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Abstract

Multilevel models have become one of the most frequently used statistical models for analyzing
multilevel data. These types of data occur in many fields of psychology when observations
(Level 1) are clustered within some higher-level collectives (Level 2). This includes, for exam-
ple, students nested in schools, employees nested in work teams, patients nested in clinics, and
longitudinal data, in which observations are nested within persons. Unfortunately, multilevel
data often contain missing data, for example, when participants omit certain items in a ques-
tionnaire or they drop out before the end of a study. If treated improperly, missing data can
severely distort parameter estimates and may compromise statistical decision making. For this
reason, it is often recommended to rely on principled methods for dealing with missing data
such as multiple imputation (MI) or maximum likelihood estimation (ML). These procedures
have the advantage that they take all the available data into account, thus improving statistical
power and the conclusions that can be drawn from the data.

In the present dissertation, I consider different procedures for the treatment of missing data
with an emphasis on multilevel MI. In multilevel research, it is important that the imputation
model takes the structure of the data and the features of the substantive analysis model into ac-
count. However, many open questions remain about how this can be achieved in practice. In the
present dissertation, I consider a variety of applications of multilevel models as well as different
implementations of multilevel MI. In multiple studies, I examined how the multilevel structure

is represented in different implementations of multilevel MI, how different representations may

vii
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affect the results obtained from MI, and how missing data can be treated in multilevel models
with random intercepts, random slopes, interaction effects, continuous and categorical data, and
missing data at Level 2.

In addition, the present dissertation was concerned with the analysis of multiply imputed
data sets. In this context, I examined different procedures for pooling the results obtained from
multiply imputed data sets with an emphasis on multiparameter tests (e.g., model comparisons).
This includes applications in traditional research designs with the analysis of variance (ANOVA)
as well as applications in multilevel models with hypothesis tests about fixed effects and variance
components. Finally, the dissertation presents the R package mitml, which is intended to provide
researchers with a set of practical tools for conducting multilevel MI in research practice. This
includes tools for the specification of the imputation model, convergence diagnostics, managing
and analyzing multiply imputed data sets, and pooling methods for single- and multiparameter
tests along with a tutorial article that illustrates these features and provides a nontechnical

introduction to multilevel MI.
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Introduction

Over the past years, multilevel models have become a standard tool for analyzing clustered
data (e.g., Goldstein, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). Such
data structures often occur in psychological research when observations (Level 1) are clustered
within higher-level collectives (Level 2), for example, when students are nested within schools,
employees are nested within enterprises, or in longitudinal or repeated-measures data when
measurement occasions are nested within persons. In addition, psychological data are often
incomplete, for example, when participants omit some of the items in a questionnaire or drop
out before the end of a study. It is well known that simple methods for dealing with missing
data such as listwise deletion (LD) can lead to biased parameter estimates and an inefficient
use of the data (i.e., low statistical power). Fortunately, principled methods for the treatment of
missing data such as multiple imputation (MI) or maximum likelihood estimation (ML) have
become widely available (for an overview, see Enders, 2010; Little & Rubin, 2002; Schafer &
Graham, 2002).

Although a large body of research has concerned itself with missing data in general, the
treatment of missing data in multilevel research is still not well understood. Consequently,
missing data in multilevel research are most commonly treated with ad-hoc procedures such
as LD instead of principled methods such as MI and ML (e.g., Diaz-Ordaz, Kenward, Cohen,
Coleman, & Eldridge, 2014; Jelicic, Phelps, & Lerner, 2009; Nicholson, Deboeck, & Howard,

2017; Peugh & Enders, 2004). To provide an additional illustration, I conducted a software-
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Figure 1.1: Number of studies (in %) identified in computer-assisted literature review with keywords pertaining to
missing data (MD) and the treatment thereof using multiple imputation (MI) or maximum likelihood (ML). The

numbers within each plot denote the absolute numbers of studies.

assisted literature review on the basis of the articles published in the Journal of Education
Psychology and the Journal of Applied Psychology within the last 15 years (n = 2, 652). Using
a self-written program, I searched these articles for occurrences of keywords pertaining to
multilevel models, missing data, as well as the treatment thereof with ML and MI. The results
are shown in Figure 1.1. It is easy to see that the reporting of missing data has improved over
the years; however, relatively few studies seem to use principled methods for dealing with them
such as ML and, perhaps most noticeably, MI. The present dissertation considers this topic
in detail and attempts to (a) contribute to the growing literature on missing data in multilevel
research and (b) provide researchers with a set of clear-cut advice and practical tools for the
application of multilevel MI.

The dissertation is structured as follows. Chapter 1 reviews the theoretical background of
missing data, MI, and ML without particular emphasis on multilevel data. Chapter 2 then
focuses on multilevel MI, considering applications in the context of (a) multilevel random
intercept models, (b) the random coeflicients model, with an emphasis of random slopes and
cross-level interactions (CLIs), and (c) missing data at Level 2. Chapter 3 considers the analysis
of multiply imputed data sets with an emphasis on multiparameter tests and model comparisons.
Chapter 4 then introduces the R package mitml, which is intended to provide researchers with
a simple and effective workflow for conducting and performing analyses with multilevel MI.
Chapter 5 closes with a discussion and presents an outlook on possible topics for future research.

The present dissertation also provides a motivation for the five research articles that have been
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written as the dissertation progressed. These articles are provided in the Appendix.

1.1 Missing data

It is well known that an inadequate treatment of missing data can have adverse effects on
statistical decision making (e.g., Allison, 2001; Enders, 2010; Little & Rubin, 2002; Schafer
& Graham, 2002). For example, when analyses are based on only the complete cases (LD),
and data are missing in a systematic manner, then parameter estimates can be biased, statistical
power can be low, and the generalizability of one’s findings can be compromised. To gain a more
thorough understanding of when and how missing data affect statistical analyses, it is useful
to distinguish different mechanisms and different patterns of missing data, where missing data
mechanisms describe the relation between the (hypothetical) complete data and the occurrence
of missing data, and the patterns of missing data describe how missing data have manifested

themselves in a given data set.

1.1.1 Missing data mechanisms

Rubin (1976) distinguished three broad classes of missing data mechanisms. Let Y denote the
hypothetical complete data set, which can be decomposed in an observed and an unobserved

portion, Y = (Y, Y,,is), and let R be an indicator matrix that denotes which elements are

missing in Y. Rubin considered data to be missing at random (MAR), if the probability of

missing data P(R) is independent of the unobserved data Y, ;. given the observed Y, that is,

mis obs>

PR|Y s Y,nis) = P(R|Y ). Putdifferently, under MAR, once the observed data are taken into

account, there remains no link between the chance of observing data and the data themselves.
As a special case, the data can be missing completely at random (MCAR) if missing data occur
in a manner that is completely independent of both the observed and unobserved data Y, and

Y, thatis, P(R|Y ;. Y i) = P(R). These two missing data mechanisms are often referred to

mis’?

as “ignorable”! because the missing data mechanism need not be known in order to obtain valid

For simplicity, [ use the term “ignorable” as equivalent with MAR. However, the formal definition of “ignora-
bility” also requires that the missing data mechanism and the distribution of the data are governed by two distinct
sets of parameters (Schafer, 1997).
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Figure 1.2: Example for different missing data mechanisms. Left panel = complete data. Middle panel = missing at
random (conditional on school type). Right panel = missing not at random (conditional on achievement). Adapted
from Carpenter and Kenward (2013).

statistical inferences from the observed data (see also Section 1.2). By contrast, Rubin considers
data to be missing not at random (MNAR) when this condition is violated, that is, missing data
occur in a manner that is dependent on the unobserved data Y,,;; even after controlling for the
observed Y _,,. The notion of ignorability in missing data theory is conceptually similar to

that in Rubin’s causal model (Holland, 1986), where it refers to the mechanism for treatment

assignment in nonrandomized observational studies (Rubin, 1977, 2005).

To provide an illustration, consider Figure 1.2. Assume that a researcher has obtained two
samples of students from different school types (A and B), each of size n, = np = 150, in order
to estimate students’ overall academic achievement p across school types. The left panel of
Figure 1.2 shows the complete data. Clearly, the two school types differ in terms of achievement,
where achievement scores tend to be higher in school type B. Based on the complete data, an
unbiased estimator of u is the overall mean

(1.1)

o 1v 1
%= ;;x,. = 5gg (3996 +426.5+ .) ~ 500.5,

where 7 is the total sample size. In the middle panel, achievement scores are missing at random
(MAR) as a function of school type. Specifically, one third of the scores in school type A were
deleted but those in school type B were complete. As a result, the propensity of missing data

varies systematically with school types, and the overall mean is no longer unbiased
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1 Myps 1

X 0= —
obs n

iohs = —————=(426.5+481.6...) = 511.0 . 1.2

obs iz
However, because the data ;ri: MAR given school type, that is, missing data occur completely
at random within school types A and B, an unbiased estimator can be obtained on the basis
of conditional distribution of achievement given school type. As implied by the factorization
P(x) = P(x|A)P(A) + P(x|B)P(B), the estimator is given by

L1 ] 11 1
%o = 5 (x,,bsm + xobS|B) =3 (m (426.5+..) + =5 (406.6 +..)| ~ 5016 (1.3)

Finally, in the right panel in Figure 1.2, achievement scores are missing not at random (MNAR)
as a function of achievement (i.e., the bottom third of the achievement scores were deleted). 1
do not consider this case in detail; however, it should be immediately obvious that an unbiased
estimate of the overall mean cannot be obtained with only the data at hand and without making
specific assumptions about the missing data mechanism.

Perhaps more subtly, this example also illustrates that the consequences of the missing data
mechanism may depend on the substantive analysis model (see also Carpenter & Kenward,
2013). Specifically, in the example above, student achievement is missing at random (MAR)
given school type. As a result, the parameters of the conditional distribution of student achieve-
ment given school type (e.g., the regression coefficient) can be estimated without bias from
only the observed data. In other words, even though the overall mean of academic achievement
based only on the observed data, the same is not true for the regression of academic achievement
on school type. Generally speaking, the consequences of the missing data mechanism (e.g., in
terms of bias) depend on the substantive analysis model (for further discussion, see Carpenter
& Kenward, 2013; see also Little, 1992; von Hippel, 2007).

In practice, the notion of missing data mechanism can be useful because it allows expressing
conditions under which a treatment for missing data provides biased or unbiased parameter
estimates. For example, LD provides generally unbiased estimates only under MCAR, whereas
procedures such as MI and ML can provide unbiased estimates even under MAR. The example
above also illustrates the need for auxiliary variables, that is, variables that are related to
either the propensity of missing data or the missing data themselves, because the inclusion of

such variables can increase the plausibility of the MAR assumption (Collins, Schafer, & Kam,
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multivariate multivariate
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X v, v Y

Figure 1.3: Illustration for different patterns of missing data.

2001; see also Section 1.1.2). Although this assumption can never be tested on the basis of
the observed data alone (e.g., Enders, 2010), the data can be used to discern more from less
plausible assumptions about the missing data mechanism. For example, auxiliary variables
may be identified by conducting logistic regression analyses, where missing data indicators are
regressed on (potential) auxiliary variables (e.g., Carpenter & Kenward, 2013; White, Royston,
& Wood, 2011). In addition, graphical representations of missing data mechanisms can be used
to express and evaluate potential mechanisms from a theoretical point of view (Thoemmes &

Mohan, 2015; Thoemmes & Rose, 2014).

1.1.2  Patterns of missing data

In addition to missing data mechanisms, it is often useful to consider the patterns of missing data
in a given data set. For example, Little and Rubin (2002) distinguish between univariate and
multivariate patterns of missing data, in which one or several variables contain missing values.
In addition, itis often useful to distinguish item and unit nonresponse, in which all data for a given
unit are missing apart from some (known) background information (for a similar distinction,
see also Newman, 2014). Finally, the scores of latent variables are sometimes considered a
special case of missing data (see also Blackwell, Honaker, & King, 2017b; Mislevy, 1991). In
multilevel research, in which variables can be measured at different levels of the sample, both
the patterns and the adverse effects of missing data can extend to multiple levels (see Chapter
2).

Examples for common patterns of missing data are provided in Figure 1.3. In practice,

missing data often follow a “general” pattern with missing values on multiple variables and
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several sections of overlapping and non-overlapping “missingness” between variables (Figure
1.3, right panel). In applications of modern methods such as ML and MI, understanding the
patterns of missing data in a given data set can be extremely helpful because it allows to
identify further auxiliary variables, that is, variables that are (a) predictive of other variables
with missing data and (b) observed when these variables are missing (i.e., non-overlapping
“missingness”). For example, in the “general” pattern in Figure 1.3, both X and Y, may be
considered as auxiliary variables for Y3, provided that the observed values in these variables
are predictive of the missing values in Y¥;. By selecting a useful set of auxiliary variables, for
example, by inspecting pairwise correlations between variables and patterns of missing data,
modern methods for dealing with missing data can make better use of the information contained
in the observed data, thus increasing the efficiency and statistical power of subsequent analyses

(e.g., Collins et al., 2001).

1.2 Inference with missing data

The goal of statistical inference is to estimate population quantities on the basis of empirical
data (e.g., Wasserman, 2004). However, in the presence of missing data, statistical inference
can be challenging. For example, when data are missing in a systematic fashion (e.g., MAR)
and only the complete cases are analyzed (LD), then parameter estimates can be biased, and
statistical inferences may no longer apply to the entire target population (Little & Rubin, 2002).
In other words, statistical inference is complicated by missing data because the observed data
are no longer generated only by the parameters of the population model, say 0, but also by the
mechanism that generated the missing data, say & (see above; see also Little & Rubin, 2002;
Schafer, 1997).

An illustration is provided in Figure 1.4. With complete data, inference about 0 can
conducted on the basis of the likelihood of the data given 0, P(Y|0). By contrast, with
incomplete data, only R and Y, are observed, and the joint distribution of the data is governed

by both 0 and &. Specifically, the joint distribution can be written as

P(R.Y,,,[0,5) = / P(RY|0.8) Y, . (14)
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Complete Data Incomplete Data
P(Y|0) P(RJYobs|91§)
0 ——>Y 0’§ - > Yobs ’Ymis_> R’Yobs

Figure 1.4: Illustration for statistical inference with complete and incomplete data.

This expression is difficult to evaluate in general. However, under the assumption that (a) the
data are MAR and (b) 0 and & denote two distinct sets of parameters, it can be simplified to

P(R,Y,,]0,8) = / P(R|Y 5, §)P(Y]0) dY
: (1.5)

= P(R|Y §)/P(Y|0) dY,,;
where the first factor pertains to the missing data mechanism, and / P(Y|9) dY,,;, = P(Y,,,|0)
is the likelihood of the observed data that is obtained by “integrating out” the missing data
Y,,;s- This expression illustrates that, under MAR, inference about 0 can be carried out without
considering the missing data mechanism (the missing data mechanism is “ignorable”). For this

reason, P(Y,,,|0) is also referred to as the “likelihood ignoring the missing data mechanism”

obs
(e.g., Little & Rubin, 2002). In practice, there are two statistical procedures that are often
considered as the “state of the art” for conducting statistical inferences on the basis of incomplete
data: multiple imputation (MI) and maximum-likelihood estimation (ML). In the following,

I provide a general introduction to MI and ML with an emphasis on single-level data. The

application of MI (and to a lesser extent ML) to multilevel data is considered in detail thereafter.

