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Abstract. We present Saharon Shelah’s Stability Spectrum and Homogeneity
Spectrum theorems, as well as the equivalence between the order property and
instability in the framework of Finite Diagrams. Finite Diagrams is a context
which generalizes the first order case. Localized versions of these theorems are
presented. Our presentation is based on several papers; the point of view is
contemporary and some of the proofs are new. The treatment of local stability
in Finite Diagrams is new.

1. Introduction

Saharon Shelah’s Finite Diagrams Stable in Power [Sh3], published in 1970,
is one of the seminal articles in model theory. It contains a large number of key ideas
which have shaped the development of classification theory. The model-theoretic
framework of the paper is more general than the first order case. However, while
all the particular cases of the results in the first-order case can be found in several
more recent publications of Saharon Shelah as well as countless expositions, the
non first-order content of [Sh3] is still not available in a concise form.

The primary purpose of this paper is to present, in this more general
framework, most of the stability results of [Sh3], together with the order/stability
dichotomy from [Sh12], and the homogeneity spectrum appearing in The Lazy
Model Theorist’s Guide To Stability [Sh54]. A secondary purpose is to present
the necessary background to [Le1] and [GrLe2]. This is done in a contemporary
and self-contained manner, and includes improvements and techniques from [Sh b],
[Sh300], and [Gr1]. Finally, with little additional work, we localize all the theorems
and obtain local versions of the Stability Spectrum Theorem and the Homogene-
ity Spectrum in Finite Diagrams. This study of local stability in more general
frameworks has been started in [GrLe1].

The framework introduced by Shelah in [Sh3] is the study of classes of
models of a finite diagram. These classes are described in more detail below. Such
classes are examples of nonelementary classes and the results presented in this paper
belong to a subfield of pure model theory named by Shelah: classification theory
for nonelementary classes. The word nonelementary refers to the fact that the
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class does not have a first-order axiomatization. The interesting cases are when the
compactness theorem fails (like in a the class of models of an Lω1,ω-theory). While
many of the questions of classification theory for first order theories have been solved
(see [Sh b]), classification theory for nonelementary classes is still under-developed.
This is not to say that the subject is small or not interesting. Thousands of pages
have been devoted to its questions: See for example [BaSh1],[BaSh2], [BaSh3],
[Gr1], [Gr2], [GrHa], [GrLe1], [GrLe2], [GrSh1], [GrSh2], [HaSh], [HySh], [Ke],
[Ki], [KlSh], [Le1], [Le2], [MaSh], [Sh3], [Sh48], [Sh87a], [Sh87b], [Sh88], [Sh tape],
[Sh299], [Sh300], [Sh394], [Sh472], [Sh576], [Sh 600], [ShVi], and Shelah’s forthcom-
ing book [Sh h]. The techniques used are usually set-theoretic and combinatorial in
nature, although more recently, new ideas coming from geometric stability theory
are being imported (E.g. [Le1] and [Le2]). The failure of the compactness theorem
for a class of models makes their model theory delicate and sometimes sensitive to
the axioms of set theory. This is one of the reasons why some additional assump-
tions are often made; a “monster model”, set-theoretic assumptions, amalgamation
properties, and so on.

Let us describe briefly what is meant by the class of models of a finite
diagram. Two perspectives are given below.

Given a first order theory T and a model M of T , the finite diagram of the
model M is the set of complete types over the empty set realized in M . Recall that
for a first-order theory T

D(T ) :=
⋃
n<ω

Dn(T ), where Dn(T ) := {p | p is a complete T -type in n-variables}.

Fix a set D ⊆ D(T ) and consider the class of models whose finite diagram is a subset
of D. Such models are called D-models for convenience. In another language, we
study the class of models omitting all the types over the empty set which do not
belong to D. There are several connections between the class of D-models and the
class of models of some theory T ∗ ⊆ Lλ+,ω, for a cardinal λ. First, the class of
D-models can be axiomatized by some theory T ⊆ Lλ+,ω, provided λ ≥ |D(T )\D|.
On the other hand, from the point of view of Shelah’s conjecture (see below) for
example, the class of models of a countable theory T ∗ ⊆ Lω1,ω is equivalent to the
class of D-models of a countable first order theory T , where D is the set of isolated
types over the empty set.

Both in [Sh3] and [Sh54], Shelah studied these classes under an additional
assumption. Let us say a few words about exactly what this additional assumption
is (it takes two equivalent forms in [Sh3] and [Sh54], and yet another equivalent
formulation is given here). Since the compactness theorem fails for this class of
models, it is crucial to have a good understanding of what the meaningful types
are, i.e. which types can be realized by D-models. A corollary of the compactness
theorem is that given a model M and a type p over a subset A of M , it is possible
to find an elementary extension N of M in which p is realized. This fails, in
general, for the class just described. There is a natural obstacle why this cannot
work in general: Suppose p is a complete type over a set of parameters A, where
A is a subset of a D-model M . Suppose there is a D-model N containing M in
which p is realized, say by the sequence c̄. Then, since A ∪ c̄ ⊆ N and N is a D-
model, necessarily, all the subsequences of the set A∪ c̄ realize (over the empty set)
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types that belong to D. The assumption that Shelah made (although not in those
terms) is that this is the only restriction. This class of models, with the additional
assumption on types, is the framework that Shelah calls finite diagrams. Note that
when D is the set D(T ) of all complete T -types over the empty set, then this is the
first order case.

An alternative way of looking at this framework is as follows. Given a
theory T , fix a large homogeneous model C of T . In general, C is not saturated. Let
D be the diagram of C. Then, the class of D-models can be assumed to be the class
of elementary submodels of C and above meaningful types are the ones realized in
C. Note that when C is saturated, then this is the first order case.

Using the first order case as a guide, there are four important results in
Stability Theory all due to Shelah. See [Sh b].

• A theory T is stable if and only if it does not have the order property.
• If a theory T is stable in λ, then given any set of finite sequences I of

cardinality λ+ and a set A of cardinality λ there exists a subset J ⊆ I of
cardinality λ+ indiscernible over A.
• (The Stability Spectrum) For a theory T , either T is not stable or T is

stable and there exist cardinals κ(T ) and λ(T ) satisfying κ(T ) ≤ |T |+ and
κ(T ) ≤ λ(T ) ≤ 2|T | such that T is stable in µ if and only if µ ≥ λ(T ) and
µ<κ(T ) = µ.
• (The Saturation Spectrum) A theory T has a λ-saturated model of cardi-

nality λ if and only if λ ≥ |D(T )| and either λ<λ = λ or T is stable in
λ.

This paper contains Shelah’s generalizations of above theorems to the class
of models of finite diagrams. The first two results use the notion of splitting and
can be generalized without too much difficulty to this context. As to the last two,
the optimal versions rely on the notion of forking. Forking seems to rely on some
form of compactness, and Shelah proved the last two theorems for this context
using the notion of strong splitting (introduced before forking and dividing). Since
strong splitting does not satisfy all the properties of forking, the proofs are more
intricate and combinatorial in flavor.

Classes of models of a finite diagram are important also because they pro-
vide a natural test-case to generalize ideas from first order logic to more general
nonelementary classes. On the one hand, many of the technical difficulties arising
from the failure of the compactness theorem are present. On the other hand, the
model theory is more manageable as we have a good understanding of types. It is
still quite general and many natural nonelementary classes fit within this frame-
work; for example the class of existentially closed models of an inductive theory,
studied by the school of model theorists around Abraham Robinson. Note also that,
in contrast to other nonelementary contexts, this work is completely done within
ZFC. We added a discussion on the strength of the main assumption of Finite
Diagrams after Hypothesis 2.5. Much work was done by Shelah and his collabora-
tors on several more general contexts, including work toward Shelah’s conjecture,
which is the parallel of ÃLoś conjecture for Lω1,ω and abstract elementary classes.



4 RAMI GROSSBERG AND OLIVIER LESSMANN

Finite diagrams are much easier to deal with than abstract elementary classes. E.g.
Shelah’s conjecture (see 2.6 below) holds for finite diagrams but is still open for
abstract elementary classes.

The classification theory for finite diagrams has been the focus of some
activity recently. The focus of [Sh3] was stable diagrams. In [HySh], Tapani Hytti-
nen and Shelah and develop a context corresponding to superstability. They prove
the existence of types over the realization of which strong-splitting satisfies the
axioms of a pregeometry. In [Le1], Olivier Lessmann introduced a rank for the
ℵ0-stable case. The finite diagrams for which the rank is bounded are called totally
transcendental. Totally transcendental diagrams behave surprisingly like totally
transcendental first order theories; there is a nicely behaved dependence relation,
pregeometries and the methods of John T. Baldwin and Alistair Lachlan [BaLa]
can be adapted to give geometric proofs of categoricity, construct nonisomorphic
models, as well as other applications. In a work in preparation [GrLe2], we prove
the Main Gap for totally transcendental diagrams. The decomposition theorem is
in fact an application of a more general decomposition theorem. Finally we would
like to mention a forthcoming paper by Steve Buechler and Lessmann [BuLe] as
another continuation of this paper, where dividing is studied.

2. The Framework of Finite Diagrams

The notation is standard. Abbreviations like AB stands for A∪B, and Ab̄
for A ∪ {ran(b̄)}. When M is a model, ‖M‖ stand for the cardinality of M . The
notation A ⊆M means that A is a subset of the universe of M .

Let T be a first order complete theory in a language L. Denote by L(T )
the set of first order formulas in L. Let M̄ be the a very saturated model of T . For
∆ ⊆ L, A ⊆ M , and a (not necessarily finite) sequence ā ∈ M , define the ∆-type
of ā over A in M by

tp∆(ā/A,M) = {φ(x̄, b̄) | b̄ ∈ A, φ(x̄, ȳ) or ¬φ(x̄, ȳ) ∈ ∆, and M |= φ[ā, b̄]}.
When ∆ is L(T ) it is omitted and when M is M̄ , it is omitted also.

Definition 2.1.

(1) The finite diagram of A is

D(A) = {tp(ā/∅) | ā ∈ A, ā finite }.
Such sets will be denoted by D and called finite diagrams.

(2) The set A is a D-set if D(A) ⊆ D. The model M is a D-model if D(M) ⊆ D.
(3) We let Sn∆(A) = {tp∆(c̄/A) | c̄ ∈ M̄, `(c̄) = n}, for ∆ ⊆ L(T ). When

∆ = L(T ) it is omitted. When n = 1 it is omitted. A type p ∈ Sn(A) is
called a D-type if and only if A ∪ c̄ is a D-set, for every c̄ realizing p.
SnD(A) will denote the set of D-types over A in n variables.

When D = D(T ), then SD(A) = S(A).

Definition 2.2. The model M is a (D,λ)-homogeneous model if M realizes every
p ∈ SD(A) for A ⊆M with |A| < λ.
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When D = D(T ), then a model is (D,λ)-homogeneous if and only if it is
λ-saturated.

The next lemma shows that if M is (D,λ)-homogeneous, then it is λ-
universal for the class of D-models.

Lemma 2.3. Let M be (D,λ)-homogeneous and A be a D-set of cardinality λ. Let
B ⊆ A such that |B| < λ. Then for every elementary mapping f : B → M , there
is an elementary mapping g : A→M extending f .

Proof. Write A = B∪{ai : i < λ}. Construct an increasing sequence of elementary
mappings 〈fi | i < λ〉 by induction on i < λ, such that f0 = f ,

B ∪ {aj : j < i} ⊆ dom(fi) and ran(fi) ⊆M.

