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Abstract

Multilevel models have become one of the most frequently used statistical models for analyzing

multilevel data. These types of data occur in many fields of psychology when observations

(Level 1) are clustered within some higher-level collectives (Level 2). This includes, for exam-

ple, students nested in schools, employees nested in work teams, patients nested in clinics, and

longitudinal data, in which observations are nested within persons. Unfortunately, multilevel

data often contain missing data, for example, when participants omit certain items in a ques-

tionnaire or they drop out before the end of a study. If treated improperly, missing data can

severely distort parameter estimates and may compromise statistical decision making. For this

reason, it is often recommended to rely on principled methods for dealing with missing data

such as multiple imputation (MI) or maximum likelihood estimation (ML). These procedures

have the advantage that they take all the available data into account, thus improving statistical

power and the conclusions that can be drawn from the data.

In the present dissertation, I consider different procedures for the treatment of missing data

with an emphasis on multilevel MI. In multilevel research, it is important that the imputation

model takes the structure of the data and the features of the substantive analysis model into ac-

count. However, many open questions remain about how this can be achieved in practice. In the

present dissertation, I consider a variety of applications of multilevel models as well as different

implementations of multilevel MI. In multiple studies, I examined how the multilevel structure

is represented in different implementations of multilevel MI, how different representations may

vii



viii ABSTRACT

affect the results obtained from MI, and how missing data can be treated in multilevel models

with random intercepts, random slopes, interaction effects, continuous and categorical data, and

missing data at Level 2.

In addition, the present dissertation was concerned with the analysis of multiply imputed

data sets. In this context, I examined different procedures for pooling the results obtained from

multiply imputed data sets with an emphasis on multiparameter tests (e.g., model comparisons).

This includes applications in traditional research designs with the analysis of variance (ANOVA)

as well as applications inmultilevel models with hypothesis tests about fixed effects and variance

components. Finally, the dissertation presents the R package mitml, which is intended to provide

researchers with a set of practical tools for conducting multilevel MI in research practice. This

includes tools for the specification of the imputation model, convergence diagnostics, managing

and analyzing multiply imputed data sets, and pooling methods for single- and multiparameter

tests along with a tutorial article that illustrates these features and provides a nontechnical

introduction to multilevel MI.



1
Introduction

Over the past years, multilevel models have become a standard tool for analyzing clustered

data (e.g., Goldstein, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). Such

data structures often occur in psychological research when observations (Level 1) are clustered

within higher-level collectives (Level 2), for example, when students are nested within schools,

employees are nested within enterprises, or in longitudinal or repeated-measures data when

measurement occasions are nested within persons. In addition, psychological data are often

incomplete, for example, when participants omit some of the items in a questionnaire or drop

out before the end of a study. It is well known that simple methods for dealing with missing

data such as listwise deletion (LD) can lead to biased parameter estimates and an inefficient

use of the data (i.e., low statistical power). Fortunately, principled methods for the treatment of

missing data such as multiple imputation (MI) or maximum likelihood estimation (ML) have

become widely available (for an overview, see Enders, 2010; Little & Rubin, 2002; Schafer &

Graham, 2002).

Although a large body of research has concerned itself with missing data in general, the

treatment of missing data in multilevel research is still not well understood. Consequently,

missing data in multilevel research are most commonly treated with ad-hoc procedures such

as LD instead of principled methods such as MI and ML (e.g., Diaz-Ordaz, Kenward, Cohen,

Coleman, & Eldridge, 2014; Jelicic, Phelps, & Lerner, 2009; Nicholson, Deboeck, & Howard,

2017; Peugh & Enders, 2004). To provide an additional illustration, I conducted a software-

1
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Figure 1.1: Number of studies (in %) identified in computer-assisted literature review with keywords pertaining to
missing data (MD) and the treatment thereof using multiple imputation (MI) or maximum likelihood (ML). The
numbers within each plot denote the absolute numbers of studies.

assisted literature review on the basis of the articles published in the Journal of Education

Psychology and the Journal of Applied Psychology within the last 15 years (n = 2, 652). Using

a self-written program, I searched these articles for occurrences of keywords pertaining to

multilevel models, missing data, as well as the treatment thereof with ML and MI. The results

are shown in Figure 1.1. It is easy to see that the reporting of missing data has improved over

the years; however, relatively few studies seem to use principled methods for dealing with them

such as ML and, perhaps most noticeably, MI. The present dissertation considers this topic

in detail and attempts to (a) contribute to the growing literature on missing data in multilevel

research and (b) provide researchers with a set of clear-cut advice and practical tools for the

application of multilevel MI.