1.3 Multiple imputation

The idea behind M1 is to replace missing data with an “informed guess” by drawing repeatedly
from the posterior predictive distribution of the missing data, given the observed data and a
statistical model (Rubin, 1987). The data sets completed in this manner are then analyzed
separately, and the results are pooled using the rules in Rubin (1987; see also Chapter 3).
Multiple imputation is related to Bayesian inference with incomplete data (see also Carpenter

& Kenward, 2013). In the Bayesian paradigm, inference about @ can be conducted on the basis
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of the observed-data posterior distribution, P(0|Y ;). Because it is usually difficult to sample

obs

from P(0|Y,,), the missing data Y,,;; are often regarded as additional (nuisance) parameters.

obs

The joint posterior distribution of @ and Y, ;, is given by

P(G’Y |Yobs) = P(elYmis’ Yobs)P(Ymis|Yobs) : (1.6)

mis
The marginal posterior distribution of 0 given Y, is then given by

P(BlYobs) = /P(B’ Ymileobs) deis > (1.7)

which can be regarded as the Bayesian equivalent to the observed-data likelihood in Equation

1.5 (see also Little & Rubin, 2002; Schafer, 1997). This idea to treat Y .. as a set of nuisance

mis
parameters is also referred to as “data augmentation” (Tanner & Wong, 1987).

Data augmentation. The data augmentation algorithm is a Markov chain Monte Carlo

(MCMCO) technique that simulates from the distribution P(0,Y,, Y, ;) by iterating between a

mis| * obs
posterior or P-step and an imputation or I-step. At iteration ¢,
0+ ~ P(OIY,,, YU ) (P-step) 08
{ .
YD < (Y, Y o 0C7Y)  (-step)
The resulting sequence converges in distribution to P(0,Y,,;,|Y,,) as t — 0.2 This algorithm

can be used to generate multiple, say M, imputations for the missing data, resulting in M copies of
the original data with missing values “filled in” by the imputed data. Because small to moderate
numbers of imputations (e.g., 5 to 100) are common, MI can be considered an approximation
of Bayesian inference, based on only a small number of posterior draws (Carpenter & Kenward,
2013). However, MI also provides estimates with good frequentist properties (e.g., coverage)
when analyzed with non-Bayesian methods (e.g., Rubin & Schenker, 1986). In this context,
MI can be regarded as a sampling-based procedure for conducting inferences on the basis of
incomplete data, that is, for “integrating out” the missing data by averaging over a predictive

distribution of the missing data, given the observed data and a statistical model (e.g., Schafer,

2Note that different statistical models are often used for the analysis and the imputation of empirical data. If the
two models differ, the technical requirement for inferences to remain valid is that the two models are “congenial”
in the sense of Meng (1994; for further discussion, see Carpenter & Kenward, 2013; Schafer, 2003).
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1999). In practice, MI can be implemented in a number of ways, where two implementations are
particularly popular in current statistical software: joint modeling (JM) or the fully conditional

specification (FCS).

1.3.1 Joint modeling

In the joint modeling (JM) approach, imputations are generated from a single statistical model
for all variables simultaneously. For example, with multivariate normal data in Y, imputations
can be generated from the following model. For casei (i = 1,...,n),

y=u+te, (1.9)
where u is a vector of means, and e; is a vector of residuals which follows a multivariate
normal distribution with mean zero and covariance matrix X. This model allows for (linear)
relations between all variables as implied by the multivariate normal distribution. In addition,
it is possible to include completely observed predictor variables in the imputation model (for
further details, see Schafer, 1997; Schafer & Olsen, 1998).

Categorical data. Even though the model above is restricted to continuous (i.e., multi-
variate normal) data, it can be extended to accommodate ordinal and (unordered) categorical
variables with missing data. For example, for a categorical variable with ¢ categories, the
model may include a set of ¢ — 1 latent continuous background variables that represent the
differences between categories and which may be correlated with the other variables (Carpenter
& Kenward, 2013; Schafer, 1997). Similarly, for an ordinal variable with ¢ categories, it is
possible to include a single background variable, where the differences between categories
are represented by a set of ¢ — 1 threshold parameters (Asparouhov & Muthén, 2010b). For
individual variables, these model are equivalent to conventional generalized linear models for
categorical data (e.g., Agresti, 2013; Fahrmeir & Tutz, 2010). To provide some general insight
into JM, I briefly describe a sampling algorithm that can be used for generating imputations
under the assumption of the multivariate normal distribution.

Sampling algorithm. In JM, imputations are generated in two steps. First, the model
parameters @ = (u,X), are drawn from their posterior distributions, given Y,,, and current

imputations for Y,,;; (P-step). Second, new imputations for Y, ;. are generated on the basis of

mis
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0 and Y, (I-step). Specifically, let r denote the number of variables and let any y; be missing
in arbitrary patterns, y; = (¥; s Yimis)- Under “flat” priors for m, an inverse-Wishart prior
Y~ W'l(v, A_l) with v > r, and given a set of starting values, imputations are generated as

follows. At iteration ¢,

1. P-step: Update @ = (u, X) as follows.

i) Draw ) ~ W l(v+n, A7 +SY), where S© = Z;’zl(ygt) -~ y(t))T(ygl) — ") with mean
(1) )

i,imp

vector y(t) = % Z?:l Yl@ and Y,@ = (Yi,obs’ y
ii) Draw u(Hl) ~N (y(’) , %Z(Hl) ) with y‘” as above .

2. I-step: Update y; ;s as follows.

i) Calculate the conditional mean of y; ., giveny; ,,, as follows.

2) ~(t+1) (t+1)

ui,mis|ol7s = ui,mis

-1
(t+1) (t+1) (t+1)
i,mis,obs [Zi,abs ] (yi,ObS - ui,obs )

by XDyt _yles) [Z(Hl)]_l $(+1)

i,mis|obs i,mis i,mis,obs i,0bs i,0bs,mis

+X

ii) Draw e o N(O, x(h ) and impute y(Hl) it et

i,mis i,mis|obs imis Mi,ml’slobs i,mis *

This illustrates that imputations in JM indeed rely on the joint distribution of the data: Based
on the (joint) multivariate normal distribution for y;, imputations for the missing data y; ,,;; are

drawn from the (conditional) normal distribution of the missing data, given the observed data

yi,obs‘

1.3.2  Fully conditional specification

As an alternative to JM, it has been suggested to approximate the joint distribution of the data
with a sequence of univariate, conditional models (Raghunathan, Lepkowski, van Hoewyk, &
Solenberger, 2001; van Buuren, 2012; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin,
2006). This is referred to as the “fully conditional specification” (FCS) of MI and also known
as “chained equations” or “sequential MI”. For example, if the joint distribution of the data is
multivariate normal, then imputations can be generated in a sequence of regression models with
normally distributed residuals. Specifically, with multivariate normal data in Y, imputations

can be generated as follows. Forcasei (i = 1,...,n) and variable p (p = 1,...,r),
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Yip = Yi-p)Bp + €ip » (1.10)

where y;_,) denotes the predictor variables in the p-th imputation model, including all variables
other than y;, and a “one” for the regression intercept, ﬁp denotes the regression coefficients
for y;_,). and ¢;, is a normally distributed residual with mean zero and variance 012). Note
that the FCS approach differs from JM in that it considers only one variable at a time. To
address multivariate patterns of missing data, the FCS approach iterates back and forth between
variables, including the most recent imputations for missing values in y;_, at each iteration.
Similar to JM, the FCS approach also acknowledges the relations that exist between variables;
however, it does so by repeatedly conditioning variables on one another, thus approximating
the joint distribution used in JM. In principle, however, the imputation model for each variable

in FCS may include only a subset of the variables in y;_, as well as transformations of these

variables or nonlinear effects.

Categorical data. Similar to JM, the FCS approach is able to accommodate ordinal and
(unordered) categorical data using generalized linear models (e.g., Agresti, 2013). For example,
if y;,, is a (unordered) categorical variable with missing data, the imputation model may be a
multinomial logistic or probit model, conditional on Yi(-p)- Similarly, if Yip is ordinal, the
imputation model may be an ordered logistic or probit model (Brand, 1999; van Buuren et
al., 2006). To provide further insights into the FCS approach, I briefly describe a sampling
algorithm that can be used for multivariate normal data (see also Rubin, 1987; van Buuren et

al., 2006).

Sampling algorithm. In contrast to JM, the FCS approach iterates across variables with
missing data, employing the P- and I-step separately for each variable. Specifically, let any y,),

be partially missing, y;, = (Yip.ops Yipmis)» and let n denote the number of cases with y;,

p,obs

observed. Under “flat” priors for §, and 012, (Box & Tiao, 1973)3 and given a set of starting

values, imputations are generated as follows. At iteration #, for variable p,

3Note that this choice of priors places a flat, uniform density on both f§ , andlog 6, (see also Jeffreys, 1961). Itis
presented here mostly for consistency with the published literature (e.g., Rubin, 1987) and software implementations
(van Buuren & Groothuis-Oudshoorn, 2011). As an alternative, any standard conjugate prior can be used, for
example, the scaled inverse-)(2 with user-defined prior parameters (see Chapter 2; for a general discussion, see also
Gelman et al., 2014).
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1. Estimate ﬁg) and 62 ® from the regression model Yipobs = yl(é)_ ) B, + ¢;, using the cases with
Yip observed, with yl(() _— (yl( —p)obs yl(()_p) mu)
2. P-step: Update 0, = (B, op) as follows.

2(1+1) 0]

—k,, 6> (t)) where k), is the number of variables in y,

2
~ inv-y~(n ip)

i) Draw o, pobs ~ Kp» 0,

(usually r).

-
ii) Draw B(z+1) N(ﬁp ’ 127(t+l)V(l‘)) where V) = (Z p.obs fé);)ygt—)p)) )

3. Lstep: Update y;,, ;s as follows.

i) Draw el(;rln)p N(0, 0>“V) and impute yl.(;:n)p (Hl) [S(m) I(E) - el(;,ln)p.

This illustrates that the FCS approach, like the JM, draws imputations for missing data y;, ,;
from the conditional distribution of the missing data, given the observed data y;_,) ., and
)

the most recent imputations for the missing data in other variables y;

. However, it
i(=p),mis

does so for each variable separately, thus implementing the data augmentation algorithm on a
variable-by-variable basis.

Practical considerations. In comparison with one another, the JM approach tends to be
easier to use in practice because it employs a single imputation model for all variables with
missing data. Consequently, standard tasks such as the specification of the model and the
assessment of convergence tend to be simpler under JM. By contrast, FCS tends to be more
flexible with separate imputation models for each variable. This can be advantageous in
applications with a larger number of variables or categorical variables with a large number
of categories; in such cases it is often easier (and potentially more stable) to carry out the
imputation in a sequential manner with FCS. In addition, each imputation model may include
a different set of predictor variables, thus further reducing complexity (for a similar discussion,

see also Carpenter & Kenward, 2013).

1.4 Model-based procedures

Missing data can also be treated using model-based procedures, which allow parameter estimates

to be obtained directly on the basis of the incomplete data (e.g., Little & Rubin, 2002). In
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practice, this is often achieved by employing maximum-likelihood (ML) or Bayesian estimation
procedures (e.g., Enders, 2010; Little & Rubin, 2002). In the following, I briefly discuss these

two model-based procedures for the treatment of missing data.

1.4.1 Maximum-likelihood estimation

The general approach of ML to the treatment of missing data is to directly estimate the parameters
of the model of interest by maximizing the observed-data likelihood (e.g., Little & Rubin, 2002).
However, because these estimates are seldom available in closed form with incomplete data,
obtaining ML estimates often requires iteration (e.g., Schafer & Graham, 2002). In the following,
I discuss two approaches for obtaining estimates in this manner: the expectation-maximization
(EM) algorithm and full information maximum likelihood (FIML).

EM algorithm. The EM algorithm (Dempster, Laird, & Rubin, 1977) is an iterative pro-
cedure that consists of two steps. In the expectation or E-step, the complete-data likelihood
function is calculated by replacing the missing elements in the likelihood with their expected
values, given Y, and a current set of parameter estimates 0. In the maximization or M-step,
a new estimate 07" is determined as the value that maximizes the complete-data likelihood;
iterating these steps until convergence yields the ML estimate of 8. The EM algorithm bears
resemblance with MI in multiple ways (Schafer, 1997). However, instead of replacing missing
values, it “emulates” the expected contribution of the unobserved data to the complete-data
likelihood. For example, with multivariate normal data in y;, the likelihood can be written in
terms of the sufficient statistics » ; y; and »;; y,-Tyi. Given current estimates u(’) and £, the
E-step calculates the conditional mean and variance of y; ,,;; giveny; ¢ (see Step 3 during JM)
and augments the sufficient statistics with the expected contributions of y; ,,,,.. The M-step then
computes a new estimate u(m) and =" from the sufficient statistics.

Full information ML. As an alternative to EM, the observed-data likelihood function
can often be expressed and evaluated directly on the basis of the incomplete data. This is
often referred to as “direct” (Allison, 2001; Yuan & Bentler, 2000) or “full information” ML
(Arbuckle, 1996; Enders, 2001; Enders & Bandalos, 2001). Under FIML, each case contributes

to the likelihood function to the extent to which it has data. For example, if the model of interest
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is the multivariate normal distribution, the log-likelihood for each individual casei (i = 1,...,n)

can be written as

r i,0bs

2

1 1 _
logL(Glyi,obs) == 510g|2i,0bs| - E(yi,obs - ui,obs)TZi,olbs(yi,obs - M‘i,obs) - log(2ﬂ) B (111)

where the subscripts simply refer to only the observed data for each case. The observed-data
log-likelihood of Y, is then obtained by summing the individual likelihoods, logL(0|Y ) =
2 1ogL(0y; ). It is important to note that, in order to address missing data with FIML, the
variables with missing data must be included in the likelihood function. For example, in a
regression model, the likelihood is defined only in terms of the dependent variable. If missing
data occur in explanatory variables, the likelihood function must be adjusted in such a way that
it includes distributional assumptions about the explanatory variables with missing data, for
example, by assuming that the variables follow a multivariate normal distribution (e.g., Enders,

2010; see also Anderson, 1957).

1.4.2  Bayesian estimation

Instead of ML, the model of interest can also be estimated using Bayesian methods (e.g., Gelman
et al., 2014). In the Bayesian paradigm, inferences then focus on the observed-data posterior
distribution of the parameters in the model of interest, where the missing data are regarded as
an additional set of “nuisance” parameters (see Section 1.3). In practice, Bayesian estimation
of the model of interest again requires the imposition of distributional assumptions through a
statistical model for the variables with missing data (i.e., a predictive distribution for the missing
data; see Little & Rubin, 2002). For example, if the model of interest is a regression model with
missing data in the outcome variable, then Bayesian estimation could be carried out without
additional assumptions, treating the missing outcomes as additional parameters to be simulated.
If missing data occur in explanatory variables, the model must be extended, for example, by
making assumptions about the joint distribution of the variables (e.g., Little & Rubin, 2002) or
by factoring the (joint) posterior distribution into a sequence of conditionals (Ibrahim, Chen, &

Lipsitz, 2002; Ibrahim, Chen, Lipsitz, & Herring, 2005).
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1.5 Summary

In the present chapter, I provided a short introduction to different procedures for the treatment
of missing data. Despite the growing body of research on missing data in general, relatively
little is known about the treatment of missing data in multilevel research. For example, there
are a number of open questions regarding the correct use of multilevel MI (i.e., with both JM
or FCS), especially with missing data in variables of different types or at different levels, and if
the model of interest includes random slopes or cross-level interactions (CLIs). Perhaps more
subtly, it is still not clear how best to incorporate information located at different levels of the
sample (Level 1 and 2) into the imputation model and how this may be achieved using multilevel
JM and FCS. Finally, little is known about the correct application and the performance of FIML
in multilevel analyses (however, see Black, Harel, & McCoach, 2011).

