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Is simulation some new kind of science? We argue that instead simulation
fits smoothly into existing scientific practice, but does so in several impor-
tantly different ways. Simulations in general, and computer simulations
in particular, ought to be understood as techniques which, like many
scientific techniques, can be employed in the service of various and diverse
epistemic goals. We focus our attentions on the way in which simulations
can function as (i) explanatory and (ii) predictive tools. We argue that a
wide variety of simulations, both computational and physical, are best
conceived in terms of a set of common features: initial or input conditions,
a mechanism or set of rules, and a set of results or output conditions.
Studying simulations in these terms yields a new understanding of their
character as well as a body of normative recommendations for the care and
feeding of scientific simulations.

Keywords: Computational simulations; Physical simulations;
Epistemology; Prediction; Explanation

1. The nature of science and simulation’s place within it

Is simulation some new kind of science? Wolfram (2000) and Axelrod (2005) suggest
that it is:

Three centuries ago science was transformed by the dramatic new idea that
rules based on mathematical equations could be used to describe the
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natural world. My purpose in this book [A New Kind of Science] is to initiate

another such transformation, and to introduce a new kind of science that is

based on more general types of rules that can be embodied in simple computer

programs (Wolfram 2000).

Simulation is a third way of doing science. Like deduction, it starts with a set of

explicit assumptions. But unlike deduction, it does not prove theorems.

Instead, a simulation generates data that can be analyzed inductively (Axelrod

2005).

We believe that these claims amount to overstatements. Simulation has a variety of

important roles to play in the sciences, but we suggest that these roles need not, and

in fact ought not, be thought of as distinct from current scientific practice.
While the question of whether computer simulation yields results that are

deductive, inductive, or of some third kind (abduction?), has received much attention

in the literature, we believe that the notion that science involves (i) parts that are

deductive and (ii) separate parts that are inductive is itself an oversimplification of

how science works. Science has always, in all its endeavours, exploited whatever

techniques are most readily available and useful—some of which have been to a

greater or lesser degree inductive, some of which have been to a greater or lesser

degree deductive, and some of which have been, ostensibly, distinct from both

induction and deduction. For example, Epstein et al. (2005) suggests that we should

think about computer simulation as essentially involving both inductive and

deductive patterns of reason. They suggest that, while the results of computer

simulations are deductive, it is possible to apply inductive investigations across those

results.
Like scientific techniques generally, computer simulations are used to achieve a

variety of different goals. Computer simulation has been understood as a tool for

prediction. Computer simulation has been understood as a tool for explanation.

Epstein has even suggested that computer simulation can be understood as a tool for

confirmation. But science involves, at least, all three of these goals. Here, we will

focus exclusively on prediction and explanation. While we are interested in the role

computer simulations can play in theory confirmation, and are particularly inter-

ested in Epstein’s conception of confirmation within simulations, we will be restri-

cting ourselves here to simulations conceived of as explanatory and predictive tools.

Perhaps the idea that simulation is used to achieve a variety of scientific goals is best

understood within the context of thinking about science more generally. Science

should perhaps be conceived not on the model of an individual putting together a

picture of the world with some single scientific method, but rather as groups of

people putting together a picture of disparate phenomena, all the while navigating

within a rather complex economy of information and understanding. An economy

involves a variety of actors and consortiums aiming to maximize a plurality of goods

through cooperation, competition, and exchange. Science is like an economy in

which the ‘goods’ are epistemic in nature. Understanding, explanation, confirmation,

falsification, emergence, prediction, control through technological exploitation,

policy application, and intellectual satisfaction are just some epistemic goods among

many. Simulation, in its many forms, ought to be understood as playing various roles

within the economy of epistemic goods.
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2. What do scientific simulations do?