The dissertation is structured as follows. Chapter 1 reviews the theoretical background of

missing data, MI, and ML without particular emphasis on multilevel data. Chapter 2 then

focuses on multilevel MI, considering applications in the context of (a) multilevel random

intercept models, (b) the random coefficients model, with an emphasis of random slopes and

cross-level interactions (CLIs), and (c) missing data at Level 2. Chapter 3 considers the analysis

of multiply imputed data sets with an emphasis on multiparameter tests and model comparisons.

Chapter 4 then introduces the R package mitml, which is intended to provide researchers with

a simple and effective workflow for conducting and performing analyses with multilevel MI.

Chapter 5 closes with a discussion and presents an outlook on possible topics for future research.

The present dissertation also provides a motivation for the five research articles that have been
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written as the dissertation progressed. These articles are provided in the Appendix.

1.1 Missing data

It is well known that an inadequate treatment of missing data can have adverse effects on

statistical decision making (e.g., Allison, 2001; Enders, 2010; Little & Rubin, 2002; Schafer

& Graham, 2002). For example, when analyses are based on only the complete cases (LD),

and data are missing in a systematic manner, then parameter estimates can be biased, statistical

power can be low, and the generalizability of one’s findings can be compromised. To gain amore

thorough understanding of when and how missing data affect statistical analyses, it is useful

to distinguish different mechanisms and different patterns of missing data, where missing data

mechanisms describe the relation between the (hypothetical) complete data and the occurrence

of missing data, and the patterns of missing data describe how missing data have manifested

themselves in a given data set.

1.1.1 Missing data mechanisms

Rubin (1976) distinguished three broad classes of missing data mechanisms. Let Y denote the

hypothetical complete data set, which can be decomposed in an observed and an unobserved

portion, Y = (Yobs,Ymis), and let R be an indicator matrix that denotes which elements are

missing in Y. Rubin considered data to be missing at random (MAR), if the probability of

missing data P(R) is independent of the unobserved data Ymis given the observed Yobs, that is,

P(R|Yobs,Ymis) = P(R|Yobs). Put differently, underMAR, once the observed data are taken into

account, there remains no link between the chance of observing data and the data themselves.

As a special case, the data can be missing completely at random (MCAR) if missing data occur

in a manner that is completely independent of both the observed and unobserved data Yobs and

Ymis, that is, P(R|Yobs,Ymis) = P(R). These two missing data mechanisms are often referred to

as “ignorable”1 because the missing data mechanism need not be known in order to obtain valid

1For simplicity, I use the term “ignorable” as equivalent with MAR. However, the formal definition of “ignora-
bility” also requires that the missing data mechanism and the distribution of the data are governed by two distinct
sets of parameters (Schafer, 1997).
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Figure 1.2: Example for different missing data mechanisms. Left panel = complete data. Middle panel = missing at
random (conditional on school type). Right panel = missing not at random (conditional on achievement). Adapted
from Carpenter and Kenward (2013).

statistical inferences from the observed data (see also Section 1.2). By contrast, Rubin considers

data to be missing not at random (MNAR) when this condition is violated, that is, missing data

occur in a manner that is dependent on the unobserved data Ymis even after controlling for the

observed Yobs. The notion of ignorability in missing data theory is conceptually similar to

that in Rubin’s causal model (Holland, 1986), where it refers to the mechanism for treatment

assignment in nonrandomized observational studies (Rubin, 1977, 2005).

