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Abstract

This paper develops a trivalent semantics for indicative conditionals
and extends it to a probabilistic theory of valid inference and inductive
learning with conditionals. On this account, (i) all complex condition-
als can be rephrased as simple conditionals, connecting our account
to Adams’s theory of p-valid inference; (ii) we obtain Stalnaker’s The-
sis as a theorem while avoiding the well-known triviality results; (iii)
we generalize Bayesian conditionalization to an updating principle for
conditional sentences. The final result is a unified semantic and prob-
abilistic theory of conditionals with attractive results and predictions.

1 Introduction

The logical properties of a conditional connective → representing the nat-
ural language indicative conditional (e.g., “if Mary went to bed, she will
be sleeping now”) prompt several challenging and stimulating questions.
Do conditional sentences have truth conditions? What is the probability
of conditionals? What does valid inference with conditionals amount to?
Finally, how do we learn conditionals and how does conditional inference
relate to Bayesian inference?

This paper argues that these questions hang together and should be
answered jointly. It then develops a unified answer, based on trivalent truth
conditions and non-classical probability functions, generalizing Bayesian
inference in a natural way to a language with a conditional.

There is a well-known obstacle to such a project—at least if it wants
to recover the old and widely acknowlewdged idea that evaluating a
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conditional amounts to evaluating B on the supposition that A (Ramsey
1929/1990). On such accounts, the probability of a simple conditional
A → B is, for any probability distribution p, naturally explicated as the
conditional probability of B given A:

For conditional-free A and B: p(A→ B) = p(B|A) (Adams’s Thesis)

This claim, known as “Adams’s Thesis”, has been defended in a large va-
riety of semantic approaches, and independently of whether or not con-
ditionals are analyzed as propositions with truth conditions.1 It is more
controversial whether the above equality should also hold for arbitrary sen-
tences A and B (e.g., allowing that A and B themselves are conditionals):

For arbitrary A and B: p(A→ B) = p(B|A) (Stalnaker’s Thesis)

This thesis takes its name from Stalnaker 1970, and it is also referred to as
“The Equation” due to its ubiquitous occurrence in Bayesian analyses of
conditional reasoning (e.g., Evans and Over 2004). However, David Lewis
(1976) showed that treating A → B as a proposition that is subject to the
standard laws of probability will lead to an unacceptable trivialization of
Stalnaker’s Thesis. Triviality proofs for indicative conditionals, including
versions involving epistemic modals, come in several variants (e.g., Bradley
2000; Milne 2003; Hájek 2011; Fitelson 2015; Goldstein and Santorio 2021),
but their takeaway message is simple: treating indicative conditionals as
propositions with truth conditions is incompatible with respecting Stal-
naker’s Thesis in reasonable generality.

The strategies for avoiding triviality results roughly fall into three cat-
egories: (i) to construct a truth-conditional semantics without a systematic
connection to probabilistic inference, (ii) to amend a truth-conditional se-
mantics with a non-classical account of probability where (a reasonable ap-
proximation to) Stalnaker’s Thesis is obtained, but the triviality results are
avoided, or (iii) to reject the thesis that conditionals have truth conditions.

1The first prominent occurrence of this claim in the literature goes back to Adams
(1965, 1975), but it has also been identified as a plausible desideratum by Lewis (1976)
and Edgington (1995). It is viewed as a plausible desideratum in a number of more recent
accounts, including Bradley (2002), Égré and Cozic (2011), Goldstein and Santorio (2021)
and Ciardelli and Ommundsen (forthcoming). For experimental support of Adams’s The-
sis, see Evans and Over (2004), Over and Cruz (2023) and the references cited in these
works. Criticism of Adams’s Thesis is mainly articulated by inferentialist accounts of con-
ditionals, such as Douven (2016), Douven, Elqayam, and Krzyżanowska (2023), and Crupi
and Iacona (2022).
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Strategy (i) is popular among philosophers of language, especially in ac-
counts based on premise semantics, dynamic semantics, and information
states (e.g., Gillies 2009; Bledin 2015; Ciardelli 2020; Punčochár and Gauker
2020; Santorio 2022). While such accounts do not offer a probabilistic the-
ory of uncertain reasoning with conditionals, they provide consequence
relations which explicate reasoning with conditionals when premises are
certain. Strategy (ii) is followed by McDermott (1996) in a trivalent set-
ting, but also by Goldstein and Santorio (2021) using informational state
semantics. The probability of conditionals is then obtained indirectly by
a theory of updating such states. However, their formalisms do not inte-
grate smoothly with standard Bayesian inference. Strategy (iii) amounts to
defending a non-propositional (“suppositional”) account of conditionals,
giving up on truth conditions, and focusing exclusively on probabilistic
reasoning with conditionals. The most well-known defenders of this view
are Adams (1975) and Edgington (1995); recent arguments in Ciardelli and
Ommundsen (forthcoming) also support this option.

Let us look at option (iii) in more detail. Suppose we have a proposi-
tional language L→ with the usual Boolean operators ∧, ∨ and ¬, and a
conditional connective →. Its Boolean fragment, excluding conditional ex-
pressions, is L and its flat fragment, allowing at most simple, non-nested
conditionals, and no compounds of conditionals, is L→1 . Adams then pro-
poses the following criterion for valid probabilistic inference:

p-valid inference (Adams 1975) Suppose Γ ⊂ L→1 , B ∈ L→1 . Then Γ |=p B
if and only if for all probability functions p : L→1 7→ [0, 1], the uncer-
tainty of the conclusion does not exceed the cumulative uncertainty
of the premises:

U(B) ≤ ∑
A∈Γ

U(A) (p-valid inference)

where U(X) := 1− p(X) for any X ∈ L→1 .

McGee (1989, p. 485) gives a catchy description of the merits and limitations
of Adams’s account:

The theory [of p-valid inference] describes what English speakers
assert and accept with unfailing accuracy, yet the theory has won only
limited acceptance. A principal reason for this has been that the the-
ory is so limited in its scope. While the theory does a marvelous job
of accounting for how we use simple conditionals, it tells us nothing
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about compound conditionals or about Boolean combinations of con-
ditionals. [. . . ] This limitation has been thought to be insuperable, so
that Adams’s theory has appeared to be a dead end, highly accurate
in a narrowly specialized domain, but isolated from the rest of logical
theory and unable to overcome that isolation.

To overcome the isolation McGee talks about, Adams’s theory needs to
be extended from a theory on L→1 to a general theory covering nested
conditionals, compounds of conditionals, and in general, all sentences of
the full language L→.

This paper provides such an extension using a trivalent semantics. More
specifically, we define factual—and even truth-functional—truth conditions
for conditionals, and a (non-classical) probability function on L→ where
the probability of a sentence depends in the standard way on its truth
conditions. We show that this account generalizes p-valid inference and
Bayesian conditionalization to arbitrary formulas of the full language L→.
Our account follows strategy (ii): we provide a unified truth-conditional
and probabilistic semantics that yields Adams’s and even Stalnaker’s The-
sis, generalizing Bayesian reasoning to a more expressive language, instead
of developing an alternative account of updating that agrees with Bayesian
inference in their common domain. We argue that the features required for
obtaining these results—non-classical behavior of conjunction, and failure
of the ratio analysis for conditional probability—can be motivated on inde-
pendent grounds. In our opinion, strategy (iii)—denying that conditionals
are propositions with truth conditions—makes an unnecessary philosoph-
ical sacrifice.