In case i = 0 or i a limit, it is obvious. Assume fi is constructed. Define qi =
fi(tp(ai/B ∪ {aj : j < i})). By induction hypothesis qi ∈ SD(fi(B ∪ {aj : j < i})).
Hence, since M is (D,λ)-homogeneous, qi is realized by some bi ∈ M . Let fi+1 =
fi ∪ 〈ai, bi〉. The elementary mapping g =

⋃
i<λ fi is as required.

Recall from the first order case that a model is λ-homogeneous, if for any
partial elementary mapping f from M into M with |dom(f)| < λ and c ∈M , there
is an elementary extension g of f from M into M such that dom(g) ⊇ dom(f) ∪ c.
The next lemma is an extension of the familiar first order result that a model M
is λ-saturated if and only if M is λ-homogeneous and < ℵ0-universal if and only if
M is λ-homogeneous and λ-universal.

Lemma 2.4. M is a (D,λ)-homogeneous model if and only if D(M) = D and M
is λ-homogeneous.

Proof. The only if part follows from the previous lemma. To see the converse, we
show that M is (D,µ)-homogeneous for every µ ≤ λ by induction on µ.

For the base case, assume that µ < ℵ0. Let p ∈ SD(c̄), where c̄ ∈ M is
finite. Let a be any element realizing p. By assumption tp(â c̄/∅) ∈ D. Since
D(M) = D, there exist a′ and c̄′ ∈ M realizing tp(â c̄/∅). Let f be a partial
elementary mapping such that f(c̄) = c̄′ and f(a) = a′. Then, by λ-homogeneity
of M , there is a partial elementary mapping g from M to M , extending f−1 ¹ c̄′,
with dom(g) ⊇ c̄′ ∪ a′. Then we have that a′ realizes f(p), and so g(a′) realizes
g(f(p)) = p. Hence, p is realized in M .

By induction, let C ⊆ M of cardinality µ < λ and assume that we have
already shown that M is (D,µ)-homogeneous. Let p ∈ SD(C) and a be any element
realizing p. Then C ∪ a is a D-set of cardinality µ, so by (D,µ)-homogeneity of M ,
using the previous lemma, there exists an elementary mapping f sending C∪a into
M . Hence, by λ-homogeneity of M , there is g, an elementary mapping from M
into M , extending f−1 ¹ C with dom(g) ⊇ f(C) ∪ f(a). To conclude, notice that
since a realizes p, f(a) realizes f(p) and g(f(a)) realizes g(f(p)) = p. This shows
that M realizes p, since g(f(a)) ∈M , and completes the proof.
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The following hypothesis is made throughout the paper. It is equivalent to
Shelah’s original assumption in [Sh3] and [Sh54]. Also, the same assumption was
made by H. Jerome Keisler in his categoricity theorem [Ke].

Hypothesis 2.5. There exists a (D, κ̄)-homogeneous model C, with κ̄ much larger
than any cardinality mentioned in this paper.

In view of the preceding lemma, we may assume that any D-set lies in C.
Also, satisfaction is with respect to C. Notice also that for any D-set A

SnD(A) = {tp(ā/A,C) | ā ∈ C and A ∪ ā is a D-set}.

The study of a finite diagram D is thus the study of the class of D-models
under the additional assumption that there exists a (D, κ̄)-homogeneous model C,
with κ̄ very large.

Hypothesis 2.5 is a natural assumption to make. Let us say a few words
about why we feel this is so. The most outstanding test question in the classification
theory for nonelementary classes is a conjecture of Shelah, made in the mid-1970s:

Conjecture 2.6 (Shelah). Let T be a countable Lω1,ω theory. If there exists a
cardinal λ ≥ iω1 such that T is categorical in λ, then T is categorical in every
µ ≥ iω1 .

As we mentioned in the introduction, it is equivalent to solve this conjecture
for the class of D-models of a countable first order theory, where D is the set of
isolated types over the empty set (whence the relevance of this discussion here).
Most experts agree that the full conjecture seems currently out of reach. However,
several attempts to solve the conjecture since the late 1970s have indicated that
categoricity (sometimes in several cardinals and sometimes under additional set-
theoretic axioms ) implies the existence of various kinds of amalgamation properties
and the existence of monster models (see for example [Sh48], [Sh87a], [Sh87b],
[Sh88], or [BaSh3]). By monster model, we mean a large model with universal
or homogeneous properties. By amalgamation properties we mean that the class
of models of T satisfies the µ-amalgamation property for a class of cardinals µ.
Recall that a class of models K has the µ-amalgamation property if for every triple
of models M0,M1,M2 ∈ K of cardinality µ such that M0 ≺ M1, M0 ≺ M2, and
M0 ⊆M1∩M2, there exist a model N ∈ K and embeddings fi : Mi → N for i = 1, 2
such that f1 ¹ M0 = f2 ¹ M0. For example, by Robinson’s Consistency Lemma,
the class of model of a first order theory T has the µ-amalgamation property, for
every cardinal µ ≥ |T |.

While Shelah observed from the work of Leo Marcus [Mr], that the ex-
istence of a monster model quite as in Hypothesis 2.5 does not follow from the
assumption of Shelah’s conjecture, it is certainly reasonable to conjecture that it
implies the existence of a monster model with a similar flavor. Thus, experience
gained in this framework can shed light on the potentially more general framework.
These results are additional motivations to develop classification theory either in-
side a homogeneous model [Sh3], [Sh54], [Gr1], [Gr2], [HySh], [GrLe2], [Le1], or
for nonelementary classes with amalgamation properties [Sh48], [Sh87a], [Sh87b],



SHELAH’S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN FINITE DIAGRAMS.7

[GrHa], [Sh394]. In fact, under monster model or amalgamation properties several
approximations of Shelah conjecture are known: for example [Ke], [Sh48], [Sh87a],
[Sh87b], [Le1] and [Sh472].

In this vein, the two following conjectures were made by Rami Grossberg
in 1989, in an email communication with Baldwin:

Conjecture 2.7. Let T be a countable Lω1,ω theory. If T is categorical is some
large enough λ, then there exists a µ0 such that the class of models of T has the
µ-amalgamation property for every µ greater than µ0.

Amalgamation properties are closely related to monster model hypotheses:
When T is a Scott sentence, the conclusion of the previous conjecture implies the
existence of arbitrarily large model-homogeneous models

Conjecture 2.8. Let T be a countable Lω1,ω theory such that there exists a µ0

such that the class of models of T has the µ-amalgamation property for every µ
greater than µ0. If T is categorical in some λ ≥ iω1 , then T is categorical in every
cardinal µ ≥ iω1 .

Before finishing this discussion, we can ask the following related question:

Question 2.9. Let T be a countable theory in Lω1,ω. Is there a cardinal µ(T ) with
the property that if the class of models of T has the µ(T )-amalgamation property
then it has the λ-amalgamation property for arbitrarily large λ?

3. Stability and Order in Finite Diagrams

In this section, we present the equivalence between stability and the failure
of the order property in the context of finite diagrams (Corollary 3.12).

Definition 3.1. Let D be a finite diagram.

(1) The diagram D is said to be stable in λ if for every A ⊆ C of cardinality at
most λ and for every n < ω we have |SnD(A)| ≤ λ.

(2) We say that D is stable if there is a λ such that D is stable in λ.

By the pigeonhole principle, it is enough to consider n = 1, i.e. D is stable
in λ if and only if for all A ⊆ C of cardinality at most λ, we have |SD(A)| ≤ λ.

Definition 3.2. Let D be a finite diagram.

(1) D has the λ-order property if there exist a D-set {āi | i < λ}, and a formula
φ(x̄, ȳ) ∈ L(T ) such that

|= φ[āi, āj ] if and only if i < j < λ.

(2) D has the order property if D has the λ-order property for every cardinal λ.

Notice that the order property is formulated differently from the order
property used by Shelah in [Sh b]. The formulation given here is equivalent to the
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usual order property in the first order case, and is more natural in nonelementary
cases; when it holds there are many nonisomorphic models (see [Sh12], [GrSh1],
and [GrSh2]).

Recall some standard definitions. A set of finite sequences {āi | i < α} is
said to be an n-indiscernible sequence over A, for n < ω if tp(ā0, . . . , ān−1/A) =
tp(āi0 , . . . , āin−1/A). for every i0 < · · · < in−1 < α. Then {āi | i < α} is an
indiscernible sequence over A, if it is an n-indiscernible sequence over A for every
n < ω. It is said to be an indiscernible set, if in addition, the ordering does
not matter. We will not have to distinguish between the two, as in the presence
of stability, every indiscernible sequence is, in fact, an indiscernible set (Remark
3.4 and Corollary 3.12). Hence, we will often say indiscernible for indiscernible
sequence, or set when they coincide or when it does not matter.

Remark 3.3. If there exists a D-set {āi | i < ω}, which is an indiscernible se-
quence, and a formula φ(x̄, ȳ) such that

|= φ[āi, āj ] if and only if i < j < ω,

then D has the order property.

Proof. Let λ be an infinite cardinal. Let {c̄i | i < λ} be new constants. Consider
the union of the following sentences:

• φ(c̄i, c̄j), if i < j < λ;
• ¬φ(c̄i, c̄j), if i ≥ j, i, j < λ;
• ψ(c̄i0 , . . . , c̄in), for each ψ(x̄0, . . . x̄n) ∈ tp(ā0, . . . , ān/∅), and each n < ω,

and each i0 < · · · < in < λ.

The above set of sentences is consistent (use {āi | i < ω}). Let b̄i be the interpreta-
tion of c̄i in M̄ , the monster model for T . The last clause implies that {b̄i | i < λ}
is a D-set. By the first two clauses, we have

|= φ[b̄i, b̄j ] if and only if i < j < λ.

Hence, D has the λ-order property. We are done since λ was arbitrary.

Remark 3.4. Suppose D does not have the order property. Let {āi | i < α} be
an infinite indiscernible sequence over A. Then {āi | i < α} is an indiscernible set
over A.

Proof. Suppose that the conclusion fails. Then, there exist an integer n < ω, a
permutation σ ∈ Sn, and indices i0 < · · · < in < α such that

tp(ā0, . . . , ān/A) 6= tp(āiσ(0), . . . , āiσ(n)/A).

Since {āi | i < α} is an indiscernible sequence over A, we have tp(ā0, . . . , ān/A) 6=
tp(āσ(0), . . . , āσ(n)/A). Since any permutation is a product of transpositions, we
may assume that there exist k0 < k1 ≤ n such that σ(k0) = k1, σ(k1) = k0

and σ(i) = i, otherwise. Hence, there exists φ(x̄, ȳ, b̄), where b̄ ∈ A ∪ {āi | i ≤
n, i 6= k0, k1} such that |= φ[āk0 , āk1 , b̄] and |= ¬φ[āk1 , āk0 , b̄]. Then, the D-set
{āiˆ̄b | n < i < α} is an infinite indiscernible sequence (over ∅). Hence |= φ[āi, āj , b̄]
if and only if n < i < j < α. This implies that D has the order property by the
previous remark.
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The main tool to prove that the failure of the order property implies sta-
bility (Theorem 3.9) is splitting. Recall the definition.

Definition 3.5. Let ∆1 and ∆2 be sets of formulas. Let A be a set and B ⊆ A.
For p ∈ Sn(A), we say that p (∆1,∆2)-splits over B if there are b̄, c̄ ∈ A and
φ(x̄, ȳ) ∈ ∆2 such that tp∆1

(b̄/B) = tp∆1
(c̄/B) with φ(x̄, b̄) ∈ p and ¬φ(x̄, c̄) ∈ p.

