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I.  Introduction  

 

 How do conventions of communication emerge?  How do sounds or gestures take on a 

semantic meaning, and how do pragmatic conventions emerge regarding the passing of adequate, 

reliable, and relevant information? 

 My colleagues and I have attempted in earlier work to extend spatialized game theory to 

questions of semantics.  Agent-based simulations indicate that simple signaling systems emerge 

fairly naturally on the basis of individual information maximization in environments of 

wandering food sources and predators.  Simple signaling emerges by means of any of various 

forms of updating on the behavior of immediate neighbors: imitation, localized genetic 

algorithms, and partial training in neural nets. 

 Here the goal is to apply similar techniques to questions of pragmatics.  The motivating 

idea is the same: the idea that important aspects of pragmatics, like important aspects of 

semantics, may fall out as a natural results of information maximization in informational 

networks.  The attempt below is to simulate fundamental elements of the Gricean picture: in 

particular, to show within networks of very simple agents the emergence of behavior in accord 

with the Gricean maxims.  What these simulations suggest is that important features of 

pragmatics, like important aspects of semantics, don't have to be added in a theory of 

informational networks.  They come for free.
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 Sections II and III outline some of the background of the current work: emergence of 

cooperation in spatialized game theory and the emergence of a simple semantics among agents in 

a simulated environment of wandering food sources and predators.  Section IV applies the 

techniques developed there to the case of pragmatics.   

 The focus of the current work is the emergence of the Gricean maxims themselves.  

Communicative exploitation of those maxims in conversational implicature and inference is a 

further matter, and the simulations used here do not generally take us that far.  In the case of 

scalars, however, Section V shows that coordinated behavior in the general region of Gricean 

implicature does appear even for agents and environments as simple as those modeled here.   

 Color illustrations and animations for this chapter can be found at 

www.pgrim.org/pragmatics. 

 

II.  Cooperation in Spatialized Game Theory     

 

 In classical game theory, we deal with the interactions of small numbers of idealized 

agents.  In evolutionary game theory we are dealing with whole populations, applying principles 

of replicator dynamics pioneered by R. A. Fisher in theoretical biology.  The result is a model 

beautiful for its simplicity and mathematical ease.  In both theoretical biology and game theory, 

however, replicator dynamics brings with it what might be termed global assumptions:  

assumptions of randomly mixed interactions within a large population, and assumptions of 

randomly distributed reproduction. 
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 It is spatialized game theory that is the necessary background for the results below.  The 

focus of spatialized game theory is the dynamics of local action within a network structure rather 

than global interaction across a population.  Here agents do not interact randomly with all other 

agents in the population.  They interact (or interact with increased probabilities) with specific 

agents—their neighbors in the network structure.  Local rather than global interaction of this type 

is addressed in theoretical biology under the term 'viscosity'.   

 Figure 1 offers an example of spatialized game theory using the simple reactive strategies 

in the iterated Prisoner's Dilemma: the eight strategies that turn on merely an initial move 

(cooperate or defect) and what the other player did on the previous round.  The eight Boolean 

combinations of play for initial move, reaction to cooperation, and reaction to defection include  

All-Defect, All-Cooperate, Cooperate-then-All-Defect, Tit for Tat, and Suspicious Tit for Tat 

(like Tit for Tat except starting with an initial defection).   

 In this illustration a randomization of strategies is embedded in the spatialized lattice 

familiar from cellular automata.  All play is local—individual cells play only with immediate 

neighbors touching them on the sides or the diagonal.  After a series of 200 games, players look 

to see if any neighbor has achieved a higher score.  If so, they update to the strategy of their most 

successful neighbor.   

The agents in such a model are of course as egoistic as any in classical game theory.  The 

general question of interest is how conditional cooperation, in the form of a dominance by Tit-

for-Tat, might develop.   

 Updating by imitation in this kind of network turns out to be a powerful mechanism for 

the emergence of cooperation.  Figure 1 shows the evolution of a randomized array, with early 

success by All Defect (animation at www.pgrim.org/pragmatics).  Because of local interaction 

and local imitation, however—because of 'viscosity'—communities of mutually reinforcing Tit 

for Tat then expand, eventually occupying the entire array (Grim 1995, 1996; Grim, Mar & St. 

Denis 1998).
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Figure 1.  Conquest by TFT in a spatialized environment.  Typical evolution of a randomized 

array of the 8 reactive Prisoner's Dilemma strategies, where cells copy the strategy of their most 

Successful neighbor.  TFT in black, All-D in white.  Generations 1, 5, 10 and 15 shown.  A full 

animation of the evolution of the array can be seen at www.prim.org/pragmatics.   

 

 It is worthy of emphasis that spatialization is crucial to these results.  If one of the 

mechanisms at issue is made global rather than local, the effect is broken: cooperation no longer 

proves dominant.  Suppose, for example, that each agent updates its strategy not by imitating the 

strategy of its most successful neighbor but by imitating the strategy of the most successful cell 

in the entire array.   With such an alteration, competitive play remains local but updating 

becomes global.  In that case Tit for Tat is driven to distinction and we have a clear conquest by 

All-Defect (Figure 2).
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Figure 2.  Conquest by All-Defect with a global assumption.  Typical evolution of a randomized 

array of the 8 reactive Prisoner's Dilemma strategies, using global replacement: in each 

generation 5% of the array is replaced with the strategy of the most successful cell in the array. 

