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NASH EQUILIBRIUM WITH LOWER PROBABILITIES

ABSTRACT. We generalize the concept of Nash equilibrium in mixed strategies
for strategic form games to allow for ambiguity in the players' expectations. In
contrast to other contributions, we model ambiguity by means of so-called lower
probability measures or belief functions, which makes it possible to distinguish
between a player’s assessment of ambiguity and his attitude towards ambiguity.
We also generalize the concept of trembling hand perfect equilibrium. Finally, we
demonstrate that for certain attitudes towards ambiguity it is possible to explain
cooperation in the one-shot Prisoner’s Dilemma in a way that is in accordance
with some recent experimental findings.
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1. INTRODUCTION

Empirical evidence and thought experiments such as the Ellsberg
paradox (Ellsberg, 1961) have led to the understanding that decision
makers do not always behave as if they were maximizing expect-
ed utility with respect to additive probability measures. Several
decision-theoretic models have sought to explain the roots and con-
sequences of expectations taking a less precise, non-additive form.
However, thetraditional expected utility model still prevailsinappli-
cations. For example, in game theory a Nash equilibrium (in mixed
strategies) takes the form of a combination of probability measures
on the players strategy sets. A Nash equilibrium can be interpret-
ed as the players common theory of what will be played; what
is required is that the theory be consistent with each player max-
imizing expected utility, i.e., only optimal strategies are assigned
positive probabilities. In this paper we investigate the consequences
for Nash equilibrium and perfect equilibrium of alowing players
to hold ambiguous expectations. We model ambiguity by means of
lower probability measures, also called belief functions.
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As an example, consider the game form below where the players
receive monetary payments depending on their strategy choices:

Player 2
L R
U  $700,$0 $0,$700
Player 1 M  $0,$700 $700,%$0
D $200,$500 $200,$500

In al outcomes the players share $700. Player 1 can play D and
receive $200 for sure, leaving $500 for player 2; or player 1 can play
U or M and thereby enter a game of the “matching pennies’-type
with player 2 to determine who wins $700. Assume that the prefer-
ences of the players depend only on the amount of money received
and that more money is strictly preferred to less. Then it is straight-
forward to check that the game has no equilibriumin pure strategies.
Hence, to ‘solve' the gameit is necessary to introduce mixed strate-
gies. Here we interpret a mixed strategy of a player as a theory,
taking the form of a probability measure, on the player in question.
In particular, we assume that there is no possibility of actua ran-
domization between pure strategies, except when explicitly included
in the set of pure strategies. Thus, following Harsanyi (1973), we
interpret a mixed strategy equilibrium as a common theory on the
pure actions of each player, which is best-replay-consistent, i.e., it
has the property that each pure strategy in the support of aplayer’'s
mixed strategy is abest reply against the theory. For a discussion of
thisinterpretation, see also Rubinstein (1991).

To find mixed strategy equilibria it is necessary to know the
players preferences with respect to lotteries, i.e., probability mea-
sures over the outcomes. Normally it is assumed that these are von
Neumann-Morgenstern, such that they are represented by expected
utility. Assumethat both playershavethevon Neumann-Morgenstern
utility functionu, whichfulfills: «($0) = 0, u($200) = 3, u($500) =
6, and u($700) = 7. The margina utility of money is decreasing,
so both players are risk averse, but U(3$0 @ 1$700) = 1u($0) +
Tu($700) = 7/2 > 3 = u($200), so players prefer alottery assign-
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ing probability 1 to each of $0 and $700 over getting $200 for sure.
In terms of von Neumann-Morgenstern utilitiesthe gameis:

Player 2

L R

G,: Playeel M 0,7 7,0
D 36 36

It has aunique Nash equilibrium, (3U @ 3 M, 1L & 3R), whichis
in mixed strategies. Nevertheless, it isour intuition that many people
inthe position of player 1, even with arisk attitude asembodied in ,
would choose the strategy D. Insofar as we conceive of the players
as Bayesian expected utility maximizers this is strange. Player 1
should hold a prior, a specific probability distribution expressing
his expectation of the action of player 2. Such a prior has the form
7 = (mp,mR), Where r, mg > 0 and m;, + 7 = 1, and the best
reply of 1 can never be D; if 7, > 3/7,then U (U, m,) > U(D, m2),
andif r, < 4/7,thenU (M, m,) > U(D, ) or in other words: D is
never a best reply and is thus strictly dominated by, e.g., the mixed
strategy U & 2 M.

A possibleexplanation for the choice of Disambiguity (or Knigh-
tian uncertainty) in the mind of player 1. Perhaps he has not, as
Bayesian rationality requires, formed a specific prior but has a less
precise expectation. If player 1 knew that player 2 were using some
specific random device, he would indeed cal cul ate the expected util-
ity of each of his three possible strategies, and never choose D.
However, player 2 isnot aknown random device but a human being
with athought process that is unknown to player 1.

Assume that player 1 assigns lower probabilities b, to the event
‘2plays L', br to ‘2 plays R’, and by, to ‘2 plays either L or R’,
interpreted as the minimal probabilities with which player 1 expects
theevents‘'L’, ‘' R’,and ‘LR’ to occur, whereweallow by, +br < 1,
even though player 1 knows that one of the strategies must be used,
i.e, bpr = 1. Then each of player 1's possible choices gives rise
to awhole range of possible probability distributions over the strat-
egy combinations. If, for example, player 1 plays U, this is the
set of the probability distributions which assign at least probability
by, to (U, L), at least probability bx to (U, R) and O to al strategy
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combinations where player 1 does not play U. Now we will need
assumptions on the players’ preferences when there is ambiguity. It
isnolonger sufficient to know the preferences over risky alternatives
as expressed by expected utility, and the von Neumann-Morgenstern
utility functions. One possibility is that alternatives are ranked by
a utility function giving for each pure strategy the lowest possible
expected utility, a security level of expected utility. If, for instance,
the function b satisfies b, = br = 1/3, then the utility associated
with both U and M is 7/3, while D gives 3. So this ambiguous
belief of player 1, together with the security level utility function,
can support the otherwise dominated pure strategy D. In the paper
we consider different preference relations in ambiguous environ-
mentsincluding, but not restricted to, the security level, or max-min,
preference.

Section 2 givesan introduction to lower probability measures and
discusses expected utility preferences with respect to lower proba-
bility measures over outcomes. Section 3 offers a definition of Nash
equilibrium in lower probabilities, where each player plays opti-
mally against a combination of lower probability measures on the
other players. Section 4 givesadefinition of (trembling hand) perfect
equilibriumin lower probabilities. In Section 5 we demonstrate that
cooperation can be achieved in an equilibrium in lower probabilities
in one-shot Prisoner’s Dilemmafor certain preference relations over
ambiguous outcomes.