When ∆1 = ∆2 = L(T ), we just say that p splits over B. When ∆1 =
{φ(x̄, ȳ)} and ∆2 = {ψ(x̄, ȳ)}, we write (φ(x̄, ȳ), ψ(x̄, ȳ))-splits, omitting the paren-
theses.

For a statement t and a formula φ, the following convention is made: φt =
¬φ if the statement t is false and φt = φ, if the statement t is true. The same
notation is used when t ∈ {0, 1}, where 0 stands for falsehood and 1 stands for
truth.

The next two lemmas give sufficient conditions guaranteeing the existence
and uniqueness of nonsplitting extensions.

Lemma 3.6. Let A ⊆ B ⊆ C be sets such that B realizes all the ∆1-types over A
that are realized in C. Assume p1,p2 ∈ S∆2(C) and p1 ¹ B = p2 ¹ B. If p1, p2 do
not (∆1,∆2)-split over A, then p1 = p2.

Proof. By symmetry, it is enough to show that p1 ⊆ p2. Let φ(x̄, b̄) ∈ p1. By
assumption tp∆1

(b̄/A) is realized by some c̄ ∈ B. Hence φ(x̄, c̄) ∈ p1 since p1 does
not (∆1,∆2)-split over A, and φ(x̄, ȳ)t ∈ ∆2 for t = 0 or 1. Thus φ(x̄, c̄) ∈ p2 and
so φ(x̄, b̄) ∈ p2 also since p2 does not (∆1,∆2)-split over A.

Lemma 3.7. Let A ⊆ B ⊆ C be D-sets, such that B realizes every D-type over A,
which is realized in C. Suppose p ∈ SD(B) does not split over A. Then, there is a
unique type q ∈ SD(C) extending p that does not split over A.

Proof. Uniqueness was proved in the previous lemma. Hence, it is enough to show
existence. Define q explicitly by setting:

q := {φ(x, c̄) | There exists b̄ ∈ B realizing tp(c̄/A) and φ(x, b̄) ∈ p}.
This is well-defined. By assumption p does not split over A and so the definition
does not depend on the choice of b̄ ∈ B.

First notice that q is complete. Suppose c̄ ∈ C and φ(x, ȳ) ∈ L(T ). Suppose
φ(x, c̄) 6∈ q. Let b̄ ∈ B realize tp(c̄/A). By definition, we have φ(x, b̄) 6∈ p. Hence,
¬φ(x, b̄) ∈ p, since p ¹ B is complete. Thus, ¬φ(x, c̄) ∈ q, by definition of q. Also, q
is consistent. Let φ1(x, c̄1), . . . , φn(x, c̄n) ∈ q. Then φi(x, b̄i) ∈ p, for b̄1ˆ. . . ˆ̄bn ∈ B
realizing tp(c̄1ˆ. . .ˆc̄n/A). Since p is consistent, we have

|= ∃x[φ1(x, b̄1) ∧ · · · ∧ φn(x, b̄n)].

Then, by an elementary mapping sending each b̄i to c̄i fixing A we conclude that

|= ∃x[φ1(x, c̄1) ∧ . . . ∧ φn(x, c̄n)].

Hence, the set {φ1(x, c̄1), . . . , φn(x, c̄n)} is consistent.
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Now let us see that q does not split over A. Otherwise, there are c̄1, c̄2 ∈ C,
and φ(x, ȳ) such that tp(c̄1/A) = tp(c̄2/A) and φ(x, c̄1), ¬φ(x, c̄2) ∈ q. Choose b̄1,
b̄2 ∈ B, such that tp(b̄1/A) = tp(c̄1/A) = tp(c̄2/A) = tp(b̄2/A). We have φ(x, b̄1),
¬φ(x, b̄2) ∈ p, by definition of q. Hence p splits over A, contradiction.

Finally, let us show that q is a D-type. Suppose not. Then, there is a
realizing q and c̄ ∈ C such that tp(â c̄/∅) 6∈ D. Let b̄ ∈ B realize tp(c̄/A). Since a
realizes p, we have tp(ab̄/∅) ∈ D. Hence, in particular

tp(ab̄/∅) 6= tp(ac̄/∅).
Hence there is φ(x, ȳ), with |= φ[a, b̄], and |= ¬φ[a, c̄]. This implies that φ(x, b̄),
and ¬φ(x, c̄) ∈ q. This shows that q splits over A, a contradiction.

We will use the following notational convention: For ∆ a set of formulas,
we write

SD,∆(B) = {tp∆(c/B,C) | c ∈ C and B ∪ c is a D-set}.
When ∆ = {φ(x̄, ȳ)}, we write SD,φ(B) instead of SD,{φ}(B).

Corollary 3.8. Let A ⊆ B be D-sets. Then

|{p ∈ SD,∆2(B) : p does not (∆1,∆2)-split over A}| ≤ 2|D|
|A|
.

Proof. Since |SD(A)| ≤ |D||A|, we can find C, with |C| ≤ |D||A| such that C realizes
all the types in SD,∆1(A). Then, by Lemma 3.6, we have

|{p ∈ SD,∆2(B) : p does not (∆1,∆2)-split over A}| ≤

≤ |{p : p ∈ SD,∆2(C)}| ≤ |D||C| ≤ |D||D||A| ≤ 2|D|
|A|
.

The proof of the next theorem follows [Gr1].

Theorem 3.9. Let λ ≥ |L(T )|. If D is not stable in 22λ , then D has the λ+-order
property.

Proof. We first claim that there exist a D-set A of cardinality 22λ and a formula
φ(x, ȳ) such that

|SD,φ(A)| > |A|.

SinceD is not stable in 22λ , there is aD-set A of cardinality 22λ such that |SD(A)| >
|A|. Define

f : SD(A)→ Πφ(x,ȳ)∈LSD,φ(A), by f(p) = (p ¹ φ)φ∈L.

Then, f is injective and since λ ≥ |L(T )|, by the pigeonhole principle, there must
be φ(x, ȳ) ∈ L such that |SD,φ(A)| > |A|. This proves the claim.

Let A and φ be as in the claim, we will show that

ψ(x0, x̄1, x̄2, y0, ȳ1, ȳ2) := φ(x0, ȳ1)↔ φ(x0, ȳ2)
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demonstrates the order property. For convenience, let µ = 22λ . Let {ai : i <
µ+} ⊆ C be such that i 6= j < µ+ implies tpφ(ai/A) 6= tpφ(aj/A). This is possible
since |SD,φ(A)| > |A|. Let χ(ȳ, x) = φ(x, ȳ) and n = `(ȳ). Define an increasing
continuous chain of sets 〈Ai : i < µ〉 such that:

(1) A0 = ∅ and |Ai| ≤ µ, i < µ.
(2) For every B ⊆ Ai of cardinality at most λ and every type p ∈ SD,φ(Ai) ∪

SnD,χ(Ai), p ¹ B is realized in Ai+1.

This is possible since there are at most µλ = λ subsets of Ai of cardinality λ and
at most |SD(B)| ≤ |D|λ ≤ (2|L(T )|)|B| ≤ (2λ)λ < µ possible types for each set B.

Claim. For every j < µ+, there is i with j < i < µ+ such that for all l < λ+ the
type qi = tp(ai, Al) (χ, φ)-splits over each B ⊆ Al of cardinality at most λ.

Proof. Otherwise, there is j < µ+ such that for every i with j < i < µ+, there is
l < λ and Bi ⊆ Al of cardinality at most λ such that qi does not (χ, φ)-split over
Bi. Since µ+ > λ, by the pigeonhole principle, we can find l < λ such that µ+

many qi’s do not (χ, φ)-split over a subset of Al. By a second application of the
pigeonhole principle, since µ+ > µ ≥ |Al|λ = |{B ⊆ Al : |B| ≤ λ}|, we can find
µ+ > (22λ) many types that do not (χ, φ)-split over a set of cardinality at most λ.
This contradicts Corollary 3.8. Hence, the claim is true.

Among the i’s satisfying the claim, pick one such that ai 6∈
⋃
l<λAl. This

is possible since |
⋃
l<λAl| ≤ µ. Then, by construction, for every l < λ+, the type

tpφ(ai/Al) (χ, φ)-splits over every B ⊆ Al of cardinality at most λ. Define āl, b̄l
and cl in A2l+2, as well as Bl = ∪{āk, b̄k, ck : k < l} by induction on l < λ+ such
that

(1) Bl ⊆ A2l and |Bl| ≤ λ;
(2) tpχ(āl/Bl) = tpχ(b̄l/Bl);
(3) Both φ(x, āl) and ¬φ(x, b̄l) belong to tp(ai/A2l);
(4) cl ∈ A2l+1 realizes φ(x, āl) ∧ ¬φ(x, b̄l).

This is possible: Set B0 = ∅. If Bl is constructed, since Bl ⊆ A2l of
cardinality at most λ, tpφ(ai/A2l) (χ, φ)-splits over Bl, hence we can find āl and
b̄l in A2l such that tpχ(āl/Bl) = tpχ(b̄l/Bl) and both φ(x, āl) and ¬φ(x, b̄j) belong
to tp(ai/A2j). Then, by construction of A2l+1, we can find cl ∈ A2l+1, realizing
tpφ(ai/A2) ¹ {āl, b̄l} and hence realizing φ(x, āl) ∧ ¬φ(x, b̄l). When l is a limit
ordinal, we define Bl by continuity.

Now, let d̄l = clˆālˆ̄bl. It is easy to see from (2), (3) and (4) that {d̄l : l <
λ+} and ψ(x0, x̄1, x̄2, y0, ȳ1, ȳ2) = φ(x0, ȳ1) ↔ φ(x0, ȳ2) together demonstrate the
(D,λ+)-order property.

The next theorem is a converse of Theorem 3.9. The proof uses Hanf
number techniques. For a first order theory T and Γ a set of T -types over the
empty set, the class EC(T,Γ) is the class of models of T omitting every type in Γ.
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For cardinals λ and κ, the Hanf-Morley number µ(λ, κ) is defined to be the smallest
cardinal µ with the property that for every EC(T,Γ) with |T | ≤ λ and |Γ| ≤ κ,
if EC(T,Γ) contains a model of cardinality µ then EC(T,Γ) contains models of
arbitrarily large cardinality. Clearly, when κ = 0, µ(λ, κ) = ℵ0; this is the first
order case. When κ ≥ 1, the notion of wellordering number δ(λ, κ) needs to be
introduced. For cardinals λ, κ, the number δ(λ, κ) is the smallest ordinal δ with the
property that for every EC(T,Γ) with |T | ≤ λ and |Γ| ≤ κ, if EC(T,Γ) contains a
model with a predicate of order type δ, then EC(T,Γ) contains a model where this
predicate is not wellordered. If κ ≥ 1, it is a standard result that µ(λ, κ) = iδ(λ,κ).
(Note that the methods of the proof below show µ(λ, κ) ≤ iδ(λ,κ).) A standard
result on wellordering numbers states that δ(λ, κ) ≤ (2λ)+. This will be used in
the proof and explains the cardinal i(2|T |)+ appearing in the statement.

Theorem 3.10. If D has the λ-order property for every λ < i(2|T |)+ , then D is
not stable and D has the ω-order property witnessed by an indiscernible sequence.

Proof. We will show first that D has the ω-order property witnessed by an indis-
cernible sequence. By assumption, for each α < (2|T |)+, we can find a D-set

Pα = {āα,j | j < (iα)+}
and a formula φα witnessing the order property. Hence, by the pigeonhole principle,
we may assume that φα = φ is fixed for all α.

