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Abstract 

The iterated Prisoner’s Dilemma has become the standard model for the evolution of cooperative behavior within 
a community of egoistic agents, frequently cited for implications in both sociology and biology. Due primarily to the 
work of Axelrod (1980a, 198Ob, 1984, 1985), a strategy of tit for tat (TFT) has established a reputation as being 
particularly robust. Nowak and Sigmund (1992) have shown, however, that in a world of stochastic error or imperfect 
communication, it is not TFT that finally triumphs in an ecological model based on population percentages (Axelrod 
and Hamilton 1981), but ‘generous tit for tat’ (GTFT), which repays cooperation with a probability of cooperation 
approaching 1 but forgives defection with a probability of l/3. In this paper, we consider a spatialized instantiation 
of the stochastic Prisoner’s Dilemma, using two-dimensional cellular automata (Wolfram, 1984, 1986; Gutowitz, 
1990) to model the spatial dynamics of populations of competing strategies. The surprising result is that in the spatial 
model it is not GIFT but still more generous strategies that are favored. The optimal strategy within this spatial 
ecology appears to be a form of ‘bending over backwards’, which returns cooperation for defection with a probability 
of 2/3 - a rate twice as generous as GTR. 
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1. The classical work cooperates while his opponent defects. In the 
iterated Prisoner’s Dilemma, the process is re- 

In the classical Prisoner’s Dilemma, each of peated, and one can characterize general strate- 
two players has an option to cooperate or defect. gies for continued play: AlID, which defects re- 
The traditional payoff matrix is Axelrod’s, giving gardless of the other’s play, AK, which cooper- 
a reward R of 3 points to each player for mutual ates regardless, ‘grim’ strategies which revert to 
cooperation, a penalty payoff P of 1 for mutual constant defection once crossed, and tit for tat 
defection, a temptation T of 5 points for a player (TFT), which begins by cooperating, cooperates 
who defects while his opponent cooperates, and following a cooperation on the other side, and 
the sucker’s payoff S of 0 points to a player who defects following a defection. ‘One-deep’ or ‘reac- 
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tive’ strategies, which depend only on the oppo- 
nent’s play in the previous round, can be charac- 
terized by triples (i,p,q) where i indicates the 
starting play, and p and q are the probabilities of 
cooperative response to cooperation and defec- 
tion respectively. AllD can thus be represented by 
(O,O,O), AllC by (l,l,l), and TFT by (l,l,O). 
In the alternative hierarchical rule representation 
of Crowley (1995, this issue), AllD appears as the 
single rule /:D, AllC as /:C, and TF’T as: 

TIT was the clear victor in both of Axelrod’s 
classic round-robin tournaments of submitted 
strategies (Axelrod, 1980a, 1980b, 1984, 1985). 
TFT also displaced all competing rules in an 
ecological model in which strategies ‘reproduce’ 
on any round as a function of their success against 
other strategies weighted by proportional repre- 
sentation on the previous round (Axelrod and 
Hamilton, 1981). TIT is collectively stable in the 
sense that no single mutation can invade it by 
strategic advantage. It isn’t alone in this regard, 
of course: AllD is collectively stable as well’. 

Though single mutations of TFT cannot invade 
AllD, Axelrod showed that a ‘cluster’ of TFT can, 
where ‘cluster’ is defined in terms of a higher 
probability of interaction between members of 
the cluster (Axelrod and Hamilton, 1981; Axel- 
rod, 1984). As noted below, this last fact offers an 
intriguing comparison with some aspects of the 
present results. 

The classic Axelrod results clearly award gen- 
eral high marks to TFT. More recent work, how- 
ever, suggests that within more realistic con- 
straints it is not TFT but another family of strate- 
gies that should be regarded as the ultimate win- 
ners. 

2. The Prisoner’s Dilemma in an imperfect world 

Nowak and Sigmund (1992) concentrate on 
one-deep stochastic strategies, confined to con- 
sideration of a single previous move by an oppo- 
nent but which assign probabilities for coopera- 

tion or defection. Different strategies can thus be 
envisaged in terms of ordered triples (i,p,q) with 
i as the probability of cooperation in the initial 
round, p as the probability of cooperation fol- 
lowing a cooperative move by an opponent, and q 

as the probability of cooperation following an 
opponent’s defection. Classical TFT would be- 
come (l,l,O) as before, AllD would become 
(O,O,O). But we might also introduce other possi- 