To provide an illustration, consider Figure 1.2. Assume that a researcher has obtained two

samples of students from different school types (A and B), each of size nA = nB = 150, in order

to estimate students’ overall academic achievement µ across school types. The left panel of

Figure 1.2 shows the complete data. Clearly, the two school types differ in terms of achievement,

where achievement scores tend to be higher in school type B. Based on the complete data, an

unbiased estimator of µ is the overall mean

x̄ =
1
n

n∑
i=1

xi =
1

300
(359.6 + 426.5 + ...) ≈ 500.5 , (1.1)

where n is the total sample size. In the middle panel, achievement scores are missing at random

(MAR) as a function of school type. Specifically, one third of the scores in school type A were

deleted but those in school type B were complete. As a result, the propensity of missing data

varies systematically with school types, and the overall mean is no longer unbiased
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x̄obs =
1

nobs

nobs∑
i=1

xi,obs =
1

100 + 150
(426.5 + 481.6 . . .) ≈ 511.0 . (1.2)

However, because the data are MAR given school type, that is, missing data occur completely

at random within school types A and B, an unbiased estimator can be obtained on the basis

of conditional distribution of achievement given school type. As implied by the factorization

P(x) = P(x |A)P(A) + P(x |B)P(B), the estimator is given by

x̄′obs =
1
2

(
x̄obs|A + x̄obs|B

)
=

1
2

(
1

100
(426.5 + . . .) +

1
150
(406.6 + ...)

)
≈ 501.6 . (1.3)

Finally, in the right panel in Figure 1.2, achievement scores are missing not at random (MNAR)

as a function of achievement (i.e., the bottom third of the achievement scores were deleted). I

do not consider this case in detail; however, it should be immediately obvious that an unbiased

estimate of the overall mean cannot be obtained with only the data at hand and without making

specific assumptions about the missing data mechanism.

Perhaps more subtly, this example also illustrates that the consequences of the missing data

mechanism may depend on the substantive analysis model (see also Carpenter & Kenward,

2013). Specifically, in the example above, student achievement is missing at random (MAR)

given school type. As a result, the parameters of the conditional distribution of student achieve-

ment given school type (e.g., the regression coefficient) can be estimated without bias from

only the observed data. In other words, even though the overall mean of academic achievement

based only on the observed data, the same is not true for the regression of academic achievement

on school type. Generally speaking, the consequences of the missing data mechanism (e.g., in

terms of bias) depend on the substantive analysis model (for further discussion, see Carpenter

& Kenward, 2013; see also Little, 1992; von Hippel, 2007).

In practice, the notion of missing data mechanism can be useful because it allows expressing

conditions under which a treatment for missing data provides biased or unbiased parameter

estimates. For example, LD provides generally unbiased estimates only under MCAR, whereas

procedures such as MI and ML can provide unbiased estimates even under MAR. The example

above also illustrates the need for auxiliary variables, that is, variables that are related to

either the propensity of missing data or the missing data themselves, because the inclusion of

such variables can increase the plausibility of the MAR assumption (Collins, Schafer, & Kam,
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univariate
X Y1 Y2 Y3

multivariate
(“blockwise”)

X Y1 Y2 Y3

multivariate
(“monotone”)

X Y1 Y2 Y3

general

X Y1 Y2 Y3

Figure 1.3: Illustration for different patterns of missing data.

2001; see also Section 1.1.2). Although this assumption can never be tested on the basis of

the observed data alone (e.g., Enders, 2010), the data can be used to discern more from less

plausible assumptions about the missing data mechanism. For example, auxiliary variables

may be identified by conducting logistic regression analyses, where missing data indicators are

regressed on (potential) auxiliary variables (e.g., Carpenter & Kenward, 2013; White, Royston,

&Wood, 2011). In addition, graphical representations of missing data mechanisms can be used

to express and evaluate potential mechanisms from a theoretical point of view (Thoemmes &

Mohan, 2015; Thoemmes & Rose, 2014).