 

III.  Studies in Communication 

 

 It is clear that game-theoretic cooperation can emerge in distributed networks.  Can 

patterns of simple signaling emerge in a similar way?  Can a dynamics this simple produce 

simple forms of communication?  Though the modeling techniques are very similar, the games at 

issue in this exploration go well beyond the simple Prisoner's Dilemma.   

 The basic model again uses an array of individuals in a two-dimensional lattice.
4
  In order 

to keep things simple, individuals in this model don’t move: they are embedded in the array 

something like coral in a reef.   What does move are food sources and predators, each of which  

travels in a random walk, cell by cell, across the array. It should be emphasized that the food 

sources are food sources—individuals feed when a food source lands on them, but the food 

sources themselves are not consumed and do not disappear.  Food sources are like a school of 

fish, perhaps, continuing their random walk and offering nourishment for the next individual 

down the line.  In much the same way, predators in the model are never sated: they continue to 

pose a danger in their random walk.   

 Each of the individuals embedded in the array has a small behavioral repertoire.  It can 

open its mouth, hide, stay in neutral, make a sound 1 (heard by itself and immediate neighbors), 

or make a sound 2.  Each individual also has a limited range of perception.  It knows when it is 

fed—when its mouth is open and a food source lands on it—and when it is hurt—when it is not 

hiding and a predator lands on it.  Each agent can hear and distinguish sounds made by itself or 

immediate neighbors; it knows when someone just made sound 1, for example, or someone just 

made sound 2. 

 The behavior of each individual is dictated by a simple strategy code.  An agent's code 

may dictate that it opens its mouth only when it hears sound 1, for example, or hides only when 

it hears sound 2.  An agent's code might also dictate that it never opens its mouth.  When an 

individual opens its mouth and food is on it, it gains a point for ‘feeding’.  When a predator hits 

an individual that isn’t hiding, that individual is ‘hurt’ and loses a point.  But opening one’s 
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mouth, hiding, and making a sound all exact an energy cost.  There are no costless actions in this 

model, and there are no costless signals. 

 This model differs from others in the literature in a number of ways.  One difference is a 

thorough spatialization; in this model, all action is local action.  Some of Cecilia and Paolo Di 

Chio’s work puts a similar emphasis on spatialization (Di Chio & Di Chio 2007).  A second 

difference is the fact that the emergence of signaling is ecologically situated.    The question is 

how arbitrary sounds take on a meaning, but the context is an environment with some built-in 

significance of its own: the importance for individual agents of capturing food and avoiding 

predators.   

 Many of the models in the literature employ something like a Lockean theory of 

meaning, in which meanings correspond to something in individual heads.  In contemporary 

guise, those Lockean meanings often take the form of representation matrices, with convergence 

on the same matrix in different individuals taken as the measure of ‘successful communication.’  

The model offered here is much closer to a theory of meaning as use.  Here there is no matching 

of matrices in different heads; the measure of communication is simply and solely successful 

behavioral coordination across a community.   

 A final distinctive feature of the model is its emphasis on individual gains, tied directly to 

individual success in capturing food and avoiding predators.  Unlike many models—unlike even 

Lewis's signaling games—there is no 'mutual reward' for successful communication or mental 

matching, for example.  Prashant Parikh’s models share this emphasis on individual gains 

(Parikh 2001, 2006, Parikh & Clark 2007). 

 What my collaborators and I were interested in was the possibility that patterns of simple 

signaling might emerge as a result of a situated economics of information: that communication 

might emerge in response to environmental pressures on the basis of individual gains.  We 

investigated three forms of strategy updating in three stages of the work.  In initial studies, 

strategy change was by simple imitation, just as in the cooperation studies above (Grim, Kokalis, 

Tafti & Kilb 2000).  In a second series of investigations, we cross-bred our strategies using 

genetic algorithms, but restricted our genetic algorithms—like everything else—to purely local 

instantiation.  Genetic algorithms are generally applied globally; individuals ranking highest on 

some fitness function are selectively cross-bred and their offspring are re-introduced randomly 

into the population as a whole.  We replaced that global algorithm with a local one in which 

strategies are ‘bred’ as hybrids between the strategy of a cell and that of its most successful 

neighbor; local success results in local hybrid reproduction (Grim, Kokalis, Tafti & Kilb, 2001).  

In more recent models, our individuals instantiate simple neural nets, doing a partial training on 

the behavior of successful neighbors (Grim, St. Denis & Kokalis 2003; Grim, Kokalis, Alai-

Tafti, Kilb & St. Denis 2004).  On the basis of lessons learned regarding the pitfalls of perfect 

worlds (Grim, P., Kokalis, T., Alai-Tafti, A., & Kilb, N. 2000) and following hints in the work of 

Martin Nowak (Nowak & Sigmund 1990, 1992), we worked throughout with a stochastically 

imperfect world.  In 5% of cases individuals open their mouths and in 5% of cases they hide 

regardless of strategy or input. 

Results using all three forms of strategy updating showed an emergence of simple 

signaling in a spatialized environment of wandering food sources and predators.  The following 

sections summarize main points using results from the more recent work with neural nets.  