Notice that M is a D-model of T if and only if M ∈ EC(T,Γ), with
Γ = D(T ) \ D. But |D(T ) \ D| ≤ 2|T |, and so the well-ordering number for this
class is at most δ(|T |, 2|T |) = (2|T |)+.

For α < (2|T |)+, define Mα ≺ C containing {āα,j : j < (iα)+} of cardinal-
ity (iα)+. This is possible by the downward Löwenhweim-Skolem Theorem. Each
Mα belongs to EC(T,Γ). Define F : (2|T |)+ → {Mα | α < (2|T |)+}, by F (α) = Mα.

Consider the following model

M = 〈H(χ̄),∈, F, (2|T |)+, T, P, |=, ψ〉ψ∈L,
where χ̄ is a regular cardinal big enough so H(χ̄) contains everything that has been
mentioned so far in this proof. The predicates (2|T |)+ and T are unary predicates
whose interpretations are the corresponding sets. The meaning of the binary pred-
icates |= and ∈ and of the constants ψ, for each ψ ∈ L is their true meaning in
H(χ). Also F is a unary function and the interpretation of F is the one we just
defined. P is a unary predicate, whose interpretation in each Mα is the D-set Pα
witnessing the order property. More precisely, we have that

M |=∀α ∈ (2|T |)+(āα,i ∈ F (α) ∧
āα,j ∈ F (α) ∧ P āα,i ∧ P āα,j ]→ (F (α) |= φ[āα,i, āα,j ]↔ i ∈ j).

Let N ≺ M such that (2|T |)+ ⊆ N of cardinality (2|T |)+. Therefore, we can fix a
bijection G : |N | → (2|T |)+. Define a < b if and only if G(a) ∈ G(b).

Form N ′ = 〈N,<,G〉 an expansion of N . Let T ′ = Th(N ′) and for each
ψ(x̄) ∈ L define ψ′(x̄, y) by ∃α ∈ (2|T |)+(y = F (α)∧ x̄ ∈ F (α)∧F (α) |= ψ[x̄]). Let
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Γ′ = {{ψ′(x̄, y) : ψ(x̄) ∈ p} : p ∈ Γ}. Then, we have that |T ′| = |T | and |Γ′| = |Γ|,
so δ(|T ′|, 2|T ′|) = (2|T |)+.

We first claim that N ′ omits every type in Γ′.

Suppose not. There is p′ ∈ Γ′ such that for some c̄̂ a ∈ N ′ we have that
|= ψ′[c̄, a], for all ψ′ ∈ p′. But then, by definition c̄ is in some Mα and c̄ realizes
every ψ(x̄) in p. But p ∈ Γ so this contradicts the fact that Mα ∈ EC(T,Γ). Hence,
we have a model N ′ ∈ EC(T ′,Γ′) well-ordered by < and of order-type (2|T |)+.
Thus, we can find a model N ′′ ∈ EC(T ′,Γ′), whose universe is not wellordered by
<. Therefore, by taking away elements if necessary, there exists elements bn ∈ N ′′
such that N ′′ |= bn+1 + n+ 1 < bn and N ′′ |= bn ∈ (2|T |)+ for n < ω.

Define a sequence of sets 〈Xn | n < ω〉 such that

(1) N ′′ |= “Xn is an n-indiscernible sequence in Mb0 of cardinality ibn”.
(2) N ′′ |= “Xn has the D-order property”

This is possible. Construct the Xn by induction on n < ω. For n = 0,
let X0 = {āb0,j : j < ib0}, i.e. the interpretation in N ′′ of the interpretation of
the predicate P in Mα. Then the first requirement is satisfied since X0 has the
right cardinality and there is nothing to check for 0-indiscernibility. The second
requirement is also satisfied since M and so N ′′ knows that they witness the order
property.

Assume Xn has already been constructed. Define

f : [Xn]n+1 → Sn+1
L(T )(∅), by (c1, . . . , cn+1) 7→ tp(c1, . . . , cn+1/∅).

We know by Erdős-Rado that

i+
n (ibn+1)→ (i+

bn+1
)n+1
ibn+1

and we have ibn ≥ ibn+n+1 ≥ i+
n (ibn+1), so we can find a subset Xn+1 of Xn

of cardinality ibn+1 such that every increasing (n + 1)-tuple from it has the same
type. This implies that Xn+1 is an (n + 1)-indiscernible sequence with the right
cardinality. Since the second requirement is preserved by renumbering if needed,
we are done.

This is enough. Let {c̄i : i < ω} be a new set of constants. Define T1 to be
the union of the following set of sentences:

• T ;
• c̄i 6= c̄j , whenever i 6= j;
• φ(c̄i, c̄j)i<j , for every i, j < ω;
• χ(c̄i1 , . . . , c̄in), for every χ ∈ tp(ā1, . . . , ān/∅), i1 < · · · < in and n < ω;
• ψ(c̄i1 , . . . c̄in) ↔ ψ(c̄j1 , . . . , c̄jn), whenever i1 < · · · < in and j1 < · · · < jn,
n < ω and ψ ∈ L(T ).

By the Compactness Theorem and the definition of Xn, T1 has a model
N1. Call āi = c̄N1

i Notice also that the construction ensures that {āi : i < ω} is a
D-set. Hence we have the ω-order property witnessed by indiscernibles.
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We will use these to show that D is not stable. Let µ be a given cardinality.
Define κ = min{κ : 2κ > µ}. By compactness, using the indiscernibility of {āi :
i < ω}, we can get a D-set {āη : η ∈ κ≥2} such that |= φ[āη, āν ] if and only if
η ≺ ν. Let A =

⋃
η∈κ>2 āη. Then |A| ≤ µ, by choice of κ, and for η 6= ν ∈ κ2, we

have that tp(āη/A) 6= tp(āν/A). Indeed, there is a first i < κ such that η[i] 6= ν[i],
say η[i] = 0. But then ψ(āηˆ0, x̄) ∈ tp(āη/A) and ¬ψ(āηˆ0, x̄) ∈ tp(āν/A). Thus
|SD(A)| ≥ 2κ > µ and so D is not stable in µ.

The next corollary tells us that if D is stable, we can find λ < i(2|T |)+

demonstrating this. Notice that if D = D(T ) we are in the first order case and the
bound on the first stability cardinal is actually 2|T |.

Corollary 3.11. If D is stable, then there exists λ < i(2|T |)+ such that D is stable
in λ.

Proof. Suppose that D is not stable in any λ < i(2|T |)+ . Then, since i(2|T |)+ is a
strong limit, for each λ < i(2|T |)+ , we have 22λ < i(2|T |)+ and so D is not stable in
22λ . Hence by Theorem 3.9, D has the λ+-order property for all λ < i(2|T |)+ and
so by Theorem 3.10 D is not stable.

The next corollary is the order/stability dichotomy.

Corollary 3.12. D is stable if and only if D does not have the order property.

Proof. If D is not stable, then it is not stable in 22λ for any λ ≥ |L(T )| so by
Theorem 3.9, D has the λ-order property for every cardinal λ. For the converse,
we use Theorem 3.10.

4. The Stability Spectrum for Finite Diagrams

In the first part of this section, combinatorial properties related to splitting
are introduced for finite diagrams. They can be used to give another characteri-
zation of stability (see Corollary 4.7). In the second part, the focus is on a more
delicate tool; strong splitting. It is a substitute for the notion of forking. The ap-
propriate cardinal invariant and combinatorial property related to strong splitting
are introduced. They are used to derive the Stability Spectrum Theorem (Theorem
4.17).

Definition 4.1. (1) D satisfies (∗λ) if there exists an increasing continuous
chain of D-sets {Ai : i ≤ λ} and p ∈ SnD(Aλ) such that

p ¹ Ai+1 splits over Ai, for all i < λ.

(2) D satisfies (B ∗ λ) if there exists a tree of types {pη ∈ SD(Bη) | η ∈ λ>2},
and formulas φη(x̄, āη) such that pη ⊆ pν if η ≺ ν and

φη(x̄, āη) ∈ pηˆ0 and ¬φη(x̄, āη) ∈ pηˆ1.

The next two remarks are routine induction using the definition. As an
illustration we prove the first one.
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Remark 4.2. If there exists a type p ∈ SD(A) that splits over every subset of A
of cardinality less than λ, then D satisfies (∗λ).

Proof. Let p ∈ SD(A) be such that p splits over every subset B of A of cardinality
less than λ. Construct an increasing continuous chain of sets {Ai : i ≤ λ} of
cardinality less than λ demonstrating (∗λ) as follows. LetA0 = ∅ andAδ =

⋃
i<δ Ai,

if δ is a limit ordinal. If Ai is constructed of cardinality less than λ, then by
assumption p splits over Ai. Hence, we can find b̄, c̄ ∈ A and φ(x̄, ȳ) such that
tp(b̄/Ai) = tp(c̄/Ai) and φ(x̄, b̄) ∈ p and ¬φ(x̄, c̄) ∈ p. Let Ai+1 = Ai ∪ b̄ ∪ c̄.

Remark 4.3. In the definitions of (∗λ) and (B ∗ λ) we may assume that |Ai| <
|i|+ + ℵ0 and similarly that |Bη| < |`(η)|+ + ℵ0.

Lemma 4.4. If D satisfies (∗λ), then D satisfies (B ∗ λ).

Proof. We first show that if p ∈ SnD(A) splits over B ⊆ A, then there is a partial
elementary mapping f such that f ¹ B = idB and p and f(p) are contradictory
types:

If p splits over B, then there are b̄, c̄ ∈ A and φ(x̄, ȳ) such that tp(b̄/B) =
tp(c̄/B) and φ(x̄, b̄) ∈ p and ¬φ(x̄, c̄) ∈ p. Hence there is an elementary mapping
f such that f ¹ B = idB and f(b̄) = c̄. Then clearly p and f(p) are contradictory
types.

Now assume that D satisfies (∗λ). By definition, there exists an increasing
continuous chain of sets {Ai | i ≤ λ} and p ∈ SnD(Aλ) such that p ¹ Ai+1 splits
over Ai for i < λ. By Remark 4.3, we may assume that |Ai| < |i|+ + ℵ0. By the
first paragraph, for each i < λ there exists an elementary mapping fi such that
Ai ⊆ dom(fi) ⊆ Ai+1 and fi(p ¹ Ai+1) and p ¹ Ai+1 are contradictory types.

Define Gη, pη, Bη and Fη by induction on η ∈ λ≥2 such that:

(1) pη ∈ SD(Bη).
(2) Gη is an elementary mapping with dom(Gη) = A`(η) and ran(Gη) = Bη.
(3) If ν ≺ η then Gν ⊆ Gη, pν ⊆ pη, Bν ⊆ Bη and Fν ⊆ Fη, and if `(η) is a limit

ordinal, we set Gη =
⋃
i<`(η)Gη¹i, pη =

⋃
i<`(η) pη¹i, and Bη =

⋃
i<`(η)Bη¹i.

(4) pη = Gη(p ¹ A`(η)), and the types pηˆ0 and pηˆ1 are explicitly contradictory.
(5) Fη is an elementary mapping extendingGηˆ1◦f`(η)◦(Gηˆ0)−1 with dom(Fη) =

Bηˆ0, such that Fη ¹Bη = idBη and Fη(pηˆ0) = pηˆ1.

This is enough. The tree of types {pη | η ∈ λ≥2} shows that D satisfies
(B ∗ λ).