Independently of our work, others have suggested extensions of
game theoretic concepts to non-additive expectations, cf. Dow and
Werlang (1994), Eichberger and Kelsey (1994), Klibanoff (1993),
and Lo (1995). Incontrast to our approach, all these contributionsuse
variations of Choquet expected utility, whereitisnot possibleto dis-
tinguish between a players’ assessment of ambiguity (which should
be equal for all players in equilibrium) and his attitude towards
ambiguity (which should be allowed to differ among players). This
is discussed further in Section 6, Finaly, Section 7 concludes and
offers suggestions for further work.
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2. LOWER PROBABILITIESAND EXPECTED UTILITY

In this paper we consider equilibriawhere the players expectations
take the form of lower probability measures. For the application
of lower probabilities to games certain concepts are of importance
and will therefore be discussed in this section. First, a definition of
the support of a lower probability measure is needed. For games
with more than two players we also need a definition of the product
of lower probability measures, so a player can form expectations
on the opponents' strategy combinations from the expectations on
each opponent. Finally, we discuss expected utility preferences with
respect to lower probability measures over outcomes, and explain
how one may distinguish between a player’s expectation in terms of
alower probability measure and his attitude towards ambiguity.

Lower probabilities. Let X be afinite set of outcomes, and let A be
the set of (additive) probability measureson X . Just like an ordinary
probability measure, alower probability measure, sometimescalled a
belief function or atotally monotone capacity, isamappingb : 2% —
[0, 1], such that b(()) = 0 and b(X) = 1. The interpretation is that
b(E) isthe lowest possible probability the person holding the lower
probability b assigns to the event E. The upper probability of E is
then1—b(X\ E), and b thusgivesarange of possibleprobabilitiesto
theevent £, [b(F), 1—b(X \ E')]. Tomake senseof thisinterpretation,
some properties of b are needed. Indeed, the additivity requirement
for aprobability measure, 7(EUF) = n(E)+7(F) —7(ENF)
foral E, F,isrelaxed for alower probability measure b as follows.
First it is required that b is 2-monotone; for any two events £ and
F,b(EUF) > b(E)+b(F)—b(ENF). Theideaisthat going to
larger sets can only reduce ambiguity. In the same spirit, but for &
instead of 2 events, one can require:

QYb(EU...UE) > Y (—1)#”1b(ﬂ E>

IC{1,..,k} el
forany k events F, ..., E.

Thisproperty iscalled k-monotonicity. To understand the content of
k-monotonicity note that (2.1) with equality is the usual inclusion—
exclusion rule for probability measures which follows from addi-
tivity. For lower probabilities £-monotonicity must be imposed in
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order to have an analog to the usual inclusion—exclusionrule. If b is
k-monotone for al £ > 2, i.e, if b istotally monotone, then b is a
lower probability measure. Let B be the set of all lower probability
measures on X . Since probability measures are k-monotone for all
k, wehave A C B.

One can think of a lower probability measure b as the vector
(b(E)) gcx . For any two lower probability measures by, b, € B and
« € [0,1], the convex combination b = ab; + (1 — «)b, is defined
by: b(E) = abi(E) + (1 — a)by(E), fordl E C X. Itiseasy to
verify that B, like A, isaconvex set.

It is natural to think of an ambiguous environment as given by
a so-called mass function. A function m : 2¥ — [0, 1], is a mass
function if m(0) = 0 and Y zcy m(F) = 1. Note that a mass
function is equivalent to a probability measure, not on X, but on 2.
The interpretation is that for any event E, m(FE) is the weight of
evidence in support of £ which is additional to the weight already
assigned to the proper subsetsof E. Thefact that m hasnon-negative
values captures the idea that going to larger events can only reduce
ambiguity. The belief in an event F' is naturally defined as b(F') =
Y ppcr m(E).

Shafer (1976) shows that if b is defined from a mass function
this way, then b is indeed totally monotone, and conversely, any
lower probability measure b is given by auniquely determined mass
function m,. In particular, for 7 € A, m,({z}) = =(z) for dl
z € X,and m,(F) = Ofor al E with#E > 1.

Let P(X) = {E C X|E # 0}. Forany E € P(X), define the
elementary lower probability measure b by, bp(F) = 1if E C F,
and br (F') = 0 otherwise. This expresses that the outcome is going
tobein F, but thereistotal ambiguity with respect to which element
of E will occur. For the mass function associated with b we have
my, (E) =1, whilem,,,(F) = Oforal F # E.

Fromb(F) = Y pcrmy(E) it followsthat for al b € B,

22 b= Y my(E)b,
EcP(X)
so B is the convex hull of the set of elementary lower probability
measures.
For alower probability measureb, definecore(b) = {r € A|r(FE)
> b(E) foral E'}, theset of (additive) probability measuresfulfilling
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the lower probability requirements of b. For an additive probability
measure = we have core(r) = {n}. It can be shown that for b € B
andal E € P(X),b(E) = MiN;ccores) 7(E), SO alower probability
measure is an exact capacity.?

Support. We define the support of b as the minimal set within which
the outcome for sure belongs according to b,
suppb = b(rp;glF.

Contrary to the case for probability measures, thisis neither equiv-
dent to theset {x € X|b({x}) > 0}, nor to the set min, x\ p)—o F.
The latter is used as a definition of support by Dow and Werlang
(1994) and Eichberger and Kelsey (1994). One problem with thisis
that it may give a non-unique support and there are also interpreta-
tional problems, cf. Section 6 below. Our definition gives a unique
support for each lower probability measure, which is characterized

by,
LEMMA 2.1.2 For any b € B,

(23) suppb= |J suppr= |J E.

wecore(b) Eesuppmy

Product measure. If 7 = (74, ..., m,) isacombination of (indepen-
dent) probability measuresonfinitesets Xy, . .., X, theninducesa
unique product measure T, ® - - - @, ontheproduct X = X, X;.
Things are not as easy with acombination of lower probability mea-
sures, b = (b, ..., b,). Thereis, however, auniquelower probability
measureon X attaining thevalueb,(Es) - - - - - b,(E,) for Cartesian
sets By x - - - x E,,, and fulfilling the requirement that any other lower
probability measure with this property is larger, see Hendon et al.
(1996). We will use this lower probability measure as the product.
The product b, ® - - - ® b, will, with a dlight abuse of notation, be
identified with b, and is characterized by its mass function m,. One
of theresults of Hendon et al. (1996) is that for this definition of the
product b, the mass function m,, is given by the mass functions m;
of the marginal lower probability measures b; asfollows,

E) - -mn(E,), fE=Ex-xE,
(2.4) mb(E>:{gfl< ) ma(Ba), BB = Fuxcox By
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Notethat if al the lower probability measuresinvolved are additive,
then the product isjust the ordinary product measure.

Preference representations. Assume that an individual holds a pref-

erence relation = on B. We will assume that - satisfies the von
Neumann—Morgenstern axioms with respect to lower probabilities,
implying that - can be represented by an affine function U. Thus,

(25 U®) =U ( > mb<E>bE) = Y m(E)U(bg).