We proceed as follows: Section 2 explains our basic idea for trivalent
truth conditions and the probability of indicative conditionals. Section 3

shows why nested conditionals and compound conditionals are, on this
semantics, equivalent to simple conditionals. Section 4 defines trivalent
logical consequence relations that generalize Adams’s logics for certain and
uncertain reasoning to the full language L→. Due to the equivalence result
shown in the previous section, this result implies that the valid inferences
with sentences of the flat fragment L→1 (i.e., p-valid inferences) determine
all valid inferences in L→, rebutting McGee’s objections to Adams’s logic.
We then discuss how these results relate to an impossibility result estab-
lished by Schulz (2009), inspired from McGee (1981), for three-valued rep-
resentations of p-valid inference involving compounds of conditionals.
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Two philosophically significant applications to Baysesian reasoning fol-
low. Section 5 introduces a suitable notion of conditional probability for
L→-sentences that avoids Lewis-style triviality results and yields Stal-
naker’s Thesis in full generality. Section 6 generalizes Bayesian Condi-
tionalization to a language with a conditional connective, and shows that
updating on a simple indicative conditional amounts to updating on the
corresponding material conditional. The final Section 7 concludes.

2 Outline of Trivalent Semantics

It is controversial whether indicative conditionals have factual truth condi-
tions and whether they express propositions in the same way in which
conditional-free and modal-free sentences do (e.g., see the dialogue in
Jeffrey and Edgington 1991). However, even a defender of a non-truth-
conditional view such as Adams (1965, p. 187) admits that we feel com-
pelled to say that a conditional “if A, then B” has been verified if we observe
both A and B, and falsified if we observe A and ¬B”. For example, take the
sentence “if it rains, the match will be cancelled”; it seems to be true if it
rains and the match is in fact cancelled, and false if the match takes place
in spite of rain. No similarly strong intuitions apply to the case where the
antecedent is false (i.e., in case it does not rain).

This observation motivates the treatment of the indicative conditional
“if A, then B” as a conditional assertion—i.e., as an assertion about B upon
the supposition that A is true. On this account, when the antecedent is
false, the speaker is committed to neither truth nor falsity of the consequent
(e.g., de Finetti 1936; Quine 1950; Belnap 1973). There is simply no factual
basis for evaluating the assertion. Therefore the conditional assertion is
classified as neither true nor false. See Table 1.

Truth value of A→ B B true B false
A true true false
A false neither neither

Table 1: Partial truth table for a conditional A → B analyzed as a conditional
assertion.

The question is whether “neither” should be understood as a truth-
value gap, i.e., whether the valuation function for A → B should be a
partial function, or whether we should treat “neither” as a third semantic
value (“indeterminate”, “nonassertive”) that can freely interact with the
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two standard semantic values. In the remainder, we will pursue the second
option and develop it systematically.

Suppose that we have a set of possible worlds W, where each possible
world corresponds to a complete trivalent valuation function over all sen-
tences of our language L→. (Of course, we have not yet specified which
valuation functions we select for L→; we will do this shortly, but the gen-
eral shape of our approach can be presented without committing ourselves
to specific valuation functions). Sentences of L→ are interpreted as propo-
sitions, i.e., as functions from W to a set of truth values {1, 0, 1/2} (=true,
false, or neither). In addition, we assume that atomic sentences, and in gen-
eral all conditional-free sentences, only take classical truth values (equiv-
alently, that valuations are atom-classical). The guiding idea, going back
to Cooper (1968), is that L→ is an extension of the Boolean propositional
language L to a language with a conditional connective, and so valuations
of sentences of L should assign them classical truth values.

Suppose further that we have a credence function c : A 7−→ [0, 1] on the
measurable space of possible worlds (W,A), where A is an algebra defined
on subsets of W, representing the subjective plausibility of a particular set
of possible worlds. Moreover, we assume that any algebra A includes the
singletons of worlds, i.e., for every w ∈ W, {w} ∈ A. We assume that
the credence function c is a finitely additive probability function, i.e., for
all singleton worlds {w} ∈ A, we have c({w}) ≥ 0, whereas c(∅) = 0,
c(W) = 1, and c(X ∪Y) = c(X) + c(Y) whenever X ∩Y = ∅.

We can then define a (non-classical) probability function p : L→ 7−→
[0, 1] on the language L→, taking into account that sentences of L→ can
receive three values: true, false, or neither (“indeterminate”).2 For conve-
nience, define

AT = {w ∈W | vw(A) = 1} AI = W\(AF ∪ AT)

AF = {w ∈W | vw(A) = 0}

where vw is the valuation function associated with the world w (recall,
worlds essentially are valuation functions). In other words, AT, AF, and
AI are the sets of possible worlds where A is true, false and neither true
nor false, respectively. What should then be the probability of A? Tradi-
tionally, the probability of a sentence A is simply the credence assigned to
all possible worlds where A is true: p(A) = c(AT). But when A involves

2For a survey of non-classical probability functions, see Williams (2016).
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a conditional, it is possible that c(AF ∪ AT) < 1—and we may end up as-
signing a small probability to A, even though A is much more likely to be
true than false.

Therefore, for trivalent valuations, the relative weight of truth and fal-
sity is a better indicator of the probability of a sentence than the credence
that it is true (the same point is made by Bradley 2002, p. 363). Apart
from its intuitive appeal, this idea is supported by Bayesian accounts that
explicate probability by means of fair betting odds (Ramsey 1929/1990; de
Finetti 1974). In particular, the subjective probability of A is the inverse of
the decimal betting odds on A: p(A) = 1/O(A), e.g., a probability of 1/3

corresponds to 3:1 betting odds. These odds specify the factor by which the
bettor’s stake is multiplied in case A occurs and she wins the bet. When
A is a conditional assertion, bets are naturally generalized as follows: they
are settled in the ordinary way if A takes classical truth value, and they are
called off otherwise (i.e., the original stakes are returned). Indeed, it is hard
to imagine how we should declare a bet on a conditional assertion like “if
it rains on Saturday, the match will be cancelled” as won or lost unless it
actually rains on Saturday.

The relation between probabilities and fair betting odds helps us to
show why only the relative weight of c(AT) and c(AF) should affect the
probability of A. Suppose that the bettor is betting on A at stake S > 0
and odds O(A) > 0 and that we are sampling possible worlds at random,
according to a credence function c. Since the bet on A will be called off
in case A does not take a classical truth value, with the stakes returned to
the bettor, her long-run net gain will in the limit approach the following
quantity:

G = −S + c(AT)× S×O(A) + c(AF)× 0 + c(AI)× S

= S× (−1 + c(AT)×O(A) + c(AI))

If bettor and bookie agree on credence function c, the bet is fair if and only
if G = 0, i.e., neither side is supposed to have a long-run advantage. This
can be shown to be equal to

c(AF)/c(AT) = O(A)− 1

or, even simpler,

O(A) =
c(AT) + c(AF)

c(AT)
,
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which agrees with the definition of decimal betting odds in the standard
bivalent case. Moving back from conditional bets to probabilities for sen-
tences with trivalent valuations, and defining probability as the inverse of
fair betting odds (as in the bivalent case), we obtain:

p(A) :=
c(AT)

c(AT) + c(AF)
if c(AT) + c(AF) > 0 (Probability)

(If c(AT) + c(AF) > 0, then p(A) = 1 by convention.) For a Boolean,
conditional-free sentence A, this will collapse to the standard definition of
probability as the credence in the set of possible worlds where A is true
(since AT ∪ AF = W and hence c(AT) + c(AF) = 1). Whereas for a simple
conditional “if A, then B”, with conditional-free sentences A and B, we
obtain, given Table 1,

p(A→ B) =
c(AT ∩ BT)

c(AT)
=

p(A ∧ B)
p(A)

= p(B|A) (Adams’s Thesis)

where the probability function in the last two expressions refers to standard
bivalent probability on L. In other words, Adams’s Thesis—the equal-
ity of probability of conditionals and conditional probability for simple
conditionals—follows as a corollary of the trivalent semantics and need not
be stipulated as a definition, as in Adams’s own account.