The construction is by induction on `(η): For η = 〈〉, let B〈〉 = A0, G〈〉 =
idA0 and p〈〉 = p ¹ A0. If `(η) is a limit ordinal use (3). Now assume that Gη, pη,
Bη are constructed for `(η) = i. Let Gηˆ0 be an extension of Gη with domain Ai+1.
Define Bηˆ0 = ran(Gηˆ0) and pηˆ0 = Gηˆ0(p ¹ Ai+1). Now Gηˆ1 ◦ f`(η) ◦ (Gηˆ0)−1 is
an elementary mapping with domain ⊆ Bηˆ0 which is the identity on Bη. Let Fη
be an elementary mapping extending it with domain Bηˆ0. Set Bηˆ1 = ranFη and
pηˆ0 = Fη(pηˆ1).
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The following theorem shows that the combinatorial properties (∗λ) and
(B ∗ λ) contradict stability in λ.

Theorem 4.5. If D satisfies (∗λ) or (B ∗λ) then for every µ < 2λ, D is not stable
in µ.

Proof. By the previous lemma, it is enough to show that if D satisfies (B ∗ λ) then
for every µ < 2λ, D is not stable in µ.

Let µ < 2λ. Let κ = min{κ | 2κ > µ}. Then λ ≥ κ so D satisfies (B ∗ κ).

By definition, there exists pη ∈ SD(Bη) and φη(x̄, āη) for η ∈ κ>2, such
that pη ⊆ pν if η ≺ ν and φη(x̄, āη) ∈ pηˆ0 and ¬φη(x̄, āη) ∈ pηˆ1. By Remark 4.3,
we may assume that |Bη| < |`(η)|+ + ℵ0.

Let B =
⋃
η∈κ>2Bη. Then |B| ≤

∑
η∈κ>2 |Bη| ≤ κ · 2<κ ≤ µ, by choice

of κ and assumption on |Ai|. Now for each η ∈ κ2, let aη realize pη. Define
qη = tp(aη/B). Then for ν 6= η ∈ κ2, there is a first i < κ such that η[i] 6= ν[i], say
η[i] = 0 and ν[i] = 1. Hence pηˆ0 ⊆ qη and pηˆ1 ⊆ qν , so qη and qν are contradictory
types. Therefore |SD(B)| ≥ |{qη | η ∈ κ2}| = 2κ > µ, so D is not stable in µ.

The next theorem is a sort of converse.

Theorem 4.6. If there is a D-set A such that

|SD(A)| > |A|<λ +
∑
µ<λ

2|D|
µ

then D satisfies (∗λ).

Proof. Let µ0 = |A|<λ +
∑
µ<λ 2|D|

µ

. By Remark 4.2 it is enough to find a type
p ∈ SD(A) which splits over every subset B ⊆ A of cardinality less than λ.

Such a type p always exists: Otherwise for every p ∈ SD(A), there exists
Bp ⊆ A of cardinality < λ such that p does not split over Bp. Since |SD(A)| >
µ0 ≥ |A|<λ, by the pigeonhole principle, we can find S ⊆ SD(A) of cardinality µ+

0

and B such that p does not split over B, for each p ∈ S. But, by Corollary 3.8,

|{p ∈ SD(A) : p does not split over B}| ≤ 2|D|
|B| ≤

∑
µ<λ

2|D|
µ ≤ µ0,

a contradiction.

This gives another characterization of instability. This characterization will
be used in the Homogeneity Spectrum Theorem (Theorem 5.9). Notice that (B ∗λ)
can be used in lieu of (∗λ) in the following corollary.

Corollary 4.7. D is not stable if and only if D satisfies (∗λ), for every cardinal
λ.

Proof. If D satisfies (∗λ) for every λ, then Theorem 4.5 implies that D is not stable
in λ for every λ. Hence D is not stable.
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For the converse, suppose that D is not stable and let λ be given. Then
D is not stable in 22λ . Hence, there exists a D-set A of cardinality 22λ such that
|SD(A)| > 22λ = |A|<λ +

∑
µ<λ 2|D|

µ

. Therefore D satisfies (∗λ) by the previous
theorem.

For the second part, we will focus on strong splitting.

Definition 4.8. A type p ∈ Sn(A) splits strongly over B ⊆ A if there exists
{āi : i < ω} an indiscernible sequence over B and φ(x̄, ȳ) such that φ(x̄, ā0) and
¬φ(x̄, ā1) ∈ p.

A combinatorial property similar to (∗λ) is now defined in terms of strong
splitting.

Definition 4.9. D satisfies (C ∗ λ) if there exists an increasing continuous chain
of sets {Ai | i ≤ λ} and p ∈ SnD(Aλ) such that

p ¹ Ai+1 splits strongly over Ai, for each i < λ.

Clearly if D satisfies (C ∗λ), then it satisfies (∗λ) and similarly to Remark
4.3, we may assume that |Ai| < |i|+ + ℵ0 in the definition of (C ∗ λ).

The next cardinal invariant plays the role of κ(T ) for the notion of strong
splitting. It appears in the Stability Spectrum theorem.

Definition 4.10. Let

κ(D) = min{κ : For all p ∈ SD(A) there is B ⊆ A, |B| < κ such that

p does not split strongly over B }.
If it is undefined, we let κ(D) =∞.

Theorem 4.11. Let D be stable in λ. Then κ(D) is well-defined and κ(D) ≤ λ.

Proof. Suppose that κ(D) > λ. Then, by definition of κ(D), there exists a D-set
A and a type p ∈ SD(A) such that p splits strongly over every subset B of A of
cardinality at most λ. Similarly to Remark 4.2 this implies that D satisfies (C ∗λ).
Hence, D satisfies (∗λ). By Theorem 4.5 D is not stable in λ, a contradiction.

To deal with strong splitting, some understanding of indiscernibles is needed.
Theorem 4.13 is one of the main results to produce indiscernible sequences in the
presence of stability. Recall Lemma I.2.5 of [Sh b].

Fact 4.12. Let B and let {āi | i < α} be given. Consider qi = tp(āi/B ∪ {āj | j <
i}) ∈ SD(B ∪ {āj | j < i}) and suppose that

(1) If i < j < α then qi ⊆ qj;
(2) For each i < α the type qi does not split over B.

Then {āi | i < α} is an indiscernible sequence over B.
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Theorem 4.13. Let D be stable in λ. Let I be a set of finite sequences and let A
be a set such that I ∪ A is a D-set. If |A| ≤ λ < |I| then there exists a subset of I
of cardinality λ+ which is an indiscernible set over A.

Proof. By the pigeonhole principle, there exists a subset J of I of cardinality λ+

and n < ω such that ā ∈ J implies `(a) = n. Write J = {āi : i < λ+}.
Claim. There are D-sets B and C, A ⊆ B ⊆ C, such that every type in SD(B)
is realized in C, and there exists a type p ∈ SnD(C) such that for every D-set C1

containing C of cardinality λ, there exists an extension p1 ∈ SnD(C1) of p such that
p1 does not split over B and is realized in J \ C.

Proof of the Claim. Assume that B, C and p as in the claim cannot be found.
For each i < λ construct D-sets Ai of cardinality at most λ such that every p ∈
SD(Ai+1) which is realized in J \Ai+1 splits over Ai.

This is possible: Let A0 = ∅ and Aδ =
⋃
i<δ Ai for δ a limit. Now assume

Ai of cardinality at most λ is already constructed. Then |SD(Ai)| ≤ λ by stability
in λ. Hence, there exists a D-set Ai of cardinality λ, containing Ai, realizing all the
types over Ai. Now for any p ∈ SnD(Ai), Ai, Ai and p do not satisfy the assumptions
of the claim. Therefore, there exists Cp, a D-set, Cp ⊇ Ai of cardinality λ such
that every extension of p in SnD(Cp) that is realized in J \ Cp splits over Ai. Let
Ai+1 =

⋃
p∈SnD(Ai) Cp. Then Ai+1 is a D-set of cardinality at most λ with the

desired property.

Let Aλ =
⋃
i<λAi. Since J has cardinality λ+, there is ā ∈ J \ Anλ. Let

p = tp(ā/Aλ). By construction p ¹ Ai+1 splits over Ai so D satisfies (∗λ). Hence,
D is not stable in λ by Theorem 4.5, a contradiction.

Let B, C and p ∈ SnD(C) be as in the claim. Construct {b̄i : i < λ+} ⊆ J
by induction on i < λ+ as follows. If b̄j is defined for j < i let Ci = C ∪{b̄j | j < i}
and pi ∈ SnD(Ci) be an extension of p which does not split over B and is realized
in J \ Cni . Let b̄i be in J \ Cni realizing pi. Then {b̄i | i < λ+} is an indiscernible
sequence by Fact 4.12. Since D is stable, then it does not have the order property
by Corollary 3.12 and hence {b̄i | i < λ+} is an indiscernible set, by Remark 3.4.

The next two theorems prepare for the Stability Spectrum Theorem.

Theorem 4.14. Let D be stable in λ. Let µ ≥ λ be such that µ<κ(D) = µ. Then
D is stable in µ.

Proof. Suppose that D is not stable in µ. Let A be a D-set of cardinality µ such
that |SD(A)| > |A|. By assumption, |SD(A)| > |A|<κ(D). Hence |SD(A)| ≥ λ++.
Since D is stable in λ, then that κ(D) ≤ λ by Theorem 4.11. Hence, for each
p ∈ SD(A) there exists a subset Bp ⊆ A of cardinality less than κ(D) such that p
does not split strongly over Bp. Since there are |A|<κ(D) = |A| such Bp’s, by the
pigeonhole principle, there exists a set S ⊆ SD(A) of cardinality λ++ and a D-set
B ⊆ A of cardinality less than κ(D) such that p does not split strongly over B, for
each p ∈ S.
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Construct {φi(x, āi) | i < λ+} and pi ∈ S, for i < λ+ such that

{φj(x, āj) : j < i} ∪ {¬φi(x, āi)} ⊆ pi.(*)

To do this, define Si ⊆ S and Ai ⊆ A for i < λ+ such that

(1) A0 = ∅, Aδ =
⋃
i<δ Ai for δ limit, and Ai ⊆ Ai+1;

(2) |Ai| ≤ λ, for each i < λ;
(3) Si = {p ∈ S | p is the unique extension of p ¹ Ai};
(4) Ai+1 is a subset of A such that if q ∈ SD(Ai) has at least two contradictory

extensions in S, then it has at least two extensions q, r ∈ S such that q ¹
Ai+1 6= r ¹ Ai+1.

For i = 0 or i a limit ordinal, do (1). For the successor stage: If Ai is
constructed and q ∈ SD(Ai) has two extensions q1, q2 ∈ S, then there is φq(x, ȳ)
and āq ∈ A such that φq(x, āq) ∈ q1 and ¬φq(x, āq) ∈ q2. Since |SD(Ai)| ≤ λ, Ai+1

of cardinality λ as in (4) can be found.

Notice that since |S| = λ++ and |
⋃
i<λ+ Si| ≤

∑
i<λ+ |SD(Ai)| ≤ λ+ · λ =

λ+, there exists p ∈ S \
⋃
i<λ+ Si. For each i < λ+ consider p ¹ Ai. Since p 6∈ Si,

by definition of Si the type p ¹ Ai has at least two contradictory q, r ∈ S. By (4),
we may assume that q ¹ Ai+1 6= r ¹ Ai+1. Hence, either p ¹ Ai+1 6= q ¹ Ai+1, or
p ¹ Ai+1 6= r ¹ Ai+1. Thus, in either case, there is pi ∈ S such that p ¹ Ai+1 6= pi ¹
Ai+1. Hence, there exist āi ∈ Ai+1 and φi(x, ȳ) ∈ L(T ) such that φi(x, āi) ∈ p and
¬φi(x, āi) ∈ pi. This establishes (*)

Now for each i < λ+, let bi realize pi. The set {biˆāi : i < λ+} has
cardinality λ+ and B has cardinality less than κ(D) ≤ λ, so by Theorem 4.13
there is a subset of {biˆāi | i < λ+} of cardinality λ+ which is indiscernible over B.
Without loss of generality, we may assume that {biˆāi | i < λ+} is indiscernible over
B. By stability in λ we have |SD(

⋃
k<λ āk)| ≤ λ. Hence, by the pigeonhole principle,

there exist i and j with λ < j < i < λ+ such that pi ¹
⋃
k<λ āk = pj ¹

⋃
k<λ āk.