 

A.  The Dynamics of Feeding, Predation, and Simple Signaling 
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 For even creatures as simple as those outlined, there is a behavioral strategy that would 

seem to qualify as an elementary form of signaling.  Consider a spatialized community of 

individuals which share the following behavioral strategy: 

 

 They make sound 1 when they successfully feed 

 They open their mouths when they hear a neighbor make sound 1 

 

 They make sound 2 when they are hurt 

 They hide when they hear a neighbor make sound 2 

 

We have termed these 'perfect communicators.'  Our food sources migrate in a random walk 

from cell to cell, never being entirely consumed.  So suppose a community of ‘perfect 

communicators’, and suppose that one individual successfully feeds.  Because it's a 'perfect 

communicator', it makes sound 1.  All its neighbors are perfect communicators as well; when 

they hear sound 1, they open their mouths.  The food source will migrate, and one of those 

neighbors will successfully feed. That cell will then make sound 1, alerting its neighbors.  The 

result in a community of ‘perfect communicators’ is a chain reaction in which the food source is 

successfully exploited on each round. 

 This advantage, of course, demands that we have a full community of ‘perfect 

communicators’. For a single ‘perfect communicator’ there is no advantage to such a strategy at 

all: given the energy cost for sounding and opening its mouth, in fact, there is a significant 

disadvantage. 

 The dynamics are slightly different for predators.  If an individual is hit with a predator 

and gives an alarm call, his neighbors hide and therefore are not hit by the wandering predator. 

Those neighbors therefore do not pass on the alarm call.  Because there is no alarm call, someone 

does get hit by the predator on the next round.  Even ‘perfect communication’ therefore affords 

protection against predators only on alternate rounds.  Because of that difference in dynamics, 

and in order to avoid a bias toward one environmental pressure rather than another, we worked 

throughout with twice as many predators as food sources across the array. 

 Since our individuals have two sounds at their disposal, of course, there are two versions 

of ‘perfect communicators’.  One uses sound 1 for food and sound 2 for predators; the other uses 

sound 2 for food and sound 1 for predators.            

 

B.  Emergence of Communication in Spatialized Arrays of Neural Nets 

 

In our simplest work with neural nets, our individuals are instantiated as perceptrons: 

two-layer feed-forward nets of the form shown in Figure 3.
5
  This structure has two distinct 

lobes.  The left takes sound as input and outputs whether an individual opens its mouth, hides, 

does neither or both.  The right lobe takes as input whether it has been fed or hurt on a particular 

round, outputting any sound the agent makes.
6
  

We use a bipolar coding for inputs, so that ‘hear sound 1’, for example, takes a value of 

+1 if the individual hears sound 1 from an immediate neighbor on the previous round, and takes 

a value of -1 if it does not.  Each input is multiplied by the weight shown on arrows from it, and 

the weighted inputs are then summed at the output node.  To that is added the value (positive or 

negative) of the bias, which might alternatively be thought of as a third weight with a constant 

input of 1.  If the total at the output node is greater than 0, we take our output to be +1, and the 
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individual opens its mouth, for example; if the weighted total is less than 0, we take our output to 

be -1, and the individual keeps its mouth closed.  Here as before an element of noise is built in: 

in a random 5% of cases each individual will open its mouth regardless of weights and inputs.  

On the other side of the lobe, individuals also hide in a random 5% of cases.   

 

 
 

Figure 3   Perceptron structure of each agent embedded in the spatialized environment of 

wandering food sources and predators with partial training on the behavior of successful 

neighbors.   

 

  We code our behavioral strategies in terms of the outputs they give for possible pairs of 

inputs.  Figure 4 shows the possible inputs at ‘hear sound 1’ and ‘hear sound 2’ for the left lobe 

of the net, with samples of output pairs for 'open mouth' and 'hide' for these pairs of inputs.  The 

left-lobe behavior of a given strategy can thus be coded as a series of 8 binary digits.  With a 

similar pattern of behavioral coding for the right lobe, we can encode the entire behavior of a net 

with 16 binary digits.  The sample space consists of 38,416 strategies in this sample space, but 

there are only 2 that qualify as ‘perfect communicators’.   

 

 
Figure 4   Possible pairs of inputs at 'hear sound 1' and 'hear sound 2' for the left lobe of each 

agent, with samples of output pairs for 'open mouth' and 'hide.'  This strategy opens its mouth 

whenever it hears sound 2, and never hides.  With a similar coding for the right lobe, the 

behavior of each net can be coded as 16 binary digits.   

 

 We populate our array with neural nets carrying twelve random weights.  After each 100 

rounds, our individuals look around to see if there are more successful neighbors.  If so, they do 

a partial training on the behavior of their most successful neighbor.   We use the standard delta 

rule as the learning algorithm for our perceptrons.  For a set of four random inputs, the cell 
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compares its outputs with those of its target neighbor.  At any point at which the behaviour of the 

training cell differs from its target, we nudge each of the responsible weights and biases one unit 

positively or negatively.  Within the limits of our value scale, use of bipolar values for target and 

input allow us to calculate this simply as  wnew = wold + (target × input) and biasnew = biasold + 

target. 

 Our training run consists of only four random sets of inputs, with no provision against 

duplication.  Training will thus clearly be partial: only four sets of inputs are sampled, rather than 

the full 16 possible, and indeed the same set may be sampled repeatedly.  The learning algorithm 

is applied using each set of inputs only once, moreover, leaving no guarantee that each weight 

will be shifted enough to make the behavioural difference that would be observable in a 

complete training.  Partial training is quite deliberately built into the model in order to allow 

numerical combinations and behavioural strategies to emerge from training which might not 

previously have existed in either teacher or learner, thereby allowing a wider exploration of the 

sample space of possible strategies (for details see Grim, St. Denis, Kokalis, 2002 and Grim, 

Kokalis, Alai-Tafti, Kilb, & St. Denis, 2004).  