In the following chapters, I consider some of these problems in detail, thus motivating
the research articles enclosed in this dissertation. First, I consider model-based procedures
and multilevel MI in applications with random intercepts, random slopes, CLIs, and different
types of variables (Articles 1 and 2) as well as the particular problem of including cluster-level
information in the imputation model in multilevel MI (Article 3). Then, I consider the analysis
of multiply imputed data sets with an emphasis on multiparameter tests and model comparisons
(Article 4). Finally, I present the R package mitml, which is intended to simplify both the
application of MI and the analysis of multiply imputed data sets, thus promoting a regular use

of multilevel MI in practice (Article 5).



2

Multiple imputation of multilevel
data

In the context of multilevel data, it can be challenging to treat missing data using MI. Previous
research has shown that, in order for MI to yield valid results, the multilevel structure must be
taken into account during the specification of the imputation model (Andridge, 2011; Drechsler,
2015; Enders, Mistler, & Keller, 2016; Liidtke, Robitzsch, & Grund, 2017; Taljaard, Donner, &
Klar, 2008; van Buuren, 2011). However, in multilevel research, what aspects of the multilevel
structure need to be considered often depends on the research question. For example, a multilevel
random intercept model may include explanatory variables at Level 1 and 2. In addition, it is
possible to allow for contextual effects (Cronbach & Webb, 1975; Firebaugh, 1978) of variables
at Level 1 by including the between-group components (e.g., the group means) as additional
explanatory variable (e.g., Marsh, 1987). In other applications, the model may include random
slopes of explanatory variables at Level 1, thus allowing for the relations between variables at
Level 1 to differ across groups, as well as cross-level interactions (CLIs) to explain some of that

variation (e.g., Hofmann, Morgeson, & Gerras, 2003).

Despite the growing interest in the problems associated with missing data in multilevel
research, it is still unclear how these features of multilevel data can be addressed in multilevel
MI. For example, although there is a consensus in the literature that relations between variables

at different levels (i.e., contextual effects) should be taken into account (for a discussion, see

17
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Enders et al., 2016), it is not yet fully understood how the cluster-level components of variables
should enter the imputation model in multilevel MI (see also Carpenter & Kenward, 2013;
Resche-Rigon & White, in press). Furthermore, it is currently unclear how random slopes
and interactions effects (e.g., CLIs) should best be addressed (see also Gottfredson, Sterba,
& Jackson, 2017; Grund, Liidtke, & Robitzsch, 2016a). Consequently, the following chapter
is dedicated the treatment of missing data in multilevel research and the specific challenges
associated with multilevel MI. I start with reviewing the structure of multilevel data and then
consider the treatment of missing data for (a) the multilevel random intercept model with missing

data at Level 1 and 2, and (b) multilevel models with random slopes and CLIs.

2.1 Structure of multilevel data

In multilevel research, the data are characterized by a clustered, nested, or hierarchical struc-
ture (e.g., Raudenbush & Bryk, 2002), for example, with individuals (e.g., students) clustered
within groups (e.g., schools). In these data, observations from individuals are not independent,
for example, because members of the same group are more likely to share similar traits (e.g.,
motivation) or be exposed to similar influences (e.g., teacher characteristics; for further discus-
sion, see Goldstein, 2011; Snijders & Bosker, 2012b). This non-independence can be regarded
as a nuisance (e.g., Hedges, 2007); however, in multilevel research, the clustered structure is
itself regarded as an interesting phenomenon because it allows observing variables and relations
between them at different levels (Snijders & Bosker, 2012b).

Variables measured at Level 1 and 2. Consider the example above with students nested
within schools. In such a case, variables can be measured at the level of students (Level 1)
and the level of schools (Level 2), for example, with questionnaires handed out to students
and school principals, respectively. Consequently, research questions in multilevel designs are
often concerned with the relations between variables at different levels, for example, the effects
of variables at Level 2 (e.g., school type) on outcome variables at Level 1 (e.g., academic
achievement) and vice versa for outcome variables at Level 2 (e.g., Croon & van Veldhoven,
2007). Further examples include multilevel mediation analyses (e.g., Croon, van Veldhoven,

Peccei, & Wood, 2014; Preacher, Zyphur, & Zhang, 2010).
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manifest latent
i NC 1 Xy
Wi
Xoj \ ¥ Xyj
n; ]
xnij ’ xl’l,j

Figure 2.1: Illustration for manifest and latent specification of between-group components of variables at Level 1.

Between-group components of variables at Level 1. In multilevel data, variables measured
at Level 1 can be decomposed into two independent components, where the first part varies
only within groups (the within-group component) and the second part varies only between
groups (the between-group component). The between- and within-group components can then
be included in a multilevel analysis model, thus allowing for separate effects to be estimated at
Level 1 and 2 or (alternatively) the estimation of contextual effects (Cronbach & Webb, 1975;
see also Kreft, de Leeuw, & Aiken, 1995). In the multilevel literature, it is well known that
the between-group components can be constructed in at least two different ways, as illustrated
in Figure 2.1 (see also Asparouhov & Muthén, 2006; Kreft & de Leeuw, 1998; Liidtke et al.,
2008). For example, consider a single variable X, taking values x; ; forstudenti i =1,...,n j)

in school j (j = 1,...,J). This variable is typically decomposed as
X=X -+(x--—)E.j), (2.1)

where the between-group component is represented by the group mean X, ;, and the within-

° j’
group component is represented by the individual deviations from the mean (x;; — X,;). This
is referred to as a manifest decomposition (Liidtke et al., 2008) because the between-group

component, X, ;, is directly observable in this specification: It is simply a summary measure

oj’
(i.e., the average) of the individual values X;j (see Figure 2.1). This represents the standard
specification of between- and within-group components in multilevel analyses (e.g., Hox, 1994;

Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002). As an alternative, the between-group

components of X can be regarded as an unobservable, latent variable, for which the individual
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values x; ; act as indicators (e.g., Croon & van Veldhoven, 2007; Grilli & Rampichini, 2011;

Liidtke et al., 2008). In such a case, the variable can be decomposed as
xl'j = xB,j + )CWJ-]» ’ (2'2)

where xp ; and xy,;; are normally distributed random variables denoting the between- and
within-group components, respectively. This is illustrated in Figure 2.1 (see also Mehta &
Neale, 2005). From this point of view, the between-group components xp ; can be regarded as a
latent variable, of which only the indicators x; ; can be observed. This specification is identical
to the decomposition in the one-way mixed-effects ANOVA, where xp ; is a random effect for
group j at Level 2, and Xyyij is a residual at Level 1 (see also Searle, Casella, & McCulloch,
2009; Snijders & Bosker, 2012b).

In practice, it is often a matter of debate which specification of between-group components
is more appropriate (for a discussion, see Liidtke et al., 2008; Stapleton, Yang, & Hancock,
2016). In the latent specification, the observed values in each group are regarded as a finite
sample from a potentially infinite population. This perspective is useful if interest lies primarily
in a construct at Level 2 (e.g., school climate) that is measured at Level 1 (e.g., student ratings
on school climate). In such a case, the true between-group component is unobserved (latent)
and measured only through a finite number of observations at Level 1. By contrast, in the
manifest specification, the observed values in each group are summarized by the group mean.
This perspective is useful if interest lies primarily in a construct at Level 1 (e.g., gender), for
which the group mean provides an exact summary of the construct at Level 2 (e.g., gender ratio).
Critically, the two specifications provide different estimates of group-level effects: If the latent
model holds in the population, the manifest mean provides only an unreliable measure of the
true between-group component, whereas the latent mean corrects for that unreliability. In such
a case, between-group effects calculated on the basis of manifest group means can be biased
(and vice versa; see Liidtke et al., 2008).

Consequences for multilevel MI. These aspect of multilevel data have important conse-
quences for the treatment of missing data and multilevel MI. First, missing data may occur at

both Level 1 and 2. Second, if the substantive analysis model allows for different relations
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between variables between and within groups (e.g., contextual effects), it is important that the
imputation model acknowledges that by including the between-group components of variables
at Level 1 during the imputation of missing data at Level 1 and 2 (see also Enders et al., 2016).
Finally, either manifest or latent group means can be used to represent the between-group com-
ponents of variables at Level 1, and it is still not yet fully understood (a) how the between-group
components are handled in current implementations of multilevel JM and FCS and (b) which
option is to be preferred in a given scenario. In the following, I consider these issues in the

context of the multilevel random intercept model with missing data at Level 1 and 2.

2.2 Random intercept models

To guide the following discussion, consider the following multilevel random intercept model
(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). For individual i ( = 1,...,n j) in

group j (j = 1,...,J),
Yij =Yoo + Y10(Xij — Xa;) + Yor1%ej + Yo2W; + Ug; + €, (2.3)

where y;; denotes the values of an outcome variable at Level 1, x;; those of an explanatory

variable at Level 1, X,; denotes the (manifest) group means of the x;;, and w; denotes the

ij
values of an explanatory variable at Level 2. In addition, u,; denotes the random intercepts at
Level 2, which is assumed to follow a normal distribution with mean zero and variance rg, and
e;; denotes residuals at Level 1, which is assumed to follow a normal distribution with mean
zero and variance o°.

In this model, the outcome variable Y is allowed to vary at both Level 1 and 2. In addition,
the model allows for different relations between Y and X at Level 1 and 2 by including different
regression coeflicients for (x;; — X,;) and X,;. Finally, the model includes variables measured
directly at Level 2, which do not vary within groups (W). If missing data occur in some or all
of these variables, both joint modeling (JM) and the fully conditional specification (FCS) can
be used for multilevel JM (Enders et al., 2016; Liidtke et al., 2017). In the following, I consider

these two approaches and describe how they incorporate the different features of the analysis

model.
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2.2.1 Joint modeling

In the JM approach, a single model is used to generate imputations for all variables simultane-
ously. In the context of multilevel data, the JM approach is based on a multivariate mixed-effects
model (Carpenter & Kenward, 2013; Goldstein, Carpenter, Kenward, & Levin, 2009; Schafer
& Yucel, 2002; Yucel, 2008). For a set of continuous variables measured at Level 1 and 2, the

model can be written as follows. For studenti (i = 1,.. .,nj) inschool j (j =1,...,J)

Yoj = My + Uy, (Level 2)

where y,;; denotes values for variables at Level 1 with means p;, random intercepts u,; at
Level 2, and residuals e,;; at Level 1. Likewise, y,; denotes values for variables at Level 2, with
means W, and residuals u,; at Level 2. The random intercepts and residuals at Level 2 combined,
u; = (u, U J-), are assumed to follow a multivariate normal distribution with mean zero and
covariance matrix . The residuals at Level 1, ey;;, are assumed to follow a multivariate normal
distribution with mean zero and covariance matrix X. If applied to the example above, y;;
would comprise X and ¥ as well as auxiliary variables at Level 1, and y,; would comprise W
as well as auxiliary variables at Level 2. In addition, the model may include an additional set
of completely observed predictor variables with associated fixed and random effects, an option
that is not discussed here for simplicity (e.g., Schafer & Yucel, 2002).

In this formulation of multilevel JM, there are several points worth noting. First, multilevel
JM separates between- and within-group components of variables at Level 1. Specifically,
neglecting the overall means w,, the values y;; are decomposed into a vector of random effects
u,; specific to each group and a vector of residuals e,;; specific to each individual. In doing
so, multilevel JM automatically adopts a latent decomposition for the variables at Level 1,
where u,; represents the latent group means at Level 2, and ey;; the individual deviations at
Level 1. Moreover, multilevel JM allows for (a) between-group relations between all variables
(i.e., variables both at Level 1 and 2) by allowing for the random intercepts and the residuals at
Level 2 to be correlated (W) and (b) within-group relations between the variables at Level 1 by

allowing the residuals at Level 1 to be correlated (X).
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Categorical data. The multilevel JM approach can also treat missing data in categorical
variables. For example, for a categorical variable with ¢ categories, the model can be extended
to include ¢ — 1 latent normal background variables that represent different categories, where
¢ is the number of categories (Carpenter & Kenward, 2013; Goldstein et al., 2009). Ordinal
data can be addressed in a similar manner with a single latent background variable and a set of
¢ — 1 threshold parameters that represent different categories (Asparouhov & Muthén, 2010b).
For categorical variables at Level 1, these strategies are equivalent to generating imputations
from a (multivariate) generalized linear mixed-effects model with appropriate link functions
(e.g., logistic or probit). Further details on the computational aspects of these models are
given by Carpenter and Kenward (2013). In the following, I outline the sampling algorithm for
the imputation of continuous data at Level 1 and 2 with multilevel JM (see also Carpenter &

Kenward, 2013; Goldstein et al., 2009).

Sampling algorithm. Let y,;; and y,; be missing in arbitrary patterns so that they can

be partitioned into observed and unobserved parts, y,;; = (y‘l’f’js, y'lnl-j-s) and y,; = (yé’fs, Y’fjs).

Note that the covariance matrices at Level 1 and 2, X and W, can be partitioned according to

the missing and observed parts of y;;; and y,;, respectively. For each individual, X can be
[ bs is,0bs
Z?j? E;’;l? oDs
Z(-)}_)x,mis Zr'n_[x
LU u

addition, ¥ can also be partitioned according to whether variables were measured at Level 1

obs mis,obs
partitioned as ] and for each group, ¥ can be partitioned as [‘Pn,;’s,m,.x \’P s ] In
j J

and 2, namely | o' 52 |. Similarly, u; and w, can be partitioned as (2%, W) and (3%, pi'),
y ¥, ¥, Y W p M’ll] ullj MZ] uZ]

respectively.

mis

and y,; on the basis of the

mis
1ij

The procedure seeks to find plausible imputations for y
observed data and the parameters of the imputation model, 0 = (u;, n,, ¥, X). Given flat
priors for m; and m,, and inverse-Wishart priors W_l(vl, AII) and W_l(vz, Ay 1) for £ and YV,
respectively, as well as a set of starting values for the missing data and 0, the procedure can be

summarized as follows. For notational convenience, I describe the P- and I-steps in reversed

order. Then, at iteration ¢,

1. I-step (missing data at Level 2): Update y;";p as follows.

i) Draw u(ltfl) ~N (ﬁ(l?, U(fj)) with mean and covariance matrix as follows.