By choice of j, we have φj(x, āj) ∈ pi and ¬φj(x, āj) ∈ pj . Now if φj(x, ā0) ∈
pi then since ¬φj(x, āj) ∈ pj , pj splits strongly over B, since {ā0, āj , āj+1, ...}
is indiscernible over B. And if φj(x, ā0) 6∈ pi then ¬φj(x, ā0) ∈ pi, and since
φj(x, āj) ∈ pi then pi splits strongly over B, since {āj , ā0, ā1, ...} is indiscernible
over B. This contradicts the choice of S and B.

Theorem 4.15. Let D be stable in λ. Let µ ≥ λ be such that µ<κ(D) > µ. Then
D is not stable in µ.

To prove this theorem, a proposition is needed.

Proposition 4.16. Let D be stable in λ. Let χ ≤ λ be a cardinal such that λχ > λ.
Let I be an indiscernible sequence. Then, for every c̄ ∈ C and φ(x̄, ȳ) ∈ L(T ) either

|{ā ∈ I : |= φ[ā, c̄]}| < χ or |{ā ∈ I : |= ¬φ[ā, c̄]}| < χ.

Proof. Let I and φ(x, c̄) contradict the conclusion of the proposition. Then, without
loss of generality |I| = χ. Write I = {āi | i < χ}. Since I is indiscernible,
there exists J = {āi | i < λ} containing I, indiscernible of cardinality λ. By the
pigeonhole principle, either {i < λ : |= φ[āi, c̄]} or {i < λ : |= ¬φ[āi, c̄]} has
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cardinality λ. Without loss of generality, assume that it is the second. Hence, by a
re-enumeration (recall that J is necessarily an indiscernible set), define J1 = {āi :
i < χ+λ} such that |= φ[āi, c̄] if and only if i < χ. Let q = tp(c̄/J1). Then for any
E ⊆ J1 of cardinality χ with complement of cardinality λ we can find a function
fE : J1 → J1 with f(āi) ∈ E if and only if i < χ. Then, for two such sets E1 6= E2,
we have fE1(q) 6= fE2(q). Hence |SD(J1)| ≥ λχ > λ, contradicting the stability in
λ.

Proof of the Theorem. By assumption, there exists κ < κ(D) such that κ = min{κ |
µκ > µ}. Let χ ≤ λ such that χ = min{χ | λχ > λ}. Observe that µκ > χκ:
Otherwise, λ ≤ µ < µκ ≤ χκ ≤ λκ, and so χ ≤ κ by minimality of χ. Hence
λ < µκ ≤ χκ = 2κ. But (C ∗ κ) holds and λ ≤ 2κ, so D is not stable in λ by
Theorem 4.5, a contradiction.

Now, by definition of (C ∗ κ), there exists an increasing, continuous chain
of D-sets {Ai | i ≤ κ} and a type p ∈ SD(Aκ) such that |Ai| ≤ |i|+ ℵ0 and

p ¹ Ai+1 splits strongly over Ai, for each i < κ.

By definition of strong splitting, for each i < κ, there exist {āiα | α < ω} indis-
cernible over Ai and φi(x, ȳ) ∈ L(T ) such that both φi(x, āi0), and ¬φi(x, āi1) belong
to p ¹ Ai+1.

For each η ∈ κ>µ, construct a type pη, a D-set Bη and an elementary
mapping Gη, by induction on `(η) such that:

(1) pη ∈ SD(Bη) and if η ≺ ν then pη ⊆ pν and Bη ⊆ Bν ;
(2) Gη is an elementary mapping from A`(η) onto Bη;
(3) |Bη| ≤ κ;
(4) For each c ∈ C the set {α < µ | c realizes pηˆα} has cardinality less than χ.

Let B〈〉 = A0, G〈〉 = idA0 and p〈〉 = p ¹ A0. For η such that `(η) is a limit ordinal,
define everything by continuity. For the successor case, suppose that pη, Bη and
Gη have been constructed for η, with `(η) = i. Let F be an elementary mapping
extending Gη with domain Aκ. Let b̄iα = F (āiα), for α < ω. Then {b̄iα | α < ω}
is indiscernible over Bη. Hence, we can extend this set to {b̄iα | α < µ} such
that {b̄iα | α < µ} is also indiscernible over Bη. For α < µ, let Gηˆα be an
elementary mapping extending Gη, with domain Ai+1 such that Gηˆα(āi0) = b̄iα and
Gηˆα(āi1) = b̄iα+1. This is possible by indiscernibility. Let pηˆα = Gηˆα(p ¹ Ai+1)
and Bηˆα = ranGηˆα. Hence (1)–(3) are satisfied. To see (4), observe that for
each α < µ, both φi(x, b̄iα) and ¬φi(x, b̄iα+1) belong to pηˆα. Since {biα | α < µ} is
indiscernible and χ ≤ λ < λχ, ( 4) follows from the previous proposition.

The construction implies the conclusion. Let B =
⋃
η∈κ>µ Bη. Then

|B| ≤ µ<κ · κ = µ, by choice of κ. For each η ∈ κµ, let pη =
⋃
i<κ pη¹i. By

continuity, each pη is a D-type and let aη realize pη. Then tp(aη/B) ∈ SD(B). By
(4), for each c ∈ C, the set {η ∈ κµ | aη = c} has cardinality at most χκ and we
observed that χκ < µκ. Hence, |SD(B)| > µ, so D is not stable in µ.

We finish this section with the Stability Spectrum Theorem.
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Theorem 4.17 (The Stability Spectrum). Let D be a finite diagram. Either D is
not stable, or D is stable and there exist cardinals κ ≤ λ < i(2|T |)+ such that for
every cardinal µ, D is stable in µ if and only if µ ≥ λ and µ<κ = µ.

Proof. If D is not stable, there is nothing to prove. If D is stable, let λ(D) be the
first cardinal λ for which D is stable λ. Then λ(D) < i(2|T |)+ by Corollary 3.11.
Moreover, κ(D) is defined and κ(D) ≤ λ(D) by Theorem 4.11.

Let µ be given. If µ < λ(D), then D is not stable in µ by choice of λ(D).
Suppose that µ ≥ λ(D). If µ<κ(D) = µ, then D is stable in µ by Theorem 4.14. If
µ<κ(D) > µ, then D is not stable in µ by Theorem 4.15.

5. The Homogeneity Spectrum

The section is devoted to the proof of the Homogeneity Spectrum Theorem
(Theorem 5.9). The proof will proceed by cases, and is broken into several theo-
rems. There are two types of results. On the one hand there are theorems showing
the existence of a (D,λ)-homogeneous model of cardinality λ from assumptions
like stability in λ and λ<λ. On the other hand, there are results showing that such
models do not exist from the failure of these conditions. The combinatorial prop-
erties defined in the previous section and parts of the Stability Spectrum Theorem
will play a crucial role.

Theorem 5.1. Let λ ≥ |D| be such that λ<λ = λ. Then there is a (D,λ)-
homogeneous model of cardinality λ.

Proof. First, by Zermelo-König, λ is regular. By the downward Löwenheim-Skolem
theorem, define an increasing continuous chain 〈Mi | i < λ〉 of D-models of car-
dinality λ, such that Mi+1 realizes every D-type over every A ⊆ M of cardinality
less than λ. This is possible since we have only λ<λ = λ subsets of A of cardinality
less than λ and only |D||A| ≤ λ<λ = λ D-types over A. Let M =

⋃
i<λMi. Then

M has cardinality λ, and since λ is regular, M is (D,λ)-homogeneous.

Theorem 5.2. Let λ ≥ |D| be such that λ<λ > λ. If D satisfies (B ∗λ) then there
is no (D,λ)-homogeneous model of cardinality λ.

Proof. Suppose λ<λ > λ ≥ |D|. Assume, by way of contradiction, that there is
a (D,λ)-homogeneous model M of cardinality λ. Since D satisfies (B ∗ λ) there
exist D-types pη ∈ SD(Bη) and φη(x̄, āη) for η ∈ λ>2 such that φη(x̄, āη) ∈ pηˆ0

and ¬φη(x̄, āη) ∈ pηˆ1. In addition pη ⊆ pν when η ≺ ν. By Remark 4.3, we may
assume that |Bη| < |`(η)|+ + ℵ0. Hence, by (D,λ)-homogeneity of M , we may
assume that Bη ⊆M for each η ∈ λ>2.

For each µ < λ and η ∈ µ2, there are 2µ types in SD(Bη). Each such
type is realized in M , since M is (D,λ)-homogeneous and so 2µ ≤ λ, since M has
cardinality λ. Hence, λ is singular, since otherwise λ<λ = λ. Furthermore, λ is
a strong limit (if there is µ < λ such that 2µ = λ, then λcf(λ) = 2µ·cf(λ) ≤ λ,
contradicting Zermelo-König).
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Let κ = cf(λ) and let λi < λ for i < κ be increasing and continuous such
that λ =

∑
i<κ λi. Let Ai ⊆M of cardinality λi for i < κ such that M =

⋃
i<κAi.

For each i < κ, define a sequence ηi ∈ λ>2 and a finite set Ci+1 such that

(1) If i < j then ηi ≺ ηj ;
(2) Ci+1 is a finite subset of Bηi+1 ;
(3) The type pηi+1 ¹ Ci is not realized in Ai.

This is enough: Let p =
⋃
i<κ pηi . Then p ¹

⋃
i<κ Ci is a D-type (by

continuity) over a set of cardinality κ, which is not realized in M . This contradicts
the (D,λ)-homogeneity of M since κ < λ.

This construction is possible. Define η0 = 〈〉, and for δ < κ a limit ordinal
let ηδ =

⋃
i<δ ηi. For the successor case, assume that ηi ∈ λ>2 is constructed.

Define τα = ηi 0̂α, where 0α is a sequence of zeroes of order type α, for α < 2λi .
Then τα ∈ λ>2, since λi < λ and λ is a strong limit.

We claim that there are α < β < (2λi)+ such that |= φτα [c, āτα ] ↔
φτβ [c, āτβ ], for every c ∈ Ai.

Suppose that this is not the case. Let Ai = {cγ | γ < λi}. Then, for every
α < β < (2λi)+ there exists γ < λi such that |= ¬(φτα [cγ , āτα ] ↔ φτβ [c, āτβ ]). By
the Erdős-Rado theorem, there is γ < λi and an infinite set S ⊆ (2λi)+ such that
for every α < β in S we have |= ¬(φτα [cγ , āτα ]↔ φτβ [c, āτβ ]). This is an immediate
contradiction.

Hence, let α < β be as in (*). Let Ci+1 = āτα ∪ āτβ and let ηi+1 = τα 1̂.
Since φτα(x, āτα) and ¬φτβ (x, āτβ ) are in pηi+1 ¹ Ci, the type pηi+1 is omitted in
Ai. This finishes the construction and proves the theorem.