1.1.2 Patterns of missing data

In addition to missing data mechanisms, it is often useful to consider the patterns of missing data

in a given data set. For example, Little and Rubin (2002) distinguish between univariate and

multivariate patterns of missing data, in which one or several variables contain missing values.

In addition, it is often useful to distinguish item and unit nonresponse, inwhich all data for a given

unit are missing apart from some (known) background information (for a similar distinction,

see also Newman, 2014). Finally, the scores of latent variables are sometimes considered a

special case of missing data (see also Blackwell, Honaker, & King, 2017b; Mislevy, 1991). In

multilevel research, in which variables can be measured at different levels of the sample, both

the patterns and the adverse effects of missing data can extend to multiple levels (see Chapter

2).

Examples for common patterns of missing data are provided in Figure 1.3. In practice,

missing data often follow a “general” pattern with missing values on multiple variables and
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several sections of overlapping and non-overlapping “missingness” between variables (Figure

1.3, right panel). In applications of modern methods such as ML and MI, understanding the

patterns of missing data in a given data set can be extremely helpful because it allows to

identify further auxiliary variables, that is, variables that are (a) predictive of other variables

with missing data and (b) observed when these variables are missing (i.e., non-overlapping

“missingness”). For example, in the “general” pattern in Figure 1.3, both X and Y2 may be

considered as auxiliary variables for Y3, provided that the observed values in these variables

are predictive of the missing values in Y3. By selecting a useful set of auxiliary variables, for

example, by inspecting pairwise correlations between variables and patterns of missing data,

modern methods for dealing with missing data can make better use of the information contained

in the observed data, thus increasing the efficiency and statistical power of subsequent analyses

(e.g., Collins et al., 2001).

1.2 Inference with missing data

The goal of statistical inference is to estimate population quantities on the basis of empirical

data (e.g., Wasserman, 2004). However, in the presence of missing data, statistical inference

can be challenging. For example, when data are missing in a systematic fashion (e.g., MAR)

and only the complete cases are analyzed (LD), then parameter estimates can be biased, and

statistical inferences may no longer apply to the entire target population (Little & Rubin, 2002).

In other words, statistical inference is complicated by missing data because the observed data

are no longer generated only by the parameters of the population model, say θ, but also by the

mechanism that generated the missing data, say ξ (see above; see also Little & Rubin, 2002;

Schafer, 1997).

An illustration is provided in Figure 1.4. With complete data, inference about θ can

conducted on the basis of the likelihood of the data given θ, P(Y|θ). By contrast, with

incomplete data, only R and Yobs are observed, and the joint distribution of the data is governed

by both θ and ξ. Specifically, the joint distribution can be written as

P(R,Yobs |θ, ξ) =

∫
P(R,Y|θ, ξ) dYmis . (1.4)
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θ,ξ Yobs ,Ymis R,Yobs

P(R,Yobs|θ,ξ)

θ Y

P(Y|θ)

Complete Data Incomplete Data

Figure 1.4: Illustration for statistical inference with complete and incomplete data.

This expression is difficult to evaluate in general. However, under the assumption that (a) the

data are MAR and (b) θ and ξ denote two distinct sets of parameters, it can be simplified to

P(R,Yobs |θ, ξ) =

∫
P(R|Yobs, ξ)P(Y|θ) dYmis

= P(R|Yobs, ξ)

∫
P(Y|θ) dYmis

, (1.5)

where the first factor pertains to the missing data mechanism, and
∫

P(Y|θ) dYmis ≡ P(Yobs |θ)

is the likelihood of the observed data that is obtained by “integrating out” the missing data

Ymis. This expression illustrates that, under MAR, inference about θ can be carried out without

considering the missing data mechanism (the missing data mechanism is “ignorable”). For this

reason, P(Yobs |θ) is also referred to as the “likelihood ignoring the missing data mechanism”

(e.g., Little & Rubin, 2002). In practice, there are two statistical procedures that are often

considered as the “state of the art” for conducting statistical inferences on the basis of incomplete

data: multiple imputation (MI) and maximum-likelihood estimation (ML). In the following,

I provide a general introduction to MI and ML with an emphasis on single-level data. The

application of MI (and to a lesser extent ML) to multilevel data is considered in detail thereafter.