Computational simulations are diverse. They can be used in a variety of different
scientific investigations. We believe that it is useful to conceive of each simulation as
able to be located on a continuum which is more explanatory towards one end, and
more predictive towards the other end. Two classical examples of simulations that
are paradigmatic of the more explanatory variety include the Game of Life (Conway
et al. 1982) and the ‘boids’ simulation (Reynolds 1987). These simulations might best
be understood as depicting and helping to explain how complex phenomena can arise
from sets of relatively simple rules. Going further, Wolfram (1983, 2002) argues that
there is good reason to believe that computer simulations can help us to understand
how the emergence of complex phenomena from sets of simple rules plays a role in
nature. Wolfram’s extensive studies of two-dimensional cellular automata have, for
instance, revealed sets of rules that produce arrays identical to those found in nature,
such as those found on mollusc shells. Simulation has also been used to aid better
understanding of the nature of the mechanisms at work in certain socio-
psychological phenomena. Grim et al. (2004) have created a game-theoretic
simulation of the contact hypothesis, i.e. the theory in social psychology which
claims that desegregation leads to a reduction of prejudice. Contrasting a segregated
and an integrated configuration of cellular automata, these researchers find that the
‘prejudicial’ game-theoretic strategy that they have created in the simulation thrives
only in the segregated version. Based on their simulation, they claim that the
mechanism by which the contact hypothesis operates in the real world may include
elements of the game-theoretic type.

Moving down the continuum from more explanatory simulations to the more
predictive variety, Epstein et al. (2004) offer a simulation of a smallpox virus
outbreak drawing on both sociological and epidemiological data. On the basis of the
simulation’s results, Epstein et al. makes specific predictions concerning the details
of the outbreak, and the crucial institutional junctures of a society where viral
contamination is likely to occur. Predictive simulations are also being employed
in structural biology in order to solve the protein-folding problem. Recently,
Simmerling et al. (2002) have correctly predicted the structure of a protein using its
genetic sequence and the attraction and repulsion tendencies of its amino acid chain.
Computer simulation is employed to model the physical relationships between the
molecular interactions of amino acids. Initial positive results were achieved when
focusing on a rather small section of a large protein, and it is hoped that computer
simulation will aid in the accurate prediction of how larger chains of amino acids will
fold into their three-dimensional protein structures.

Computer simulations do not do perform just one task. Rather, they are
employed in many different types of scientific investigation, for a variety of purposes.
They can be used as predictive tools or explanatory tools, and in some cases
computer simulations can play both these roles to a lesser or greater degree.
Computer simulations, as with many scientific techniques, play multiple roles in the
larger epistemic economy of scientific investigation.

Of course, computational simulations, while diverse, are only one type of
simulation. It is helpful to compare and contrast them with physical simulations
from the history of science and technology, both theoretical and applied. As with
computer simulations, we believe that it is useful to conceive of physical simulations
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as able to be located on a continuum that is more predictive towards one end, and
more explanatory towards the other.

A classical example of a physical simulation is the orrery or mechanical model of
the solar system depicting the relative position of the planets, their moons, and the
Sun within the heliocentric model of the solar system. Orreries can be conceived of as
playing both predictive and explanatory roles depending upon the uses to which they
are put. They function as predictive tools when they are called upon to answer
questions concerning the conditions under which, for example, a lunar eclipse of
the Sun will be possible. Orreries function as explanatory tools by helping us to
understand the overall relative configuration of, for instance, the orbital trajectories
of a planet’s moons.

Physical simulations are diverse and their uses vary widely. From the use of wind-
tunnel simulations to explain and predict the aerodynamic properties of objects,
to the use of crash-test dummies to explain and predict the effects of vehicular
crashes on human physiology, physical simulations play an important role in the
epistemic economy of science. Recently the Army Corps of Engineers’ Interagency
Performance Evaluation Task Force (Link et al. 2006) released a report detailing
the findings of a small-scale centrifuge simulation of the 17th Street Canal in
New Orleans. The simulation, constructed at the Geotechnical Centrifuge Research
Center, Rensselaer Polytechnic Institute, helped to determine the failure mechanism
of the 17th Street Levee foundation. The centrifuge simulation helped researchers
to understand how the forces associated with Hurricane Katrina’s storm surge
against the levee resulted in a lateral movement of the flood wall along a shear plane
in the weak clay foundation of the structure.

3. A scientific structure

Although we believe that it is a mistake to look for one thing that all models or all
simulations do, it is possible to say something about the common characteristics
shared by the broad range of simulations that we have outlined. Further, identifying
this set of shared characteristics helps to illuminate current simulation practice and
can lay the groundwork for some normative recommendations concerning the care
and feeding of a broad range of simulations within the sciences.