24 MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH

1

~(1) _ Q) AD O 0 0 () () ()
a) ay; = (I~ |2 W+ Ay 2y — wyY), where A1|2 Yo [T1|2 > ]

is the reliability of the group means, ”(1 |)2j = ‘I’(ltz) [‘I’(zl)] (t) is the expected value of

-1
u,;, and ‘I’(l?z ‘I’(t) - ‘I’(t) [‘I’(t)] ‘I’(t) is the variance of u, ;, given u,;

b) U(lt]) 1 A(f> > with AY) - as above

112j 112j
ii) Calculate uofs (4 - yObS ugbs ‘™) for the observed data at Level 2.
imp,(t+1) . mzslobs (t) gmis|obs,(t)
iii) Draw u,; N(j, ‘I’ ) with mean and covariance matrix as follows.

obs,(t+1) _( 0bs(l+1) 0bs(t+1))

) ~mts|0bs @ _ ‘Pobs,mts,(t) [Tobs,(t)] lu?bs,(t+l) where ll] ’ 2]

J J
b) ‘Pmls|0bs,(t) _ \Pl;u's,(t) _ \I,JQbs,mis,(t) [‘P?bs,(t)] -1 \P;nis,abs,(t)

iv) Form u(2z+1) — (uobs(z+1)’ um;p (t+1)) and impute y(t+1) _ ll(zt) + ll(ztjﬂ).
2. I-step (missing data at Level 1): Update y’mp as follows.

obs (t+ 1) obs _  obs,(t+1) obs,

i) Calculate e, 1ij ~ Uy Wy ™) for the observed data at Level 1.
ii) Draw elmp (Hl) (“Tlljslom {0 Em”'(’bs {1 with mean and covariance matrix as follows
) IO om0 [z;.fj’sm] et
by TP gt _ gm0 [yt ! gisetsto
iii) Form e(lt;l) (e ?f’/s (1) ’;Zp 1y and impute y(ll;'l) = u(lt) + u(Hl) + e(lt;.l).

3. P-step: Update 0 = (u;, u,, ¥, X) as follows.

i) Draw u(” ) N(~(t+1), Ly where y(m) =% Zhj(y(l’;l) (Hl)) and N is the total
sample size.
ii) Draw u(m) N(y, (Hl) l‘I’(t)) where y(m) i Z y(m).
iii) Draw £+ ~ w! (vi + N, Af + S(IHI)), where S(IHD =2 e(lt;l)Te(f;l).
iv) Draw WD < Whvy + 1A + S(ZIH)), where S(ZIH) 2ju (HI)T E.IH) and u(Hl)

(z+1) (z+1)
(uy T ug ).

The procedure acknowledges both the between- and within-group relations between variables:
Missing data at Level 1 are imputed conditionally on the observed data at Level 1; missing data
at Level 2 are imputed conditionally on the observed data at Level 2 as well as the random
effects of the variables at Level 1. This also illustrates how exactly the latent group means (i.e.,

random effects) of variables at Level 1 are used in multilevel JM.
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2.2.2  Fully conditional specification

As an alternative to multilevel JM, the joint distribution of the variables can be approximated
with a sequence of conditional models by multilevel FCS. For example, in the context of
the multilevel random intercept model with continuous data, missing data at Level 1 can be
addressed with univariate mixed-effects models, and missing data at Level 2 with regression
models (e.g., van Buuren, 2011; Yucel, Schenker, & Raghunathan, 2007; see also Gelman &
Hill, 2006). Specifically, with missing data at Level 1 and 2, multilevel FCS can be based on

the following set of models. For the p-th variable with missing data at Level 1,

Nijp = Yij(—p)ﬁ1p TUip T €iips (2.5)

where y;;_,) denotes all variables at Level 1 and 2 other than y,;;, (or a subset of these) as well
as the between-group components of the variables at Level 1, and B, p 1s a vector of regression

coefficients. For he g-th variable with missing data at Level 2,

Y2jq = Yi-qBag + 24 - (2.6)

where y;_,) denotes all variables at Level 2 other than y,;, as well as the between-group
components of the variables at Level 1 (or a subset of these), and ﬁZ(] is a vector of regression
coefficients. The random intercepts u, ;, as well as the residuals u,;, and ¢;;, are each assumed
to follow independent normal distributions with mean zero and variances w%p, \ugq, and Gf,,
respectively.

To address multivariate patterns of missing data, the FCS approach iterates across all
variables with missing data. Once imputations have been generated for variables at Level 1,
their between-group components must be updated in order to reflect the most recent imputations
(e.g., with “passive imputation”; Royston, 2004; van Buuren & Groothuis-Oudshoorn, 2011).
By including all other variables at Level 1 and 2 (or a subset) as well as the between-group
components of variables at Level 1 as predictor variables in each variable’s imputation model,
the multilevel FCS approach—like multilevel JM—allows for all between- and within-group
relations between variables to be included during MI. However, in contrast to multilevel JM,

the current implementations of multilevel FCS use manifest group means as the between-group
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components of variables at Level 1 (e.g., van Buuren, 2011; see also Enders, Keller, & Levy, in

press; Enders et al., 2016).

Categorical data. Because multilevel FCS employs a sequence of univariate models to
handle missing data adapting categorical variables with missing data is relatively straightfor-
ward. For example, categorical and ordinal variables with missing data at Level 1 can be
imputed on the basis of multinomial and ordered logistic (or probit) mixed-effects models, re-
spectively (Asparouhov & Muthén, 2010b; Carpenter & Kenward, 2013; Enders et al., in press;
see also W. Wu, Jia, & Enders, 2015). For categorical and ordinal variables with missing data
at Level 2, multinomial and ordered logistic (or probit) regression models can be used as in
the single-level case (see Chapter 1). In the following, I outline the sampling algorithm for the
imputation of continuous data at Level 1 with multilevel FCS. The algorithm for missing data
at Level 2 is identical with that in single-level data (Chapter 1) and is formally described in

Article 3.

Sampling algorithm. ~ For the variables with missing data at Level 1 (yy;;,,), each yy;;, can

obs mis

Yiip» Vlijp and J, ;. denote the number of

p.obs

). Furthermore, let N

be partitioned as yy;;, = (¥ p.obs
individuals and groups, respectively, for which y,;;, is observed. Under “flat” priors for 3, -
with priors \V%,, ~ inv—xz(v 1p r%p) and 0[2, ~ inv—xz(vp, rf,), and given a set of starting values,

imputations are generated as follows. At iteration ¢, for variable p,

1. Estimate [31 ¥ 2(;) ,and 02 ) from the multilevel random intercept model y?ffp = f;)( p)ﬁl »
(1) __ s.0bs lmp )
Uyjp + €jjp, Where y, . = (Yijipp ¥ ij(- p))

2. P-step: Update 0 = (B, ‘le’ 012,) as follows.

2 ~2,(t)
le‘[lp +‘]p aby\V]p

2,(t+1)

) .9
i) Draw \|!1 ~ 1mv-y (le + Jp,obs’ Vip+p obs
Az(r)
2,(1+1) . 2 vy 3 Ny obsOp
ii) Draw o, ~inv= (v, + N, ope 5 N

iii) Draw ﬁ(lt;l) ~N ([Ai([) , V(l)), where V( ) is the estimated variance-covariance matrix of the

regression coefficients.
3. I-step: Update )’u ;p as follows.

i) Draw Y N (@ iy ) with mean and covariance matrix as follows.
Ljip “ip Yjp
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nj 2,(t+1)
NOREEN TSI § ( obs _ (0 (z+1)) t+1) _ Vi, : ]
a) i) = ij " Z:‘ Yiijp = Yij( p)ﬁ where kpj = L, is the con
P
ditional reliability of the group means of J’1z ip» given yl(J)( )
2,(1+1)
b) U?) = k(tH) o with A*D as above
Jr n. pj
J
ii) Draw e;";’; (D) N0, 0> D) for cases with missing Yiijp-
me (t+1) _ (z) (z+1) (t+1) (t+1)
4. Impute y,; = l](_p)ﬁ Uy, t e, -

It is important to note that, in current implementations of multilevel FCS, the predictors y; ;.
may include (a) all variables at Level 1 and 2 other than Viijp and (b) the between-group
components—specifically, the manifest group means—of the variables at Level 1. Once y;;, has
been imputed, the group means of that variable have to be recalculated in a passive imputation
step (e.g., Royston, 2005) in order to be used in subsequent steps of the algorithm for the

imputation of missing data at Level 1 and 2.

2.2.3  Maximum-likelihood estimation

In addition to multilevel MI, it is also possible to treat missing data in multilevel analyses
with FIML. Consider the multilevel random intercept model in Equation 2.3. Using FIML, the
model parameters are estimated by evaluating the likelihood function directly on the basis of
the incomplete data. However, because the likelihood function encompasses only the dependent
variable Y, only missing data in Y are addressed by FIML (see also Allison, 2012; Hox, van
Buuren, & Jolani, 2016). In order to extend the treatment of missing data to explanatory
variables, the analysis model must be altered in such a way that the likelihood function includes
the explanatory variables with missing data. For this purpose, software for structural equation
modeling (SEM) can be used, which allows introducing additional distributional assumption
(e.g., multivariate normal) for the variables with missing data while estimating the parameters
of interest in the structural part of the model (see also Enders, 2010).

However, in multilevel data, this strategy can have unintended effects. For example, when
estimating the model in Equation 2.3 in the statistical software Mplus (L. K. Muthén & Muthén,

2012), missing data in X may be accommodated by treating X as a multilevel continuous
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variable that is correlated with W at Level 2 and with Y at both Level 1 and 2. However, in this
case, the model adopts a latent decomposition of the between- and within-group components
of X, thus changing the substantive analysis model and the interpretation of between-group
effects. The model given in Equation 2.3 can only be estimated directly by calculating the group
means of X beforehand while introducing distributional assumptions only for the within-group
components of X. However, although this strategy leaves the specification of between-group
components unchanged, the estimates of the group means may be biased if the values in X are

missing in a systematic manner (e.g., MAR).

2.2.4 Comparison of different procedures

Despite the broad selection of procedures for treating missing data in multilevel research, little is
known about how they compare with each other. Consequently, the present dissertation devoted
two articles to providing a comparison of these methods and guidance for how they might be
used in practice (see Articles 1 and 2). In this context, Article 1 provided an introduction to
the treatment of missing data in the context of the multilevel random intercept model using
both multilevel JM and FCS as well as FIML. It was shown that when the analysis model used
a latent specification of between-group effects (Liidtke et al., 2008), all procedures provided
accurate results. However, when the analysis model used a manifest specification of between-
group effects (i.e., manifest means), only multilevel JM and FCS provided satisfactory results.
By contrast, the standard strategy for implementing FIML led to strongly biased parameter
estimates due to the unintentional change in the analysis model; this bias was reduced (but not
fully eliminated) by calculating the manifest group means beforehand.

In Article 2, these comparisons were extended in two different ways: First, missing data
in categorical variables and in variables at Level 2 were considered in detail. Second, the
comparison was extended to include multilevel models with random slopes and CLIs. For the
random intercept model, the results mimicked those in Article 1. In addition, both multilevel
JM and FCS were shown to provide accurate results in various conditions with missing data in
categorical variables and in variables at Level 2. However, the results presented in Article 2

raised two additional points, which I will consider in the following. First, the question remained
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whether there is a formal equivalence in the treatment of missing data with multilevel JM
and FCS, that is, whether their use of the between-group components of variables at Level 1
constitutes an equivalent treatment of missing data at Level 1 and 2. This is discussed in the
following in the context of missing data at Level 2, in Section 2.3. In addition, Article 2 pointed
out several limitations of current procedures for multilevel MI in the context of multilevel

models with random slopes and CLIs. This is discussed in Section 2.4.

2.3 Missing data at Level 2

Relatively few studies have considered the treatment of missing data at Level 2 (for recent
discussions, see Enders et al., 2016; van Buuren, 2011; see also Black, Harel, & Matthews,
2013; Gelman & Hill, 2006). Moreover, these studies often considered ad-hoc procedures, for
example, single-level MI or to restrict the MI procedure to include variables only at Level 2
(Cheung, 2007; Gibson & Olejnik, 2003). For this reason, Article 3 was concerned with the
treatment of missing data at Level 2 and the role of between-group components in variables at
Level 1. In the following, I argue that the use of manifest group means in multilevel FCS, while
usually safe in practice, is not strictly equivalent with multilevel JM. Furthermore, I outline a
computational procedure developed in Article 3, which allows including latent group means in

multilevel FCS by using the method of plausible values (Mislevy, 1991).

2.3.1 (Non-) Equivalence of manifest and latent group means

In order to treat missing data at Level 2, the between-group components of variables at Level 1
often need to be taken into account, for example, because they are (a) featured in the analysis
model, thus leading to bias in parameter estimates if they were omitted (Meng, 1994; Schafer,
2003), or (b) related to the variables with missing data or the propensity of missing data, thus
improving the performance of MI (Collins et al., 2001; Schafer & Graham, 2002). However, it
is currently an open question how best to do this. In the multilevel literature, it is well known
that the latent and manifest models tend to provide different estimates of group-level effects

(e.g., Liidtke et al., 2008). For that reason, it may be hypothesized that the choice between
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the two specifications of between-group components may also affect parameter estimates when
they are used in MI.

Regarding the case with balanced data, it has been argued that FCS with manifest group
means provides imputations consistent with the joint model (i.e., with multilevel JM) because
the two models imply identical variance and covariance structures (Carpenter & Kenward,
2013; see also Mistler, 2015; Mistler & Enders, in press). However, regarding the case with
unbalanced data and missing values at Level 1, Resche-Rigon and White (in press) argued that
the conditional distribution implied by the joint model depend not only on the manifest group
means but also on group size and recommended a two-step variant of multilevel FCS that allows
for heteroscedasticity in Level-1 variances across groups (Audigier & Resche-Rigon, 2017). In
the present dissertation, I extend this line of reasoning and show that the use of manifest group
means in multilevel FCS can lead to biased estimates of covariances and regression coefficients
at Level 2 in unbalanced data.

Consider the case with two variables, where Y is measured at Level 1, and Z is measured at
Level 2 (for a more general expression, see Article 3). Under the assumption that Z is MCAR
and the number of groups goes to infinity (J/ — o0), it can be shown that (a) the variance of Z
is preserved under FCS with manifest group means of Y, but (b) the covariance of Y with Z is
biased in the case with unbalanced data. Specifically, the bias (in %) can be shown to be

Z(%‘l)nk(‘%%) Z“k(‘i“L%i) _

keS keS

b

%oBias(6,,) = p

where Gyz is the estimator for the covariance of ¥ with Z at Level 2 (B. O. Muthén, 1994), p
is the probability of missing data, S is the set of unique group sizes in the sample, k is one of
the fixed group sizes in S, m,, is the frequency of each k in S, 7 is the average group size, and
03 and ri are the variances of Y at Level 1 and 2. The bias is zero in balanced samples (i.e.,
when % = 1 for all k£ € S) but tends to be negative in unbalanced samples (i.e., toward zero).
Though the bias is usually very small in most practical scenarios, this illustrates that multilevel
FCS with manifest group means is not fully equivalent to multilevel JM and may introduce bias
into estimates of regression coefficients at Level 2 if the joint model holds (for further details,

see Article 3).
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2.3.2 Latent group means in multilevel FCS

As an alternative to the standard implementations of multilevel FCS, latent means may be
included in in the imputation model for missing data at Level 2. Recall that, in multilevel FCS,
missing data at Level 2 can be treated by regressing each variable with missing data at Level 2 on
a set of predictor variables that may include any other variable at Level 2 and the between-group
components of variables at Level 1 (Equation 2.6). In order to include in latent group means
in the set or predictors, the method of plausible values can be used (Mislevy, 1991), which
provides a general framework for generating imputations for latent quantities (see also Little &
Rubin, 2002; for a similar application, see Yang & Seltzer, 2016). To this end, the latent means
are drawn from their posterior distribution, given the variables at Level 2 and between-group
components of all the other variables at Level 1. The sampling algorithm is given below (see

also Article 3).