‘Despite some confusion in the literature, however, neither 
TIT nor ALLD strictly qualifies as an ‘evolutionarily stable 
strategy’ or ESS in the sense of Maynard Smith (1982, 1986). 
Representing the payoff for a player x against a player y in a 
given series of games as P(x,y), Maynard Smith’s formal 
definition specifies that a strategy x is evolutionarily stable 
just in case P(x,x) > P(y,x) or both P(x,x) = P(y,x) and 
P(x,y) > P(y,y) for all strategies y # x. It is true that both 
TIT and AllD resist invasion in that no other strategy can get 
a higher score against TFI or AIID than they get against 
themselves and at the same time get an equal or higher score 
against itself than they get against it. But there are strategies 
which do precisely as well against TFT and AllD as they do 
against themselves and which also do as well with their own 
kind as TFI and AllD do with them: AllC does as well in a 
context of TFT as TFT does, for example, and ‘Suspicious Tit 
For Tat’ (STAT) does as well in a context of AllD as AllD 
does. The conditions of Maynard Smith’s formal definition are 
thus not fulfilled for either TIT or AIID, and neither qualifies 
as an ESS. With an eye to natural selection, as Nowak and 
Sigmund note, although such strategies cannot invade by 
strategic advantage, they can invade by something like genetic 
drift (Nowak and Sigmund 1989a, 192; 1989b, 22). 

Axelrod (1984) labels a strategy x ‘collectively stable’ just in 
case there is no alternative strategy y such that P(y,x) > 
P(x,x), and notes that this is equivalent to x being in Nash 
equilibrium with itself. Nowak (1990) labels a strategy x 
‘incapable of invasion by selection pressure’ if P(x,x) > 
P(y,x) or P(x,x) = P(y,x) and P(x,y) t P(y,y) for all 
alternative strategies y. Although they do not qualify as ESSs, 
it is clear that TIT and AllD are in these senses both 
collectively stable and incapable of invasion by selection pres- 
sure. 

As all this should make clear, notions of stability against 
invasion call for careful handling. For further discussion see 
esp. Nowak (1990a) and a particularly clear exposition in 
Skyrms (1992). As indicated later in the paper, notions of 
stability also need to be handled carefully in extension to fully 
spatial models. It should finally be noted that stable strategies 
in any of the senses above must be distinguished from ‘attrac- 
tor’ strategies, toward which a system may be drawn. As 
indicated in Nowak (199Ob), these are in principle distinct. 
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bilities, including various degrees of generous TFT 
(GTFT) such as (l,l,O.l) and (1,1,1/3), 
each of which begins with cooperation and re- 
wards cooperation with full cooperation, but each 
of which is generous in forgiving defection with a 
probability of 0.1 and l/3 respectively. In terms 
of hierarchical rules (Crowley 1995, this issue), 
GTFT with a forgiveness rate of l/3 takes the 
following form: 

;ED 
/D:D 
/D:C 

With an assumption of infinite games between 
contenders, Nowak and Sigmund are able to 
simplify further by ignoring the role of the initial 
play i’. 

Jsing Axelrod and Hamilton’s (1981) tech- 
nique of updating strategy proportions in a popu- 

‘Crowley, Provencher, and Sloane et al. (1995, this issue) 
seem to express reservations about infinitely iterated games, 
but in many contexts ~ including the present - infinite 
games can be seen merely as a convenient mathematical 
fiction. In an iterated game between two deterministic strate- 
gies of simple sorts, for example, a periodic pattern of play will 
inevitably be established. The value for an ‘infinite’ game for 
one of these players is simply the average gain per play across 
that repeated period, and thus represents a value which games 
of increasing finite length will approach. Although the play of 
stochastic strategies of the sort at issue cannot be expected to 
be periodic, scores for an ‘i&rite’ game here too represent 
merely the limits for which games of increasing length will 
approach. In both the determmtstic and stochastic case, on 
the other hand, any choice for a finite limit is bound to face 
dangers of arbitrariness. In the deterministic case, these in- 
clude: (a) the inevitable arbitrariness of how much an initial 
segment before periodicity is established will count; (b) (for 
sufficiently complex assortments of strategies, at least) the 
arbitrariness of different cuts for periods of different lengths, 
counting perhaps only the first play of a final period, with 
scores 055 for a certain player because the finite limit happens 
to fall immediately after the 0. In the present case, for simple 
stochastic strategies, any finite limit would give arbitrary an- 
swers to: (a) the importance accorded to deterministic first 
moves; (b) how probabilities happen to be expressed within 
the sample run. The mathematical fiction of an ‘infinite game’ 
is a convenient way of avoiding both of these difficulties, both 
in Nowak and Sigmund’s work and in the results below. 

lation on the basis of relative success in the 
previous round, Nowak and Sigmund report an 
evolution in which TFT plays a crucial pivotal 
role but in which it is GTFT rather than TFT that 
proves the ultimate winner. 