EcP(X) EcP(X)
Defineu : X — R, by u(z) = U(b)). For an additive probability
measure 7, formula (2.5) then reads U(7) = Y ,cx m(x)u(x). The
expected utility hypothesis for choices among risky aternatives is
thus a specia case of (2.5), and the function « is the von Neumann—
Morgenstern utility function, and reflects the attitude towardsrisk as
usual. The attitudetowardsambiguity isreflected in the eval uation of
elementary lower probability measures bz, for #£ > 1. It is natural
to make the restriction,

(2.6) géigu(:r) <U(bg) < rglea%(u(:r).

Under (2.5), (2.6) is equivalent to a requirement that any lower
probability measure b is just as good as some probability measure
7 in core(b). Further investigations are performed by Jaffray (1989)
and Hendon et al. (1994). Both get (2.5), and only differ with respect
to the evaluation of elementary lower probability measures.

Jaffray (1989) obtains a representation where each elementary
lower probability measure is evaluated as a convex combination of
its best and worst outcome: Thereisa : X x X — [0, 1] such that
if 2 € agmingep u(x), and Ty € argmax,cr u(r) then,

2.7) Ulbr) = a(zp, Tr)u(zg) + (1 - a(zp, Tr))u(Te),

where o satisfiestherestrictionthat U (bg) < U(br) if 25 2 2 and
Tr 3 Tr. Inserting (2.7) into (2.5) gives utility associated to each
lower probability measure b expressed in terms of von Neumann—
Morgenstern utilities. The higher a.(x, 3/), the more pessimisticisthe
evaluation of a set with = and y as extreme elements. A particular
exampleiswhen a(-, -) isconstant. Thisisthe evaluation advocated
by Hurwicz (1951) in the presence of ambiguity.
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Hendon et al. (1994) obtain a representation where elementary
lower probability measures are evaluated Bayes-consistently: There
isaconditiona probability system 1. : X x X — [0, 1] such that,

(28) Ulbs)= Y u(x)ula|E),

zEeEFR

which can again beinserted into (2.5). I yu(z|{z, y}) < %, whenever
x =y, pis caled pessmistic. A particular case is p(-|X) being
uniform. In this case the preference relation is called ambiguity
neutral.

Both representations fulfill (2.5) and (2.6). Both have extreme
pessimism or optimism, where by, is exactly as good as z or T,
respectively, as special cases. But thisisamost the only intersection
of the two, see Hendon (1995). In the expected utility calculations
in this paper we only assume (2.5) and (2.6) unless explicitly stated
otherwise.

3. NASH EQUILIBRIUM IN LOWER PROBABILITIES

Now weturnto gamesand will et expectationstaketheform of lower
probability measures. It is then necessary to make assumptions on
the players’ preferences with respect to lower probability measures
over strategy combinations. Assume for the game considered that
the outcome depends on the strategic choices of the players as given
by the function f : S — X, from the set of strategy combinations
to the set of outcomes, which could be monetary payments. From a
lower probability measure b on the set of strategy combinations one
can derive alower probability measure b/ on the set of outcomes by
b/ (E) =b(fY(F))foral E C X.Toassumethat preferences over
the bs only depend on the b/s thus derived would be parallél to the
approach normally taken in gametheory, and it would ensurethat itis
in principle possibleto elicit the players preferences independently
of the game.

In the context of lower probabilities, however, such an assump-
tion is much stronger than in the context of (additive) probability
measures. Consider the following game form, where the outcomes
are monetary payments and assume that preferences only depend on
the (derived lower probabilities over) amounts of money won:



46 EBBE GROESET AL.

Player 2
L R
U $0$0 $0,%0
Player 1 M $0,$7 $0,$0
D $0,$7 $0,%7

Assumefurther that player 2 istotally ambiguous about what player
1 will play, such that the lower probability on each of player 1's
pure strategies as well asthe lower probability on any proper subset
of his strategies is zero. Player 2 has to choose between his pure
strategies; strategy L induces the lower probability measure byg g7,
on outcomes, i.e., total ambiguity with respect to the two outcomes
$0 and $7, and so does the pure strategy 1. Assuming that player 2's
preferences only depend on the derived lower probability measure
on outcomeswould imply that player 2 had to beindifferent between
these two strategies. Thiswould be a strong assumption; note that L
weakly dominates R.

We do not necessarily want to impose such a strong assump-
tion and therefore we assume that players have preferences directly
on lower probabilities over the set of strategy combinations. This
meansthat the domain of the utility function depends upon the game
analyzed, such that preferences need not be neutral with respect to
duplication of opponents' strategies.

Jaffray (1989) shows that the assumption that only derived lower
probabilities over outcomes matter together with a monotonicity
condition implies that the representing utility function has to fulfil
(2.7). It followsthat our analysis still appliesif one wantsto assume
this; one just has to assume that the representing utility function
associating utilitiesto lower probabilitiesover strategy combinations
has this property.

We consider afinite strategic form game

G = (Nv (Su Uz))a

with playersi € N = {1,...,n}, pure strategy sets S;, and affine
utility functions U; on the set B of lower probability measures on
S = X,en S;. The utility functions are assumed to fulfill (2.5) and
(2.6), with S now taking the place of X.
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Denoteby A; the set of additive probability measureson S;, by B;
the set of lower probability measureson S;, and define A = X; A;,
and B = X, B;. Let P¢(S) = P(S1) x --- x P(S,). |dentifying
b= (by,...,b,) withb; ® --- ® b, and using affinity of U;, (2.5),
and the property (2.4) of the product measure, we evaluate b € 3 by

@1 Ui) = > m(E)Ui(br)
EeP(S)

= Z My, (F1) - -+ -, (Ep)

E1x--xEnePe(S)

xU;(Ey x -+ x Ey),
where U;(E1 x --- x E,) means U;(bg,x..xx,). SO expressing a
player’sambiguous preferencesis equivalent to assigning utilitiesto
the Cartesian subsets of S.

Thepurebest reply correspondenceof playeri, PBR; : B — S;,
isgiven by,
PBR;(b) = argmax U;(bys;y, b—;).

$;,€S;

Let BR;(b) denotethe set of beliefs on player i consistent with some
pure best reply being played,

BR;(b) = {b; € Bi|suppb; C PBR;(b)}
In this sense BR; is defined analogously to the usual mixed strat-
egy best reply correspondence. But BR;(b) is not equivaent to

argmaxy, ¢, U;(b;,b_;). Consider the following game ({1,2},
({U, D}, {L, R}), (U, U3)), where U; and U, are given by:

L R LR

U 50 05 00
D 05 50 00
UD 00 00 00

Note that in order to describe the preferences fully, the table has
been extended to report the U;(E; x E»)s for al Cartesian subsets
of S; x S,. The numbers indicate that both players are extremely
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ambiguity averse. Consider, for instance, the utility to player 1 of
playing U when holding a lower probability b, on player 2, with
1/3. This gives at least (1/3) - 5+ (2/3) - 0 = 5/3, and a most
(2/5) -5+ (1/3) - 0 = 10/3. The 1/3 of probability mass, which
is assigned to {L, R} can, so to speak, be distributed between L
and R. According to the table above, the utility for thisindividual is
(1/3) - Un(U, L) + (1/3) - Us(U, R) + (1/3) - Us(U, LR) = (1/3) -
5+ (1/3)-0+(1/3) - 0= 5/3, so heisextremely ambiguity averse,
assigning all thefree probability mass between L and R to the worst
outcome R.