 We start, then, with an array of perceptrons with randomized weights and biases.  Figure 

5 shows the evolution of such a randomized array over the course of 300 generations (animation 

at www.pgrim.org/pragmatics).  Here 'perfect communicators' are coded in pure black and white, 

though it should be noted that they appear here entirely by partial training.  The initial display 

contains no 'perfect communicators' at all: they emerge by the mechanism of partial training on 

successful neighbors, spreading by the same means.   Figure 6 graphs the result. 
7
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Figure 5  Emergence of two dialects of perfect communicators, shown in solid black and white, 

in a randomized array of perceptrons with partial training on successful neighbors.  All other 

behavioral strategies are coded using shades of gray for backgrounds and central dots.  Centuries 

1, 10, 50, 100, 200 and 300 shown.  A full animation of the development can be seen at 

www.prim.org/pragmatics.   

 

 
 

Figure 6   Emergence of two dialects of perfect communicators in an array of perceptrons 

through partial training on successful neighbors in a spatialized environment of wandering food 

sources and predators.   

 

 The primary lesson of the work in communication is that simple forms of signaling can 

emerge on the basis of entirely individual gains, geared solely to environmental success, in 

distributed networks of local interaction.  If these simple forms of communication count as 

'semantics', what this shows is that quite minimal conditions are sufficient for the emergence of 

simple semantics.   

 

IV.  The Emergence of Pragmatics 

 

 Can the reach of this kind of modeling be extended beyond semantics?  In what follows 

the same tools are applied to aspects of pragmatics in an attempt to understand the emergence of 

the Gricean maxims. 

 Here as in the semantic case we wanted the information our agents deal with to be real 

information, rather than simply some arbitrary fitness function.  In line with the studies in 

semantics, we wanted the pragmatics of communication to be contextually situated—realistically 
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tied to individual success in the environment.    Here  we return to a two-dimensional lattice, but 

with an array of agents who have already fixed on a signaling system—an array of agents for 

whom a system of communication is already in place.   

 The environment for these studies is not one of wandering food sources and predators, 

but it does have an essentially spatialized character.  This environment, like that of the semantic 

studies, is an environment of random events of local significance.  Here events come in three 

colors, playing across the array—these are rains of manna, perhaps, or threatening storms, or 

clouds of locusts.  The important thing for each individual is that it act appropriately with regard 

to the environmental events around it.  If an agent finds itself in a magenta cloud (portrayed as a 

shade of gray in Figure 7, but visible in color at the url for this chapter), it will gain points by 

acting in an appropriately magenta way.  It will lose points if it does not.  If an agent finds itself 

in a bright red cloud, it is red behavior that is advantageous and failing to act in an appropriately 

red way that will lose points.  Color acting is by no means free, however—one cannot hedge 

one’s bets by always acting magenta, red, and yellow simultaneously.  If an agent acts red when 

there is no red cloud it loses points as well.     

 

 
Figure 7   The environment of random events of local significance used in the pragmatics 

studies. 

 

 If all agents could detect their own environmental contingencies at all times, the model 

would be much less interesting—everyone would do well.  In our model, however, agents cannot 

always tell what is happening; only a random 10% of the agents on each round are able to detect 

their current environment.  The others, for that round, are blind. 

 Our assumption, however, is that a system of communication is already in place.  Our 

agents already speak ‘red’, ‘yellow’, and ‘magenta’, in the following sense: They can give ‘red’, 

‘yellow’, and ‘magenta’ signals heard by their immediate neighbors.  If an agent receives a ‘red’ 
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signal from a neighbor, he acts red; if he receives a ‘magenta’ signal, he acts magenta, and so 

forth.  If you as an agent happen to be in the 10% that can see your immediate environment on a 

given round, then, you have all the information you need to do well.  If you have a 

communicating neighbor who is in that 10%, you derive the same benefit. 

 It is here that the Gricean maxims come in.  Suppose that you as an agent have an 

immediate neighbor who is among the 10% who can see what’s happening.  We’ll call him 

‘Seymour’.  Because a system of communication is already in play between you and Seymour, 

and because Seymour can see what’s happening, you are going to do fine.  You are going to do 

fine, that is, as long as he’s following the appropriate pragmatic maxims:   

 You will have the information you need on the condition that Seymour observes 

something like a maxim of quantity: as long as he gives you enough information.  Agents start 

out with a set probability of transferring important information—a probability, if they see 'red', 

of signaling red to their neighbors.  We labeled our probability intervals 1 to 10, corresponding 

to .1 intervals between 0 and 1.     

 You will have the information you need on the condition that Seymour observes a maxim 

of quality: as long as he is telling you the truth.  Agents start out with a probability interval 

between 1 and 10 of sending a correct message if they send a message at all: a probability of 

sending ‘red’ in a red environment rather than ‘magenta’ or ‘yellow’, for example. 

 You will have the information you need on the condition that Seymour observes a maxim 

of relation: on the condition that he is giving you relevant information.  I will detail the modeling 

of relevance in a moment.   

 The general question at issue is whether pragmatic behavior in accord with Gricean 

maxims will emerge in a communicative network of this kind.  Here as in the semantic case, it 

should be emphasized, the model works entirely in terms of (1) individual gains and losses—

gains from acting appropriately in one’s environment and avoiding inappropriate action, and (2) 

local action in the distributed network itself—the local action of sending and receiving signals 

with immediate neighbors and of updating on the behavior of successful neighbors. 