With n = 100 different reactive strategies uniformly dis- 
tributed on the unit square, evolution proceeds in most cases 
towards AlID: those (p,q)-strategies from the sample which 
are closest to (0,O) increase in frequency, while all others 
vanish. The outcome alters dramatically if one of the 
initial strategies (added by hand or by chance), is TFT, or very 
close to it The first phase is practically indistinguishable 
from the previous run. The strategies near AllD grow rapidly. 
TFT and all other reciprocating strategies (near (1,011 seem to 
have disappeared. But an embattled minority remains and 
fights back. The tide turns when ‘suckers’ are so decimated 
that exploiters can no longer feed on them. Slowly at first, but 
gathering momentum, the reciprocators come back, and the 
exploiters now wane. But the TFT-like strategy that caused 
this reversal of fortune is not going to profit from it: having 
eliminated the exploiters, it is robbed of its mission and 
superseded by the strategy closest to GTFT (with (p,q) = 
(1,1/3)). Evolution then stops (Nowak and Sigmund 1992, 
252). 

Their genera1 characterization is as follows: 

We find that a small fraction of TFT players is essential for 
the emergence of reciprocation in a heterogeneous popula- 
tion, but only paves the way for a more generous strategy. 
TFT is the pivot, rather than the aim, of an evolution towards 
cooperation. (250) 

Here it is important to stress, however, that 
Nowak and Sigmund’s is a pool of strategies en- 
visaged as interacting in a world of inevitable 
error and imperfect communication. For that rea- 
son, none of the triplets (i,p,q) used involves a 
full probability of 0 or 1 in any position: refer- 
ences to TFT and AllD above, for example, must 
be read as references to their instantiation in an 
imperfect world, in which they appear only in the 
guise of stochastically imperfect variations such 
as (0.99,O.Ol) and (O.Ol,O.Ol). Nowak and Sig- 
mund assume games between strategies of infinite 
length in which initial values can be ignored, 
calculated in terms of a payoff formula for strate- 
gies s, = (p,,q,) and s2 = (p2,q2) as follows: 

V(s, vs s2)= 1+4c’-c-cc’ 
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where 

c = [91 + (Pi - c&l/[1 - (PI -4&z - dl 

c’ = [q2 + (P2 -q&J/D - (Pz - &XPI - 41)l. 

The assumption that initial values can be ignored, 
however, makes sense only if full values of 0 and 
1 are disallowed in accord with the assumption of 
a world of imperfect information3. The payoff 
formula above is in fact mathematically undefined 
for crucial values of 0 and 1. 

What if a pure TFT, without communication 
error, were somehow included in Nowak and Sig- 

3Consider, for example, strategies (0,&O) and (l,l,O), which 
differ only in their initial value. Against itself, the first will 
achieve a constant score of 0 in an infinite game; against itself, 
the second will achieve a constant score of 1. 

mund’s sample? A pure TFT would quite pre- 
dictably block the evolution that Nowak and Sig- 
mund trace towards more generous forms. No 
more generous strategy (1,1,X) for X > 0 would 
grow strategically in an environment occupied by 
(l,l,O> because payoffs for any such GTFT against 
TIT would be precisely the same as those for 
TIT against itself. Were a genuinely errorless 
TFT included in the sample, then it could be 
expected not only to take possession but to 
stubbornly maintain it. 

Nowak and Sigmund’s work should therefore 
not be read as in any way contradicting the classic 
Axelrod results. The world of Nowak and Sig- 
mund’s model is simply a different world from 
that of earlier models. It’s a gritty world of ubiq- 
uitous and inevitable stochastic noise, and the 
failure for TFT reported for such a world is 
simply a failure of a stochastically imperfect in- 

Fig. 1. The Nowak and Sigmund result: evolution toward GTFT in a world of imperfect information. Population proportions for 
labelled strategies shown over 12000 generations for an initial pool of 121 strategies (p,q) at 0.1 intervals, full values of 0 and 1 
replaced with 0.01 and 0.99. 
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stantiation of the classic strategy. That failure 
alone should perhaps not be too surprising: as 
Molander (1985) showed, and Nowak and Sig- 
mund (1992) note, the presence of any amount of 
stochastic noise is sufficient in the long run to 
reduce the payoff for two TFT players to precisely 
that of two random players. 

