or strongly connected component, in the case of either undirected or directed 
graphs, is scale-invariant.  Beyond a surprisingly low phase transition, the proportion of a 
network occupied by such a component is independent of the size of the network.  To the extent 
that our cascade distributions are tied to the presence of such components, precisely because the 
network proportion of those components is scale invariant, our cascade distributions will be as 
well.   
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Fig. 18  The history of science on a Kuhnian directed model. 

A clearer example of self-organization than the Kuhnian dynamics of scientific change that 
we’ve modeled would indeed be hard to find.  The system self-organizes towards that point at 
which a major cascade across much of the network—a revolutionary paradigm shift—is well-
nigh inevitable.   

VII.  Conclusion: Prospects for Expanding the Models 

It must be admitted that this remains a work in progress.  There are three clear directions for 
future development. 

The models for conceptual networks used here have been the simplest: undirected and directed 
random graphs.  One clear direction for future work is to investigate cascade phenomena using 
other network types as representations of conceptual systems.  One prime candidate is Boolean 
networks.  Do dynamics change when we make explicit a structure developed in terms of logical 
connectives?  Another clear candidate is Bayesian networks.  What are the characteristics under 
which conceptual cascades occur in networks within which nodes update priors on input from 
other nodes?  Those remain unanswered questions.   

There is another natural expansion of the model that is clearly called for.  Here we have followed 
Kuhn and Popper in treating a conceptual system as a shared paradigm, a single possession of a 
scientific community.  But of course different individuals have different conceptual systems.  
Given specific patterns of communication, certain changes in one may effect certain changes in 
others.  Cascades can be expected to happen on the social level as well.  What is called for in 
expansion is a two-level model embedding individual conceptual networks within a second level 
of social communication.     

A third direction called for—here and in agent-based modeling in general—is a closer link to 
empirical data.  One aspect of our results has been a picture of the history of science on 
Popperian and Kuhnian models.  The work offered here remains very much on the abstract end, 
the theoretical rather than the empirical, philosophy of science rather than history of science.  
The question of whether the history of science has something like the topography of our graphs 
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remains an open question, empirical and hard.   
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