 In the pragmatic studies that follow, our behavioral updating is simply by imitation.  One 

of the lessons from the semantic studies seems to be that it is patterns of mutual advantage in an 

environment that are of importance, regardless of how agents learn from their neighbors.  We 

expect much the same to hold in the case of pragmatics, but more complicated mechanisms of 

localized genetic algorithm and neural net training are left to further work. 

 In the following sections communicative behavior in accord with each of the maxims is 

developed successively; we then show that these behaviors can co-evolve as well.   

  

1. Quantity  
  

 We begin with the pragmatics of quantity.  What our model gives us is an environment of 

changing but spatialized events.  On each round a random 10% of agents can detect those events.  

All individuals in the array are primed with appropriate signals—‘red’ for a red environment, 

‘yellow’ for a yellow, and the like—but our agents start with different probabilities of signaling 

at all.  Some transfer information whenever they have it.  Some signal with only 60% 

probability, or 10%, or never signal at all.  On each round, all agents gain and lose points on an 

individual basis.  After 100 rounds, they look to see if any neighbor has gained more points—

individual points gained on the basis of information received, of course.  If so, they imitate the 
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quantity probability in sending of their most successful neighbor—the probability of that 

neighbor signaling to others.   

 What happens if we start with an array of agents with randomized 'quantities'?  In Figure 

8 we use the darkest shades to code those with the least probability of signaling, using the 

brightest shades to code those with the highest probability (in the url, coding is done with darker 

and lighter shades of blue).  Over the course of a few hundred generations the array comes to be 

increasingly dominated by those following a Gricean maxim of quantity: by those with the 

highest probability of signaling.  Here signaling does not have to be free: the results hold even 

with a cost for signaling.  Figure 9 shows a graph for a typical run.   

 

 
Figure 8  The Emergence of Quantity.  Agents with lower probabilities of signaling are coded in 

darker shades.  Evolution to pragmatic maxim of quantity by imitation of successful neighbors 

over 100 generations.  Initial randomization and generations 5, 10, and 100 shown.   
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Figure 9    The Emergence of Quantity.  Percentages of population shown over 200 generations. 

 

2.  Quality 

  

 In order to run the model for quality we assume that quantity is already in place: all those 

who detect a particular environmental condition signal it to their neighbors.  They may or may 

not signal accurately, however.  Our agents come with a probability between 1 and 10 of 

accurate signaling, otherwise sending a decidedly incorrect signal—‘red’ instead of ‘yellow’, for 

example, or ‘yellow’ instead of ‘magenta’.   

 We start with a randomization in terms of quality.  Those with the lowest quality are 

coded with the darkest color; those with the highest are coded with the brightest (Figure 10; in 

the url, coding is done with darker and lighter shades of green).  Over the course of 100 

generations the array comes to be dominated by those with following a Gricean maxim of 

quality: The population converges on truth-telling (Figure 11). 
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Figure 10   The Emergence of Quality.  Agents with lower probabilities of accuracy in signaling  

are coded in darker shades.  Evolution to pragmatic maxim of quantity by imitation of successful 

neighbors over 100 generations.  Generations 1, 5, 10 and 90 shown. 
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Figure 11    The Emergence of Quality.  Percentages of population shown over 100 generations. 

 

            

3.  Relevance 

 

 Information regarding environmental conditions is relevant, on this model, to those who 

are actually in an event environment. Environments have fringes, however, and agents come with 

a ‘degree of relevance’ in their reports (Figure 12).  Some agents signal precisely when an event 

is happening in their immediate neighborhood.  Others report when something is happening in a 

slightly larger area, and which therefore has a lower probability of actually occurring where they 

are.  Others report on a still wider area, offering information that is still less relevant. 

 

 
 

Figure 12   Relevance neighborhoods 

 

 Here we assume both quantity and quality to be in place: reports are forthcoming from all 

agents, truthful as to the character of the event reported, but of varying relevance.  We start with 
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an array randomized as to relevance, coloring those with least relevance in darker shades, those 

with most relevance in brighter shades (in the url coding is done in shades of red).  The result, as 

shown in Figures 13 and 14, is convergence to the highest degree of relevance across the array.  

The population fixates on maximized relevance.   

 

 
Figure 13   The Emergence of Relevance.  Agents with lower relevance in signaling are coded in 

darker shades.  Evolution to pragmatic maxim of relevance by imitation of successful neighbors 

over 100 generations.  Generations 1, 5, 10 and 100 shown.   
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Figure 14    The Emergence of Relevance.  Percentages of population shown over 100 

generations. 

             

D.  Co-Emergence of the Maxims 

 

 What if we combine all three of these pragmatic parameters?  Here we start with an array 

randomized for all pragmatic virtues: randomized for quality, quantity, and relevance.  Shadings 

are combined: black or near-black indicates a combination of poor pragmatic values, a light grey 

indicates an individual virtuous in terms of all three pragmatic maxims.  In the animation 

accessible at www.pgrim.org/pragmatics, we have simply combined the blue, green, and red 

codings of the pragmatic virtues above. 

 On each turn, each agent gains and loses points by acting on the information he receives.  

But of course the quality of that may information may vary—he may not receive important 

information from a neighbor, he may receive incorrect information, or he may receive irrelevant 

information.  At the end of 100 rounds, if a neighbor has garnered more points from acting on  

received information in the environment, each agent updates on just one aspect of that neighbor’s 

pragmatic character in sending information:  He randomly adopts the neighbor’s quality rating, 

quantity rating, or relevance rating.  That means, of course, that he may update on the wrong 

thing—the neighbor’s success may be due to something other than the trait he imitates. 