In Fig. 1, we reproduce the Nowak and Sig- 
mund result using a population of 121 purely 
stochastic strategies (p,q) at 0.1 intervals, with 
full values of 0 and 1 replaced with 0.01 and 0.99, 
giving us a pool of strategies (O.Ol,O.Ol), 
(O.Ol,O.l), (0.01,0.2), . . . . (0.99,0.9), 
(0.99,0.99). Each strategy plays all others repre- 
sented in an infinitely iterated Prisoner’s Dilemma 
in accordance with the payoff formula outlined 
above. At each generation II + 1, the proportion 
p, + r(s) of a strategy, s, is computed as a function 
of its previous proportion p,(s) and its success 
against represented strategies, m, weighted by 
their proportions p,(m): p,, + Js) = f, + @I/ 

Cfn + 1 (m) for all strategies m, where for any 
strategy s f, + 1(s) = p,(s) * ZW(s,m) * p,(m>> 
for all strategies m. 

Twelve thousand generations are shown. 
Stochastically imperfect AllD and its relatives are 
early winners, but are effectively eliminated by 
stochastically imperfect TFT, (0.99,0.01), by the 
250th generation. It is unable to sustain its vic- 
tory, however, and is progressively supplanted by 
more generous strategies: (0.99,0.1), (0.99,0.2), 
and finally (0.99,0.3). At this point, evolution 
stops. Most remarkable is the fact that evolution 
not only proceeds beyond stochastically imperfect 
TFT, but proceeds in such clear steps, with 
(0.99,O.l) achieving clear dominance before 
(0.99,0.2) even begins its rise4. 

3. The spatialized Prisoner’s Dilemma 

An argument can clearly be made that the 
stochastic imperfection characteristic of Nowak 
and Sigmund’s model is an aspect of realism: that 

4Dugatkin and Mesterton-Gibbons (1995, this issue) sug- 
gest that egg-swapping fish may use a strategy similar to 
GTFl-. 

both biological and sociological worlds being 
modelled are gritty worlds of error and imperfect 
information, quite properly reflected in a model 
in which stochastic noise is unavoidable. The suc- 
cess of a pure TFT in a classical model, clinically 
free of error, though formally unchallenged, be- 
comes less interesting from an applicational 
standpoint. 

Here we want to add just one further aspect of 
realism to this model. Talk of clustering in previ- 
ous work suggests a spatial model for the Pris- 
oner’s Dilemma, in which we envisage an array of 
players with different strategies interacting with 
their immediate neighbors5. 

This is precisely the kind of model obtained if 
competing strategies are instantiated as a two-di- 
mensional array of cellular automata (Wolfram 
1984, 1986; Demongeot, GolCs and Tchuente, 
1985; Gutowitz, 1990; Mar and St. Denis, 1994). A 
spatial model of this sort applied merely to de- 
terministic AllD and AllC appears in Nowak and 
May (1992, 1993); although initiated indepen- 
dently, the present work can be seen as a further 
application to questions of generosity in the richer 
stochastic ecology of Nowak and Sigmund (1992). 

We envisage each cell of a two-dimensional 
array as playing against each of its neighbors and 
obtaining a local score. Each cell then surveys its 
neighbors. If none has a higher score, it retains its 
original strategy. If it has a neighbor or neighbors 
with higher scores, on the other hand, it converts 
to a neighboring strategy with the highest score, 
or is replaced by that strategy, depending on 
one’s perspective. In the case of two neighbors 
with equal scores higher than that of the central 
cell, the strategy of one is chosen randomly. The 
resultant model is one in which success is in all 
cases computed against local competitors, with 
reproduction proceeding locally as well - both 
features, we think, which constitute a very simple 

‘Oliphant (1994) argues that some familiar characteristics 
of simpler forms of the Prisoner’s Dilemma, including the 
superiority of defection in the non-iterated game, are contin- 
gent on the use of non-spatiahzed models. The small measure 
of realism afforded simply by spatialization can change things 
- a lesson emphasized here with respect to generosity for the 
stochastic case. 
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major players: 0 x.99,.10> H <.80,.20> 0 <.90,.40> 0 <.60,.20> H <.50,.20> 

Fig. 2. The spatialized Prisoner’s Dilemma, showing a typical evolution from a randomized array of 121 stochastic strategies to 
conquest by (0.99,0.10>. Frames are at 12-generations intervals. 