These considerations do not yet show how we can assign a probabil-
ity to Boolean compounds of conditionals, nested conditionals, and other
complex sentences of L→. We need to extend Table 1 and the truth tables
for the regular Boolean connectives to cases where both the antecedent and
the consequent can take the third semantic value, which we call “indeter-
minate”. For the conditional, there are two main options: the de Finetti
conditional →DF where indeterminate antecedents are grouped with false
ones (e.g., de Finetti 1936; Belnap 1970; McDermott 1996; Dubois and Prade
1994; Rothschild 2014) and the Cooper conditional →C where they are
grouped with true ones (e.g., Cooper 1968; Belnap 1973; Cantwell 2008).
See Table 2.3 Semantic values are represented by numbers, with 1, 1/2 and
0 standing for true, indeterminate and false.

Reasons for preferring the Cooper conditional to the de Finetti condi-
tional, i.e., treating an indeterminate antecedent like a true one, are dis-

3Negation is Strong Kleene negation and conjunction and disjunction happen to coin-
cide with those of Sobociński (1952). The combination of these Boolean connectives and
the connective→C was first advocated by Cooper (1968).
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→C 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

→DF 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 1/2

0 1/2 1/2 1/2

¬
1 0

1/2 1/2

0 1

∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 0
0 1 0 0

Table 2: Truth tables for the trivalent conditional according to Cooper (→C) and
to de Finetti (→DF), and the Boolean connectives in our trivalent logic.

cussed in detail in Égré, Rossi, and Sprenger (2021), as are those for devi-
ating from the Strong Kleene connectives for conjunction and disjunction.
We just mention one important motivation: as argued by Bradley (2002),
we want to be able to consider “partitioning” sentences like

(1) If the sun shines tomorrow, John goes to the beach; and if it doesn’t,
he goes to the museum.

as true when one of two conditional predictions is verified (e.g., the sun
shines and John goes to the beach). But if we used Strong Kleene con-
nectives for conjunction, (1) would always be indeterminate or false. This
means that as long as John’s actions are uncertain, (1) will have probability
zero. This would be an unwelcome prediction since (1) is certainly more
assertable than “If it rains tomorrow, John goes to the beach; and if not, he
goes to the museum.”. Therefore, we consider the conjunction of a true and
an indeterminate sentence to be true. In other words, the third truth value
acts as a chameleon: the conjunct or disjunct with classical truth value de-
termines the truth value of the compound.4 In spite of their non-standard
nature, the truth tables for conjunction and disjunction interact with each
other, and with Strong Kleene negation, in the usual way, respecting the de
Morgan rules and the distributivity laws. They also define a particularly
important family of valuation functions:

Definition 1 (Cooper valuations). A valuation function v : L→ 7−→ {1, 1/2, 0}
that assigns semantic values to all formula of L→ is called a Cooper valuation

4Another unwelcome consequence of the Strong Kleene tables is that regardless of
whether we follow Cooper or de Finetti in the interpretation of the conditional, v((A →
B) ∨ (B → A)) ≥ 1/2 for all valuations v. In other words, such sentences—encoding the
so-called linearity principle—cannot be false.
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if and only if (i) it assigns classical values to all atomic formulas and (ii) respects
all constraints in the truth tables of Table 2 with the →C interpretation of the
conditional connective.

In other words, Cooper valuations combine the “ideal” configuration of
truth tables with the aforementioned idea that the conditional connective
extends a language with classical semantic valuations. Specifically, presup-
posing Cooper valuations, our trivalent probability function obtains more
structure and satisfies the following three principles:

(1) p(>) = 1 and p(⊥) = 0.

(2) p(A) = 1− p(¬A) (unless c(AF ∪ AT) = 0, in which case p(A) =

p(¬A)).

(3) If AT ∩ BT = ∅ (i.e., A and B cannot both be true) and AT ∪ AF =

BT ∪ BF (i.e., they take classical truth values in the same conditions),
then p(A ∨ B) = p(A) + p(B).

These axioms are similar to the standard axioms of probability, where the
additional requirement AT ∪ AF = BT ∪ BF for the Additivity axiom re-
flects that the probability of a disjunction reduces to the probability of its
disjunctions only if the disjunctions take classical truth values in the same
worlds.

Notably, our conjunction is non-classical and allows for violations of the
standard probability law p(X ∧ Y) ≤ p(X). This behavior can be rational-
ized as follows: suppose that A, B and C are conditional-free sentences,
with A and B false and C true. Then the bet on (A → B) ∧ C yields a
positive return (because the expressed proposition is true for Cooper val-
uations), while the bet on A → B is called off. Betting on X is therefore
not always safer than betting on X and Y. Since these properties of bet-
ting odds transfer to probabilities, some probability functions will have the
feature p((A → B) ∧ C) > p(A → B), in notable difference to standard
bivalent probability. Of course, as long as X and Y are conditional-free, the
standard law p(X ∧ Y) ≤ p(X) will continue to hold. Section 4 will get
back to this point in more detail.

3 Simplifying Complex Conditionals

This trivalent account deals with nested and compound conditionals in a
particularly pleasant way. It is a well-known drawback of Adams’s account
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that complex conditionals (and compounds of conditionals) such as A →
(B → C) or (A → B) ∧ (C → D) with A, B, C, D ∈ L, cannot be directly
analyzed; instead they have to be rephrased by means of a formula in L→1
that approximates their meaning. For instance, Adams defines the meaning
of a conjunction of conditionals (A → B) ∧ (C → D) as (A ∨ C) → ((A ⊃
B) ∧ (C ⊃ D)) (Adams 1975, 1998, pp. 164-165). This move, however, is
devoid of independent philosophical justification.5

The advantage of a fully compositional trivalent semantics is that
Adams’s “translations” from L→ to its flat fragment L→1 cease to be def-
initions. Instead, they are statements whose truth or falsity can be decided
in our semantics, in line with the following definition.

Definition 2. For two formulas ϕ, ψ ∈ L→, we write ϕ ≈ ψ if and only if for all
Cooper valuations v : L→ 7−→ {1, 1/2, 0}, v(φ) = v(ψ).

We can now state some equivalence results for nested conditionals and
Boolean compounds of conditionals.

Proposition 1. For A, B, C ∈ L→ and a Cooper valuation v : L→ 7−→
{1, 1/2, 0}:

A→ (B→ C) ≈ (A ∧ B)→ C (Import-Export)

¬(A→ B) ≈ A→ ¬B (Negation Commutation)

In addition, for all Boolean sentences A, B, C, and D ∈ L:

(A→ B)→ C ≈ (A ⊃ B)→ C (Left-Nesting)

(A→ B) ∧ (C → D) ≈ (A ∨ C)→ ((A ⊃ B) ∧ (C ⊃ D)) (Conjunction)

(A→ B) ∨ (C → D) ≈ (A ∨ C)→ ((A ∧ B) ∨ (C ∧ D)) (Disjunction)

Proof: By inspection of the (trivalent) truth tables.

The results for negation, conjunction and disjunction of conditionals
are intuitive and correspond to Adams’s translation procedures (e.g., his
“quasi-conjunction” of conditionals). Right-Nesting is the Import-Export
Principle: the nested conditional A → (B → C) expresses the simple con-
ditional (A∧ B)→ C. Import-Export enjoys strong theoretical support (for

5Actually, Adams assigns “ersatz truth values” to the conjunction of conditionals P1 ∧
. . . ∧ Pn, classifying it as false if any of the Pi is false, as true if none of the Pi is false and
at least one of them is true, and as being neither true nor false otherwise. This description
agrees exactly with Cooper’s conjunction as described in Table 2.
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recent defenses, see Ciardelli 2020; Ciardelli and Ommundsen forthcom-
ing) and it is also supported by empirical work in cognitive psychology
(van Wijnbergen-Huitink, Elqayam, and Over 2015). Even accounts that
reject Import-Export, like Khoo and Mandelkern (2019) and Mandelkern
(2020), concede that these two expressions have the same meaning in many
contexts, and specifically when A, B and C themselves do not contain con-
ditionals.