Sampling algorithm. Recall that latent group means can be regarded as random effects in a
multilevel random intercept model. Therefore, the latent means can be sampled using standard
“empirical Bayes” methods for sampling random effects (e.g., Efron & Morris, 1973; see also
Raudenbush & Bryk, 2002). At iteration ¢, the latent group means yp ,;, for the p-th variable

at Level 1 are sampled as follows,

1. Estimate [A%(II;, \T/if’), and 612,’(t ) from the multilevel random intercept model y

where y;t()_p) =

0 _ 0
tijp = Yi-pP1p*

obs mis,(t)

+e; (y ipr Yi—p) ) contains the variables at Level 2, the between-group

UpjpT€ijp>

components of other variables at Level 1, and a constant (for the intercept).

2. Draw b\ ~ N (l;@ , BY ) with mean and variance are calculated as follows.
Ljp Ljp> “ljp

2,(1)

nj

N0 a0y @0 a0 L ) o _ Y - iy ]

i) bljp =(1 kpj) W, + )»pj " Zl: Yiijp where )»pj = VT is the conditional re
J 1=

)

liability of the group means, and M(l) © ﬁ(lt; is the conditional mean of Yiiip

vi = Yi-p)
®)

J(=p)

, given

y
~2,(1)
4]
ii) B(ltj)p = )\ZJ). - —— with 7»2]). as above
n.
J
O _ 0

3. Impute YBjp 1p
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Overall, the sampling procedure can be compared to the conventional sampling of random
effects in multilevel FCS (Yucel et al., 2007). For this reason, multilevel FCS approach with
latent group means becomes very similar to multilevel JM. Note that the latent group means must
be updated with a new posterior draw at each iteration of the procedure even if the underlying
variable is completely observed; this is required to preserve the uncertainty associated with the
(unobserved) latent means. Finally, it is worth pointing out that the procedure is not settled on
how the parameter estimates are obtained, that is, the procedure may be based on ML estimates,
Bayesian estimates, or a fully Bayesian approach, in which the point estimates ﬁl p \Tl%p, and
A12) are replaced by draws from the posterior distributions of these parameters. The simulation
results of Article 3 indicated that multilevel FCS with latent cluster means provides results
that are asymptotically identical to those of multilevel JM and unbiased with both balanced
and unbalanced data. Both the implementation with Bayesian estimates and the fully Bayesian

procedure were found to yield adequate results, where the fully Bayesian procedure appeared

to be the most accurate overall (for further details, see Article 3).

2.4 Random coefficient models

If the model of interest includes additional random effects or non-linear terms such as cross-
level interaction effects (CLIs), the application of multilevel MI is less well understood. In
the following, I consider multilevel MI in the context of the random coefficients model (e.g.,
Snijders & Bosker, 2012b), which allows for relations between variables at Level 1 to vary
across groups and may include explanatory variables at Level 2 to account for some of that

variation. For example, assume a researcher is interested in the following model

Yij = Yoo T Yi0(Xij = Xaj) + YorXej + Yo j + Vi1 (X5 = Xaj)w; 2.7

+ug; +uy(x; — Xa) + e,
where v, denotes the main (fixed) effect of (x;; — X,;), u;; denotes the random effect of
(x;; — X, j) that varies across groups, y;; denotes the cross-level interaction (CLI) associated
with the product term (x;; — X, ;)w;. The two random effects, u; and u, ;, are assumed to follow

a multivariate normal distribution and can be interpreted as random (i.e., unexplained) variation
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in the regression coefficients. In that context, the CLI denotes the extent to which the effect of
(x;; — X%, ;) varies systematically with W. If missing data occur only in the dependent variable Y,
both multilevel MI and FIML can be used to estimate the model of interest. Unfortunately, the
treatment of missing data is much less straightforward if missing data in explanatory variables
(e.g., X). In order to preserve the relevant features of the analysis model, the imputation model
must allow for the effect of (x;; — X,;) on Y to vary both unsystematically and as a function of W.
Below, I provide a short discussion about the problems one faces with standard implementations
of multilevel JM and FCS. In this context, I summarize the results of Article 2, which evaluated
these procedures in the context of the multilevel random coefficient model with and without
CLIs, and I present an alternative procedure for estimating the model of interest that relies on

Bayesian estimation.

2.4.1 Challenges with multilevel M1

In multilevel research, the random coeflicients model is frequently used to gain a better under-
standing how the relations between individual-level variables (Level 1) vary across groups (at
Level 2) and which explanatory variables account for some of that variance (CLlIs; for a dis-
cussion, see Aguinis & Culpepper, 2015). From the viewpoint of multilevel MI, the challenges
associated with missing data in the random coefficients model are twofold and concern both
random slopes of explanatory variables with missing data and the presence of non-linear terms
such as the CLI.

Random slopes. 1f missing data occur only in the dependent variable Y, the treatment of
missing data is straightforward. Specifically, missing data in ¥ can be imputed conditionally
on the explanatory variables with a univariate mixed-effects model that mimics the model
of interest (potentially with additional auxiliary variables) using either multilevel JM or FCS
(Schafer & Yucel, 2002; see also Enders et al., 2016; Grund, Liidtke, & Robitzsch, 2016a) or
simply estimated using FIML. However, if missing data occur in X, it is currently not possible
to directly include the random slope of (x;; — X,;) in the imputation model in multilevel MI;
it is possible to “reverse” the imputation model (e.g., with multilevel FCS; see Enders et al.,

2016; Grund, Liidtke, & Robitzsch, 2016a) such that the imputation model for X contains a
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random slope for (y; i~ Ve j), but this does not directly correspond to the relation specified in the
model of interest. Consequently, this strategy has been shown to induce bias into the estimates
of fixed effects and to underestimate the slope variance in subsequent analyses (Grund, Liidtke,
& Robitzsch, 2016a; see also (Gottfredson et al., 2017)).

In the simulations conducted in Article 2, the performance of multilevel MI and FIML in
the context of the random coefficients model was evaluated in a broad range of settings both
with and without CLIs. The results for conditions without CLlIs are largely in line with previous
findings: Both multilevel MI and FIML provide asymptotically unbiased parameter estimates
when missing data are confined to the dependent variable. However, if the explanatory variable
is affected by missing data, “reversing” the imputation model (e.g., using multilevel FCS) results
in slightly biased estimates of the fixed effect and the slope variance. If the random slope is
omitted from the imputation model (e.g., using multilevel JM or FCS), the bias in the fixed
effects becomes smaller at the cost of larger bias in the slope variance.

Cross-level interactions (CLIs). Similar to the challenges associated with random slopes,
the treatment of missing data in models with CLIs is only straightforward if missing data are
confined to the outcome variable Y. By contrast, if the explanatory variables that partake in the
interaction contain missing data (e.g., X and W), it is currently an open question how best to
perform MI. In single-level M1, several ad-hoc procedures have been proposed to accommodate
interaction effects. For example, the interaction term may be regarded as “just another variable”
(JAV) and imputed without further constraints (von Hippel, 2009; White et al., 2011). This
approach has produced mixed results overall but has also been termed “the best of a set of
imperfect methods” (Seaman, Bartlett, & White, 2012). However, in multilevel MI, using JAV
may not be straightforward if the model relies on group mean centering to separate between- and
within-group effects because the group means are themselves subject to uncertainty (see Article
2). As an alternative, it has been recommended to simply impute the variables underlying the
interaction effect (e.g., X and W), after which the product term can be updated using “passive
imputation” (e.g., White et al., 2011). This approach is particularly attractive in multilevel MI
because it is easy to implement and available in standard software; however, it has been shown

to be more prone to bias as compared with other methods (e.g., S. Kim, Sugar, & Belin, 2015;
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Seaman et al., 2012; von Hippel, 2009).

In Article 2, particular emphasis was placed on multilevel FCS with passive imputation of
the CLI. In this evaluation, multilevel MI still provided reasonable estimates of the main effects,
but estimates of the CLI and the (residual) slope variance were noticeably biased. If the random
slope was omitted, the bias in main effects and the CLI became slightly smaller at the cost of
larger bias in the slope variance. By contrast, LD provided biased estimates of the main effects
but the least biased estimates of the CLI; single-level MI generally performed worse than did
multilevel MI. Taken together, the results of the simulations in Article 2 indicated that, although
LD and single-level MI tended to perform worse than multilevel MI, current implementations
of multilevel MI are still not perfectly suited for dealing with missing data in the multilevel
random coeflicients model. For that reason, Article 2 also includes a list of recommendations

and fully reproducible examples for the use of current software for multilevel MI.

2.4.2  New methods for accommodating random slopes and CLIs

In the context of single-level MI, it has previously been acknowledged that the conditional
distributions for the imputation of incomplete explanatory variables employed under passive
imputation and JAV are misspecified when the true model includes quadratic or interaction
effects (Seaman et al., 2012; see also S. Kim, Belin, & Sugar, in press; S. Kim et al., 2015). As
an alternative, Bartlett, Seaman, White, and Carpenter (2015) poposed an adjusted procedure
for single-level FCS which factorizes the joint posterior distribution into separate components
pertaining to the model of interest and the explanatory variables with missing data, thus taking
nonlinear and interaction effects in the model of interest into account during MI. Similar
approaches have also been applied in the context of regression (Zhang & Wang, 2016) and
multilevel analyses (Erler et al., 2016), which used Bayesian estimation to estimate the model
of interest directly from the incomplete data but can also be used to perform MI. In addition,
Goldstein, Carpenter, & Browne, 2014 proposed a procedure for fitting the joint model using
Bayesian methods and generating imputations with multilevel JM while accommodating random
slopes and interaction effect in the model of interest. First implementations of this approach are

currently becoming available but still require further evaluation (Quartagno & Carpenter, 2017).
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Finally, similar methods have also been proposed for ML estimation, which likewise rely on a
factorization of the joint likelihood into separate components pertaining to the model of interest
and the explanatory variables with missing data (Ibrahim, Chen, & Lipsitz, 2001; Stubbendick
& Ibrahim, 2003). In the context of Article 2, preliminary simulations have demonstrated
that these procedures possess great potential for the treatment of missing data in the random
coeflicients model. For this reason, I consider these approaches in some additional detail with

an emphasis on Bayesian estimation.

2.5 Bayesian estimation of the random coefficients model

The presence of interaction effects complicate matters because they imply a complex joint
distribution for the variables of interest (e.g., Seaman et al., 2012). Consider the model in
Equation 2.7 with missing data in X, in which case imputations would usually be generated
from the conditional distribution P(X|Y, W) using multilevel JM or FCS. However, it has been
shown that this distribution is not strictly linear in ¥ and W but also includes the interaction
between the two and higher-order effects of W (S. Kim et al., 2015). Then, according to Bayes’
theorem, the conditional distribution of X, given Y and W, can be expressed in the alternative

factorization

P(X|Y, W) « P(Y|X, W)P(X|W)P(W), (2.8)

where P(Y|X, W), which is the model of interest, and P(X|W)P(W), which represents a con-
ditional model for the (missing) covariates. In other words, instead of sampling directly from
P(X|Y,W), samples can be obtained equivalently by sampling from the factorization on the
right-hand side of the equation. In practice, this expression will not belong to a standard family
of distributions so that sampling can be achieved by rejection sampling or Metropolis-Hastings

(MH) steps with a suitable proposal distribution for missing x after which the proposed

i,mis>
3k

value x; ;¢

is rejected or accepted based on the joint likelihood of the data (see also Bartlett et
al., 2015; Goldstein et al., 2014). This provides the advantage that interactions and nonlinear
terms enter the joint density only through the model of interest but not the model for X, which

can now take simpler parametric forms.
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In the context of Bayesian estimation with missing data, this approach can be used to
factorize the joint posterior distribution in a similar manner (Erler et al., 2016). For example,
for the model of interest in Equation 2.7 with missing data in X, the joint posterior distribution

can be written as

P(6,5 X,

mis|Ys Xops W) o< P(Y| X pso Xppiso W, 0)P(O)P(X 0 X,,is| W, E)P(E) , 2.9

is’

which comprises the model of interest with parameters 0, and a conditional model for the
missing values in X, given the observed values for the explanatory variables, with parameters &E.
Similar approaches have been used to obtain ML estimates for multilevel models with missing
data (e.g., Ibrahim, Chen, & Lipsitz, 1999; Ibrahim et al., 2001).

Computer code for Bayesian estimation with JAGS. The model can be fitted with standard
software for Bayesian estimation such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000), JAGS (Plummer, 2016), or Stan (Stan Development Team, 2016). Given below is
compute code needed to specify the random coefficients model with missing data in X in the

statistical software JAGS.

model{
for(n in 1:N){

y[n] ~ dnorm( yhat[n] , tauly )
x[n] ~ dnorm( xhat[n] , taulx )

# model of interest

yhat[n] <- b@y + bly * ( x[n] - xgmlgroup[nl] ) + b2y * xgmlgroup[n]] + b3y * z[n] +
b4y x ( x[nl - xgmLgroup[n]] ) * z[n] + uy[group[nl,1] +
uy[group[n],2] * ( x[n] - xgm[group[n]] )

# "imputation” model for x
xhat[n] <- box + b1x * z[n] + ux[group[nl]

3
for(g in 1:G){

ux[g] ~ dnorm( @ , tau2x )
uy[g,1:2] ~ dmnorm( M[1:2] , Tau[1:2,1:2] )

# group mean
xgmlg] <= mean( x[ ( (g-D*ng + 1 ):( (g-D*ng + ng ) 1)

3

# fixed effects
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b@x ~ dnorm( @ , .001 )
b1x ~ dnorm( @ , .001 )
b@y ~ dnorm( @ , .001 )
bly ~ dnorm( @ , .001 )
b2y ~ dnorm( @ , .001 )
b3y ~ dnorm( @ , .001 )
b4y ~ dnorm( @ , .001 )

# variances components
taulx <- pow( sigmalx , -2 )
tau2x <- pow( sigma2x , -2 )
tauly <- pow( sigmaly , -2 )
sigmalx ~ dunif( @ , 10 )
sigma2x ~ dunif( @ , 10 )
sigmaly ~ dunif( @ , 10 )

Tau[1:2,1:2] ~ dwish( Id[1:2,1:2] , scaleld )
Sigma[1:2,1:2] <- inverse( Tau[1:2,1:2] )

It is easy to see that this procedure includes both (a) the model of interest and (b) an “imputation”
model for X, that is, a random intercept model in which W is used as a predictor at Level 2.
Despite its focus on estimation, this procedure can also be used to generate imputations for X,
which may be preferable in some settings (see also Goldstein et al., 2014). In the following,
I present the results of a simulation study which evaluates the performance of the Bayesian
estimation approach.

Evaluation of performance. To evaluate the performance of the Bayesian estimation ap-
proach, I conducted a simulation study using the design from Article 2. The data were generated
from the random coefficients model in Equation 2.7, where all variables were simulated with

mean zero and unit total variance. The simulated conditions included different sample sizes at

Level 1 (n =5, 10) and Level 2 (J = 50, 100, 200, 500), and different levels of the ICC for
the variables at Level 1 (p; x = p;y = .10, .50). In addition, the simulation included different
levels of the CLI (y;; = 0, .20) and the total slope variance (i.e., including the contribution of
the CLL Var(f;;) = vi, + 1 = .05, .10, .20). Missing data were induced in X according to a
MAR mechanism depending on Y, leading to 25% missing data in X. To provide a comparison
with other methods, missing data were also treated with the procedures evaluated in Article 2:
listwise deletion (LD), single-level FCS (FCS-SL), multilevel FCS passive imputation of the
CLI (FCS-CLI/RS), and multilevel JM. In order to allow a fair comparison between the proce-

dures, Bayesian estimation (JAGS) was used to generate imputations for X so that parameter
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estimates were obtained in the same way as under MI, that is, by fitting the model of interest
using 1me4 (Bates, Maechler, Bolker, & Walker, 2016) and combining the results according
to Rubin (1987). The parameter estimates under each method and each condition were then

evaluated according to bias, RMSE, and the coverage rate of the 95% confidence interval.