P. Grim / Bidystems 37 (1996) 3-l 7 9 

measure of greater realism with an eye to either 
biological or sociological application. 

Here it should be emphasized that virtually all 
we have done is to spatialize the Prisoner’s 
Dilemma; in all other regards, we retain the 
stochastic model as it appears in Nowak and 
Sigmund6. 

Part of the interest of the results regarding 
generosity below is the fact that they arise almost 
purely from this simple two-dimensional spatial- 
ization of an older paradigm, rather than from 
other intriguing but more complex variations ex- 
plored elsewhere in this issue: individual recogni- 
tion or non-play options (Crowley, Provencher, 
Sloane et al., 199.5; Ashlock, Smucker, Stanley, 
and Tesfatsion, 1995; Orbell, Runde, and 
Morikawa 1995, this issue), epistemic modelling 
or reinforcement learning (Moon, Frost, and Stir- 
ling, 1995; Sandholm and Crites 1995, this issue), 
mutation by way of genetic algorithms or classi- 
fier systems (Crowley 1995; Crowley, Provencher, 
Sloane et al, 1995; Oliphant, 1995, this issue), or 
attempts to capture other aspects of natural evo- 
lution (Dugatkin and Mesterton-Gibbons, 1995, 
this issue). The importance of one-dimensional 
spatialization for the emergence of generosity in 
the context of merely deterministic strategies AllC 
and AllD is emphasized in Oliphant (1994); a 
similar importance for deterministic communica- 
tion systems is emphasized in Oliphant (1995), 
(this issue). The work that follows reinforces 
Oliphant’s general conclusions by showing an evo- 
lution of greater generosity in the two-dimen- 
sional spatialization of the stochastic Prisoner’s 
Dilemma’. 

In a first simple study, we used the same 121 
strategies as in the Nowak and Sigmund replica- 
tion above, once again playing each other in 
infinite games, but here randomly instantiated as 
cells of a 100 x 100 array, in which cells play 

‘Here, the only qualifications to be noted are the ran- 
domized and clustered strategy-introduction techniques used 
below in order to compensate for small arrays and small 
computer memories. 

‘Although it is less clear, two-dimensional spatialization 
may also be playing an important role in Orbell, Runde, and 
Morikawa (1995, this issue). 

neighbors in the manner outlined above. With the 
121 strategies represented, such an array is very 
sensitive to initial conditions: much depends on 
which strategies are eliminated by immediate 
neighbors in the first few generations. Where 
generosity emerges, however, the common pat- 
tern seems to be evolution towards a strategy only 
slightly more generous than statistically imperfect 
TFT: usually (0.99,0.1), though if the more gen- 
erous (0.99,0.2) survives, it can eventually sup- 
plant it. A typical evolution to (0.99,0.1), repre- 
sented by white, is shown in 1Zgeneration inter- 
vals in Fig. 2. 

It is clear that a primary factor in these first 
results is the limit of our array, however. Such an 
array inevitably imposes not only sensitivity to 
initial conditions, but a significantly greater ‘death 
factor’ than is present in the population propor- 
tion algorithm used in Axelrod and Hamilton, 
and Nowak and Sigmund. That algorithm is in 
fact strongly biased against extinction: although a 
strategy’s proportion in the population may 
diminish at each stage, it never dies completely 
unless it scores a full zero against all existing 
strategies. None of Nowak and Sigmund’s strate- 
gies has a true score of 0 against any other. In the 
evolution plotted in Fig. 1, the proportion of 
stochastically imperfect TFT falls at one point 
before its rise to somewhat more than half of its 
original representation. But the more generous 
(0.99,O.l) falls to a hundredth of its original 
representation before recovery, (0.99,0.2) falls to 
less than a millionth, and (0.99,0.3) falls to less 
than a trillionth. If representation in a proportion 
less than that corresponding to a single individual 
counts as ‘death’, a generosity level of even 
(0.99,O.l) would thus require a population in tens 
of thousands merely to survive, a generosity level 
of (0.99,0.2) would demand a population of nearly 
one billion, and bare survival of a generosity level 
of (0.99,0.3) would demand a population in the 
hundred trillions. 