There have been a number of attempts to offer a simple characterization of
simulations in particular, or models more generally. As far back as 1975, Ord-Smith
and Stephenson (1975) gave this outline: ‘Simulation is the technique by which
understanding the behavior of a physical system is obtained by making measure-
ments or observations of the behavior of a model representing the system’. Reddy
(1987) says: ‘Simulation is a tool that is used to study the behavior of complex
systems which are mathematically intractable’. Humphreys (1990) gives the following
working definition of simulations: ‘A computer simulation is any computer-
implemented method for exploring the properties of mathematical models where
analytic methods are unavailable’. Hartmann (1996) is critical of Humphreys’
outline, but offers us this instead: ‘A simulation imitates one process by another
process’.
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Attempts at outlining models in general have not been much better. Redhead
(1980) characterizes a model as ‘. . . a set of assumptions about some system’. Bunge
(1967) tells us that a model consists of two components: (1) a general theory and
(2) a special description of an object or system (the modelled object). Both Hesse
(1963) and Achinstein (1968) emphasize models as analogies. In a classic paper,
Gibbard and Varian tell us that models are like caricatures. Cartwright (1983)
characterizes models as fictions. Sugden (2000) says that ‘Credibility in models
is . . . rather like credibility in ‘‘realistic’’ novels’.

Like Winsberg (1999), we believe that these attempts at characterizing models
and simulations are generally quite unhelpful. What each of these attempts points to
is simply the idea that there is some structural relationship between the model and a
particular phenomenon or set of phenomena. It seems a priori that there would have
to be a relationship between the model and that which is modelled, but this is a
rather slim philosophical conclusion. We would like to say more about the structure
of simulations in a way that will let us say more about precisely how they function in
their different roles—in explanation, and in prediction, for example.

The terms ‘model’ and ‘simulation’ are used to refer to a vast variety of things.
For instance, the term ‘model’ is often used refer to a complex scientific theory with
many parts, such as Bohr’s model of the atom. In contrast, each of the examples that
we have reviewed can be considered simulations that yield results. They have a
payoff moment, much like an experiment. Moreover, all the simulations that we have
looked at are structured in terms of three elements. They include a particular set of
initial or input conditions. They instantiate a mechanism or set of rules which act
upon the initial or input conditions. The result is a set of output conditions. This
simple three-part structure is crucial to understanding how these kinds of simulations
work in terms of the various scientific uses to which they are put.

For each of these structural elements, a question concerning correspondence
arises. How well do the input conditions correspond to the real-world conditions
that we are trying to simulate? How well do the output conditions correspond to the
real-world phenomena that we want to understand or may want to predict? How real
is the transition mechanism or set of rules that is crucial to the simulation? Those
questions of correspondence will be crucial to evaluating particular simulations, but
will be crucial in different ways depending on the type of scientific work to which the
simulation is put—explanation and prediction, for example.

Consider the three-part structure when our goal is to explain a phenomenon.
When a real-world phenomenon corresponds to the result of such a simulation, there
is reason to consider the possibility that this phenomenon may be caused by input
conditions and mechanisms similar to those of the simulation. If the input conditions
also correspond to real-world phenomena, and if the mechanism is plausibly realistic,
the simulation offers a potential explanation of the phenomenon at issue.

For example, if our goal is to use a simulation to help us understand why the
17th Street Levee in New Orleans failed, and if our input conditions correspond to
the relevant structures of the real-world 17th Street Levee and our mechanism is
plausibly realistic, then the results of the simulation ought to correspond to the
real-world failure of the levee. If they do correspond, then our simulation is offering
a potential explanation of why the levee failed.

Another example of the use of simulation as an explanatory tool comes from
those simulations which show that some phenomena that intuitively would seem to
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require a complex explanation actually are following relatively simple sets of rules.
For example, the Santa Fe tradition suggests that computer simulation is particularly
adept at investigating and tracking the emergent properties of systems. In the same
vein, from the example reviewed above, Wolfram (2002) suggests that complex
patterns on shells may emerge from a simple set of rules. In the case of such
emergence explanations, the important correspondence occurs between the output
conditions of the simulation and the real-world phenomena being simulated. If a
plausible mechanism is present, then simulators of this variety suggest that the input
conditions, despite their simplicity, may in some way actually correspond to the
real world.

Consider the three-part structure when our goal is to predict a phenomenon.
When our input conditions correspond to real-world phenomena at a particular
time, and we have reason to believe our mechanism is plausibly realistic, then we
have reason to believe that our simulated output conditions may predict the
phenomenon.

For example, if our goal is to predict the particular shape and structure of a
protein, and our input conditions correspond to the real-world amino acid sequence
under investigation, and our mechanism or set of rules corresponds to the set of
rules by means of which amino acid sequences fold, then we have strong reason to
believe that the output conditions of our simulation can serve as predictor for how
the real-world amino acid sequence will actually fold into a protein structure.