The simulation results are summarized in Table 2.1 for selected conditions. In conditions
without CLI (y; = 0), the regression coefficients were estimated approximately without bias
under JM and JAGS. In addition, FCS-CLI/RS provided imperfect but reasonable estimates of
these parameters with bias below 6%. By contrast, FCS-SL and LD provided biased estimates
of the regressions coeflicients, particularly under FCS-SL with large ICC (.50) and under LD
with small ICC (.10). In conditions with CLI (y;; = .20), the results for the main effects
were similar; however, estimates for the CLI (§,,) were biased under FCS-SL, FCS-CLI/RS,
JM, and (to a lesser extent) LD; only JAGS provided approximately unbiased estimates of the
CLI. Finally, the slope variance (%f) was estimated without bias only under JAGS, whereas the
estimates were biased downward under FCS-SL, FCS-CLI/RS, JM, and (to a lesser extent) LD.
Regarding the RMSE and the coverage rates of the 95% confidence interval, the results were
mostly in line with the bias. However, under FCS-CLI/RS and JM, the coverage rates of the
95% confidence intervals for the within-group regression coeflicient of X (Y;,) were below the
nominal value of 95% despite relatively low bias in these conditions, which may be attributed to
the fact that these methods underestimated (FCS-CLI/RS) or ignored (JM) the slope variance,
thus underestimating the uncertainty associated with the fixed effect (¥;,). Taken together,
Bayesian estimation and imputations generated on that basis tended to outperform current
implementations of multilevel MI in terms of both accuracy and efficiency. For that reason,
Bayesian estimation and related procedures appear to be promising approaches for estimating

the multilevel random coefficients model with missing data.

2.6 Summary

In this chapter, I attempted to (a) provide an overview of the treatment of missing data and

multilevel MI and (b) motivate the research conducted as part of the present dissertation. In
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Table 2.1: Bias (in %), RMSE, and Coverage (in %) of the 95% Confidence Interval for the Within-Group
Regression Coeflicient of X, the Between-Group Regression Coefficient of W, the CLI of X with W, and
the Residual Slope Variance (Medium Group Size, n = 10, Total Slope Variance = .20)

LD FCS-SL FCS-CLI/RS M JAGS
Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.
Random coefficients model without CLI (y;; = 0)

k =100 Prx =pPry =-10

10 -6.2 0.06 914 -85 0.07 855 -50 0.06 90.1 -14 0.05 90.7 -0.2 0.05 94.1
P02 -10.2 0.05 80.0 -1.7 0.03 935 -0.0 0.03 947 -0.3 0.03 945 -0.0 0.03 94.7
1 -0.3* 0.06 92.8 -3.2* 0.04 964 -2.2% 0.05 943 -0.3* 0.05 96.6 —-0.0* 0.06 94.1
%% -10.8 0.05 — -37.7 0.08 — -222 0.06 — -33.6 007 — 1.2 0.04 —
k =500

10 -6.0 0.04 75.1 -82 005 517 -4.1 0.03 8.9 -1.1 0.02 91.6 0.2 0.02 95.1
P02 -10.4 0.04 340 -19 0.02 905 -0.2 0.01 93.7 -0.5 0.01 941 -0.2 0.01 939
1 -1.3* 0.02 94.7 —-4.0* 0.02 96.0 -2.1* 0.02 956 -1.0* 0.02 96.8 -0.5* 0.03 94.1
%f -11.3 003 — -37.3 008 — -244 0.05 — -33.1 007 — 0.1 0.02 —
k =100 Prx =Pry = -0

10 -4.6 0.06 93.7 -34.6 0.18 3.6 -55 0.06 909 -20 0.05 935 -0.8 0.05 95.2
P02 -5.0 0.07 939 -1.8 007 947 1.1 0.07 952 1.0 0.07 952 1.0 0.07 952
1 -0.7* 0.05 96.2 -12.9* 0.04 954 -2.4* 0.05 958 -0.3* 0.04 97.1 -0.0* 0.05 94.7
%% -6.0 005 — -533 011 — =215 0.06 — -32.8 0.07 — 1.0 0.04 —
k =500

10 -4.1 0.03 853 -34.5 0.17 0.0 -42 0.03 827 -14 0.03 8.9 -03 0.02 954
Vo2 -5.7 0.03 888 -3.0 0.03 935 -0.0 0.03 958 -0.0 0.03 958 -0.0 0.03 95.8
1 -0.4* 0.02 95.8 —-12.6* 0.03 79.2 -1.6* 0.02 96.6 -0.5* 0.02 97.1 -0.1* 0.02 95.8
%% -75 002 — -546 011 — -242 005 — -333 007 — -04 002 —

Random coefficients model with CLI (y;; = .20)

k =100 Prx =Pry =-10

10 -5.8 0.06 89.1 -10.0 0.07 80.6 -6.1 0.06 90.5 -3.0 0.05 92.0 0.3 0.05 94.5
P02 -18.9 0.08 50.3 -1.6 0.03 93.1 -03 0.03 92.6 -0.5 0.03 93.5 -0.3 0.03 93.7
1 -6.8 0.05 93.5 -27.3 0.07 80.0 —-15.8 0.05 91.6 -21.2 0.06 87.8 -1.0 0.05 96.2
%% -10.2 0.04 — -36.7 0.06 — -224 005 — -329 0.06 — 2.1 0.04 —
k =500

10 -6.6 0.04 67.5 -10.7 0.06 27.6 -63 0.04 66.7 -3.8 0.03 823 -04 0.02 93.5
P02 -18.7 0.07 0.8 -1.2 0.01 94.3 0.1 0.01 96.2 -0.1 0.01 94.9 0.1 0.01 95.6
1 -6.6 0.02 932 -26.8 0.06 23.0 —-15.1 0.04 72.8 -20.7 0.04 47.7 -0.5 0.02 97.7
%% -103 0.02 — -36.5 006 — -243 0.04 — -325 005 — 1.0 0.02 —
k =100 Prx =Pry = -0

10 -44 0.06 93.1 -37.3 0.19 15 -7.1 0.06 880 -4.2 0.06 91.4 -09 0.05 94.5
P02 -11.2 0.08 88.0 -2.5 0.08 92.8 0.3 0.07 94.7 0.3 0.07 94.9 0.3 0.07 94.9
oy -2.1 0.05 95.6 -52.5 0.11 284 -14.3 0.05 93.3 -19.0 0.06 89.7 1.3 0.05 94.1
%% -88 004 — -514 0.08 — -230 005 — -336 006 — -0.6 0.04 —
k =500

10 -3.7 0.03 86.9 -37.1 0.19 0.0 -55 0.04 74.1 -3.2 0.03 87.1 0.0 0.02 95.8
P02 -11.9 0.05 71.3 -2.7 0.03 949 -0.1 0.03 949 -0.1 0.03 951 -0.1 0.03 94.9
1 -3.5 0.02 939 -532 0.11 0.0 -143 0.04 72.8 -19.6 0.04 53.0 0.2 0.02 94.1
%% -6.3 002 — -50.8 0.08 — -235 004 — -31.5 0.05 — 1.0 0.02 —

Note. 9, = within-group regression coefficient of X; ¥, = between-group regression coefficient of W; 9,; = CLI;
'Ac% = residual slope variance; LD = listwise deletion; FCS-SL = single-level FCS; FCS-CLI/RS = multilevel FCS in-
cluding product terms and random slopes; JM = joint modeling; JAGS = model-based MI (via Bayesian estimation).
 If the true CLI was zero, the scale of the bias was adjusted to mimic conditions with CLI = .20.
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general, multilevel MI is a powerful approach for dealing with missing data in many application
of multilevel analysis models. In the context of the multilevel random intercept model, it is
important that the imputation model allows for different relations between variables at Level 1
and 2, which can be accomplished in a very general manner with standard implementations
of both multilevel JM and FCS (for a detailed discussion, see Articles 1 and 2). However, in
applications of multilevel JM and FCS, it is important to acknowledged that they tend to use the
between-group components of variables at Level 1 in different ways (i.e., latent vs. manifest
group means). The two approaches tend to provide equivalent answers only in balanced but not
in unbalanced data; in order for multilevel FCS to be fully consistent with JM, it is possible to
simulate latent group means with the method of plausible values as outlined in Article 3 (for a
related discussion, see also Article 1).

In the context of the multilevel random coefficients model, it can be challenging to use
multilevel MI. Specifically, current implementations of multilevel MI are facing problems when
the model of interest includes random slopes or interaction effects (e.g., CLIs) and missing data
occur in explanatory variables (for a discussion, see Article 2). As an alternative, it is possible
to explicitly take the model of interest into account during model estimation or multilevel MI,
for example, using extensions of standard multilevel JM and FCS or by relying on specialized
Bayesian or ML estimation procedures. These procedures, though not yet widely available
in standard software for multilevel MI, provide promising results in the simulations studies
included in the present dissertation and should further be considered in future studies. Further
details and a comprehensive set of recommendations regarding the treatment of missing data
in multilevel research in various settings are provided in Article 2. In the following chapters,
I consider the analysis of multiply imputed data sets and the use of multilevel MI in research

practice.



42

MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH



3
Analysis of multiply imputed data

Naturally, the application of MI involves not only the imputation itself but also analyzing the
imputed data sets. To this end, the imputed data sets are analyzed separately with regular
complete-data methods, and the results are pooled into a final set of parameter estimates and
inferences (Rubin, 1987). In the missing data literature, several procedure have been proposed
for this task, including procedures for scalar estimands (e.g., individual regression coefficients)
as well as for complex statistical hypotheses that involve multiple parameter simultaneously (e.g.,
model comparisons; for an overview, see Reiter & Raghunathan, 2007). However, relatively
little is known about how these procedures perform in practice (e.g., Allison, 2001; Enders,
2010; Schafer, 1997; van Buuren, 2012). In the following chapter, I discuss the procedures
available for the pooling of parameter estimates in MI. In that context, I summarize the results
of Article 4, which was concerned with the evaluation of different methods for conducting
multiparameter tests in the context of the analysis of variance (ANOVA). In addition, I present
the results of two simulation studies, which evaluated these methods for testing hypotheses

about (a) fixed effects and (b) variance components in multilevel analyses.

3.1 Pooling of scalar estimands

In order to obtain final estimates and inferences for scalar estimands (e.g., regression coeffi-

cients), pooling is most frequently achieved with the procedure outlined by Rubin (1987). Let

43
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Q be the quantity of interest, which is estimated in the complete data by O with variance U.
Furthermore, assume that we obtained a number of M (m = 1, ..., M) imputed data sets. From
each of the imputed data sets, we obtain an estimate Q,n of the quantity of interest as well as
an estimate Um of its variance (e.g., its squared standard error). Then, according to Rubin, the

final estimate of Q under MI is

I L A
Q=M;Qw 3.1)

the average of the individual estimates Qm Under the assumption that Q is distributed normally

around Q in the compete data, the (total) sampling variance of Q can be written as
T=U+|1+ ! B (3.2)
- M ’ .

where U is known as the within-imputation variance, which is simply the average of the

individual variance estimates U,,,,

i

1 Y,
=30, (33)

m=1

and B is known as the between-imputation variance and calculated as
T
5 A V2
B=—— - . 34
T mZ:l@ 0,) (3.4)

In the calculation of the total sampling variance T, the component B/M can be regarded as a
penalty term that accounts for the fact that the variance tends to be estimated less precisely if
the number of imputations is low.4

Statistical hypotheses about Q can be tested similar to complete-data analyses by comparing

O/NT against a t distribution with v degrees of freedom,

112
V:(M—l) 1+m:| , (35)

where
Ry = U U/MB (3.6)

“More formally, Rubin (1987) derives the variance T as an approximation to the posterior variance of Q with
M — o (e.g., with hypothetical estimates Q,, U.., and B,,) but based on only a finite number of imputations M.
In that context, B/M is an estimator of the variance of Q around Q_oo (e.g., Schafer, 1997; see also Carpenter &
Kenward, 2013).
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is the relative increase in variance due to nonresponse. The idea behind this expression for
the degrees of freedom v is to “widen” the reference distribution in the complete data (i.e., the
standard normal) to account for the loss of information that is due to the missing data (Schafer,

1997). On the basis of the RIV, the fraction of missing information (FMI) can be estimated as

Fﬁ:RIV+2/(V+3),
RIV +1

(3.7

which can provide a useful diagnostic tool in practice because it quantifies the extent to which
the available information about the quantity of interest is affected by missing data (see also
Andridge & Thompson, 2015; Bodner, 2008).

Small-sample modification. Barnard and Rubin (1999) proposed an alternative expression
for the degrees of freedom more suitable for applications in smaller samples. Instead of Rubin’s
original large-scale approximation, Barnard and Rubin recommend using the adjusted degrees

of freedom

-1
V= (l + L) , (3.8)

v Vobs

where v, are the observed-data degrees of freedom, calculated as

Veom T 1 1
= Leom ™ [ — |, 3.9
Yobs = 3 eom ( 1+ RIV) G9)

and v, are the complete-data degrees of freedom.> In practice, using v can be useful because
it (a) never exceeds v,,,, and (b) is always smaller than v. For this reason and because V is only
slightly conservative in larger samples, Barnard and Rubin recommend using this expression
regardless of sample size.

Other modifications. Further modifications and alternatives to Rubin’s rules for scalar
quantities include variance estimator for complex sampling designs of J. K. Kim, Brick, Fuller,
and Kalton (2006), the rules for nested imputations of Shen (2000), and the alternative variance
estimator of Robins and Wang (2000), which has been shown to be robust against certain types

of misspecification of the imputation model (for further discussion, see Reiter & Raghunathan,

> The observed-data degrees of freedom v, can be better understood by observing that the estimated FMI can
be written as FMI = 1 — LU Therefore, v

3T b Can be understood as v, = v, (1 - FII\TICOW,), where FMI
an estimate of the FMI based on v,,,, (Equation 3.7). From this perspective, v, reflects a reduced sample size,

where the reduction is determined by the FMI.

com 18

obs
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2007). In the following, I focus on the procedures available for pooling multidimensional

estimands (i.e., multiparameter tests).

3.2 Pooling of multidimensional estimands

In research practice, statistical hypotheses often involve more than one parameter. For example,
when including a set of explanatory variables in a regression model, it is often interesting
to test for the simultaneous contribution of these variables. In the complete data, this test
can be carried out, for example, with a Wald-test on the vector of regression coeflicients, by
testing the difference in variance explained that is attributable to the explanatory variables,
or with likelihood-ratio test (LRT). In the following, I discuss the procedures available for

multiparameter tests and model comparisons with multiply imputed data sets.