Now consider the best reply of player 1 when he holds the the-
ory b, assigning lower probability 1/2 to both of L and R, an
additive probability measure. Playing U and D both give utility
5/2, so PBR;y(b;) = {U, D}. Then, BR;(b,) which is the set of
theories on 1, which are consistent with 1 playing a best reply
against b,, includes the theory by;,py, describing total ambigui-
ty about player 1's choice. But in itself by py does not maxi-
mize U]_(',bz), since Ul(b{U,D},bz) = 0. Let b = b{U,D} ® bs.
Then m,({U,D}) x {L}) = mp({U,D}) x {R}) = 1/2, and
my({U, D}) x {L, R}) = 0, and the conclusion follows using (3.1)
and the figures of the table.

Since we only need to know PBR; in order to calculate BR;, it
IS not necessary to know how a player evaluates a Cartesian subset
of S, where he does not play a pure strategy. Sufficient information
for calculating best repliesin the exampleisthus,

L R LR

U 50 05 0O-

D 05 50 O-
UD -0 -0

LEMMA 3.1. The following statements are equivalent:
ii. core(b;) € BR;(b).

iii. b; >bPBRZ—(b)-



NASH EQUILIBRIUM WITH LOWER PROBABILITIES 49

Furthermore, BR; has a closed graph.

We now generalize Nash equilibrium in the interpretation of a best
reply consistent theory by allowing the theory to take the form of a
combination of lower probability measures.

DEFINITION . A (Nash) equilibriumin lower probabilities (LPE)
b*, isa combination of lower probabilitieswhere thetheory on every
player is consistent with choosing best replies,

Vi€ N :b; € BR;(b;,b",).
Defining BR : B = B, by BR(b) = BRy(b) X --- x BR,,(b), we
obtain the simple equilibrium condition v* € BR(b*), i.e., b* isa
fixed point of BR.

Theset of L PE may belarger than the set of mixed strategy equi-
libria. Consider as an example G, from the introduction and assume
that both players are extremely ambiguity averse, as described by
the extension,

L R LR

v 70 07 0-

M 07 70 O-

D 36 36 3-
UM -0 -0
UD -0 -6
MD -6 -0

UMD -0 -0

One LPE is the mixed equilibrium b,(U) = b,(M) = 1/2, and
ba(L) = ba(R) = 1/2. But there are others. The set of LPF is,

{(bl, bz) € B|b1(U) = bl(M), bl(UM) = 1,

and by(L) = b(R) > 3/7} U

{(bl, bz) € B|b1(D) = 1, and bQ(L), bz(R) < 3/7} U

{(b1,b2) € B|by(U) = by(M), and bo(L) = by(R) = 3/7}.
In particular, any (by, by) satisfying by(D) = 1, and bo(L), bo(R) <
3/7 isan equilibrium, yielding utilities (3,6).
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It is easily shown that,

PROPOSITION 3.2. Amixed strategy equilibriumisan equilibrium
in lower probabilities.

Animmediate corollary of thisand the existence theorem for mixed
strategy equilibriumis,

PROPOSITION 3.3. There exists an equilibriumin lower probabil-
ities.

Given the definition of pure best replies, it is aso possible to gen-
eralize the rationalizability concept of Bernheim (1984) and Pearce
(1984). Define for each game the set of strategies which are ratio-
nalizable with lower probabilities by recursively removing pure
strategies which are never best replies to lower probabilities over
remaining strategies for the opponents. If there are only finitely
many strategies for each player this recursive process will be com-
pleted in a finite number of steps and any strategy which isin the
core of an LPF is rationalizable. Similarly, one could generalize
the best response property of Pearce (1984), and define a collection
of subsets of strategies to have the lower probability best response
property, when all strategiesin the collection are best repliesto some
lower probability over the collection. Then it is straightforward to
generalize Pearce's (1984) characterization of rationalizable strate-
gies as the maximal strategy subset combination that has the best
response property. Allowing for lower probabilitiesin the definition
of rationalizability implies that the set of rationalizable strategiesis
enlarged compared to the original definition, just as our equilibrium
concept allows for more equilibria than the ordinary Nash equilibri-
um concept. Asfor the original concepts, it is possibleto find games
with strategies which are rationalizable with lower probabilities, but
which are never playedin LPE.

4. PERFECT EQUILIBRIUM IN LOWER PROBABILITIES

Since we have (greatly) extended the set of equilibria by allowing
lower probabilities, the need for refinements has not become less.
Now we define a variation of (trembling hand) perfect equilibrium.
In the usual definition a Nash equilibrium is a perfect equilibrium
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if it is robust against small perturbations of the game, in which
players have to play each pure strategy with at least some small
positive probability. When players expectations take the form of
lower probabilitieswe should, as a parallel, demand robustness with
respect to asituation wherethereis so much ambiguity that no subset
of the pure strategies for any player is excluded, implying that the
perturbed strategy should have a completely mixed mass function.

In the sequel, let m,; be short for m,, . A perturbation isafunction
ni - P(Si) — Rfulfilling n; > 0and X peps,) m:(£) < 1. Define
Bi(n:) = {bi € Bi|mi(E:) > mi(E;)VE; € P(Si)}. Letn = (mi)ien-
Let G(n) be the game where the set of possible theories on each
player is constrained to B;(n;).

DEFINITION . Aperfectequilibriuminlower probabilities(PLPFE)
b*, is an LPE such that there is a sequence (n'), with n* — 0, and
a sequence (b'), where b is an LPE of G(n') for all ¢, such that »*
convergesto b*.

Inan equilibrium b of G(n) thereismaximal belief on the set of pure
best replies, i.e, foral i € N,

E;ZPBR;(b)
equivalent to,
(4.1) m(E;) = ni(E;) for E; £ PBR; (D).

Thetheory b = (by,...,b,) € Bisan e-perfect LPE if m; > 0 for
adlie N,and

We now have the following analog to a well-known theorem on
perfect equilibrium.