1.3 Multiple imputation

The idea behind MI is to replace missing data with an “informed guess” by drawing repeatedly

from the posterior predictive distribution of the missing data, given the observed data and a

statistical model (Rubin, 1987). The data sets completed in this manner are then analyzed

separately, and the results are pooled using the rules in Rubin (1987; see also Chapter 3).

Multiple imputation is related to Bayesian inference with incomplete data (see also Carpenter

& Kenward, 2013). In the Bayesian paradigm, inference about θ can be conducted on the basis
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of the observed-data posterior distribution, P(θ|Yobs). Because it is usually difficult to sample

from P(θ|Yobs), the missing data Ymis are often regarded as additional (nuisance) parameters.

The joint posterior distribution of θ and Ymis is given by

P(θ,Ymis |Yobs) = P(θ|Ymis,Yobs)P(Ymis |Yobs) . (1.6)

The marginal posterior distribution of θ given Yobs is then given by

P(θ|Yobs) =

∫
P(θ,Ymis |Yobs) dYmis , (1.7)

which can be regarded as the Bayesian equivalent to the observed-data likelihood in Equation

1.5 (see also Little & Rubin, 2002; Schafer, 1997). This idea to treat Ymis as a set of nuisance

parameters is also referred to as “data augmentation” (Tanner & Wong, 1987).

Data augmentation. The data augmentation algorithm is a Markov chain Monte Carlo

(MCMC) technique that simulates from the distribution P(θ,Ymis |Yobs) by iterating between a

posterior or P-step and an imputation or I-step. At iteration t,

θ(t+1)
∼ P(θ|Yobs,Y

(t)
mis) (P-step)

Y(t+1)
mis ∼ P(Ymis |Yobs, θ

(t+1)
) (I-step)

, (1.8)

The resulting sequence converges in distribution to P(θ,Ymis |Yobs) as t →∞.2 This algorithm

can be used to generatemultiple, say M , imputations for themissing data, resulting in M copies of

the original data with missing values “filled in” by the imputed data. Because small to moderate

numbers of imputations (e.g., 5 to 100) are common, MI can be considered an approximation

of Bayesian inference, based on only a small number of posterior draws (Carpenter & Kenward,

2013). However, MI also provides estimates with good frequentist properties (e.g., coverage)

when analyzed with non-Bayesian methods (e.g., Rubin & Schenker, 1986). In this context,

MI can be regarded as a sampling-based procedure for conducting inferences on the basis of

incomplete data, that is, for “integrating out” the missing data by averaging over a predictive

distribution of the missing data, given the observed data and a statistical model (e.g., Schafer,

2Note that different statistical models are often used for the analysis and the imputation of empirical data. If the
two models differ, the technical requirement for inferences to remain valid is that the two models are “congenial”
in the sense of Meng (1994; for further discussion, see Carpenter & Kenward, 2013; Schafer, 2003).
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1999). In practice, MI can be implemented in a number of ways, where two implementations are

particularly popular in current statistical software: joint modeling (JM) or the fully conditional

specification (FCS).

1.3.1 Joint modeling

In the joint modeling (JM) approach, imputations are generated from a single statistical model

for all variables simultaneously. For example, with multivariate normal data in Y, imputations

can be generated from the following model. For case i (i = 1, . . . , n),

yi = µ + ei , (1.9)

where µ is a vector of means, and ei is a vector of residuals which follows a multivariate

normal distribution with mean zero and covariance matrix Σ. This model allows for (linear)

relations between all variables as implied by the multivariate normal distribution. In addition,

it is possible to include completely observed predictor variables in the imputation model (for

further details, see Schafer, 1997; Schafer & Olsen, 1998).