One should not expect a simulation to yield an entirely reliable prediction or a
complete explanation; that would be too close to fact-free science. A claim that
an aspect of a simulation accurately corresponds to an aspect of the real world,
something crucial to the usefulness of a simulation, is always a potential point of
criticism. However, there are cases in which it is plausible that a simulation does
correspond to reality in relevant respects. With plausible correspondences regarding
different elements of the simulation structure—regarding initial conditions, resultant
conditions, or mechanism—it becomes clear how simulations can be fruitfully used
for a range of scientific purposes.

In short, we claim that the identification of this three-part structure, which
appears to reflect a large number of quite different simulations, presents a positive
step in the effort to determine how and why simulation can be valuable to science.
An understanding of precisely how simulations can be used to make predictions, or
offer explanations, can help us see when the use of simulations is appropriate, and
to what degree a scientific claim based on a simulation is justified.

4. How simulations can go wrong

Simulations must be handled with care. Crucial to their scientific use in any of the
ways indicated is the basic question of correspondence.

There are in fact two edges to correspondence. Every simulation has aspects
which are intended to correspond to reality. For example, an artificial society
simulation has a population of agents because it is intended to model a population of
people. They pursue strategies interpreted in terms of self-interest because the people
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being modelled are conceived of as acting in terms of self-interest. These are elements
that are supposed to (i) correspond to elements in reality and (ii) make a difference.

Every simulation also has aspects of a different kind. For example, the simulation
of prejudice reduction that we offer works with a cellular automata grid. Our
‘people’ are represented by squares, in two dimensions rather than three, and interact
with exactly eight neighbours. Those aspects of the simulation are not intended to
correspond to reality, but it is crucial to the model that they are taken as not making
a difference. We also expect our results to hold for a hexagonal lattice for example.

One hypothesis inevitably made in simulation construction is that some of the
elements do correspond to reality, and those elements make a difference. An
additional hypothesis is that some elements do not correspond to reality, and that
those elements do not make a difference.

Attacks on the basis of correspondence can hit simulations in either of these
ways. The things that are taken to correspond to reality may not do so. Aternatively,
although they correspond to reality, they may not be relevantly functional parts of
how the simulation does what it does. A criticism on either ground will be telling. But
it may also be the case that the things that are not intended to correspond to reality,
and are shrugged off as unimportant, may not be unimportant. If they do not
correspond, but turn out to be crucial to how the simulation produces the results that
it does, that will also be a telling criticism.

Both types appear in a recent criticism of Schelling’s (1978) work on segregation
by Bruch and Mare (2006). What Schelling offers is a potential explanation for
residential segregation, in particular that the patterns evident in residential
segregation may be produced not by a deep and pervasive racism, but by fairly
liberal tolerance of others with a fairly minimal desire to be surrounded by at least
some of one’s own kind. What Bruch and Mare argue, however, is that assumptions
present in Schelling’s simulation regarding the structure of an individual’s
preferences are directly disconfirmed by questionnaire data from a Detroit Area
Study and the Multi-City Study of Urban Inequality. Schelling’s simulation maps the
relevant preferences as a threshold function: ‘I am happy with at least 30% of my
own kind, unhappy with anything less’. The empirical data, not too surprisingly,
show that preferences form a continuous graph: ‘I am increasingly unhappy as the
percentage of my own kind drops below 30%’.

That is a criticism of the first type: an attack on empirical correspondence.
However, that attack would not necessarily be telling if Schelling could shrug off the
particular way preferences are mapped as a ‘difference that does not make a
difference’, for instance an inevitable artefact of abstraction that is not important to
the general mechanism or results of the simulation.

Here Bruch and Mare show that not only is the preference function unrealistic,
but that it is crucial to how the simulation produces the results that it does. They do
this by running variations on the Schelling simulation using different preference
mappings. These changes have a significant impact on the results—the choice
function is not a ‘difference that does not make a difference.’ It makes enough of a
difference that when the simulation is rebuilt with a more realistic preference
function, the results it gives no longer correspond to patterns of residential
segregation.

There are reasons to question the details of the attack by Bruch and Mare: they
build in their own artificialities in the simulation study, significantly different from
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Schelling’s in a number of respects. However, there is no reason to question the
strategy of their attack. What is important for our purposes is that it is an attack on
two fronts, regarding both the assumed correspondences (Do they really
correspond?) and the acknowledged non-correspondences (Are they really harmless?
Do they really not make a difference?). Simulations can, of course, fail in both ways.