 The fact that only one character will change each time, and that they are all interacting, 

makes the result significantly slower in this simulation.  Nonetheless, over 600 generations or so, 

convergence is to the highest value in all pragmatic parameters (Figures 15 and 16).  
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Figure 15   Co-Emergence of the Maxims together over 600 generations.  Quality, quantity and 

relevance are coded from dark to light in three different shades.  Initial randomization and 

generations 10, 100, and 600 shown.   
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Figure 16   Co-Emergence Quantity, Quality, and Relation over 600 generations.   

 

 In the models for pragmatics as in those for signaling and cooperation, it should be 

emphasized, it is local spatialized action that is the key.  In correlate work in evolutionary game 

theory, using assumptions of global interaction, Nicholas Asher was able to produce pragmatic 

conventions of sincerity only with very strong assumptions regarding the immediate advantage to 

a speaker of telling truth (Asher, Sher & Williams 2002; private correspondence).  In the 

dynamics of localized action and imitation, on the other hand, a full range of pragmatic 

conventions emerge in terms of environmentally significant events, assuming no immediate 

advantage to the speaker, and despite signaling costs.   

 Although simulations should never be treated as conclusive, they can be wonderfully 

suggestive.  What these results suggest is that fundamental phenomena of pragmatics emerge 

spontaneously in communicative networks.  Those fundamental phenomena don’t need to be 

added, they don’t need to be cultivated, and they don’t need to be assumed.  In any informational 

network of a certain sort—one in which individuals are striving merely for individual 

informational advantage—behavior in accord with Gricean maxims of quality, quantity, and 

relation will come for free. 

           

E.  Simulating Grice 

 

 These results seem to go some way in fulfilling what Grice himself wanted: 

 

“…I would like to be able to show that observance of the Cooperative Principle and 

maxims is reasonable (rational) along the following lines: that anyone who cares about 

the goals that are central to conversation/communication (such as giving and receiving 

information, influencing and being influenced by others) must be expected to have an 

interest, given suitable circumstances, in participation in talk exchanges that will be 

profitable only on the assumption that they are conducted in general accordance with 

the Cooperative Principle and the maxims.  Whether any such conclusion can be reached, 

I am uncertain…”  (Grice 1989, 28-29) 

 

 On the other hand, there are aspects of the simulational work that run directly counter to 

Grice.  Grice’s approach to meaning is heavily intentional, and his work in pragmatics follows 
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suit.  Following Grice’s lead, a great deal of good and solid work in pragmatics assumes highly 

reflective and highly cognitive agents—agents capable of identifying the limits of literal 

meaning, capable of logical deduction, and capable of building cognitive models of their 

interlocutors.  

 What these simulations suggest is that something much simpler and much less cognitive 

may be going on far beneath that level.  The agents in these simulations are too simple to form or 

recognize intentions.  They have no explicit capacities for logical inference, and are far too 

simple to build cognitive models of their interlocutors.  Despite that, something develops in 

networks of those simple agents that looks a lot like signaling.  Behaviors develop in networks of 

those simple agents that also seem to be in accord with the Gricean maxims.     

 With more complicated agents, of course, these same dynamics may play out in more 

complicated forms involving intentions, logical inference, and cognitive modeling.  But what the 

simulations suggest is that cognitive complexity of that sort isn’t strictly necessary: information 

maximization in communication networks produces fundamental phenomena of pragmatics even 

with far simpler cognitive agents.   

 These results also offer some suggestions regarding the conceptual categories in play.   

Grice followed Kant in speaking of ‘maxims’.  But the term ‘maxims’ itself may suggest too 

high a cognitive level.  Grice also followed Kant in dividing his maxims into quantity, quality, 

relation and manner, but even Grice himself seemed to recognize the artificiality of these 

categories.  There are undoubtedly important distinctions to be drawn between forms of 

linguistic convention, but the lines should perhaps not be drawn where Grice drew them.  In 

terms of dynamics within information systems, even the distinction between semantics and 

pragmatics may not be as hard and fast as it has sometimes been assumed to be.   

 The background work summarized in sections I and II concerns the emergence of 

signaling systems, read as semantic.  The newer work outlined above assumes a semantic system 

in place, and reads further results as an emergence of pragmatics.  What if we combined the 

simulations; what if we did the two together?  We haven't yet done that work, but my prediction 

is that the results will be much the same.  My prediction is that information maximization will 

emerge both in terms of coordinated use of signals and in pragmatics of appropriate, relevant, 

and accurate signaling.   

 Would that be the emergence of two things simultaneously—semantics and pragmatics? 

One could look at it that way.  But I also think that one could take the result as an indication that 

there is a single core phenomenon at issue, of which semantics and pragmatics are somewhat 

artificially separated ‘aspects’.  The core phenomenon, and the engine that drives both, is 

environmental information maximization in communication networks. 

 

V.  Pragmatic Implicature and Inference 

 

 What the simulational results offer so far is the emergence of something like Gricean 

pragmatic conventions.  Assuming a semantics of basic signals, the dynamics of local 

interaction, self-advantage, and imitation of successful neighbors is sufficient to produce 

conventions of quality, quantity, and relevance.  But there is something important that this does 

not yet give us.  It does not yet give us Gricean inference on the part of the hearer—reliance on 

conventions in play in order to draw particular inferences beyond what is said.  It also does not 

yet give us Gricean implicature on the part of the speaker—the use of conventions in play in 

order to encourage particular inferences beyond what is said.  Can the modeling techniques 



 22

outlined here take us that next step?  The answer appears to be ‘Yes and No,’ but an interesting 

‘Yes and No’.   