3.2.1 Moment-based procedure (D)

Similar to the scalar case, let Q be the K-dimensional quantity of interest (e.g., a vector of
regression coefficients), and let Q,, and U, denote the estimates of the parameter vector and
its variance-covariance matrix obtained from M (m = 1,..., M) imputed data sets. Then,
according to Rubin (1987) and Li, Raghunathan, and Rubin (1991), hypotheses about Q can be

tested with the following test statistic

— (Q - QO)Tﬁ_l(Q - QO) (310)
K(1+ ARIV)) ’

where Q is the pooled estimate Q (i.e., the average Qm), Qy is the hypothesized value of Q

D,

under the null hypothesis (e.g., a vector of zeros), U is the within-imputation variance (i.e., the
average ﬁm), and ARIV, is an estimate of the average relative increase in variance (ARIV),

1+ M B!
ARy, = 0F I?r( .

where B is the between-imputation variance. Li, Raghunathan, and Rubin (1991) recommended

(3.11)

comparing D; against an F distribution with K numerator and v; denominator degrees of

freedom. Fora = K(M - 1),

-1 -192 .
_{4+(a—4>[1+<1—2a JARIV " ifa > 4 (3.12)

1% =
T (K + DM - D)1+ ARIVTY? /2 otherwise
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Small-sample modification. Reiter (2007) proposed an alternative for the degrees of free-
dom to be used in smaller samples (henceforth referred to as D). Conceptually, this modification
is similar to that of Barnard and Rubin (1999) and derived using Taylor series expansion. For
brevity, the expression is not given in detail here (for further discussion, see Reiter, 2007;
Reiter & Raghunathan, 2007). Further adaptions of D;which allow for different RIVs across
components of the parameter vector are given by Licht (2010).

Current recommendations regarding D, and Dj. In the missing data literature, D, and
Dj are often recommended because they utilize a (near) maximum of the information provided
by the imputed data (e.g., Enders, 2010; Schafer, 1997; van Buuren, 2012). Previous research,
though limited in scope, has shown that both D, and D] perform well as long as their assumptions
are not severely violated (e.g., Li, Raghunathan, & Rubin, 1991; Licht, 2010). Similarly, in
Article 4 of the present dissertation, D; and D] were always among the most reliable procedures
for testing hypotheses in the context of the ANOVA, especially in conditions with larger FMISs,
in which other procedures tended to be less robust. In smaller samples, D, tended to be slightly
liberal, whereas D} provided Type I error rates close to the nominal level across throughout
the study (for further details, see Article 4; see also Reiter, 2007; van Ginkel & Kroonenberg,

2014).

3.2.2  Procedure based on individual x* statistics ( D,)

In some cases, it may not be feasible to use D, for example, because estimates for the variance-
covariance matrix of the quantity of interest are not available. Therefore, Li, Meng, Raghu-
nathan, and Rubin (1991) proposed a simple alternative which requires only a xz-distributed
test statistic W,,, (or a p-value, equivalently) from each of the imputed data sets. The pooled test

statistic D, is then calculated as

orp—1 -1
_WK™' = (M + 1)(M - 1)"'ARIV,
1+ ARIV, ’

D, (3.13)

where W is the average of the W,,, K is the number of parameters being tested, and ARIV, is

another estimate of the ARIV,

ARIV, = (1 + M™") [M% i (Vw,, —«/_W)zl . (3.14)

—
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To conduct hypothesis tests on the basis of D,, Li, Meng, et al. recommended to compare it

against an F distribution with K numerator and v, denominator degrees of freedom
vy = K=3™M(M — 1)(1 + ARIV; ') . (3.15)

Because D, requires only the test statistics W,, it tends to be very flexible and can be used for
pooling both Wald-like hypothesis tests and LRTs.

Current recommendations regarding D,. In the literature, D, has been both praised for its
simplicity (e.g., Allison, 2001; Snijders & Bosker, 2012b) and criticized because (a) it tends
to be less reliable than D; when the number of parameters K to be tested is large, and (b) it
may provide overly conservative or liberal inferences depending on the FMI, producing Type I
error rates well above or below the nominal value (e.g., Enders, 2010; van Buuren, 2012; see
also Li, Meng, et al., 1991). However, much of the previous research focused on applications
of D, with relatively few imputations (e.g., as little as M = 3). In Article 4, these results
were only partially replicated. Specifically, with M = 10 or fewer imputations, D, was far
more conservative (and less powerful) than other procedures. However, with a larger number of
imputations (e.g., M = 100), it provided Type I error rates close to the nominal value with good
statistical power as long as the FMI was not too large (i.e., larger than 35%). In conditions with
larger FMI, D, became increasingly liberal with Type I error rates above the nominal value.
Based on these findings, D, may very well be used in many conditions that are likely to occur in
psychological research, particularly if the number of missing values is not too large or auxiliary

variables are available that reduce the FMI (for further details, see Article 4).

3.2.3 Likelihood ratio tests (D5)

Finally, hypothesis tests for multiple parameters can be conducted by comparing two nested
statistical models using the LRT. For example, when testing for the contribution of a set of
explanatory variables, then the LRT may be used to compare the full model with a reduced
model that does not include the variables in question. For that reason, Meng and Rubin (1992)
proposed a procedure for pooling the LRT, which relies only on the individual LRTs and

parameter estimates from each of the M imputed data sets. Let L,, denote the individual LRT
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statistics. Then, the pooled LRT can be calculated as

L

S — 1
K(1+ARIV,)’ (3.16)

D;

where L is the average LRT statistic evaluated at the average parameter estimates, K is the

number of parameters being tested, and ARIV; is another estimate of the ARIV

M+1 - .

where L is the average LRT statistic (i.e., the average L,)). Meng and Rubin (1992) recommended
comparing D5 against an F distribution with K numerator and vy denominator degrees of

freedom. Fora = K(M - 1),

B A -1 -172 .
_{4+<a DI+ (1 -2a ) ARIV; " ifa >4 (3.18)

V3 = _ .
(K + 1)(M — 1)(1 + ARIV;')?/2 otherwise
The D5 procedure can be useful in practice because, similar to D,, is does not require an estimate
of the variance-covariance matrix for the quantity of interest. However, because D5 requires
multiple evaluations of the likelihood function, it can be difficult to implement and is currently
used primarily in software for structural equation modeling (SEM; see also Asparouhov &

Muthén, 2008).

Current recommendations regarding D5. In the missing data literature, D5 is often recom-
mended because it is asymptotically equivalent to D, (e.g., Schafer, 1997; van Buuren, 2012).
However, relatively few studies have evaluated the performance of D5 (Enders, 2010); the re-
sults of those that have suggest that the procedure performs well but that it tends to be more
conservative than D, in conditions with smaller samples and larger FMIs (Y. Liu & Enders,
in press; Meng & Rubin, 1992). Similarly, in Article 4, the performance of D; was often
comparable with that of D, and D;. However, D5 tended to be more conservative than the other
procedures in smaller samples with slightly lower statistical power. In addition, the procedure
became more conservative in conditions with very large FMIs (e.g., larger than 60%). Taken
together, these results indicated that Dj is relatively robust against conditions with larger FMIs

but slightly worse in terms of statistical power when compared with D, and D7.
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3.3 Conducting multiparameter tests and model comparisons in

multilevel analyses

In the context of multilevel MI, the evaluation of multiparameter tests is particularly interesting
because the different test statistics may be used in a more or less flexible manner for various
kinds of hypothesis tests. For example, hypotheses about fixed effects are usually tested with
Wald-like hypothesis tests (D, D“[, and D,; for a discussion, see Manor & Zucker, 2004;
Snijders & Bosker, 2012b). By contrast, variance components are often tested with LRTs (D,
and D;), especially with multilevel software that constrain ¢ the variance components to be
positive (Snijders & Bosker, 2012b). In the following, I provide the results from two additional
simulation studies, which evaluated the performance of different procedures for multiparameter

tests with respect to (a) fixed effects and (b) variance components in multilevel MI.

3.3.1 Fixed effects

The first simulation study examined the performance of the different pooling methods—D,, D7,
D,, and D;—for testing a subset of the fixed effects in a multilevel random intercept model.
Specifically, the data were generated from the following multilevel model. For individual i

@=1,...,n)ingroup j (j =1,...,J),

_ - 1) (1
Yij = Y10(Xij = Xej) + Yor Xej + y(()z)d](. Ut y((fz()dj(.K) +up; + e, (3.19)

where (x; i~ X j) and X, ; denote the within- and between-group components of a continuous ex-
planatory variable X at Level 1 with regression coefficients v, and vy, andd; = (d](.l), cees dJ(.K))
denotes the values of a set of dummy indicator variable representing the K + 1 levels of a cat-
egorical explanatory variable D at Level 2 with regression coefficients y,, = (y(()lz), . .,ygz{) ).
The multiparameter test was concerned with the effect of the categorical variable D, that is,

with the simultaneous test of the regression coefficients vy, against zero. For example, D may

represent school types in educational research. In this case the multiparameter test can be used

6The use of D, and Dj for variance components may be inappropriate because their sampling distribution may
be skewed due to the constrained estimation procedures in some multilevel software (e.g., 1me4). However, with
unconstrained estimation (e.g., Mplus), D; and D] may perform well; however, this option is not further explored
here in detail (for a discussion, see Savalei & Kolenikov, 2008; Stoel, Garre, Dolan, & van den Wittenboer, 2006).
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Figure 3.1: Type I error rates for different pooling methods and LD (a. = 5%) depending on the sample size at Level
2 (J), the number of parameters being tested (K), and the effect of X (v, and ;). The shaded areas represent the
results in complete-data. D, DT, D,, D5 = pooling methods; LD = listwise deletion.

to test for overall differences between school types in the outcome variable Y, where the null
hypothesis states that there are no differences between school types.

Missing values were induced in Y as a function of X (MAR, 25%). For simplicity, the
sample size at Level 1 was fixed at n = 10, and the ICCs of X and Y were fixed at .20. I varied
the number of groups (J = 60, 120) and the number of parameters being tested (K = 2,5),
which corresponds to conditions with 3 and 6 levels of the categorical variable D, respectively.
The overall effect of X was varied (v, = vo; = 0, .35,.70) in order to allow for conditions with
different FMIs. The parameters y,, were specified in such a way that either (a) the differences
between the categories in D were all zero or (b) the coefficients representing one third of
the categories were set to .35. The missing values were treated with LD and multilevel JM
(number of imputations, M = 100). In line with current recommendations in the multilevel
literature (e.g., Snijders & Bosker, 2012b), the multiparameter test for the fixed effects was
carried out using both Wald-tests with standard errors based on restricted maximum likelihood
estimation (REML; applicable with LD, D, D“[, and D,) and LRTs on the basis of ML estimation
(applicable with LD and D5). To calculate D], the complete-data degrees of freedom were set
toJ — (K + 1) — 1 (see also Manor & Zucker, 2004).

The results are summarized in Figures 3.1 and 3.2. As can be seen, the Type I error rates
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Figure 3.2: Power for different pooling methods and LD (a = 5%) depending on the sample size at Level 2 (J),
the number of parameters being tested (K), and the effect of X (y,, and v,;). The dotted lines indicate the power
obtained in complete data. D, DT, D,, D5 = pooling methods; LD = listwise deletion.

usually remained within reasonable bounds under MI (i.e., between 2.5% and 7.5%, given
o = 5%). However, the procedures tend to differ in comparison with one another. First, the
Type 1 error rates tended to be slightly higher in conditions with smaller samples at Level 2
(J = 60) under LD, which further reduced sample size, as well as D, and (to a lesser extent)
D,. By contrast, D} and (to a lesser extent) D5 tended to be more conservative, especially in
smaller samples (J = 60), a larger number of parameters being tested (K = 5), and larger FMIs
(Y10 = Yo1 = 0). The results for the statistical power essentially matched the differences in Type
L error rates with slightly higher power under D,, D,, and LD as compared with D} and D5. The
power was strongly increased in conditions with larger effects of X, which may be attributed
both to the differences in the expected power (i.e., by reducing the residual variance at Level 2),
and a reduction in the FMI (i.e., by increasing the information available about missing Y¥). Due
to the simulation design, the reduction of the FMI was also beneficial for statistical power under
LD; however, this may not be the case if auxiliary variables are available that are not included
in the analysis model (see also Article 4). In summary, the results under MI maintained Type
I error rates close to the nominal value with only small differences in statistical power, this
lending support to the use of all procedures, including D,, within the scope of the simulated

conditions (see also Article 4).

3.3.2  Variance components

The second simulation study examined the performance of the different methods conducting

multiparameter hypothesis tests for testing variance components, that is, the slope variance, in a
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multilevel random coefficients model. The data were generated from the following model. For

individuali G = 1,...,n)ingroup j (j = 1,...,J),
Yii = Y10(X;; = Xoj) + YorXe; + ug; +uyj(x;; — X, ) + €5 (3.20)

where u,; denotes the random slopes pertaining to the within-group components of X, and
the random effects (i, u;;) were assumed to follow a multivariate normal distribution. In
multilevel research, the slope variance is often tested using the LRT by comparing the model
of interest with a reduced model which included the same fixed effects but only the random
intercept (see Snijders & Bosker, 2012b). This test involves K = 2 parameters: the slope
variance and the intercept-slope covariance. Therefore, the test can be carried out by comparing
the LRT statistic with a X2 distribution with two degrees of freedom. However, if the variances
are constrained to be larger than zero during model estimation, it has been argued that the LRT
statistic under the null hypothesis follows a 50/50 mixture of two X2 distributions with two
and one degrees of freedom, respectively, resulting in overly conservative inferences with the
standard procedure (Self & Liang, 1987; Stram & Lee, 1994; see also LaHuis & Ferguson,
2009).

Missing data were induced in Y dependent on X (MAR, 25%). The sample size at Level
1 was fixed at n = 10, and the ICCs of X and Y were fixed at .20. Similar to the previous
study, I varied the number of groups (J = 50, 100), the slope variance (r% = 0,.05,.10), and
the overall effect of X (y,q = vo; = 0, .35, .70) to allow for conditions with different FMIs. The
missing data were treated using LD and multilevel JM (number of imputations, M = 100). In
contrast to before, I implemented multilevel JM in two different ways: with standard “least-
informative” priors and with data-dependent priors’ on the basis of LD (Grund, Liidtke, &
Robitzsch, 2016a). The slope variance was tested using LRTSs on the basis of ML using LD, D,,
and D5, each compared with both the standard and the mixture-y” distribution. To this end, D,

and D5 were multiplied by K, where the transformed statistics D, - K and D5 - K asymptotically

"The use of data-dependent priors is a controversial topic in the statistical literature (e.g., Gelman et al., 2014).
However, it has been shown that least-informative priors can lead to biased estimates of the variance components
in multilevel models, especially when the variance components are small (e.g., McNeish, 2016). In practice, the
use of data-dependent priors may be avoided by specifying a “prior guess” for the variance-covariance matrix of
the random effects (see Grund, Liidtke, & Robitzsch, 2016a; Schafer & Yucel, 2002).
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Figure 3.3: Type I error rates for different pooling methods and LD (a = 5%) depending on the sample size at
Level 2 (J) and the effect of X (y;, and vy;). The shaded areas represent the results in complete-data for the
standard test (left) and the mixture—x2 (right). D,, D5 = pooling methods; LD = listwise deletion.
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Figure 3.4: Power for different pooling methods and LD (o = 5%) depending on the sample size at Level 2 (J), the
true slope variance (r%), and the effect of X (v and ;). The dotted lines indicate the power obtained in complete
data for the standard test (left) and the mixture-)(2 (right). D,, D5 = pooling methods; LD = listwise deletion.

follow a distribution to a Xz distribution with K degrees of freedom—or a rnixture—)(2 under the

null—as the denominator degrees go to infinity (see also Asparouhov & Muthén, 2008).