The next theorem is, in particular, an improvement of Proposition 4.16. It
allows us to define averages (Definition 5.4). Averages are used in Theorem 5.6.

Theorem 5.3. Let D be stable. Let I be an infinite indiscernible set over A of
cardinality at least κ(D). Let b̄ ∈ C. Then there is J ⊆ I with |J | < κ(D) such that
I \ J is indiscernible over A ∪ J ∪ b̄.

Proof. Let I = {c̄i | i < α}. Since D is stable, κ(D) is defined by Theorem
4.11. Hence, there exists B ⊆ A ∪ I of cardinality less than κ(D) such that the
type tp(b̄/A ∪ I) does not split strongly over B. Let J = B \ A. Then J ⊆
I has cardinality less than κ(D). We will show that I \ J is indiscernible over
A ∪ J ∪ b̄. Clearly, I \ J is indiscernible over A ∪ J . If I \ J is not indiscernible
over A ∪ J ∪ b̄, then, there exist an integer n < ω and indices i0 · · · < in such that
tp(c̄0, . . . , c̄n/A∪J ∪ b̄) 6= tp(c̄i0 , . . . , c̄in/A∪J ∪ b̄). Then |= φ[c̄0, . . . , c̄n, ā, b̄, c̄] and
|= ¬φ[c̄i0 , . . . , c̄in , ā, b̄, c̄], for some formula φ ∈ L(T ), parameters ā ∈ A and c̄ ∈ J .
Let d̄0 = c̄0ˆ. . .ˆc̄n and d̄1 = c̄i0ˆ. . .ˆc̄in . By taking sequences from I \ J , it is easy
to find {d̄i | i < ω} indiscernible over A ∪ J . Thus {d̄iˆā̂ c̄ | i < ω} is indiscernible
over A∪ J . Hence, the type tp(b̄/A ∪ I) splits strongly over A∪ J , a contradiction
to the choice of B.
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Definition 5.4. Let I be an indiscernible sequence of cardinality at least κ(D).
Let A be such that A ∪ I is a D-set. Define the average of I over A, by

Av(I, A) = {φ(x̄, ā) | φ(x̄, ȳ) ∈ L(T ), ā ∈ A, and |= φ[b̄, ā],

for at least κ(D) elements b̄ ∈ I}.

Theorem 5.5. Let D be stable. Let I be an indiscernible sequence of cardinality
at least κ(D) and A be such that A ∪ I is a D-set. Then Av(I, A) ∈ SnD(A), where
n = `(ā) for ā ∈ I. In addition, if |I| > |A|, then Av(I, A) is realized in I.

Proof. Averages are complete: Assume φ(x̄, c̄) 6∈ Av(I, A), with c̄ ∈ A. Then by
definition, the set J ⊆ I of elements realizing φ(x̄, c̄) has cardinality less than
κ(D). Thus, since I \ J has cardinality at least κ(D), and all elements in I \ J
realize ¬φ(x̄, c̄), necessarily ¬φ(x̄, c̄) ∈ Av(I, A). Averages are consistent: Let
φ1(x, c̄1), . . . , φn(x, c̄n) ∈ Av(I, A). Then, if c̄ = c̄1ˆ. . .ˆc̄n, by Theorem 5.3, there
is Jc̄, Jc̄ ⊆ I of cardinality less than κ(D) such that I \ Jc̄ is indiscernible over c̄.
Hence, since each φi(x, c̄i) was realized by at least κ(D) elements of I, we can find
one in I \ Jc̄. But then, all elements in I \ Jc̄ realize φi(x, c̄i) by indiscernibility
(1 ≤ i ≤ n), so {φ1(x, c̄1), . . . , φn(x, c̄n)} is consistent. The last sentence follows
similarly: For any c̄ ∈ A, every element of I \ Jc̄ realizes Av(I, A) ¹ c̄, since
they realize every formula in it, and so if |I| > |A|, we can find b̄ ∈ I \

⋃
c̄∈A Jc̄

realizing Av(I, A). It remains to show that Av(I, A) is a D-type: Notice that if
we stretch I to J , I ⊆ J indiscernibles of cardinality greater than |A|, we have
Av(I, A) = Av(J,A). Then Av(I, A) is realized in J , thus in C, since J is a D-set,
and so Av(I, A) is a D-type.

Theorem 5.6. Let λ ≥ |D|. If D is stable in λ, then there is a (D,λ)-homogeneous
model of cardinality λ.

Proof. Suppose first that λ is regular. Define an increasing continuous chain 〈Mi |
i < λ〉 of models of cardinality λ, such that M0 realizes all the types in D, and
Mi+1 realizes all the D-types over Mi. Such a construction is possible since D is
stable in λ and λ ≥ |D|. Let M =

⋃
i<λMi. Then, M has cardinality λ and M is

(D,λ)-homogeneous by regularity of λ.

Now suppose that λ is singular. Construct an increasing continuous chain
of models 〈Mi | i < λ ·λ〉 as above of length λ ·λ. Let M =

⋃
i<λ·λMi. Notice that

M has cardinality λ. We now show that it is (D,λ)-homogeneous. Let A ⊆ M of
cardinality less than λ and p0 ∈ SD(A). We will find I indiscernibles of cardinality
greater than |A| with p0 = Av(I, A). Let p ∈ SD(M) extending p0 and choose
C ⊆ M of cardinality less than κ(D) such that p does not split strongly over C.
Since D is stable in λ, then λ<κ(D) = λ by Theorem 4.15. Hence, cf(λ) ≥ κ(D).
Thus, considering the sequence 〈Mλ·i | i < λ〉 we can find i < λ such that C ⊆Mλ·i.

We claim that p does not split over Mλ·i+λ. Otherwise, there are b̄ and c̄
in M and φ(x̄, ȳ) such that φ(x̄, b̄) ∈ p, ¬φ(x̄, c̄) ∈ p and

tp(b̄/Mλ·i+λ) = tp(c̄/Mλ·i+λ).
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Let q := tp(b̄/Mλ·i+λ). Now, since λ is singular, we have ω < λ. Consider the
following set

{j < λ : q ¹Mλ·i+ω·(j+1) splits over Mλ·i+ω·j}.
Since D is stable in λ, in particular (∗λ) fails so we can find γ with

λ · i < γ < γ + ω < λ · λ
such that q ¹ Mγ+ω does not split over Mγ . For each n < ω, we can choose
b̄n ∈ Mγ+n+1 realizing tp(b̄/Mγ+n). Now, tp(b̄n/Mγ+n) does not split over Mγ

(∀n < ω) by monotonicity. Hence {b̄n | n < ω} are indiscernible over Mγ , by Fact
4.12. Similarly, both {b̄0, b̄1, . . . , b̄} and {b̄0, b̄1, . . . , c̄} are indiscernible over Mγ . In
fact, since D is stable, D does not have the order property by Corollary 3.12, and
thus they are indiscernible sets by Remark 3.4. Now suppose that for some n < ω,
the formula φ(x̄, b̄n) ∈ p. Then p splits strongly over C since

{b̄n, c̄, b̄n+1, . . . } is indiscernible over C.

Otherwise ¬φ(x̄, b̄0) ∈ p. Then p splits strongly over C because

{b̄, b̄0, b̄1, . . . } is indiscernible over C.

We have a contradiction in both cases, which proves the claim.

We now use the claim to prove the conclusion of the theorem. First, we
may assume that λ · i = 0, so p does not split over M0. Now for each α < λ · λ,
choose aα ∈ Mα+1 realizing p ¹ Mα. Since p does not split over M0 the sequence
I := {aα | α < λ · λ} is indiscernible. Let φ(x, ā) ∈ p0. There is α0 < λ2 such that
φ(x, ā) ∈ p0 ¹ Mα0 , so we have that |= φ[aα, ā] for every α ≥ α0. Hence there are
λ ≥ κ(D) many elements of I realizing φ(x, ā), showing that φ(x, ā) ∈ Av(I, A).
So Av(I, A) ⊇ p0 and since both types are complete, we have p0 = Av(I, A). Thus
since |I| > |A|, there are elements of I realizing p0. This shows that p0 is realized
in M . Hence M is (D,λ)-homogeneous.

The next lemma is an improvement of Corollary 3.8. It is needed in the
proof of Theorem 5.8.

Lemma 5.7. Let D be stable. Let A ⊆ B be D-sets such that every D-type over A
is realized in B. Fix n < ω and define

Γ := {p ∈ SnD(B) | p does not split over A}.
Then, for each p ∈ Γ, there is a sequence 〈āpi | i ≤ ω〉 indiscernibles over A such
that

p 6= q ∈ Γ implies tp(〈āpi : i < ω〉/A) 6= tp(〈āqi : i < ω〉/A).(*)

Moreover,

|Γ| ≤ |
⋃
m<ω

SmD (A)|ℵ0 ≤ |D||A|+ℵ0 .

Proof. It is enough to establish (*), since the last statement follows from (*) by a
computation.
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For each p ∈ Γ, define

Ip := 〈āpi : i < κ(D)〉,

by induction on i < κ(D) such that tp(āpi /B ∪ {ā
p
j : j < i}) extends p and does

not split over A. This is possible by Lemma 3.7. By Fact 4.12 the sequence Ip is
indiscernible over A. Hence, it is enough to show that

tp(〈āpi : i < κ(D)〉/A) 6= tp(〈āqi : i < κ(D)〉/A), for p 6= q ∈ Γ.

We will use the following claim.

Claim. If b̄ ∈ B and b̄1 ∈ C such that tp(b̄/A) = tp(b̄1/A), then

|{i < κ(D) : tp(b̄̂ āp0/A) 6= tp(b̄1ˆā
p
i /A)}| < κ(D)

Proof of the Claim. To show this, define {āpi : κ(D) ≤ i < κ(D)+}, by induction
on i (κ(D) ≤ i < κ(D)+) such that tp(āpi /B ∪{ā

p
j : j < i}∪ b̄1) extends p and does

not split over A. Hence, by Fact 4.12, I ′ = {āpi : i < κ(D)+} is indiscernible. By
construction

tp(b̄1ˆā
p
i /A) = tp(b̄̂ āpi /A) = tp(b̄̂ āpi /A), for i ≥ κ(D),

since b̄ ∈ B and Ip is indiscernible over B. Thus

|{i ∈ I ′ : tp(b̄̂ āp0/A) = tp(b̄1ˆā
p
i /A)}| > κ(D),

but then, all ā1 ∈ I ′ but a subset of cardinality less than κ(D) are indiscernibles
over b̄ ∪ b̄1 and so

|{i ∈ I ′ : tp(b̄̂ āp0/A) 6= tp(b̄1ˆā
p
i /A)}| < κ(D).

The claim follows since Ip ⊂ I ′.

Suppose by way of contradiction that there are p 6= q ∈ Γ with

tp(〈āpi : i < κ(D)〉/A) = tp(〈āqi : i < κ(D)〉/A).

Since p 6= q, there is b̄ ∈ B and φ(x̄, ȳ) such that φ(x̄, b̄) ∈ p and ¬φ(x̄, b̄) ∈ q. By
construction, |= φ[āpi , b̄] and |= ¬φ[āqi , b̄], for all i < κ(D). Let f be an elementary
mapping such that f ¹ A = idA and f(āpi ) = āqi for i < κ(D). Clearly, f exists by
assumption on p and q. Call b̄1 = f−1(b̄). By applying the claim, we know that
|{i < κ(D) : tp(b̄̂ āp0/A) 6= tp(b̄1ˆā

p
i /A)}| < κ(D), hence let āpi , (i < κ(D)) such that

tp(b̄̂ āp0/A) = tp(b̄1ˆā
p
i /A). But, by definition of f , we know that tp(b̄1ˆā

p
i /A) =

tp(b̄̂ āqi /A). Hence tp(b̄̂ āp0/A) = tp(b̄̂ āqi /A). Since φ(x̄, b̄) ∈ tp(b̄̂ āp0/A), we then
must have |= φ[āqi , b̄], the desired contradiction.