PROPOSITION 4.1. The following statements are equival ent:

i. b* isa perfect equilibriumin lower probabilities.

ii. Thereisa sequence (b'), where b’ is an ¢'-perfect LPE for all
t, et — 0, such that b convergesto b*.

iii. Thereis (b") with m} > Ofor all i and ¢, and b* € BR(b')
for all ¢, such that b* convergesto b*.
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Note that all the LPE of G; where 1 plays D, believing b5(L),
b5(R) < 2/5, are perfect. They are supported by a sequence (b')
with m! (F;) = (1/6) - (1/t) for Ey # {D},and m{(D) =1— 1/t
for player 1, and mb(E,) = max{mj}(F,), 1/t}.

Surprisingly it isnot true that all (ordinary) perfect equilibriaare
PLPE. Consider a game where,

L R
U 40 04
M 04 40
D 22 272

Players are ambiguity averse, with Uy (U, b)) = Ui(M,brr) =
u' < 2. Thetheory b = (by, b2), where by (U) = by(M) = 1/2, and
bo(L) = b(R) = 1/2 is a perfect equilibrium but not a PLPE.
Consider a sequence (b*) = (b}, b5) converging to b, and with com-
pletely mixed mass functions. Note that b; isabest reply of player 1
tobs onlyif b5 (L) = bs(R) = 1/2: for bothU and M to be used, they
have to be equally good, which implies b, (L) = b5(R) = p < 1/2.
AndU, (U, b)) =4-p+0-p+u'-(1—-2p) =2-2p+u'- (1— 2p).
Since u' < 2, thisis less than or equa to 2, with equality if and
only if p = 1/2,i.e, if m4(LR) = O, contradicting that b5 has a
completely mixed mass function.

PROPOSITION 4.2. There exists a perfect equilibrium in lower
probabilities.

This does not follow from the existence of an ordinary perfect equi-
librium, but is proved directly using Kakutani’s fixpoint theorem.

We say that s; € S; isusedinb;, if s; € suppb;, or equivaently,
thereis F; C S; withm;(E;) > Oand s; € E;. Fromiii of Propo-
sition 4.1 it is immediate that if s; is never a best reply against a
theory with completely mixed mass function then s; isnever used in
PLPE.

Define lower probability dominance between pure strategies as
follows: s; (weakly) LP-dominates s, if, forevery b € B, U;(s;,b—;) >
U;(sh,b_;) andfor somed’ € B,U;(s;b";) > U;(sib";). dust asaper-
fect equilibrium cannot use a dominated strategy, we have that if b
isa PLPFE then it cannot use L P-dominated pure strategies.
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5. COOPERATION BY RATIONAL PLAYERSIN PRISONER'S DILEMMA

ConSider the game GPD = ({17 2}7 ({Ca D}a {Ca D})a (Ula UZ))a
where the preferences of 1 and 2 are given by,

¢ D CD

¢ 33 04 3-

D 40 11 1-
cCh -3 -1

These preferences are not consistent with the representation of Jaf-
fray (1989), sincethiswould require Uy (bc X bep) < Ur(bp X bep),
but they are consistent with the representation of Hendon et al.
(1994), and correspond to the conditional probability systems i1, -
fulfilling,

(5.1 m((C,OH(C,C),(C,D)})
= m((D, D){(D,C), (D, D)})
= p2((C, C){(C, C), (D, C)})
= p2((D, D)|{(C, D), (D, D)}) = 1

These preferences are rather specia. For player 1, for example the
situation that the game ends in one of the boxes (C, C) or (C, D),
not at all knowing which one, is exactly as good as the situation that
thegamesendsin (C, C'), whiletotal ambiguity between (D, C') and
(D, D) isexactly asgood as (D, D). Aswill be demonstrated below
we do not need such extreme preferences for the phenomenon of
cooperation in equilibrium.

Obviously Gpp has a unique Nash equilibrium, (D, D). But
SinceU;(C, by) = Us(D, by) = 2, player 2 can doubt whether 1 plays
C or D, and by has support in {C, D}. Similarly for 2. The equilib-
rium has ambiguity about which outcome will occur; (C, C') occurs
with probability between 1/9 and 4/9, and likewisefor the other three
outcomes. The players both evaluate the equilibrium at 2, which is
just asgood as, for instance, thelottery (1/2)(C, C) & (1/2)(D, D).
We will say that an equilibrium b of G, establishes (some) coop-
eration if, for both players i, the utility obtained from playing a best
reply against b is strictly higher than the utility from (D, D).
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For the preferences given above there are other equilibria with
ambiguity. The highest possible degree of cooperation isobtainedin
the equilibrium (bq, by), with b1(C) = by(C') = 2/3, and by(D) =
b2(D) = 0. Both players get utility 3. The probability of (C, C') isin
[4/9,1], (C, D) and (D, C') are played with a probability in [0,1/3],
and (D, D) occurs with a probability in [0,1/9].

The attitudes towards ambiguity embodied in the cpss 1 and
have the consequence that in case of total ambiguity, : acts asif he
believes that j plays C' if i himsalf plays C, and that ; plays D if
i plays D. Note, however, that total ambiguity, b;(C) = b,(D) =
b2(C) = ba(D) = 0, isnot an LPE. Against total ambiguity about
2, theunique best reply of 1isC, and then it isnot possibleto assign
lower probability O to the event of 1 playing C'.

In the LPE considered above, b1(C) = bi(D) = b(C) =
bo(D) = 1/3, something similar occurs. If player 1 plays C, then
the lower probabilities directly associated to the choices L and R of
player 2 give him an expected utility of (1/3) - 3+ (1/3) - 0, but
in addition to this, the ‘free’ probability mass of 1/3 only associated
to player 2 playing either . or R gives him an expected utility of
(1/3) - 3. So, when player 1 plays C, the free probability mass ‘ goes
to’ the good outcome (C, C'); whileif player 1 plays D, it ‘goesto’
the bad outcome (D, D). It isimportant to note that the story is not
that player 1 believes that if he plays C', so probably will player 2;
and if he plays D, so probably will player 2. It is player 1's attitude
towards ambiguity which makes him behave asif thiswere the case.

Anevenstronger resultisobtained inthetwicerepeated Prisoner’s
Dilemma. Consider the following theory on each player:

I C'inperiod 1. If both played C in period 1 then
b;(C') =2/3and b;(D) = 0in period 2. Otherwise
b;(D) = 1in period 2.

We seethat adeviationfrom C'in period 1 canimmediately gain util-
ity 1 for the deviator but costs 2 in the second period. SothisisLPE
in al subgames. The outcome path is ((C, C), ((2/3),0), (2/3,0))
with an average utility of 3. The construction of the strategies sup-
porting thisoutcomeistrivial. The crucial point isto get cooperation
in equilibrium in the one-shot game.
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Numerous explanations have been given for players choosing
cooperationinaone-shot Prisoner’sDilemmawithout binding agree-
ments. Perhapsthe playersbelievethat the gameisrepeated infinitely
many times, asin the Folk Theorem. Perhapsthe players believethat
utilities are substantially mis-specified. Perhaps the players believe
that the game is mis-specified in other ways, e.g., they believe that
it is possible to commit oneself to strategies like ‘ cooperate if and
only if the opponent cooperates . See Binmore (1992) for a survey
and discussion of such arguments.