By contrast, left-nested conditionals like (A → B) → C express, on
our account, an assertion of the consequent C conditional on the material
conditional (A ⊃ B). This analysis is supported by the observation that
A→ B and A ⊃ B have (for A, B ∈ L) the same falsity conditions, i.e., both
of them are false if and only if A is true and B is false. They may not have
the same meaning, but they express the same supposition in the antecedent
of a conditional. This observation will be important in Section 6, where we
develop a Bayesian theory of learning conditionals.6

Finally, note the important restriction to Boolean sentences for Left-
Nesting, Conjunction, and Disjunction: these equivalences do not hold for
arbitrary sentences. For example, for Left-Nesting, counterexamples to the
scheme (F → G) → H ≈ (F ⊃ G) → H require v(G) = 1/2 (and v(F) = 1
and v(H) 6= 1/2), i.e., G is a conditional with false antecedent. Still, the
equivalences are practically useful since natural language conditionals will
rarely be more complex than the ones displayed in Proposition 1.

The above observations allow us to derive a general and important re-
sult:

Theorem 1 (Reduction Theorem). For every X ∈ L→ there is an X1 ∈ L→1 ,
i.e., the fragment of L→ containing at most simple conditionals, such that X ≈ X1.

While the formal proof by induction is in the appendix, we can sum-
marize the argument informally: Suppose A → B and C → D are sim-
ple, non-nested conditionals, i.e., A, B, C, D ∈ L. Then each compound of
these sentences is semantically equivalent to another simple conditional.

6Actually, all combinations of truth tables—de Finetti or Cooper conditional, Strong
Kleene connectives or quasi-connectives for conjunction and disjunction—validate Import-
Export and Commutation with Negation (Égré, Rossi, and Sprenger 2021). However,
only Cooper valuations validate the entire set of equivalences. Specifically, Strong Kleene
connectives fail Conjunction and Disjunction of Conditionals (e.g., v(A) = 0, v(C) =
c(D) = 1), while de Finetti’s conditional fails Left-Nesting: it satisfies (A → B) → C ≈
(A ∧ B) → C ≈ A → (B → C), i.e., it makes no difference between left-nested and
right-nested conditionals.
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For conjunction, disjunction, and negation, this is immediate from Propo-
sition 1, while the L→1 -sentence corresponding to (A → B) → (C → D) is
((A ⊃ B)∧C)→ D. Hence, compounds of L→1 -sentences are equivalent to
L→1 -sentences, regardless of the chosen connective. Now we gradually sim-
plify any complex L→-sentence X, starting with the innermost elements,
until X can be rewritten as a simple conditional.

This means that Adams was right on an important point: restricting
the language of interest and the logic of conditionals to L→1 , i.e., the flat
fragment of L→, does not lose anything logically nor semantically essen-
tial because complex conditionals are equivalent to simple conditionals. We
can consider them with Adams, if we want, as convenient linguistic ab-
breviations. The next section explores the consequences of the Reduction
Theorem for a theory of valid inference with conditionals.

4 Inferences with Conditionals

So far, we have dealt with the semantics and probability of trivalent con-
ditionals; we have not said much about inference, except indirectly for
the equivalences stated in Proposition 1. Following Adams, we charac-
terize a consequence relation |=U for valid inference in L→ in terms of
non-increasing uncertainty: the conclusion must not be less probable than
the conjunction of the premises.

Definition 3 (Valid Inference in U). For a set Γ of formulas of L→ and a formula
B ∈ L→: Γ |=U B if and only if there is a finite subset of the premises ∆ ⊆ Γ such
that for all probability functions p : L→ 7−→ [0, 1]:

p(
∧

A∈∆

A) ≤ p(B)

As a limiting case of U, we can define a logic of reasoning with certain
premises where probability 1 is preserved:

Definition 4 (Valid Inference in C). For a set Γ of formulas of L→ and a formula
B ∈ L→: Γ |=C B if and only if for all probability functions p : L→ 7−→ [0, 1]:

if for all A ∈ Γ, p(A) = 1, then p(B) = 1.

Both notions of probabilistic validity can be characterized semantically
in a trivalent setting (see Égré, Rossi, and Sprenger forthcoming for proofs,
which we omit here, and further analysis of the properties of C and U):
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Proposition 2 (Trivalent Characterization of C). For a set Γ of formulas of
L→ and a formula B ∈ L→: Γ |=C B if and only if for all Cooper valuations
v : L→ 7−→ {0, 1/2, 1}:

if for all A ∈ Γ, v(A) ≥ 1/2, then v(B) ≥ 1/2.

In other words, preservation of probability 1 is equivalent to preserva-
tion of designated values D = {1, 1/2} in passing from the premises to the
conclusion. For uncertain reasoning in U, we can derive a similar result:

Definition 5 (Consistent and Inconsistent Sets). A set of formulas Γ is con-
sistent if it has no subset ∆ ⊆ Γ such that p (

∧
A∈∆ A) = 0 in all probability

functions p : L→ 7−→ [0, 1]. It is inconsistent if such a subset exists.

Proposition 3 (Trivalent Characterization of U). For a consistent set of formu-
las Γ of L→ and a formula B ∈ L→ with 6|=C B, Γ |=U B if and only if there is a
finite subset ∆ ⊆ Γ such that for all Cooper valuations v : L→ 7−→ {0, 1/2, 1}:

v(
∧

Ai∈∆

Ai) ≤ v(B).

This means that an inference in U is valid if and only if both sets of
designated values D = {1, 1/2} and D′ = {1} are preserved in passing from
the premise from the conclusion. Equivalently, the semantic value of the
conclusion must never drop below the semantic value of the conjunction
of (a subset of) the premises.7 These results connect the (trivalent) truth
conditions of conditionals to probabilistic reasoning and answer one of
the questions raised above at the opening of this paper: valid uncertain
reasoning preserves both truth and non-falsity, and valid certain reasoning
preserves non-falsity.

Crucially, inference in U generalizes Adams’s p-valid inference to all
sentences of L→:

Proposition 4. Suppose Γ ⊂ L→1 , B ∈ L→1 and Γ |=p B. Then, for all Cooper
valuations, we also have Γ |=U B.

Proof. According to Adams (1986, p. 264), the premises Γ = {A1, . . . An}
yield a conclusion B (where A1, . . . An and B are sentences of L→1 ) if and
only if (1) any atom-classical valuation that falsifies none of the Ai, and

7The restriction to consistent premise sets is required to deal with some degenerate
cases, but imposes no substantial limitation.
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verifies at least one of them, verifies B, too; (2) any atom-classical valu-
ation that falsifies B also falsifies at least one of the Ai. He then shows
(“Meta-Metatheorem 3”) that Γ |=p B if and only if a subset of Γ yields the
conclusion B. It is not difficult to see that Adams’s conditions on yield-
ing are equivalent to conditions for valid inference in our system U: for
a subset ∆ ⊆ Γ, if v(

∧
A∈∆ A) = 1 then v(B) = 1, and if v(B) = 0, then

v(
∧

A∈∆ A) = 0, where the logical vocabulary satisfies the Cooper truth
tables (Table 2), as the Cooper connectives behave classically on classical
inputs.

The relation between U und p-valid inference is, however, more complex
than generalization. Taking into account the Reduction Theorem, we can
establish an equivalence between the two logics, in the following sense.

Theorem 2 (Representation Theorem for U). Suppose Γ ⊂ L→ and B ∈ L→.
Then there is a function f : L→ 7−→ L→1 such that

Γ |=U B if and only if f (Γ) |=p f (B).

Proof. Immediate from Theorem 1—the function f is the translation of
L→-formulas into L→1 -formulas in the proof of the theorem—and from
Adams’s yielding criterion cited in the proof of Proposition 4.