Categorical data. Even though the model above is restricted to continuous (i.e., multi-

variate normal) data, it can be extended to accommodate ordinal and (unordered) categorical

variables with missing data. For example, for a categorical variable with c categories, the

model may include a set of c − 1 latent continuous background variables that represent the

differences between categories and which may be correlated with the other variables (Carpenter

& Kenward, 2013; Schafer, 1997). Similarly, for an ordinal variable with c categories, it is

possible to include a single background variable, where the differences between categories

are represented by a set of c − 1 threshold parameters (Asparouhov & Muthén, 2010b). For

individual variables, these model are equivalent to conventional generalized linear models for

categorical data (e.g., Agresti, 2013; Fahrmeir & Tutz, 2010). To provide some general insight

into JM, I briefly describe a sampling algorithm that can be used for generating imputations

under the assumption of the multivariate normal distribution.

Sampling algorithm. In JM, imputations are generated in two steps. First, the model

parameters θ = (µ ,Σ), are drawn from their posterior distributions, given Yobs and current

imputations for Ymis (P-step). Second, new imputations for Ymis are generated on the basis of
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θ and Yobs (I-step). Specifically, let r denote the number of variables and let any yi be missing

in arbitrary patterns, yi = (yi,obs, yi,mis). Under “flat” priors for µ, an inverse-Wishart prior

Σ ∼ W−1
(ν,∆−1

) with ν ≥ r , and given a set of starting values, imputations are generated as

follows. At iteration t,

1. P-step: Update θ = (µ ,Σ) as follows.

i) Draw Σ(t+1)
∼ W−1

(ν+ n ,∆−1
+S(t)), where S(t) =

∑n
i=1(y

(t)
i − ȳ(t))T (y(t)i − ȳ(t)) with mean

vector ȳ(t) = 1
n
∑n

i=1 y(t)i and y(t)i = (yi,obs, y
(t)
i,imp).

ii) Draw µ(t+1)
∼ N(ȳ(t) , 1

nΣ
(t+1)
) with ȳ(t) as above .

2. I-step: Update yi,mis as follows.

i) Calculate the conditional mean of yi,mis given yi,obs as follows.

a) µ̃(t+1)
i,mis|obs = µ

(t+1)
i,mis + Σ

(t+1)
i,mis,obs

[
Σ
(t+1)
i,obs

]−1
(yi,obs − µ

(t+1)
i,obs )

b) Σ(t+1)
i,mis|obs = Σ

(t+1)
i,mis − Σ

(t+1)
i,mis,obs

[
Σ
(t+1)
i,obs

]−1
Σ
(t+1)
i,obs,mis

ii) Draw e(t+1)
i,mis ∼ N(0,Σ(t+1)

i,mis|obs) and impute y(t+1)
i,mis = µ̃

(t+1)
i,mis|obs + e(t+1)

i,mis .

This illustrates that imputations in JM indeed rely on the joint distribution of the data: Based

on the (joint) multivariate normal distribution for yi, imputations for the missing data yi,mis are

drawn from the (conditional) normal distribution of the missing data, given the observed data

yi,obs.

1.3.2 Fully conditional specification

As an alternative to JM, it has been suggested to approximate the joint distribution of the data

with a sequence of univariate, conditional models (Raghunathan, Lepkowski, van Hoewyk, &

Solenberger, 2001; van Buuren, 2012; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin,

2006). This is referred to as the “fully conditional specification” (FCS) of MI and also known

as “chained equations” or “sequential MI”. For example, if the joint distribution of the data is

multivariate normal, then imputations can be generated in a sequence of regression models with

normally distributed residuals. Specifically, with multivariate normal data in Y, imputations

can be generated as follows. For case i (i = 1, . . . , n) and variable p (p = 1, . . . , r),
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yip = yi(−p)βp + eip , (1.10)

where yi(−p) denotes the predictor variables in the p-th imputation model, including all variables

other than yip and a “one” for the regression intercept, βp denotes the regression coefficients

for yi(−p), and eip is a normally distributed residual with mean zero and variance σ2
p. Note

that the FCS approach differs from JM in that it considers only one variable at a time. To

address multivariate patterns of missing data, the FCS approach iterates back and forth between

variables, including the most recent imputations for missing values in yi(−p) at each iteration.