We now prove the last significant ingredient of the Homogeneity Spectrum
Theorem.

Theorem 5.8. Let λ ≥ |D| be such that λ<λ > λ. Suppose that D is stable but
not in λ If D does not satisfy (∗λ) then there is no (D,λ)-homogeneous model of
cardinality λ.
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Proof. By way of contradiction, assume that M is a (D,λ)-homogeneous model of
cardinality λ. Let {Aα | α < cf(λ)} be an increasing continuous chain of sets such
that |Aα| < λ and M =

⋃
α<cf(λ)Aα.

Since D is not stable in λ, there is a D-set B of cardinality λ such that
|SD(B)| > λ. Then, by Lemma 2.3 we may assume that B ⊆ M since M is
(D,λ)-homogeneous. Hence |SD(M)| > λ.

We first claim that for each p ∈ SD(M), there is α < cf(λ) such that p
does not split over Aα.

Suppose not. Let p ∈ SD(M) such that p splits over every Aα. If λ is
regular, then λ = cf(λ) and this implies that D satisfies (∗λ), a contradiction.
Suppose that λ is singular. For each α < cf(λ), choose b̄α, c̄α in M and φα(x, ȳ)
such that tp(b̄α/Aα) = tp(c̄α/Aα) and φα(x, b̄α) ∈ p and ¬φα(x, c̄α) ∈ p. Then
p ¹ {b̄α, c̄α} is not realized in Aα. Set A :=

⋃
α<cf(λ){b̄α, c̄α}. Then p ¹ A is not

realized in
⋃
α<cf(λ)Aα = M . This contradicts the (D,λ)-homogeneity of M since

|A| ≤ cf(λ) < λ. This proves the claim.

Now since |SD(M)| > λ, by the pigeonhole principle, there exists Γ ⊆
SD(M) of cardinality λ+ and α < cf(λ), such that if p ∈ Γ, then p does not split
over Aα. Since Aα ⊆M of cardinality less than λ and M is (D,λ)-homogeneous, we
are in the situation of the previous lemma. Thus for each p ∈ Γ there is {āpi : i ≤ ω}
an indiscernible set over Aα such that

p 6= q if and only if tp(〈āpi : i < ω〉/Aα) 6= tp(〈āqi : i < ω〉/Aα).

Using the (D,λ)-homogeneity of M and the fact that |Aα| < λ, construct
{b̄pi : i ≤ ω} ⊆M for each p ∈ Γ with the following two properties:

(1) tp(〈b̄pj : j ≤ i〉/Aα) = tp(〈āpj : j ≤ i〉/Aα)
(2) If tp(〈āpj : j ≤ i〉/Aα) = tp(〈āqj : j ≤ i〉/Aα), then b̄pj = b̄qj for every j ≤ i.

We now show that

b̄pω 6= b̄qω, if p 6= q ∈ Γ.(*)

Let p, q ∈ Γ such that p 6= q. By construction, we have that

tp(〈āpj : j < ω〉/Aα) 6= tp(〈āqj : j < ω〉/Aα).

Hence, there is a minimal i < ω such that

tp(āp0, . . . , ā
p
i ā
p
i+1/Aα) 6= tp(āq0, . . . , ā

q
i ā
q
i+1/Aα).

By minimality of i and (1), we have

tp(b̄p0, . . . , b̄
p
i /Aα) = tp(b̄q0, . . . , b̄

q
i /Aα).(**)
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Now, we have the following equations

tp(b̄p0, . . . , b̄
p
i b̄
p
ω/Aα) = tp(āp0, . . . , ā

p
i ā
p
ω/Aα) (by definition (1))

= tp(āp0, . . . , ā
p
i ā
p
i+1/Aα) (by indiscernibility)

6= tp(āq0, . . . , ā
q
i ā
q
i+1/Aα) (by choice of i)

= tp(āq0, . . . , ā
q
i ā
q
ω/Aα) (by indiscernibility)

= tp(b̄q0, . . . , b̄
q
i b̄
q
ω/Aα) (by definition (1))

Hence (*) follows from the previous equations, definition (2) and (**).

Therefore (*) implies that we have |Γ| many different elements b̄pω ∈ M .
This is a contradiction, since

|Γ| = λ+ > λ = ‖M‖.
This finishes the proof.

We can now present the Homogeneity Spectrum Theorem.

Theorem 5.9 (The Homogeneity Spectrum). There exists a (D,λ)-homogeneous
model of cardinality λ if and only if λ ≥ |D| and either D is stable in λ or λ<λ = λ.

Proof. The proof is divided into 5 cases.

Case 1: λ < |D|. Then, there can be no (D,λ)-homogeneous model M of
cardinality λ, since we require that D(M) = D, and there are not enough
elements in M to realize all the types in D.

Case 2: λ ≥ |D| and λ<λ = λ. Then, there exists a (D,λ)-homogeneous
model M of cardinality λ by Theorem 5.1.

Case 3: λ ≥ |D| and D is stable in λ. Then, there is a (D,λ)-homogeneous
model M of cardinality λ by Theorem 5.6.

Case 4: λ ≥ |D|, λ<λ > λ and D is not stable. Then, by Corollary 4.7, D
satisfies (∗λ). Hence D satisfies (B ∗ λ) by Lemma 4.4. Therefore, there is
no (D,λ)-homogeneous model M of cardinality λ by Theorem 5.2.

Case 5: λ ≥ |D|, λ<λ > λ and D is stable but not in λ. This case is divided
into two sub-cases according to whether D satisfies (∗λ). If D does satisfy
(∗λ), then D also satisfies (B∗λ) by Lemma 4.4. Therefore the result follows
from Theorem 5.2. If D does not satisfy (∗λ), then by Theorem 5.8 we have
no (D,λ)-homogeneous model of cardinality λ.

The proof is complete.

6. Local Stability and Local Homogeneity in Finite Diagrams

In this section, we set the necessary definitions to localize the results of
this paper. We fix a type and show that all the results of this paper hold inside the
set of realizations of this fixed type, with the appropriate local definitions.

Fix Σ(x̄) a set of L(T )-formulas, maybe over a D-set of parameters. We
localize the notion of types with respect to Σ. For a model M , denote by Σ(M)
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the set of realizations of Σ(x̄) in M . In the following definition, Σ is used as a
superscript to avoid clashes with the notation set so far.

Definition 6.1. For A a D-set, let

SΣ
D(A) = {tp(c/A) | A ∪ c̄ is a D-set and c realizes Σ}.

Although the definition makes sense for any A ⊆ M , it will only be used
when A ⊆ Σ(M).

Definition 6.2. A model M is (D,λ,Σ)-homogeneous, if M realizes every type in
SΣ
D(A), for each A ⊆ Σ(M) of cardinality less that λ.

We can relax the monster model assumption to:

Hypothesis 6.3. There exists a D-model C such that C is (D, κ̄,Σ)-homogeneous,
for some κ̄ larger than any cardinal needed in this paper.

We will work inside Σ(C). The results of Section 2 hold relativized to
realizations of Σ. Thus, C can be assumed to contain every D-set A ⊆ Σ(M), for
any D-model M . And also C is homogeneous with respect to subsets of Σ(C). Write
SΣ
D(A) for SΣ

D(A,C), (note A ⊆ Σ(C) is always assumed).

Here are the local version of stability and order:

Definition 6.4. (1) D is (λ,Σ)-stable if |SΣ
D(A)| ≤ λ for every A ⊆ Σ(C) of

cardinality λ.
(2) D is Σ-stable if D is (λ,Σ)-stable for some cardinal λ.

Definition 6.5. (1) D has the (λ,Σ)-order property if there exist a formula
φ(x̄, ȳ) ∈ L(T ) and a set {āi | i < λ} ⊆ Σ(C), such that

|= φ[āi, āj ] if and only if i < j < λ.

(2) D has the Σ-order property if D has the (λ,Σ)-order property for every
cardinal λ.

Then, all the statements of Section 3 are true provided all the sets men-
tioned are taken inside Σ(C) and the local notions SΣ

D(A), Σ-order property, Σ-
stability are used instead. Most of the proofs can be used without modification.
The only kind of changes which are occasionally required are the obvious ones, for
example: In the proof of Remark 3.4 add the requirement Σ(c̄i) for i < λ in the list
of conditions, as well as a requirement that {c̄i | i < λ} be indiscernible over the pa-
rameters of Σ. In the proof of Theorem 3.9, choose {āi | i < µ+} ⊆ Σ(C) etc. The
main result is Section 3 is the local version of the stability/order dichotomy. Note
that the local version of the stability/order dichotomy is known in more general
cases [GrLe1].

Theorem 6.6. D is Σ-stable if and only if D does not have the Σ-order property.

The definition of splitting is unchanged. The difference is that only types
inside SΣ

D(A) for subsets A ⊆ Σ(C) are considered. Here is the (local) definition of
strong splitting:
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Definition 6.7. Let A ⊆ Σ(C) and p ∈ SΣ
D(A). The type p splits strongly over

B ⊆ A if there exist {c̄n | n < ω} ⊆ Σ(C), an indiscernible sequence over B, and a
formula φ(x̄, ȳ) such that φ(x̄, c̄1) ∈ p, ¬φ(x̄, c̄2) ∈ p.

Define the localized version of (∗λ) as follows:

Definition 6.8. D satisfies (Σ ∗ λ) if there exists an increasing and continuous
chain {Ai | i ≤ λ}, with Ai ⊆ Σ(C), and a type p ∈ SΣ

D(A) such that p ¹ Ai+1 splits
over Ai.

The localized version of (B ∗ λ) is defined similarly using subsets of Σ(C),
call it (ΣB∗λ). For (C∗λ), use subsets of Σ(C) and the definition of strong splitting
above for (C ∗ λ), call it (ΣC ∗ λ)

The same lemmas can be shown with very similar proofs using the homo-
geneity of C inside Σ(C). We obtain:

Theorem 6.9. D is not Σ-stable if and only if (Σ ∗ λ) holds for every cardinal λ
if and only if (ΣB ∗ λ) holds for every cardinal λ.

Definition 6.10. Let

κ(Σ, D) = min{κ | For all p ∈ SΣ
D(A), A ⊆ Σ(C), there is B ⊆ A, |B| < κ such that

p does not split strongly over B }.
If it is undefined, we let κ(D,Σ) =∞.

Theorem 6.11. If D is (λ,Σ)-stable, then κ(Σ, D) ≤ λ.

This allows us to obtain a local version of the stability spectrum. The
cardinal κ in the statement below is κ(Σ, D) and the cardinal λ the first cardinal
such that D is (λ,Σ)-stable.

Theorem 6.12. Either D is not Σ-stable or D is Σ-stable and there exists cardinals
κ ≤ λ < i(2|T |)+ such that for every cardinal µ D is (µ,Σ)-stable if and only if
µ ≥ λ and µ<κ = µ.

Again making the necessary adaptations, the local homogeneity spectrum
follows:

Theorem 6.13. There exists a (D,λ,Σ)-homogeneous model of cardinality λ if
and only if λ ≥ |SΣ

D(∅)| and λ<λ = λ or D is (λ,Σ)-stable.

The last four theorems are new.
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