In other words, all valid or invalid conditional inferences can be ex-
pressed by means of valid or invalid inferences with simple conditionals.
The Representation Theorem thus answers McGee’s challenge to Adams
from the introduction. It shows why Adams’s restriction of the logic of
probability conditionals to L→1 is not harmful: p-valid inference can be
characterized as inference in trivalent semantics (and vice versa), covering
also nested conditionals and Boolean compounds of conditionals.

The Representation Theorem raises interesting puzzles and questions.
For instance, Modus Ponens is invalid in U, but p-valid. How can this
happen if valid inferences in both logics can be mapped to each other?
The reason is that the translation procedure from L→ to L→1 changes the
logical form of the premises. For conditional-free sentences A, B, C ∈ L,
Modus Ponens fails in U for inferences of the form “A → (B → C) and A,
therefore B→ C” (compare Égré, Rossi, and Sprenger forthcoming, Section
8). However, when we project these formulas to their semantic equivalents
in L→1 , we obtain a different inference scheme, namely “(A ∧ B) → C and
A, therefore B → C”. This inference is p-invalid, as predicted by Theorem
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2. For L→1 -premises, however, we retain that A→ B, A |=p B, and similarly
in U.

Another interesting question prompted by the Representation Theorem
concerns impossibility results for representations of p-validity in many-
valued logic. McGee (1981) showed that no consequence relation in many-
valued logic defined as preservation of a set of designated values agrees
with p-validity on Adams’s restricted language. Adams (1995) proved that
such a characterization is possible if validity is defined more liberally, ba-
sically as we established above for U (namely not in terms of the preserva-
tion of a fixed set of designated values, but by quantifying over such sets).
However, Schulz (2009, Corollary 3.3) shows that no such characterization
is possible for a language admitting compounds of conditionals when the
conjunction is supposed to be “classical” with respect to the logical conse-
quence relation, i.e., if the following two conditions are satisfied:

(i) If Γ |= φ and Γ |= ψ, then Γ |= φ ∧ ψ.

(ii) If Γ |= φ ∧ ψ, then Γ |= φ and Γ |= ψ.

Schulz concludes:

This poses a dilemma for proponents of a three-valued account of
compounds of conditionals which is supposed to conform to the the-
sis that conditionals are evaluated by conditional probabilities. Ei-
ther they will not succeed in defining a classical conjunction, or their
conception of validity will disagree with p-validity on the restricted
language. (Schulz 2009, p. 516)

For our consequence relation |=U, condition (i) holds, but condition (ii)
doesn’t.8 This means that conjunction in U is indeed not classical, and so we
choose the first horn of Schulz’s dilemma. However, while a non-classical
conjunction may look non-standard at first, there are good independent
reasons to adopt it.

First, as argued in Section 2 (especially p. 9), the chameleon-like behav-
ior of the third truth value (i.e., 1 ∧ 1/2 = 1, etc.) is essential for showing
that specific conjunctions of conditionals, which we often employ in natural
language, can be true. Second, there is strong evidence that when condi-
tionals are involved, the probability of conjunctions need not be smaller
than the probability of a conjunct. Consider the following example from
Santorio and Wellwood (2023)—a similar case is made by Ciardelli and
Ommundsen (forthcoming):

8Counterexample: v(Γ) = v(φ) = 1, but v(ψ) = 1/2. In this case Γ |= φ ∧ ψ, but Γ 2 φ.
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(2) If the outcome of the die roll was even, it was two; and if it was odd,
it was one.

While “the die landed 2 if it was even” and “the die landed 1 if it was odd”
both have probability 1/3, their conjunction seems to be true exactly when
the die landed one or two, and false in all other cases. So (2) should have
probability 1/3, too. This prediction is borne out in our framework, but it
is at odds with what we would expect from a classical conjunction. Santo-
rio and Wellwood (2023) back up their argument with experimental data,
and so it seems that the non-classical behavior of conjunction in uncertain
reasoning has both normative and empirical support.9

Hence, we propose to interpret Schulz’s result as follows: a non-
classical conjunction is the only way of (i) providing a many-valued logic
that agrees with Adams’s widely accepted p-validity in their common do-
main, while (ii) yielding an adequate account of the truth values of com-
pounds of conditionals. Some properties of classical conjunction simply do
not generalize to more complex languages.

5 Conditional Probability and Stalnaker’s Thesis

A workable definition of conditional probability is essential for Bayesian
reasoning and for updating on incoming evidence in particular. Unfortu-
nately, the standard analysis of conditional probability

p(B|A) :=
p(A ∧ B)

p(A)
, if p(A) > 0, (Ratio Analysis)

fails in the trivalent case. Since the non-classical behavior of conjunction
allows for cases where p(A∧ B) > p(A), we could end up with p(B|A) > 1,
which is unacceptable for any conditional probability function.

In this section, we develop a surrogate notion of conditional probability,
which coincides with standard conditional probability for conditional-free
sentences, but extends to sentences which can take all three truth values.
Our definition is simple: for all A, B ∈ L→, the conditional probability of
B given A is the probability of the conditional A→ B.

9We view such examples as providing an answer to Schulz’s challenge as set in Schulz
(2009, p. 513): “If one designs a semantic theory for the unrestricted conditional language,
can there be any doubt that the conjunction should obey the standard introduction and
elimination rules? The burden of proof would be on the side of those who think that it
should not. Counterexamples would have to be produced”.
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Definition 6. For all A, B ∈ L→, the trivalent conditional probability of B
given A, in symbols pA(B), is defined as follows:

pA(B) := p(A→ B) =
c(ATI ∩ BT)

c(ATI ∩ (BT ∪ BF))
if c(ATI) > 0

(Trivalent Conditional Probability)

where ATI := AT ∪ AI (i.e., the set of worlds where A is not false).

It is clear by the truth-table for Cooper’s conditional that this definition
respects the operational definition of probability: it is the ratio of the weight
of worlds where the conditional is true to the weight of worlds where it is
defined, i.e. it has a classical value. It is also clear that this definition agrees
with standard axioms of conditional probability if A and B are conditional-
free: ATI = AT because AI = ∅, and the numerator will thus be equal to
p(A∧ B) and the denominator to p(A) (since BT ∪ BF = W). In this special
case, pA(B) also satisfies the standard axioms for conditional probability.10

We need to check, however, whether the behavior of pA(B) agrees with
what we expect from a conditional probability function if A and B can con-
tain conditionals. As before, we assume that propositional atoms receive

10Using p(A→ B) as a surrogate notion for p(B|A) has been suggested first by McGee
(1989) as a means of introducing conditional probability into a language with a condi-
tional. However, McGee does not provide a full truth-conditional semantics for his lan-
guage. So he cannot interpret p(X) directly as the credence in the worlds where X is
true, or the credence ratio between worlds where X is true or false, etc. Instead, McGee
(1989, p. 504) provides an axiomatic characterization of the function p(A → B), and of
its interaction with the probability of conditional-free sentences. The main pillar in his
edifice is the

(Simple) Independence Principle (McGee 1989, p. 499). For conditional-free sentences
A, B, C ∈ L, and assuming that A and C are logically incompatible and p(A) > 0,
then

p(C ∧ (A→ B)) = p(C) · p(A→ B). (C1)

This principle actually amounts to a definition. After all, McGee does not have an account
that relates the probability of sentences containing Boolean and/or conditional operators
to their truth conditions. So he needs to stipulate (C1). But on our semantics, (C1) is in-
valid: it is immediate from C |=CL ¬A that the truth value of C ∧ (A → B) is identical
to the truth value of C. (If C is true, then A → B is indeterminate and hence the con-
junction is true.) Hence p(C ∧ (A → B)) = p(C), which is almost always larger than
p(C) · p(A → B). This is actually the only divergence between our account and McGee’s:
our trivalent probability function satisfies the adequacy conditions C2–C8 that McGee im-
poses, together with the Independence Principle, as necessary and sufficient conditions
for a (conditional) probability distribution on a language with a conditional.
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only classical values, and therefore that conditionals are the only source of
the third truth value.