To us it is a more attractive explanation — and one that is con-
sistent with common knowledge of rationality — that a player, when
there is ambiguity, may behave as if he believes that his opponent
will “think as himself’ and be in a cooperative mood if and only if
heis so himself. This argument was suggested by Rapoport (1966),
and supported by Hofstadter (1983) and in away by Howard (1988),
too. Usually itisreected in gametheory sincerationality must imply
that astrictly dominated strategy is never played. If defectionispre-
ferred to cooperation when the opponent is defecting, and defection
is preferred to cooperation when the opponent is cooperating, then
defection must also be preferred to cooperation when the opponent’s
strategy isunknown; seethediscussionin Binmore (1992). Theread-
er may recognize a Savage-type independence axiom at work in this
argument. It is exactly this axiom that is weakened in decision theo-
ries deriving non-additive subjective probabilities, and cooperation
inthe Prisoner’sDilemmaispossiblewhen the players’ expectations
are non-additive.

An experimental investigation of cooperationinthe one-shot Pris-
oner’'s Dilemma by Shafir and Tversky (1992) supports the notion
that cooperation may indeed be due to ambiguity. They compare the
rates of cooperation in a conventional one-shot Prisoner’s Dilem-
ma to the rates of cooperation in the same game, where player 2 is
informed about the move of player 1 before player 2 himself moves.
They find that it ismorelikely for player 2 to choose C' when he does
not know the choice of player 1 than when he does, even when he
istold that player 1 played C'. Shafir and Tversky therefore attribute
some of the cooperation observed “to peopl € sreluctance to consider
all the outcomes, or to their reluctance to formulate a clear prefer-
ence in the presence of uncertainty about those outcomes’ (1992, p.
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457). Thisisasin our model, where the choice of C' by player 2 can
be explained only if there is ambiguity for player 2 about the move
of player 1. If player 2 istold the move of player 1, then thereisno
ambiguity and arational player 2 must play D.

Note that we have not shown that cooperation is possible regard-
less of the attitude towards ambiguity, but only that there are such
attitudes— the p1; and i, of (5.1) —that yield cooperation. Asnoted,
w1 and i, arevery special; in particular they do not reflect ambiguity
aversion, i.e., the property that for dl =, y, u;(z|{z,y}) < 1/2 if
i prefers x over y. It is, however, possible to have cooperation in
an LPE, even with ambiguity-averse preferences.® The following
proposition give exact conditions on the preferences under which
cooperation in Prisoner’s Dilemmais possible.

PROPOSITION 5.1. Cooperation is possible in an LPE of a Pris-
oner’s Dilemma, a2 x 2 game G pp Where

(52) DZCJ = CZCJ = DZD] i CZ'DJ',
if and only if
(53) Uz(Cza ij) > Uz(Dza ij).

Itispossibleina PLPE if andonlyif (5.3) holdswith strict inequal-
ity. Furthermore, a particular cps makes cooperation possible for
any Gpp if and only if it satisfies (5.1).

It is, of course, possible to make assumptions on preferences over
lower probabilities which rule out cooperation in Prisoner’s Dilem-
ma. As a prominent example it is easy to see that the utility repre-
sentation advocated by Jaffray (1989) and given in Section 2 above,
can never fulfill the conditions of Proposition 5.1. In particular this
showsthat the max-min rule (or Choquet integration) is not compat-
ible with cooperation.

6. RELATED LITERATURE

Generalizations of game theory that allow players to hold ambigu-
ous beliefs have aso been suggested by Dow and Werlang (1994),
Klibanoff (1993), and Lo (1995). In contrast to our work, they all
apply some version of Choquet expected utility (CEU). In CEU an
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agent’s preference in an uncertain environment is represented by
a capacity and a utility function on outcomes, such that uncertain
acts are ranked by their Choquet expected utility with respect to the
capacity.* CEU isused explicitly in the model of Dow and Werlang,
which is also applied in Eichberger and Kelsey (1995), whereas
Klibanoff and Lo model ambiguity as a set of conceivable proba-
bility measures, where ambiguous prospects are evaluated by the
minimal conceivable expected payoff. Thisissimilar to using CEU;
see Gilboa and Schmeidler (1989).

The use of CEU is questionable, however. In CEU there is no
separation of the decision maker’ stheory of theworld and hisattitude
towards ambiguity; for afurther discussion see Hendon et al. (1994)
and Sarin and Wakker (1995). Assuch it isimpossibleto describethe
playersin terms of preferences, including attitudes towards risk and
ambiguity, and then investigate which (possibly ambiguous) theories
are best-reply-consistent. Consider a CEU decision maker, player 1,
whose capacity on player 2 shifts from b, to b5. It is impossible
to say whether b, and b, differ because 1 has changed his theory
on 2, or because he has a new attitude towards ambiguity, or both.
So if capacities do not represent pure belief the interpretation of
an equilibrium in capacities is unclear. Furthermore, if players have
different attitudes towards ambiguity, the case with more than two
players cannot be handled. If there is ambiguity about the action
taken by player 3, the capacities that player 1 and 2 hold on 3 would
have to be different, if 1 and 2 had the same assessment of the
ambiguity concerning player 3'smove. This destroysthe possibility
of testing for common expectationsin equilibrium, which should be
possible for ageneralization of Nash equilibrium. In conclusion, the
CEU-approach of Dow and Werlang (1994), Klibanoff (1993) and
L0 (1995) can be defended, if one arguesthat the capacitiesinvolved
areinterpreted as representing pure, but ambiguous beliefs, but then
one must accept the assumption that players are always extremely
ambiguity averse (pessimistic).

The papers mentioned differ in their definitions of equilibrium.
L0's (1995) model is most in line with our work, since he demands
that players assign unit probability to opponents playing best replies.
This is not the case in Klibanoff (1993), where players only have
to consider it possible that other players play a best reply. Dow’s
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and Werlang's (1994) equilibrium concept only demands that the
players assessments of the ambiguity is such that it is possible that
thereis probability 1 of best replies. However, their definition of the
support of a belief function allows for the lower probability of the
set of best replies to be less than 1 in equilibrium — it can even be
zero. Total ambiguity about everything, for example, is aways an
equilibrium according to Dow’s and Werlang's definition.