 The reason for the ‘No’ answer is that most Gricean inferences and implicatures are 

characterized in highly cognitive terms.  Some of Grice's examples seem to depend crucially on 

cognitive modeling of the other agent—an aspect rightly emphasized by Asher and his 

collaborators (Asher, Sher, & Williams 2002; Asher & Lascarides 2003).  Some of the examples 

depend on an agent’s explicit recognition of the limits of literal meaning, or of conventions as 

conventions, or explicit recognition of patterns of logical entailment.  Can the simulation 

techniques above be used to model those?  No, because we are working with agents at far too 

low a cognitive level.  In order to extend network techniques to most cases of Gricean inference 

and implicature we would need networks of more complex agents.   

 Gricean inference and implicatures are a mixed bag, however, and there are some 

phenomena in at least the general area that do show up even in simulations of agents this simple.  

One of those phenomena is a close relative of scalar inference and implicature—the inference 

and implicature from ‘some students came to the party’ to ‘not all came’, for example, or ‘there 

are five apples in the basket’ to ‘there aren’t seven.’   

 What is at issue in such cases is a particular kind of coordination between speaker and 

hearer.  The speaker’s ‘five applies’ implies ‘not more.’  He doesn’t say ‘there are five apples in 

the basket’ when there are ten, even though it’s true that there are five apples in the basket when 

there are ten.  The hearer, on the other end of the coordination, hears ‘five apples’ and infers ‘and 

not more’.  In simplest terms, the speaker doesn’t use a scalar lower than the highest justified.  

He doesn’t say ‘three apples’ when there are five, for example.  The hearer, on his side, doesn’t 

think ‘he said five apples, so there might be ten;’ he  doesn’t act on a scalar higher than that 

conveyed.   

 Whether or not it fully qualifies as implicature, this kind of coordination between speaker 

and hearer can emerge even with agents as simple as those used here.  That is the ‘Yes’ of the 

‘yes and no’.  This aspect of scalar implicature seems to be simpler than many of the things in 

the Gricean mixed bag; interestingly, it was also scalar implicature that Gerhard Jäger explored 

using the very different (and non-spatialized) ‘best response’ dynamic (Jäger 2007).   

 A further simulation shows the co-emergence of coordinated speaker and hearer behavior 

along the lines of scalar implicature.  The environment is again one of randomized spatialized 

events, but the events differ in severity: there are storms of grades 1, 2, 3, and 4, for example.  If 

you as an agent are prepared for a storm of grade 2, you are prepared for a storm of either grade 

1 or 2, but you are still open to damage if hit with a 3 or 4.  If you are prepared for a storm grade 

3 and you only get hit with a 1, on the other hand, you have wasted precious resources—the 

effort expended in needless preparation for levels 2 and 3 (Figure 17). 
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Fig. 17  Spatialized events of scalar ordered severity: storms of severity 1, 2, 3, and 4, 

for example.  
 

 The ideal in such an environment is to act in a way precisely appropriate to the storm: to 

act 1 and 2 in a 2 environment; 1, 2 and 3 in a 3 environment.  In this simulation you as an agent 

get a positive point for every degree you are correct about—a positive point for both 1 and 2 if 

you act ‘2’ in a two environment, for example.  You get a negative point for every degree you 

are wrong about—a negative point for acting 3 if the storm is only a 2, for example.  If the storm 

is a 4 and you only act 1, you get a positive point for your ‘1’ but negative points for the 2, 3, and 

4 that you missed.  Here as before, only 10% of the population on any round can directly observe 

the relevant environment—hence the need for communication.   

 In modeling the emergence of pragmatic conventions, we started with an established 

semantics for red, magenta, and the like.  Individuals who heard ‘red’ automatically acted red.  

Here we start with an established scalar semantics: If you hear ‘2’ you act both 2 and 1.  If you 

hear 3 you will act 3, 2, and 1.  We also start with established pragmatic conventions of the 

forms evolved above.  Speakers who observe a storm always send a signal, they send a signal 

regarding the immediate environment, and—most important for our purposes—they never send a 

signal that isn’t true.   

 Those specifications still leave something important open—something about scalars.  Our 

agents are both speakers and hearers.  As speakers they never speak anything but the truth, but 

we start with an initial population in which speakers may say something that is true but does not 

convey the full scalar height.  Storms of degree 4 are also storms of degree 3, 2, and 1.  As 

speakers, therefore, our agents start with a probability interval between 1 and 10 of giving a 

signal less than the full observed scalar.  As hearers, our agents always act 1 and 2 on hearing the 

signal ‘2’.  But they may also act on a scalar higher than that heard: they may act not only 1 and 
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2 but 3, for example.  As hearers, our agents start with a probability interval between 1 and 10 of 

acting not only on what they hear but on a scalar higher than that they hear.   

 In our initial array of randomized probabilities, then, a scalar signal does not necessarily 

indicate that the truth isn’t higher.  A heard scalar doesn’t entail that you shouldn’t act higher.  

There is as yet no scalar coordination between speakers and hearers.  Indeed even within each 

agent there need be no coordination between speaking behavior and hearing behavior.  We start 

with a situation in which the coordination characteristic of scalar implicature and inference 

doesn’t yet exist. 