The results are summarized in Figures 3.3 and 3.4. For simplicity, I do not consider the
results obtained with least-informative priors because they introduced large biases into the
estimates of the slope variance in some conditions, leading to inflated Type I error rates under
ML In contrast with the results for the fixed effects, D5 tended to provide a more liberal test
of the slope variance as compared with D, and LD. Specifically, Type I error rates under Dy
were relatively close to the nominal level (a0 = 5%) with the standard test but exceeded the
nominal level with the mixture-xz. By contrast, the Type I error rates with D, and LD were
more similar to those in the complete data and were closer to the nominal when compared
with the mixture—xz. The results for the statistical power mostly resembled the differences
in Type I error rates, with slightly larger power with D; as compared with D, and LD and

slightly larger power with the mixture—x2 as compared with the standard test. In summary, the
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differences between pooling methods were again relatively small in the selected conditions.
However, the results obtained from D5 were surprisingly liberal, whereas D,—though slightly
more conservative—maintained Type I error rates close to the nominal value and benefited from

the mixture-x2 in a manner similar to the complete data.

3.4 Summary

In the present chapter, I summarized the most widely known procedures for obtaining parameter
estimates and inferences from multiply imputed data set. These procedures include relatively
general procedures for scalar and multidimensional estimands (e.g., one or several regression
coeflicients) and methods for testing statistical hypotheses about these parameters (e.g., Wald
tests, LRTs). However, even though recommendations tend to favor some procedures (D, D],
and Ds) over others (D,), little is known about the performance of these methods in research
practice. The present dissertation contributes to this topic in a number of ways. First, in Article
4, the performance of these procedures was compared in the context of the ANOVA, including
a large number of simulated conditions and a varying number of imputations of each method.
Second, the same procedures were evaluated in two additional simulation studies that were
concerned with multilevel analyses. The results indicated that (a) D, and D] are often the most
reliable among the procedures but also that (b) D, performs well in a surprisingly large range

of conditions provided that the number of imputations is reasonably large.

In addition to these findings, many open questions remain about the analysis of multiply
imputed data sets. For example, researchers often wish to assess how well statistical models
“fit” the data by examining “goodness-of-fit” indices (Bentler, 1990; Bentler & Bonett, 1980);
however, not much is known about how these measures can be obtained from the imputed
data and how the resulting statistics perform in practice (see also Enders & Mansolf, in press;
Kientoff, 2011). Furthermore, very few studies have investigated the use of procedures for
model selection such as the LASSO (Tibshirani, 1996) or the elastic net (Zou & Hastie, 2005)
as well as resampling-based methods such as the bootstrap (Efron, 1981) when missing data are

treated with MI (Q. Chen & Wang, 2013; Claeskens & Consentino, 2008; Geronimi & Saporta,
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2017; Heymans, van Buuren, Knol, van Mechelen, & de Vet, 2007). Finally, the analysis of
multiply imputed data sets is further complicated if imputations are generated in multiple stages,
resulting in “nested imputations” of missing data (e.g., Rubin, 2003). Such applications are
common in educational large-scale assessments and require the use of an adjusted set of rules
for pooling parameter estimates and inferences (Reiter & Raghunathan, 2007; Shen, 2000).
Because many of these methods are frequently used in educational and psychological research,
they should be considered in future studies.

Despite these interesting theoretical questions, the challenges associated with conducting
analyses under M1 are often of a very practical nature. Specifically, relatively few statistical soft-
ware packages—especially in the context of multilevel modeling—include an implementation
of procedures for multiparameter tests and model comparisons under MI. This is problematic
because using complex statistical procedures such as D5 then requires programming skills and
formal statistical knowledge. For this reason, the following chapter introduces the R package
mitml, which is intended to provide a more user-friendly interface for specifying the imputation
model as well as a fully automated set of tools for analyzing multiply imputed data sets with

particular emphasis on multilevel MI.



4
The R package mitml

Thus far, the present dissertation has been focused on the theoretical aspects of multilevel MI.
However, despite the tremendous advances in the methodological and statistical literature on
multilevel MI over the past years, few studies appear to be using it to treat missing data in
research practice (Diaz-Ordaz et al., 2014; Jelicic et al., 2009; Nicholson et al., 2017; Peugh
& Enders, 2004; see also Chapter 1). I argue that this is, at least in part, because (a) the
literature is still lacking accessible introductory articles about multilevel M1, and (b) the current
implementations of multilevel MI tend to be technically very sophisticated and often require
programming skills or advanced statistical knowledge to use them effectively. For this reason,
one of the goals of the present dissertation was (a) to provide a comprehensive tutorial on the use
of multilevel M1, and (b) the development of the R package mitml, which provides simple and
automated procedures for the imputation of missing data and the analysis of multiple imputed
data sets. In this chapter, I provide a brief overview of mitml with the aid of an illustrative data
example. In addition, the chapter includes a summary of Article 5 of the present dissertation,

which provides an in-depth tutorial for multilevel MI using mitml in the statistical software R.

4.1 Multiple imputation in practice

Despite the theoretical appeal of MI, conducting multilevel MI can be a daunting task because

researchers need to incorporate a number of additional steps in their analytical efforts. For

57
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example, a typical application of multilevel MI requires specifying the imputation model,
running the procedure to generate imputations, checking convergence, fitting the analysis model
to each data set, and pooling the results to obtain final parameter estimates and inferences. The
mitml package attempts to provide a comprehensive set of tools for each of these steps, enabling
users to follow a simple workflow that requires only a minimum of computer programming skills.
In the present chapter, I outline the core features of the package with a number of examples and

notes on their implementation.

4.1.1 Features of mitml

The mitml package is available in the statistical software R (R Core Team, 2016) and can be
installed from the Comprehensive R Archive Network (CRAN). To illustrate the implementation
of the different features in mi tml and the intended workflow, I make use of the 1eadership data
set, which contains artificial data from 750 employees (Level 1) in 50 work teams (Level 2),
including data on the teams’ cohesion and the employees’ work load (categorical, high/low), job
satisfaction, and ratings on negative leadership style. As illustrated below, all variables contain

missing data.

library(mitml) # load package
data(leadership) # load data

# GRPID JOBSAT COHES NEGLEAD WLOAD
# Min. 1.0 Min. :=7.32934 Min. :=3.4072 Min. :=3.13213  low :416
# 1st Qu.:13.0  1st Qu.:-1.61932 1st Qu.:-0.4004 1st Qu.:-0.70299 high:248
# Median :25.5 Median :-0.02637 Median : 0.2117 Median : 0.08027 NA's: 86
# Mean :25.5  Mean :-0.03168 Mean : 0.1722  Mean : 0.04024

# 3rd Qu.:38.0  3rd Qu.: 1.64571 3rd Qu.: 1.1497 3rd Qu.: 0.79111

# Max. :50.0 Max. :10.19227  Max. : 2.5794  Max. : 3.16116

# NA's  :69 NA's  :30 NA's :92

To generate imputations, mitml builds on two existing packages that implement the JM approach
to multilevel MI: the pan package (Schafer & Yucel, 2002), which can be used to address missing
data in continuous variables at Level 1, and the jomo package (Quartagno, 2016), which extends
this functionality to mixed continuous and categorical variables at both Level 1 and 2. In the
present case, I will use jomo.

Specifying the imputation model. With mitml, the imputation model can be specified in

two different ways. First, the imputation model can be specified as a formula similar to the R
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package 1me4 (Bates, Michler, Bolker, & Walker, 2015). In the present case, the imputation
model comprises two components, one pertaining to variables at Level 1 and the other to
variables at Level 2 (see Chapter 2). Specifically, with missing data in all variables in the data

set, the imputation model is specified as follows.

fml <- list( JOBSAT + NEGLEAD + WLOAD ~ 1 + (1|GRPID) , # Level-1 model
COHES ~ 1) # Level-2 model

The first entry in the list denotes the imputation model for missing data at Level 1. The second
entry denotes the imputation model for the variable at Level 2. The ~ symbol separates the
target and predictor variables in the model. Here, the predictor side includes only a 1 for the
intercept. The | operator denotes the clustering variable as well as the random effects to be
included in the model (i.e., random intercepts and slopes). Here, the data are clustered by GRPID
and the model includes only a random intercept; further random effects may be included for
completely predictor variables should these be available. Categorical variables are recognized
automatically, provided that they are formatted as factors in R.

As an alternative, the imputation model can be specified using an integer vector denoting the
“type” of each variable (i.e., its role in the imputation model). The corresponding type vectors

equivalent to the formulas above are as follows.

type <- list( c( -2, 1, @, 1, 1) , # Level-1 model
c(-2,0,1, 0,0 ) # Level-2 model

The integer values -2 and 1 denote the cluster variable and the target variables in the model,
respectively. In addition, the values 2 and 3 can be used to include predictor variables with
fixed and random effects, respectively (see the package documentation). The type interface
can be helpful when dealing with large data sets, where writing formulas can be tedious.
By contrast, the formula interface is more convenient and easy to understand; it is also be
very flexible because, similar to general formulas in R, it can be used to include functions of
predictor variables as additional predictors in the model (e.g., group means, squared terms, or
interactions).

Running MI. Given the imputation model represented as a model formula or type vector,

the imputation procedure can be run by calling one of the wrapper functions panImpute (for
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pan) or jomoImpute (for jomo). This requires the specification of the number of iterations and
imputations for which the procedure should run. In the present example, the imputation is run

as follows.
imp <- jomoImpute(data=leadership, formula=fml, n.burn=5000, n.iter=250, m=20)

The total number of iterations is determined by the number of burn-in iterations (n.burn),
which are performed before any imputations are generated, the number of iterations between
imputations (n. iter), and the number of imputations (m). In addition, the user has the option to
designate an additional grouping variable, in which case imputations are generated separately
within the levels of that variable, to specify the Bayesian prior distributions for the parameters of
the imputation model, and to pass other parameters to the function that can be used to influence
the behavior of the procedure (see the package documentation). In particular, with jomoImpute,
it is possible to allow for heterogeneity in the Level-1 residual covariance matrix across groups
(see Quartagno & Carpenter, 2016b; Yucel, 2011).

Convergence diagnostics. Once the imputation is completed, users are required to ensure
that the parameter chains of the imputation procedure converged to stationary distributions
(Gelman et al., 2014). The mitml package offers two options to do so. First, convergence
statistics can be calculated with the summary function, which includes the R criterion (Gelman
& Rubin, 1992) as well as (optionally) the autocorrelation at lag k and 2k, where k is the
number of iterations between imputations, and a measure for the goodness of approximation
in the central tendency of the posterior distribution (see Hoff, 2009). For example, the default

command which requests only R is as follows.

summary(imp)
Call:

jomoImpute(data = leadership, formula = fml, n.burn = 5000, n.iter = 250,

m = 20)
Level 1:
Cluster variable: GRPID
Target variables: JOBSAT NEGLEAD WLOAD

Fixed effect predictors: (Intercept)
Random effect predictors: (Intercept)

HoH HH HFHFHFHHFHEFHFH
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Figure 4.1: Convergence plot for the fixed intercept of job satisfaction (JOBSAT), including the trace plot (top left),
the autocorrelation plot (bottom left), the density plot (top right), and the posterior summary (bottom right).

Level 2:
Target variables: COHES
Fixed effect predictors: (Intercept)

Performed 5000 burn-in iterations, and generated 20 imputed data sets,
each 250 iterations apart.

Potential scale reduction (Rhat, imputation phase):

Min  25% Mean Median 75% Max

Beta:
Beta2:
Psi:
Sigma:

1.002 1.002 1.003
1.000 1.000 1.000
1.000 1.000 1.001
1.000 1.002 1.008

1.003 1.004 1.004
1.000 1.000 1.000
1.001 1.001 1.004
1.004 1.010 1.025

Largest potential scale reduction:
Beta: [1,2], Beta2: [1,1], Psi: [4,3], Sigma: [3,1]

As can be seen, the output is separated by parameter class and includes a reference to the
parameter with the most problematic value (e.g., the largest R) in order to assist users in finding
the source of convergence problems, should they occur. As a second option, the mitml package
offers diagnostic plots to assess convergence in a graphical manner (see also Schafer & Olsen,

1998). The plots can be requested as follows, with an example given in Figure 4.1.

plot(imp, trace="all")
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The diagnostic plots include the trace plot for each parameter in the imputation model, a plot
for the autocorrelation in the parameter chain, a density plot, and a summary of the posterior
distribution (for a general discussion of convergence in Bayesian data analysis, see also Gelman
et al., 2014; Gill, 2014; Hoff, 2009; Jackman, 2009).

Transforming and analyzing data. Having assessed that the algorithm converged, a list

containing the imputed data sets can be extracted from the imputed data object as follows.
implist <- mitmlComplete(imp, "all")

In order to manipulate and analyze the data, mitml implements additional methods for the
generic functions within and with from base R. First, the within function can be used to
evaluate a given expression in each of the imputed data sets, thus creating transformations of
the imputed data. For example, the following code illustrates this for the calculation of group

means and the group mean centering of employees’ ratings of negative leadership style.

implist <- within( implist,{
M.NEGLEAD <- clusterMeans(NEGLEAD, GRPID) # calculate group means
I.NEGLEAD <- NEGLEAD - M.NEGLEAD # group mean centering

b))

Second, the analysis of the imputed data sets can be carried out with the with function.
Formally, with also evaluates an expression in each data set but returns the result of the
evaluated expression instead. For example, the following command fits a multilevel model to
each of the imputed data sets using the R package 1me4, where job satisfaction is explained by

negative leadership style, work load, and cohesion.

library(1me4)
fit <- with( implist, lmer(JOBSAT ~ 1 + I.NEGLEAD + M.NEGLEAD + WLOAD + COHES + (1|GRPID)) )

This results in a list of fitted models, one for each of the imputed data sets, the results of which
can be pooled in subsequent steps.

Pooling. The mitml package offers several function for pooling the results obtained from
multiply imputed data sets. In the simplest case, parameter estimates and inferences can be
obtained by pooling the individual (i.e., scalar) estimands in the fitted models. This can be

achieved with the testEstimates function as follows.
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testEstimates(fit, var.comp=TRUE)

# Call:

#

# testEstimates(model = fit, var.comp = TRUE)

#

# Final parameter estimates and inferences obtained from 20 imputed data sets.

#

# Estimate Std.Error t.value df  PC|t]) RIV FMI
# (Intercept) 0.246 0.141 1.740 1084.906 0.082 0.153 0.134
# I.NEGLEAD -0.536 0.088 -6.112  553.853 0.000 0.227 0.188
# M.NEGLEAD -1.516 0.352 -4.303 625.680 0.000 0.211 0.177
# WLOADhigh -0.828 0.190 -4.352 698.799 0.000 0.197 0.167
# COHES 0.234 0.09%4 2.481 1691.155 0.013 0.119 0.107
#

# Estimate

# Intercept~~Intercept|GRPID 0.315

# Residual~~Residual 4.966

# ICC|GRPID 0.060

By default, testEstimates employs Rubin’s rules for pooling individual parameters, but the
small-sample correction by Barnard and Rubin (1999) can be applied by providing the complete-
data degrees of freedom as an additional argument to the function call (df.com). This method
is automatic for all model classes that define methods for the generic functions coef and vcov,
which includes most of the standard models in R (e.g., linear and generalized linear models)
as well as some additional® model classes (e.g., multilevel models, generalized estimating
equations).

In addi