Within the limits of a finite array of automata 
of any manageable size, on the other hand, the 
death of a strategy can be very final very quickly. 
For this reason alone, although we can easily 
assume Nowak and Sigmund’s pool of stochastic 
strategies and incorporate their payoff formula in 
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a spatial context, a tournament of this type im- 
poses a significantly different reproductive algo- 
rithm. Given the array limits of this first attempt 
at spatial modelling and the very small propor- 
tions to which more generous strategies fall in the 
Axelrod-Hamilton model it is perhaps not too 
surprising that the upper end of the Nowak and 
Sigmund generosity result is cut off. (0.99,0.3) 
seems always to be extinguished much too early. 

Here we should also mention another differ- 
ence in the evolution of this first model, however. 
Even with a total population as small as 10000, 
we have noted that convergence is standardized 
to a strategy slightly more generous than the 
statistically imperfect TFT. But the evolutionary 
mechanism operative in this spatialization is quite 
different from that in the original Nowak and 
Sigmund result. Within the population proportion 
algorithm, as indicated in Fig. 1, the pattern of 
the result is an early and almost total victory by 
stochastically imperfect TFI, followed step by 
step by successful invasions of more generous 
variations. Without the presence of stochastically 
imperfect TFT, Nowak and Sigmund indicate the 
evolution to more generous strategies cannot 
proceed. But that is not the characteristic evolu- 
tion of the spatial model shown in Fig. 2; here it 
is clear that there is a direct victory by the more 
generous forms without the necessity of prior 
intervention by a statistically imperfect TFI’. 

4. The evolution of greater generosity 

In two more sophisticated studies, models were 
designed to compensate for the effects of small 
arrays and small computer memories by use of a 
randomizing procedure, in which a limited sample 
of strategies compete in a given area and losers 
are progressively replaced by alternatives. The 
idea is that in a large enough array there would 
be areas where significant numbers of individuals 
from any given handful of strategies would com- 
pete, carrying the result of that competition into 
other areas. We simulate the larger area in bits, 
as it were, by progressively randomizing compet- 
ing strategies into our 100 x 100 array. With 
such a procedure, the role of the death factor 
noted above seems properly minimized. In these 

more sophisticated spatial models, it is not Nowak 
and Sigmund’s GTFT that is ultimately favored, 
however, but more generous strategies still. 

In our second set of studies, we began with a 
randomized 100 X 100 array of just eight strate- 
gies chosen from the pool of 121. Each cell played 
against its neighbors as outlined above. When a 
strategy died - with no representatives left - a 
new competitor was sprinkled randomly across 
the field with a proportion of l/8 equal to that of 
the original competitors. New competitors were 
chosen randomly from the pool, allowing a possi- 
bility of repetition. This procedure was intro- 
duced purely for the computational reasons out- 
lined above, with the appearance of new strate- 
gies thought of merely as a sampling procedure 
across the pool of 121 strategies. Only later did 
we note that limitation to a fixed number of 
competing strategies does seem consistent with 
the broad outlines of the ‘Theory of Island Bio- 
geography’ in biology (MacArthur and Wilson, 
19671, itself sometimes offered as evidence for 
the Red Queen (Van Valen, 1973; Lewin, 198.5). 

Convergence to a particular strategy in an evo- 
lutionary ecology of this type would clearly consti- 
tute a strong argument in favor of that strategy: it 
must have arisen and must have maintained itself 
in competition with substantial distributions of 
large numbers of potential rivals. Given Nowak 
and Sigmund’s work, we would not have been 
surprised had GTFI triumphed. But our results 
showed convergence quite standardly to signifi- 
cantly greater generosity. Convergence was al- 
most always to a strategy in the range of 
(0.99,0.4) through (0.99,0.6), locked in equilib- 
rium with trace elements of other strategies in 
such a way as to block further incursions. No 
strategy fully dies and thus no further strategies 
are introduced. The result is quite resilient. It 
remains (although it may take longer to develop) 
if we start with 16 strategies rather than eight, or 
introduce only 1% of an alternative strategy when 
one dies, or both. It remains if we deepen approx- 
imations to 0 and 1 to O.OOOOOl and 0.999999, if 
we sharpen approximations of GTFT, or both. 
Fig. 3 shows a typical end-state with (0.99,0.5) in 
possession, locked with trace elements of 
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?? <.99,.50> 3696 
: ;.5$.Ol; 136 

92 
?? <:92:50> 87 

<.lO,.lO> 38 
<.01,.30> 31 
<.60,.99> 13 
<.x,.10> 3 

Fig. 3. A typical equilibrium dominated by greater generosity. 
This is generated from eight initial strategies, randomly cho- 
sen and distributed, with dead strategies replaced by randomly 
chosen alternatives in similar l/8 proportions. 