Here below we list Popper’s axioms for a conditional probability func-
tions p(·|·) for classical propositional logic (taken from Hawthorne 2016):

1. 0 ≤ p(B|A) ≤ 1.

2. If |=CL ¬B and |=CL A, then p(B|A) = 0.

3. If A |=CL B, then p(B|A) = 1.

4. Left Logical Equivalence: If A |=CL B and B |=CL A, then p(C|A) =

p(C|B).

5. Additivity: If C |=CL ¬(A ∧ B), then either p(A ∨ B|C) = p(A|C) +
p(B|C) or p(D|C) = 1 for any D.

6. The Product Rule: p(A ∧ B|C) = p(A|B ∧ C)× p(B|C).

Before evaluating these axioms with respect to pA(B), we need to refor-
mulate them, replacing p(B|A) with pA(B) and classical entailment with
its generalization to the language L→, i.e., entailment in C (=preservation
of certainty).11 This means that the first four axioms read:

1’. 0 ≤ pA(B) ≤ 1.

2’. If |=C ¬B and |=C A, then pA(B) = 0.

3’. If A |=C B, then pA(B) = 1.

4’. Left Logical Equivalence: If A |=C B and B |=C A, then pA(C) =

pB(C).

The reader is invited to verify that trivalent conditional probability satisfies
(1’)–(4’)—the proofs are simple.12

The Additivity axiom (5) has to be modified more substantially, similar
to the case of unconditional probability:

11Note that C generalizes certain reasoning from a classical Boolean setting to a lan-
guage with a conditional connective. Therefore C has the same role for trivalent probabil-
ity as classical logic has for classical, bivalent probability.

12
1’ is immediate. As to 2’, notice that BT = ∅. As to 3’, note that ATI ∩ BF = ∅, and

so numerator and denominator of pA(B) in (Trivalent Conditional Probability) are equal.
As to 4’, notice that given A |=C B and B |=C A, the conditionals A → C and B → C take
the same truth values in all Cooper valuations.
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5’. Trivalent Additivity: Suppose (i) c(CTI) > 0 (ii) C |=C ¬(A ∧ B) and
(iii) if v(C) ≥ 1/2, then |v(A)− v(B)| 6= 1/2. Then:

pC(A ∨ B) = pC(A) + pC(B).

To see that Trivalent Additivity is satisfied by our definition of conditional
probability, consider the division of the credence attached to sets of possible
worlds in CTI according to the following table:

W ∩ CTI BT BI BF

AT 7 7 α

AI 7 δ 7

AF β 7 γ

Conditions (ii) ensures that the upper left corner is empty and condition
(iii) ensures that all direct neighbors to the central square are empty. Hence
α + β + γ + δ = 1. We can now calculate the conditional probabilities of A,
B and A ∨ B according to Definition 6 and obtain

pC(A) =
α

α + β + γ
pC(B) =

β

α + β + γ
pC(A ∨ B) =

α + β

α + β + γ

showing that Trivalent Additivity holds.
Notably, trivalent conditional probability does not satisfy axiom 6, the

Product Rule. The reason for the failure of the Product Rule is inherited
from unconditional probability and the non-classical behavior of conjunc-
tion in particular: the term p(A∧ B)/p(B) can be greater than 1, and so we
cannot define conditional probability via the familiar Ratio Analysis (i.e.,
p(B|A) = p(A ∧ B)/p(B)). This feature is inherited from the non-classical
behavior of conjunction in our semantics, but it does not undermine the
status of pA(B) as the appropriate conditional probability function. Of
course, the Product Rule is satisfied if we restrict ourselves to conditional-
free sentences.13 (We will say more about the Product Rule in a minute.)

13Trivalent conditional probability does not satisfy the trivalent version of the Law of
Total Probability

p(B) = p(A→ B)× p(A) + p(¬A→ B)× p(¬A), (LTP)

in full generality (it holds, of course, for A, B ∈ L). Actually, this is good news for avoid-
ing Lewis-style triviality results: as shown by Lassiter (2020), these arguments presuppose
features of probability that are typical of classical, bivalent probability functions, such as
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Let us now look at a famous bone of contention for theories of con-
ditionals: Stalnaker’s Thesis p(B → C) = p(C|B) and its generalization
p(B → C|A) = p(C|A ∧ B). Lewis (1976) has shown that any bivalent se-
mantics of conditionals where Stalnaker’s Thesis holds will trivialize the
probability function, as long as we assume it to be closed under condition-
alization. In the wake of this and successor results (such as Bradley 2000

and Fitelson 2015), many theorists opted either for (i) saving Stalnaker’s
Thesis at the price of abandoning (full) truth conditions for conditionals
(e.g., Adams 1975; McGee 1989; Edgington 1995; Ciardelli and Ommund-
sen forthcoming), or (ii) declaring Stalnaker’s Thesis to be false (e.g., Fitel-
son 2015; Khoo and Mandelkern 2019; Goldstein and Santorio 2021). As
shown by Lassiter (2020), the triviality proofs rely on classical features of
probability functions, such as the Product Rule and the Law of Total Prob-
ability, which do not generally apply to probability functions over trivalent
valuations. Indeed, our trivalent definition of conditional probability yields
Stalnaker’s Thesis as a mathematical fact:

Theorem 3 (Stalnaker’s Thesis, general form). For any A, B, C ∈ L→ with
c(ATI) > 0 and c((A ∧ B)TI) > 0, and any trivalent probability function p :
L→ 7−→ [0, 1]:

pA(B→ C) = pA∧B(C) (Stalnaker’s Thesis)

The special case A = > yields the familiar-looking p(B→ C) = pB(C).

Proof. The result follows immediately from Import-Export and Definition
6:

pA(B→ C) = p(A→ (B→ C)) = p((A ∧ B)→ C) = pA∧B(C).

Recently, Fitelson (2022) has shown that we can obtain Stalnaker’s The-
sis only at the price of giving up the Product Rule. Whenever conjunction
is supposed to behave classically, the failure of the Product Rule looks like

(LTP), and will be blocked in trivalent semantics. Lewis’s derivation goes through, how-
ever, when B carries no information regarding C. But then, Lewis’s paradoxical conclusion
p(B→ C) = p(C) actually makes sense and is compatible with p(B→ C) = p(C|B): con-
ditioning on B does not change our credences. In other words, our account circumvents
the general triviality result and it explains why the paradoxical result is acceptable when-
ever the derivation is not blocked.
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an unacceptable price for obtaining Stalnaker’s Thesis. But in our frame-
work, we have independent reasons for rejecting classical conjunction, and
therefore also for giving up the Product Rule (when conditional sentences
are involved). Since our account of conditional probability satisfies ax-
ioms 1’-5’ and violates only the Product Rule, it is therefore as similar to
standard conditional probability as one can hope for if one wants to ob-
tain Stalnaker’s Thesis. For us, the triviality results simply show that no
probability of conditionals can be a fully classical conditional probability
function—but we can reject this requirement on independent grounds.

Goldstein and Santorio (2021) argue, however, that Stalnaker’s Thesis
should be invalid. It is instructive to study their counterexample. They
consider a fair die and the sentences

A: If the die landed even, then if it didn’t land on two or four, it landed on
six.

B: If the die did not land on two or four, it landed on six.

C: The die landed even.