Finally, it should be noted that, in contrast to our model, the
models of Klibanoff (1993) and Lo (1995) allow players actually to
choose mixed strategies and thereby to hedge against ambiguity. It
would be possible for player 1 in the game G, of Section 1 to play
U with probability 1/2 and M with probability 1/2, and thus obtain
a non-ambiguous expected payoff of 7/2. Thisis not in accordance
with the interpretation of mixed strategy equilibria suggested here,
andinfact wefindit hardtojustify. When aplayer hastaken arandom
draw and is about to move, there will still be ambiguity. Consider a
player 1 who wantsto play (1/2)U @ (1/2) M as suggested above,
and starts out by tossing afair coin, finding that U should be played.
If there is total ambiguity about the move of player 2 and player 1
is ambiguity averse, then player 1 prefers D over U, but following
the mixed strategy demands that player 1 should choose U rather
than D. In other words, when the pure strategies U and M are not
themselvesbest repliesitisnot (ex post) crediblefor player 1 to adopt
strategy (1/2)U @ (1/2)M. If it were possible to commit to some
mixed strategies, e.g., by delegating the random draw and move to
an agent, then these mixed strategies should be included in the pure
strategy set.

7. CONCLUDING REMARKS

In this paper we have formulated a concept of Nash equilibrium in
which the players are allowed to be ambiguous about the strategic
choices of the other players. The ambiguity has been modeled using
lower probability measures. Exact capacities, or even just sets of
conceivable probability measures, would perhaps be preferable as
models of ambiguity. But then one would need a model of players
preferences with respect to such ambiguous objects. At the moment
thisjust does not seem tractable.® In particular it ishard to use sets of
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a
- (1,1,0)

(0,3,3) (3,0,0) (0,3,0) (3,0,3)

Fig. 1. An extensive form gamewith three players.

probability measures as primitivesin avon Neumann—Morgenstern-
likedecisiontheory, sincethey do not lend themsel vesto applications
of the mixture set theorem.

We have applied the solution concept to the Prisoner’s Dilemma
and given an explanation of cooperation that hinges on ambiguity
and the players’ attitudes towards ambiguity.

For applications it is of interest to note that the set of LPFE of a
gameis equivaent to the set of Nash equilibriain agame where the
players strategy setsarethe subsetsof theoriginal strategy sets, such
that a mixed strategy corresponds to a mass function, see Appendix
B. By thisit is possible to calculate the set of LPFE for a particular
gameusing standard algorithms. A similar result appliesfor PLPE.

Other interesting applications may be examples where players
have cautiousstrategiesat their disposal . Consider theextensiveform
game of Figure 1, where the players are assumed to be extremely
ambiguity averse.

In this game player 1 goes D if he believes that player 3 goes R
with probability above 1/3. And player 2 goes d if he believes that
player 3 goes/ with probability above 1/3. So, if the common theory
on 3 isaprobability measure, i.e., b, + b, = 1, at least one of 1 and
2 must go down. Allowing the theory on 3 to be alower probability
measure and assuming players 1 and 2 to be ambiguity averse, we
can get (A, a) as an equilibrium outcome. One such equilibriumis
(A, a,by,y), which even can be shown to be perfect, in the (agent)
strategic form of the game.
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Since this example is robust it shows the existence of potential
applications of LPFE to extensive form games. Furthermore, the
example captures a point raised in more traditional game theory.
It should be possible to have (A, a) in equilibrium since, if (A, a)
is played, player 3's information set is off path, and it should then
be allowed that players 1 and 2 have different theories on player 3,
which may explain both A and a. This is captured by the concept
of a self-confining equilibrium, Fudenberg and Levine (1993). We
see here that it is not required that players 1 and 2 hold different
beliefson 3for (A, a) to be played in equilibrium, all that is needed
is that they hold sufficiently imprecise beliefs and are sufficiently
ambiguity averse, cf. Greenberg (1995) for asimilar point.

A problem with LPE in extensive form games is how to refine
it. One could of course apply PLPFE to the agent strategic form of
a game, but it is not clear that this is reasonable. One problem is
the definition of aBayes' rulefor lower probability measures, which
is also the reason why there is no straightforward way of generally
defining concepts of sequential or perfect Bayesian equilibrium in
lower probabilities.

APPENDIX A: PROOFS

Proof of Lemma2.1. Assumethat = € suppb. If 2 & Urccore(s) SUPP T
thenm(X\{z}) = 1foralr € core(b),i.e.,b(X\{z}) = Min;ccorern)
7(X\{z}) = 1, contradicting that = € suppb.

Assume that there is z such that = € Urccore) SUPP T, and = ¢
Ugesuppm, £ - Thecorrespondencecore(-) : B = A iseasily shown
to be affine, so core(b) = X pesuppm, M (E) - core(bg). If, for some
set E, x ¢ E, then n(x) = O for al 7 € core(bg), and since
r & Upcsuppm, B, m(x) = 0 for al = € core(b), contradicting
T € Urecore(n) SUPP T

Assume that © € Ugcsuppm, &, 1.€., there is £, with v € E,
and my(E,) > 0. Then b(X\{z}) = Xp.ermu(E) < 1, i€, if
b(F)=1thenz € F. B

Proof of Lemma 3.1. i = ii: If m; € core(b;) then by Lemma
2.1, supp m; C suppb; € PBR;(b),i.e., m € BR;(b).
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it => iti: Since b; > 0 we only have to show that b;(F) = 1if
PBR;(b) C E.But b;(E) = Mincore,) m(F) = 1sincer;(F) =1
for dl m; € core(b) by ii.

it = 1. 1f by > bppr;w) then supp b; C SUPPbpprk) =
PBR;(b).

i <= v isimmediate by Lemma2.1.

Let (b',bl) be a sequence in B x B; converging to (b, b;) with
bt € BR;(b') for dl t. We have to show that if m;(E;) > O
then E; C PBR;(b). By convergence of m! to m; we must have
mt(E;) > 0infinitely often, i.e,, E; C PBR;(b") infinitely often,

and by continuity of U;, E; C PBR;(b).

Proof of Proposition 4.1. ¢ = ii: Let (b') be as in ii. Define
€(n) = MaX;ey MaXg,cs; 7;(E;). Thenb! isan e-perfect LPE. Since
e(n') — 0, b* fulfillsi.

it = iii: Let (') beasinii. Consider E; withm} (E;) > 0. We
will show that from some T, € N, E; C PBR;(b"). Assume not.
Then, infinitely often, m}(E;) < ¢, and since e’ — 0 and m' is
convergent, lim, ., m!(E) = 0, contradicting m} (E;) > 0. So, for
t > max;ey Maxg,cs, T, b* € BR;(b).

iii = 4: Let (') beasiniii. Let (¢') be asequencewith e’ > 0
ande! — 0. Definen’ : P(S;) — Rby,forali € Nand E; C S;,

ni(Ei) = {et, otherwise.
Thenn! — 0, and for al ¢ large enough, Y5, n!(E;) < 1. Further,
for ¢ large enough, b € B(n') and by (4.1), b* isan LPE of G(n').
N

Proof of Proposition 4.2. Consider a perturbation n’. Define
B(n') = X;B;(n!). The correspondence BR : B(n') = B(n})
is upper hemi-continuous (u.h.c.): We only need to check that BR;
isu.h.c. Let (b%,b%) be asequencein B(n') x B;(n') converging to
(b, b;) withb? € BR;(b*) foral s. Wehavetoshow that b; € BR;(b),
vergence of m;{ tom; wemust have E; C PBR;(b*) infinitely often,
and by continuity of U;, E; C PBR;(b).