 Our agents code speaker probability in one color scale (blue, in the color version at the 

url for this chapter), with lighter shades indicating a lower probability of signaling below the 

observed scalar.  Agents’ hearer probabilities are coded in another color scale (green), with 

lighter shades indicating a lower probability of acting above the scalar message received. As 

before, all gains are purely individual.  After 100 rounds of gains and losses, individuals see if 

any neighbor has done better in terms of over-all score.  If so, they imitate just one of that 

agent’s features, at random: that agent’s probability of giving a scalar less than the observed 

reality, or that agent’s probability of acting on a scalar higher than that heard. 

 Figures 18 and 19 show the evolution of the array.  In such an environment, speakers 

could routinely understate the severity of observed storms.  Hearers could routinely act above a 

signal that was likely to be low, following a general strategy of over-reacting to assumed under-

statement.  But that is not the direction in which this kind of array evolves.  It evolves 

systematically to a coordination between speakers and hearers in which speakers have the lowest 

probability of sending a signal less than the observed scalar height, and in which hearers have the 

lowest probability of acting as if what they heard might be less than the full scalar height.   
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Figure 18   Emergence of scalar coordination between speakers and hearers over 200 

generations.  Speaker's tendency to understate scalars is in darker green, hearer's tendency to act 

on higher scalar than announced is in darker blue, combined here as darker gray.  Generations 2, 

11, 50 and 200 shown.   

 

 
 

Figure 19  Emergence of scalar coordination between speakers and hearers over 350 generations.    

 

 As indicated above, it is unclear whether this qualifies as Gricean implicature in the full 

sense.  It does show, however, that extremely simple speakers and hearers in information 

networks can develop precisely the communicative coordination that is characteristic of scalar 

implicature and inference.  It is interesting to note, by the way, that speakers and hearers do not 

converge to this coordination at the same rate.  It is the hearers who converge first, learning not 

to over-react.  In large part because of the dynamics of payoffs, speakers are significantly slower 

in learning not to under-state.    

 

VI.  Conclusion 
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 What simulations suggest is that maximization in spatialized information networks, even 

networks of very simple agents, is sufficient to produce aspects of semantics, of pragmatics, and 

even coordinated communication behaviors suggestive of scalar implicature and inference.  

Some of the core phenomena at issue in semantics, pragmatics, and implicature appear in the 

fundamental dynamics of information maximization, even for agents far below the cognitive 

level of those that appear in Grice. 

 Even if this captures some of the core phenomena at issue in pragmatics, it cannot be said 

to capture it all.  There are things in the mixed bag of Gricean pragmatics that seem to demand a 

higher cognitive level—the level of agents that can explicitly recognize logical inferences, that 

can explicitly reflect on conventions as conventions, or that can cognitively model other agents.  

Those things will not appear in networks of agents this simple 

 Those other aspects might appear, however, with a similar dynamics, in spatialized 

networks of more complex agents.  All of the phenomena illustrated here operate in terms of 

individual information maximization across spatialized arrays of communicative agents.  It is to 

be expected, I think, that information maximization of that kind will use all the tools available to 

it.  Information maximization in arrays of simple agents exploits the full cognitive abilities of 

those agents, even where—as here—those cognitive abilities are severely limited.  Information 

maximization in arrays of more complex agents will have a wider range of cognitive abilities to 

exploit, and it is predictable that it will do so. 

 The next step along these lines would therefore be an exploration of the dynamics of 

maximization in information networks involving more complex agents.  That could tell us 

whether a similar dynamics in the context of more complex agents might be sufficient for further 

aspects of pragmatics.  If particular aspects of language use will appear in networks of agents 

only where those agents have particular cognitive abilities, such a research trajectory would also 

give us a new typology and a new understanding of different communicative phenomena: an 

understanding in terms of the level of networked cognitive abilities that different communicative 

phenomena require.     
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Notes 

 
1
 My research collaborators in this work include Peter Ludlow, Dustin Locke, and Aaron 

Bramson at the University of Michigan and Brian Anderson at Stony Brook.   

 
2
 This first example employs synchronous updating.  Each of our agents simultaneously 

calculates whether any neighbor has done better, if so updating to the strategy of the most 

successful neighbor.  Results are much the same, however, if we randomly update only a small 

proportion of cells at each turn.  See Grim, Wardach, and Beltrani 2006. 

 
3
 Although spatialized lattices of this form are my main tool throughout, it is clear that a study of 

the dynamics of interaction across the entire range of possible network structures is needed.  

With regard to cooperation in particular, it turns out that the results outlined here generalize 

nicely across network structures.  See Grim 2009a, 2009b. 

 
4
  Here again the ultimate goal would be an understanding of communication across various 

networks.     

 
5
   Accessible but technically complete introductions to neural nets are unfortunately difficult to 

find.  Perhaps the best is Fausett, 1994. We are grateful to Laurene Fausett for personal 

correspondence regarding construction of the model.   

 
6
 A 'two-lobe' structure for signaling, it turns out, has been invented or reinvented numerous 

times in the literature.  See de Saussure 1916; MacLennan 1991; Oliphant & Batali 1997; 

Cangelosi & Parisi 1998; Nowak, Plotkin & Krakauer, 1999; Nowak, Plotkin, and Jansen 2000. 
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7
 In a second series of studies we used more complex neural nets, capable of handling the full 

range of Booleans, with partial training by backpropagation.  The results are just as strong.  See 

Grim, St. Denis, Kokalis, 2002 and Grim, Kokalis, Alai-Tafti, Kilb & St. Denis, 2004.   