We agree with Goldstein and Santorio’s premise that an adequate the-
ory of the probability of conditionals should assign the values p(A) = 1,
p(B) = 1/4 and p(C) = 1/2. Then they note that C (“the die landed even”)
is just another way of expressing the material conditional corresponding to
B (“either the die landed 2 or 4, or it landed on 6”). Since indicative condi-
tionals are, on their account, logically stronger than the corresponding ma-
terial conditionals, B must entail C. On the other hand, B ∧ C entails each
of its conjuncts, and so B =||= B ∧ C and therefore also p(B ∧ C) = p(B).
Moreover, by Stalnaker’s Thesis and the identity A = C → B, we infer that
p(A) = p(C → B) = p(B|C). But then we obtain a contradiction:

1 = p(A) = p(C → B) = p(B|C) = p(B ∧ C)
p(C)

=
p(B)
p(C)

= 1/2,

From our viewpoint, it is tempting to attack the equality p(B|C) = p(B ∧
C)/p(C) since we know that the Product Rule fails in our semantics. But
in this concrete case, p(B ∧ C) = 1/2 and the above equality actually holds.
Rather, we should reject the equality p(B∧C) = p(B), which is false on our
account (since p(B) = 1/4). Specifically, due to the non-classical behavior of
conjunction, B ∧ C can have greater probability than B (note that B is itself
a conditional). This suffices to block the above argument.
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Relatedly, our account declares simple material and indicative condi-
tionals to be logically equivalent in C, the logic of certain reasoning (see
Égré, Rossi, and Sprenger forthcoming for details). This explains why Or-
To-If inferences are so compelling when premises are certain. (“Either the
butler or the gardener dit it. Therefore, if the butler did not do it, the gar-
dener did.”—see Stalnaker 1975 and more recently, Boylan and Schultheis
2022.) However, in uncertain reasoning A∨ B 6|=U ¬A→ B. For conditional-
free A and B, even ¬A → B |=U A ∨ B holds due to the well-known the-
orem p(¬A → B) = p(B|¬A) ≤ p(A ∨ B). This means that the simple
indicative conditional is more demanding to assert than the corresponding
material conditional (as desired). In particular, Or-to-If fails in U.

Accounts that declare Stalnaker’s Thesis invalid rarely do so because
they consider it fundamentally mistaken. Goldstein and Santorio agree
with the basic intuition about the probability of conditionals as condi-
tional probabilities and they declare Adams’s Thesis—the restriction of
Stalnaker’s Thesis to conditional-free statements—valid. They reject Stal-
naker’s Thesis because it clashes with having a standard probability func-
tion over conditional statements together with a specific view on the logical
relationship between the indicative and the material conditional (e.g., Gib-
bard 1981; Gillies 2009)—requirements that we consider mistaken. Sim-
ilarly, in the light of the central role of Import-Export both in Gibbard’s
1981 collapse result and in the trivialization of Stalnaker’s Thesis, Khoo
and Mandelkern (2019) give up Import-Export as a logical principle while
retaining that two sentences with the logical forms A → (B → C) and
(A ∧ B) → C express the same proposition in any context. Such solutions
are feasible, but they look to us like workarounds: it is more attractive,
and certainly more straightforward, to preserve Import-Export and to align
Stalnaker’s and Adams’s Thesis. Our account declares both of them valid
and blocks the triviality results in an independently motivated way.14

6 Bayesian Learning in a Trivalent Setting

In the previous section, we have mapped the statics of uncertain reasoning
with conditionals: we have defined conditional probability in a trivalent

14Regarding Import-Export, Ciardelli and Ommundsen (forthcoming) argue, in our
opinion convincingly, that the use of Import-Export in the trivialization of Stalnaker’s
Thesis is innocent from a normative point of view. For the role of Import-Export in Gib-
bard’s triviality proof, see Égré, Rossi, and Sprenger (2023).
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setting via the equation pA(B) := p(A → B) and shown how this account
yields Stalnaker’s Thesis. We now move on to the dynamics of probabilistic
reasoning with conditionals, i.e., updating a prior probability distribution
to a posterior probability distribution in the light of incoming evidence.
Bayesian learning, the standard theory of changing one’s credences in the
light of new information, defines updates by means of conditional proba-
bility (for evidence E and hypothesis H):

pE(H) := p(H|E) (Bayesian Conditionalization)

In other words, the rational credence in H after learning E should be the
rational credence in H conditional on E. The natural generalization of
Bayesian Conditionalization to the trivalent setting is therefore based on
our definition of conditional trivalent probability. In this way, we can
be sure that the behavior of trivalent conditionalization mimicks standard
Bayesian Conditionalization as much as possible.

Definition 7 (Trivalent Conditionalization). Suppose we learn E ∈ L→ with
c(ETI) > 0. Then the rational credence in H ∈ L→ is the trivalent conditional
probability of H, given E:

pE(H) := pE(H) = p(E→ H) (Trivalent Conditionalization)

The first thing to note is the posterior probability function pE is itself a
trivalent probability function (proof omitted, but straightforward). Second,
C-equivalent sentences produce the same update under trivalent condition-
alization:

Proposition 5. For any formulas E, E′, H ∈ L→, if E =||=C E′, then pE(H) =

pE′(H).

Proof. Follows immediately from the observation that trivalent conditional
probability satisfies Left Logical Equivalence with respect to C (Property 4’,
p. 19).

When A and B are conditional-free, we also have A ⊃ B =||=C A → B,
and the above proposition implies the following corollary:

Proposition 6. For any H ∈ L→, and A, B ∈ L:

pA→B(H) = pA⊃B(H) (Updating on Simple Conditionals)
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In other words, learning a simple conditional A→ B is the same as learning
the material conditional A ⊃ B. This prediction is also endorsed by Gold-
stein and Santorio (2021) and Santorio (2022, Section 7): it is required for
explaining why, upon learning a disjunction such as “either the butler or
the gardener did it”, we also fully accept the sentence “if the butler did not
do it, the gardener did it”. While Santorio’s account does not treat these
sentences as logically equivalent, but only as update-equivalent, our ac-
count explains the equivalence between learning a simple conditional and
learning the corresponding material conditional in terms of their semantic
and logical properties in C.

These results are helpful for tackling open problems in Bayesian episte-
mology. Note that Bayesian conditionalization is a principle for propositional
learning. When indicative conditionals are not treated as standard propo-
sitions, it is unclear how Bayesian should update on A → B. The various
proposals in the literature, such as adding the constraint p′(B|A) = 1 for
the posterior distribution p′, or conditionalizing on A ⊃ B, are thus not
buttressed by a theory of the semantics of conditionals (for discussion, see
Douven and Romeijn 2011; Eva, Hartmann, and Rafiee Rad 2020).

By contrast, trivalent semantics naturally extends the scope of Bayesian
updating to conditional sentences. Specifically, we have justified why learn-
ing a simple conditional should amount to learning the corresponding ma-
terial conditional. In fact, we can also show that trivalent conditionaliza-
tion generalizes Bayesian conditionalization in another important way. One
way of motivating conditionalization is to consider it as a special case of
a more general updating rule: minimizing the divergence between prior distri-
bution p and posterior distribution p′. Indeed, results by Cziszár (1967, 1975)
and Diaconis and Zabell (1982) show that for a certain class of divergence
functions—the so-called f -divergences—the two following updating poli-
cies are equivalent:

(1) Bayesian conditionalization on the event E;

(2) minimizing the f -divergence between the distributions p and p′, sub-
ject to the constraint that p′(E) = 1.

In general, for discrete probability spaces Ω = {ω1, . . . , ωn}, f -divergences
have the form

D f (p, p′) =
N

∑
i=1

p(ωi) f
(

p′(ωi)

p(ωi)

)
,
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where f : R≥0 → R is a convex and differentiable function satisfying
f (1) = 0. A well-known f -divergence is the Kullback-Leibler divergence
or relative entropy, which is obtained by choosing f (x) = x log x.

The divergence minimization approach not only agrees with Bayesian
Conditionalization for propositional learning, but it is also independently
motivated as a conservative method of belief revision. Incoming evidence
should change our beliefs only to the extent that this is strictly required;
if possible, we would like to stay close to the original prior distribution.
Moreover, in comparison to standard Bayesian conditionalization, it has
the advantage of being applicable to a wider variety constraints on the
posterior probability distribution (e.g., constraints which we cannot express
in the object language).