(O.S,O.Ol) and other strategies. A 64 X 64 display 
is shown for the sake of clarity. 

In a third series of studies, we varied the model 
so as to introduce a cluster of just six units of a 
random strategy from each generation and to 
allow for a variable number of represented strate- 
gies. It was clear from the second studies that it 
was the chance of small clustering that was cru- 
cial to ecological dynamics, arguing for use of a 
clustered 0.06% rather than a randomly dis- 
tributed 12.5% of the display. The use of a vari- 
able number of strategies in place of a constant 
eight billowed us to avoid the artificial ‘locking’ 
noted above. 

Here an even clearer dominance by (0.99,0.5) 
and (0.99,0.6) was evident. In these studies, the 

standard result is convergence to domination by 
one or the other of these strategies, in clear 
possession of the field but with trace elements of 
other strategies present in equilibrium but unable 
to expand. Often subdominant strategies appear 
in the form of periodic blinkers. Fig. 4a shows 
(0.99,0.6) in possession, with trace elements of 
(0.99,0.4), (0.01,0.3), and other strategies in equi- 
librium. Fig. 4b shows (0.99,0.5) in possession 
with trace elements of (0.99,0.3) and other strate- 
gies. 

Within the spatial context there is one clear 
victory for pure GTFl? Nowak and Sigmund’s 
(1 - ~,1/3) emerges quite clearly as that strategy 
with the highest score against itself which is im- 
pervious to spatial invasion by a single unit of any 
other strategy. 

What the more generous experimental results 
emphasize, however, is that imperviousness to 
invasion by a single unit is not of ultimate impor- 
tance in a spatial ecology of this kind. Though 
GTFI is impervious to invasion by a single unit of 
any other strategy, it does prove vulnerable to 
invasion by small clusters of some more generous 
strategies, themselves vulnerable in turn to inva- 
sion by much less generous strategies. No strategy 
is impervious to invasion by small clusters of all 
other strategies. 

Within a spatial model, it becomes important 
to distinguish different notions of invasion, how- 
ever. In particular, it proves necessary to distin- 
guish at least invasion as: (a> growth, such that for 
some generation there is a succeeding generation 
in which there is a greater number of units of the 
invader; (b) sustained growth, such that for every 
generation there is some succeeding generation 
in which there is a greater number of units of the 
invader; (c) invasion to conquest, such that for 
any arbitrary area, that area is eventually occu- 
pied entirely by the invader. Fig. 5a shows two 
forms of self-limiting invasion: the unsustained 
periodic growth of a single unit of (O.Ol,O.Ol) in a 
field of (0.9,0.6), shown in one-generation inter- 
vals, and the sustained but self-limiting growth of 
(0.8,0.99) in a field of (0.99,0.6), shown for gen- 
erations 1, 4, 7 and 12. Three recurrent patterns 
of invasion to conquest appear in Fig. 5b, here 
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0 <.99,.60> 3507 
: <.01,.30> <.99,.40> 100 102 

<.lO,.SO> 62 
<.40,.20> 29 
<.10,.30> 23 

b 

< .99,.50> 3606 
<.99,.30> 56 

?? <.20,.60> 20 
<.10,.80> 18 
<.50,.70> 14 

?? <.lO,.SO> 13 

Fig. 4. Typical examples of evolution to greater generosity with a variable number of random strategies, blocks of six of a randomly 
chosen strategy dropped in each generation. 

illustrated by (0.99,0.9) invaded by a single unit 
of (0.01,0.8), (0.99,0.4) invaded by a square of 
nine units of (0.99,0.6), each shown in intervals 
of two generations, and (0.99,0.99) invaded by a 
single unit of (0.5,0.6), shown for generations 1, 
4, 8 and 12. A GTFT of (0.9999999,0.3333333) 
is invadable to conquest by clusters as small as 4 
units of, for example, (0.9999999,0.5). It is also 
invadable, though not to conquest, by for example 
(0.9999999,0.9999999). 

The complex dynamics of this second invasion, 
as it happens, exhibits in a stochastic and some- 
what less artificial context many of the features of 
Nowak and May’s (1992, 1993) work on spatial 
chaos and fractals in evolutionary games. The 
growth of a pattern of 16 units of AllC in a field 
of GTFT with this amount of stochastic imperfec- 
tion is shown at intervals of six generations in Fig. 
6, with coding in grey to indicate dynamics: black 

indicates a cell of the invading strategy which has 
not changed in the last round; white, a cell of the 
invaded strategy which has not changed; light 
grey, a cell which has been invaded in the last 
round; and dark grey, a cell that has reverted to 
the invaded strategy ‘. 