The fact that a hypothesis of ‘relevant correspondence’ is crucial to simulations in
all their elements must still be handled with care. It is relevant correspondence that is
important, and that relevance may depend on both the particular phenomenon at
issue and the particular scientific goals of the simulation. Every simulation will differ
in some respects from the reality that we are trying to account for. Therefore it is an
insufficient criticism simply to point out a non-correspondence. The question is
whether non-correspondences are relevant, and that itself is a matter subject to
further scientific investigation, both theoretical and empirical.

There will be aspects of a simulation which have been intentionally constructed to
correspond to the real-world phenomena, and there will be aspects of the simulation
which do not correspond to the real-world phenomena. The danger is that those
aspects of the simulation which do not correspond will influence the results. Or, put
differently, the results of the simulation run the risk of being artefacts of those
aspects of the simulation which do not correspond to the real world.

It is our view that these non-corresponding aspects of the simulation can suffer
three fates. First, and this is in accord with Bruch and Mare, it may be the case that
manipulation of those aspects of the simulation which do not match or correspond to
the real-world phenomenon being simulated will produce changes in the results of the
simulation. Such a finding would call into question the legitimacy of the simulation.
Secondly, it may be the case that manipulation of non-corresponding aspects of the
simulation does not produce changes in the results of the simulation. That is,
it may be the case that the simulation proves robust over these changes to the
non-corresponding aspects of the simulation, a kind of robustness widely regarded as
a virtue in simulations. Thirdly, and perhaps most interestingly, it may be the case
that the manipulation of non-corresponding aspects of the simulation produces
changes in its results, and at least some of those non-corresponding aspects within the
simulation turn out to be unintentional correspondences. That is, it may prove to be
the case that the simulation unintentionally captures some aspect of the real-world
phenomenon under investigation. While this may, prima facie, seem to be something
which is bad, i.e. something which counts against the accuracy of the simulation,
at least in some cases such a finding will make new discoveries possible. As with
empirical investigation generally, and scientific investigation more particularly,
unintended discoveries are often fruitful. What is particularly interesting about
simulation work is that, at least in some cases, those unintentional discoveries are
made within the context of the simulations themselves.

5. Conclusions

In summary, we believe that simulations ought not be thought of as representatives
or harbingers of some new kind of science or scientific technique. Rather, it is our
view that simulations ought to be thought of as one class of technique that can be
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used to realize a number of epistemic goods within the broader scientific epistemic
economy. We have focused on two particular goods: explanation and prediction.
We have suggested that a wide variety of simulations, both computational and
physical, share some common characteristics. All the simulations we have surveyed
can be understood as simulations by virtue of their three-part structure. These
simulations have (i) a set of initial or input conditions, (ii) a mechanism or set of
rules, and (iii) a set of results or output conditions. Crucial to simulation work, we
have suggested, is the relevant correspondence relationship that holds between this
three-part structure and the simulated phenomenon.

We focused on two purposes to which simulations can be applied: explanation
and prediction. First, with regard to explanation, it is our contention that when a
real-world phenomenon corresponds to the result or output conditions of a
simulation, there is reason to consider the possibility that this phenomenon may be
caused by input conditions and mechanisms similar to those of the simulation. If the
input conditions also correspond to real-world phenomena, and if the mechanism is
plausibly realistic, the simulation offers a potential explanation of the phenomenon
at issue. With regard to prediction it is our contention that if our input conditions
correspond to real-world phenomena at a particular time, and if we have reason to
believe that our mechanism is plausibly realistic, then we have reason to believe that
our simulated output conditions may predict the phenomenon in question.

Finally, we suggest that those features, inevitable in any simulation, that do not
correspond to the phenomenon being simulated ought to be treated with care.
Non-corresponding features of a simulation can suffer three fates: (i) they can yield
artefacts tainting the results of the simulation and calling its legitimacy into question;
(ii) they can ‘robust out,’ i.e. changes to these non-corresponding features of the
simulation can turn out not to affect the results of the simulation; (iii) at least
some of the non-corresponding features of a simulation may turn out to be
unintentional corresponding features, i.e. a simulation may bring unexpected aspects
of the phenomenon being simulated to the attention of investigators, potentially
uncovering new domains ripe for empirical investigation.
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