We can now show that also trivalent conditionalization minimizes di-
vergence between prior and posterior distribution:

Theorem 4 (Updating Theorem). The following two procedures for updating
credences from a prior probability distribution p : L→ 7−→ [0, 1] to a posterior
probability distribution p′ : L→ 7−→ [0, 1] are equivalent:

(1) trivalent conditionalization on the proposition E ∈ L→;

(2) minimizing the f -divergence between p and p′, subject to the constraint that
p′(E) = 1.

Proof. Suppose we learn E ∈ L→, which, by the Reduction Theorem, can
be written as E ≈ A → B, with A, B ∈ L. Trivalent conditionalization and
Proposition 6 yield pE = pA→B = pA⊃B, i.e., learning E amounts to condi-
tionalizing on the corresponding material conditional A ⊃ B. Sprenger and
Hartmann (2019, Theorem 4.3) show that updating p on the material condi-
tional A ⊃ B is equivalent to minimizing the f -divergence D f (p, p′) subject
to the constraint that p′(B|A) = 1 (this expression denotes standard condi-
tional probability in L). However, by Adams’s Thesis, this constraint on the
posterior distribution is equivalent to p′(E) = p′(A → B) = p′(B|A) = 1.
The converse direction makes use of the same identities.

Since trivalent conditionalization agrees with the minimization of f -
divergence, it can be defended as a conservative method of belief revi-
sion in the Bayesian spirit. And it is much more powerful than stan-
dard Bayesian conditionalization: it applies to learning conditionals, and
to compounds of conditionals of arbitary complexity. The Updating Theo-
rem complements the account of rational credence and static inference in
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L→ outlined in the previous sections with a theory of dynamic inference
in L→, and with an epistemological defense of Trivalent Conditionaliza-
tion.15 Summing up, we have shown that (i) trivalent conditionalization
naturally generalizes Bayesian conditionalization to a language with a con-
ditional connective; (ii) C-equivalent sentences generate the same updates,
(iii) learning a simple indicative conditional corresponds to learning the
corresponding material conditional; and (iv) trivalent Bayesian condition-
alization can be represented as minimizing divergence between prior and
posterior distribution.

7 Conclusions

The present paper has proposed a trivalent approach to both the truth con-
ditions and the probability of indicative conditionals, based on the idea of
assigning a third truth value when the antecedent is false. We have shown
that this semantics, when paired with an appropriate consequence relation
for uncertain reasoning, generalizes Adams’s logic of p-valid inference to
arbitrary compounds and nestings of conditionals. Moreover, this account
(i) shows that all complex conditionals can be rephrased equivalently as
simple conditionals, (ii) validates Stalnaker’s Thesis for the probability of
conditionals in its most general form; (iii) models the learning of (condi-
tional) information by means of generalizing Bayesian conditionalization
to updating on conditionals.

The Reduction and Representation Theorem in particular vindi-
cate Adams’s conjecture that complex conditionals represent “linguistic
shortcuts”—we show them to be extensionally equivalent to simple con-
ditionals. In particular, p-validity is a sufficient criterion for evaluating all
probabilistically valid inferences in the unrestricted language L→, too. An
important corollary is that one does not have to choose between a truth-
conditional and a suppositional, Adams-style analysis of indicative con-
ditionals: we can have both. Trivalent semantics provides one with fully
truth-functional, compositional truth conditions and with an Adams-style

15The Updating Theorem does not address the paradoxical examples of updating on
conditionals where learning the material conditional seems to deliver the wrong answer
(e.g., Douven and Dietz 2011; Douven and Romeijn 2011). However, it provides the se-
mantic and epistemological foundations for solution proposals, e.g. that the posterior
distribution should not only be close to the prior, but also preserve the causal structure
of the example, and the probabilistic independence constraints implied by this structure
(Eva, Hartmann, and Rafiee Rad 2020).
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theory of probabilistic reasoning. Committing to the view that indicative
conditionals do not have truth conditions is unnecessary philosophical bag-
gage for proponents of an Adams-style approach: it bars the road to impor-
tant insights into how we use complex conditionals, how we learn them,
and how valid inference relates to truth preservation.

The second part of the paper was devoted to conditional probability
and to an integration of our account with Bayesian inference. Conditional
probability pA(B) is defined as the probability of the conditional A→ B (for
all A, B ∈ L→). We have argued that this is a natural generalization of con-
ditional probability to the trivalent case. Stalnaker’s Thesis in its general
form, i.e., pA∧B(C) = pA(B → C), follows, for all sentences of L→, as an
immediate corollary, without falling prey to Lewis-style triviality results or
having to restrict the scope of plausible principles such as Import-Export.
Instead, triviality is avoided because trivalent probability does not satisfy
the Product Rule. The reason behind this is the (independently motivated)
non-classical behavior of conjunction in our semantics. This allows us not
only to obtain Stalnaker’s Thesis, but also to dodge the impossibility re-
sult presented by Schulz (2009) for representing uncertain inference with
compounds of conditionals in trivalent logic.

Finally, the Updating Theorem establishes that trivalent conditional-
ization is a form of divergence minimization, thereby showing that our
trivalent conditionalization is a natural generalization of Bayesian condi-
tionalization to the trivalent case, preserving its epistemological motiva-
tions. Specifically, we obtain that updating on a simple, non-nested indica-
tive conditional is equivalent to updating on the corresponding material
conditional—a prediction that agrees with the results by Goldstein and
Santorio (2021) and Santorio (2022). Despite our agreement with these and
other authors on crucial predictions, we consider our account simpler, more
unified, and more attractive in its results.
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A Proof of the Reduction Theorem

We reason by induction on the depth of formulae, assigning formulae of
L→1 a depth of 0, and positive depth to compounds of L→1 -formulae con-
taining at least one occurrence of→. This depth d(X) is defined recursively
as follows:

d(X) =


0 if X ∈ L→1
d(Y)+1 if X ∈ L→ \ L→1 has the form ¬Y

max[d(Y), d(Z)] + 1 if X ∈ L→ \ L→1 has the form Y ◦ Z

and ◦ ∈ {∧,∨,→}

For the base case d(X) = 0, i.e., X ∈ L→1 , the theorem holds trivially. We
now consider more complex formulae X /∈ L→1 case by case, according to
the formula’s main connective.

Negation Suppose X = ¬X′ for some X′ ∈ L→. We observe d(X) =

d(X′) + 1, and so, by the induction hypothesis, there are A′, B′ ∈ L
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such that X′ ≈ A′ → B′. So X ≈ ¬(A′ → B′). The Negation Commu-
tation property stated in Proposition 1 yields X ≈ A′ → ¬B′ ∈ L→1 .

Binary Connectives Suppose X = Y ◦ Z, with ◦ ∈ {∧,∨,→}, and Y, Z ∈
L→. Obviously, d(Y) < d(X) and d(Z) < d(X). Thus we apply the
inductive hypothesis to Y and Z and infer Y ≈ A → B and Z ≈ C →
D with A, B, C, D ∈ L. We have to consider three cases:

X = Y → Z

≈ (A→ B)→ (C → D) (by compositionality)

≈ (A ⊃ B)→ (C → D) (by Prop. 1, Left-Nesting)

≈ ((A ⊃ B) ∧ C)→ D (by Prop. 1, Import-Export)

X = Y ∧ Z

≈ (A→ B) ∧ (C → D) (by compositionality)

≈ (A ∨ C)→ [(A ⊃ B) ∧ (C ⊃ D)] (by Prop. 1, Conjunction)

X = Y ∨ Z

≈ (A→ B) ∨ (C → D) (by compositionality)

≈ (A ∨ C)→ ((A ∧ B) ∨ (C ∧ D)) (by Prop. 1, Disjunction)

In all three cases we have shown that X is semantically equivalent to
a L→1 -formula, completing the proof.
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