Since B(n') is compact and convex, there is a fixed point of
BR by Kakutani’s fixed point theorem, i.e., there is an equilibrium
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b' € LPE(G(n")). By compactness of B, (b') has a convergent
subsequence. B

Proof of Proposition 5.1. ‘Only if’. Assume that some player i
strictly prefers D over total ambiguity. Then C' isnever abest reply,
andtheonly LPE is (D, D).

‘If*. When (5.3) holds, U, (C, (0,0)) > Uy(D, (0,0)) and Uy(C,
(0,1)) < Us(D,(0,1)), so by &ffinity thereisy € [0, 1] such that
UL(C,(0,y)) = UiD,(0,y)), with y = 0 if and only if
Ui(C,(0,0)) = Uy(D,(0,0)). Similarly there is an = such that
U2((07 SL’), C) = U2((07 SU), D) So ((07 SU), (07 y)) isan LPE.

For the characterization of PLPF, note that C' is weakly domi-
nated by D in Gpp if (5.3) holds with equality for a player. Conse-
guently C'isnotusedinany PLPFE of Gpp. If (5.3) holdswith strict
inequality, ((0,z), (0,y)) is shown to be a PLPFE by construction
of a sequence asin Proposition 4.1.ii.

For any u;, u, satisfying (5.2) there is a continuum of cps's
such that (5.3) holds. In particular, if p; and p, satisfy (5.1) then
(5.3) is satisfied with inequality for any uq, u, satisfying (5.2). On
the other hand, if (5.1) is not satisfied then there are u, u, satisfy-
ing (5.2) such that (5.3) is not satisfied. Assume, for example that
p((C,CY{(C,C),(C,D)}) = p < 1. Then consider u; such that
uy(D,C) > uy(C,C) =1, uy(D,D) =0,and uy(C, D) < —p(1 —
p). Obviously (5.1) issatisfied, but Uy (D, bs,) > u1(D, D) = 0, and
Ui(C,bs,) = p-ur(C,C)+(1—p)-us(C, D) < p—p = O, violating
(5.3). Similarly, for any other violation of (5.1) there are examples
where (5.3) is violated. B

APPENDIX B: DEFINITIONS USING THE MIXED SUBSET EXTENSION

In order to investigate the relation to ordinary (mixed strategy) equi-
librium, we seek a transformed game in which the mixed strategy
equilibria correspond to the equilibriain lower probabilities of the
original game.

Define the mixed subset extension G of GG as the game

G = (N.(IL. 7))
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where [[; = A(S;), S; = P(S;), and U] isto be defined later. So a
pure strategy F; in G corresponds to a non-empty subset of the pure
strategies in GG. Consequently, a mixed strategy m; in G is a mass
function on S; and thus corresponds to a belief function on S;. Now
define the utility functions by,

Ui’(ﬂ-la . .,ﬂ'n) = Z 71-(-E17/) ’ UiI(Ei)ﬂ-—i)a

E;eS;
with,

(A U/(Ei,7) = sr_gi]_g Ui(si, br_,),
where b, is the belief function corresponding to the mass function
7. Notice that G is not an extension of the game (N, (S;,U;)), i.e.,
we do not necessarily have U/ (E) = U;(bg). But, for any s; € S,
we do have UZ{(SZ', 7T_Z') = UZ'(SZ', bﬂ_i).

Let PBR; denote pure best replies (i.e.,, mixed strategies with
support on a singleton) in G, and let BR; be ordinary best replies,
BR(m) = argmax, U (], 7_;). Note, from linearity, that we have
the usual characterization of best replies; m; € BR!(r) if and only
if E; € PBR.(r) for dl E; € supp ;.

Consider aplayer i € N and a strategy combination 7 in G. For
any E; € S;, and by definition (A.1), E; C PBR;(b,) if and only if
E; € PBR!(n),ie,

(A.2) PBR!(r)=P(PBRi(b,)).

Note that (A.2) will hold for any definition of U/(E;, 7_;) aslong
aswehave U] (E;, m_;) < MaXs,cr, Us(s;, by_,) whenever maxs,c g,
Ui(si,br_,) > Ming.cp. Us(s;, br_.); the essentia feature of (A.1).
By (A.2),
bi € BR;(b) & VE; € suppm; : E; C PBR;(b)
& VE; € suppm : E; € PBR[(my) < m! € BR;(my).

We can now easily show:

PROPOSITION A.1. bisan LPE of GG, if and only if m,, isa Nash
equilibriumof G.
Proof. Follows directly from the above. B
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PROPOSITION A.2. bisaPLPFE of G,ifandonlyif m; isa perfect
equilibriumof G.

Proof. First notethat (') has a completely mixed mass function
if and only if (my:) isasequence of completely mixed strategiesin
G. Further, b € BR(b") if and only if m;, € BR'(my:), and finaly
b — bast — oo if and only if my: — my ast — oo. So, my,
isaperfect equilibriumof G if andonly if bisaPLPE of G. B

These results suggest that one property of an appropriate definition
of L P-domination between belief functions on player i would be
that b; L P-dominatest;, if and only if m; dominatesm; in G.
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NOTES

LA capacity is amapping v : 2X — [0, 1], fulfilling v(§) = 0, v»(X) = 1,
and E C F = v(E) < v(F) (monotonicity). It is exact if for al E, v(E) =
min{r(E)|r € core(v)}, where the core is defined as for belief functions, cf.
Schmeidler (1972).

2 Theproof of thislemmaand all succeeding resultsareto befoundin Appendix
A.

3 An example is the cps 1 given by u1(C,C) = 0.32, u1(C, D) = 0.34,
wi(D,C) =0.01, and p1 (D, D) = 0.33 with p, defined similarly. Here player 1
isambiguity aversesince i, decreasesintheorder DC' —CC — DD — C D, where
ua increases, but 11 ((C, C)|{(C, D), (C, D)}) = 0.32/(0.32+0.34) isvery close
to but below 1/2, while u1((D, C)|{(D,C),(D,D)}) = 0.01/(0.01 4+ 0.33) is
very close to 0, maintaining the qualitative feature of (5.1) that player 1 is more
optimistic when he plays C' than when he plays D. With these preferencesone can
calculatethat b;(C) = 411/1533and b;(D) = Ofori = 1,2 condtitutean LPE.

4 If a capacity on aset X is 2-monotone (or convex), the Choquet integral of
afunctionu : X — R issimply min,ccores) D, cx w(z)m(zx). For a genera
definition of the Choquet integral and theories of Choquet expected utility, see
Gilboa (1987), Schmeidler (1989), and Sarin and Wakker (1992).

5 Unless one is ready to assume that all players are extremely pessimistic, as
explained in Section 6.
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