GTFT, we’ve noted, though invulnerable to in- 
vasion by a single unit of alternative strategies, is 
vulnerable to invasion by small clusters of some 
more generous strategies. In this way, it resem- 
bles pure non-stochastic AllD which, though not 

*The intricacy of this illustration is due to the precarious 
balance between strategies at issue, and its symmetry to the 
fact that all cells of the array are updated simultaneously. Use 
of an asynchronous updating - in which, say, a random 50% 
or 25% of the display updates at each step-can therefore be 
expected to give a much less dramatic result (Huberman and 
Glance, 1993). 
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Fig. 5. (a) Two common forms of self-limiting expansion; (b) three patterns of evolution to conquest. 
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Fig. 6. K.4 field of (0,9999999,0.3333333> invaded by a 16-square block of (0.9999999,0.9999999), shown at intervals of su 
generations. 
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6 inuading strategy, unchanged last round 
inuaded strategy, unchanged last round 

•1 changed from inuaded strategy to inuading strategy last round 
changed from invading strategy to inuaded strategy last round 

Fig. 6. corltinued 

invadable by a single unit of pure TFT, is invad- 
able by small clusters of TIT. Strategies more 
generous than GTFT, on the other hand, up 
through (0.9999999,0.6666666), are clearly invad- 
able by other strategies but seem invadable fo 
conquest by no others in at least standard pat- 
terns from small clusters’. 

In our computerized surveys the strategic re- 
gion (1 - ??,2/3), which we term ‘bending over 
backwards’, seems to emerge as that of the exper- 
imentally optimal strategy, in the sense of that 
strategy with the highest score against itself im- 
pervious to invasion to conquest from a small 
cluster of any other strategy. In the hierarchical 
rule formulation suggested by Crowley (1995, this 
issue), ‘bending over backwards’ can be character- 

‘Here, rectangular blocks of 2 and 6, crosses of 4, and 
square blocks of 4, 9, and 16 were used as initial invading 
clusters, with surveys programmed to indicate whether inva- 
sion had proceeded to a particular border in a chosen number 
of generations. As for invasion patterns more generally, how- 
ever, more analytic work remains to be done. 

ized as: 

/:c 
/D:D 
/D:C 
/D:C 

The work above builds explicitly on Nowak and 
Sigmund (1992), and is similarly limited to one- 
deep or reactive strategies, which consider only 
the previous move of the opponent. We leave 
further study of spatialization for games which 
consider previous moves of both players, such as 
Pavlov (Nowak and Sigmund, 19931, and for op- 
tional games (Kitcher, 1993; Batali and Kitcher 
1994; Orbell, Runde and Morikawa, 1995, this 
issue; Ashlock, Smucker, Stanley and Tesfatsion, 
this issue) to others or to another paper. Varia- 
tions employing asynchronous updating (Huber- 
man and Glance, 1993) are also left for further 
work, though on an experimental basis we have 
tried a limited form of asynchronous updating for 
results throughout by computing only a random 
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50% or 25% of arrays on each generation”. As 
might be expected, precise patterns of propaga- 
tion dependent on the particular configuration of 
a group, such as those in Figs. 5 and 6, prove 
vulnerable to asynchronous updating. Within the 
experimental limits noted, however, results re- 
garding the greater success of generous strategies 
in a spatial environment seem to remain. It may 
also be that the stochastic character of strategies 
at issue diminishes differential effects of syn- 
chronous and asynchronous treatment (see Golze, 
1978). 

A diskette with major programs in Trubasic is 
available on request. 

5. Conclusion 

In the Axelrod models for a pure and non-sto- 
chastic Prisoner’s Dilemma, it is TFT that proves 
the general winner. Within a stochastic model 
designed to capture features of a world of error 
and imperfect communication, the greater gen- 
erosity of GTFT pays off. With just one further 
measure of realism - a two-dimensional spatial- 
ization of the stochastic model - it is a strategy 
of ‘bending over backwards’ which seems to prove 
victorious, exhibiting twice the generosity of 
GTFT. 
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“Huberman and Glance (1993) seem to insist on updating 
at most a single cell each generation, but a fixed choice of one 
cell seems no less artificial than simultaneous updating of all 
cells. Some form of weighted randomization would seem far 
more preferable, though what form remains an open question 
and might even depend on the type of species we are inter- 
ested in modelling. 
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