Similar to JM, the FCS approach also acknowledges the relations that exist between variables;

however, it does so by repeatedly conditioning variables on one another, thus approximating

the joint distribution used in JM. In principle, however, the imputation model for each variable

in FCS may include only a subset of the variables in yi(−p) as well as transformations of these

variables or nonlinear effects.

Categorical data. Similar to JM, the FCS approach is able to accommodate ordinal and

(unordered) categorical data using generalized linear models (e.g., Agresti, 2013). For example,

if yip is a (unordered) categorical variable with missing data, the imputation model may be a

multinomial logistic or probit model, conditional on yi(−p). Similarly, if yip is ordinal, the

imputation model may be an ordered logistic or probit model (Brand, 1999; van Buuren et

al., 2006). To provide further insights into the FCS approach, I briefly describe a sampling

algorithm that can be used for multivariate normal data (see also Rubin, 1987; van Buuren et

al., 2006).

Sampling algorithm. In contrast to JM, the FCS approach iterates across variables with

missing data, employing the P- and I-step separately for each variable. Specifically, let any yip

be partially missing, yip = (yip,obs, yip,mis), and let np,obs denote the number of cases with yip

observed. Under “flat” priors for βp and σ2
p (Box & Tiao, 1973)3 and given a set of starting

values, imputations are generated as follows. At iteration t, for variable p,

3Note that this choice of priors places a flat, uniform density on both βp and log σp (see also Jeffreys, 1961). It is
presented heremostly for consistencywith the published literature (e.g., Rubin, 1987) and software implementations
(van Buuren & Groothuis-Oudshoorn, 2011). As an alternative, any standard conjugate prior can be used, for
example, the scaled inverse-χ2 with user-defined prior parameters (see Chapter 2; for a general discussion, see also
Gelman et al., 2014).
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1. Estimate β̂
(t)
p and σ̂2 (t)

p from the regression model yip,obs = y(t)i(−p)βp + eip using the cases with

yip observed, with y(t)i(−p) =
(
yi(−p),obs, y

(t)
i(−p),mis

)
.

2. P-step: Update θp = (βp, σ
2
p) as follows.

i) Draw σ
2 (t+1)
p ∼ inv-χ2

(np,obs − kp , σ̂
2 (t)
p ), where kp is the number of variables in y(t)i(−p)

(usually r).

ii) Draw β(t+1)
∼ N(β̂

(t)
p , σ

2 (t+1)
p V(t)), where V(t) =

(∑np,obs
i=1 y(t)Ti(−p)y

(t)
(−p)

)−1
.

3. I-step: Update yip,mis as follows.

i) Draw e(t+1)
ip,imp ∼ N(0, σ2 (t+1)

p ) and impute y(t+1)
ip,imp = β

(t+1)
0p + β

(t+1)
1p y(t)i(−p) + e(t+1)

ip,imp .

This illustrates that the FCS approach, like the JM, draws imputations for missing data yip,mis

from the conditional distribution of the missing data, given the observed data yi(−p),obs and

the most recent imputations for the missing data in other variables y(t)i(−p),mis. However, it

does so for each variable separately, thus implementing the data augmentation algorithm on a

variable-by-variable basis.

Practical considerations. In comparison with one another, the JM approach tends to be

easier to use in practice because it employs a single imputation model for all variables with

missing data. Consequently, standard tasks such as the specification of the model and the

assessment of convergence tend to be simpler under JM. By contrast, FCS tends to be more

flexible with separate imputation models for each variable. This can be advantageous in

applications with a larger number of variables or categorical variables with a large number

of categories; in such cases it is often easier (and potentially more stable) to carry out the

imputation in a sequential manner with FCS. In addition, each imputation model may include

a different set of predictor variables, thus further reducing complexity (for a similar discussion,

see also Carpenter & Kenward, 2013).

1.4 Model-based procedures

Missing data can also be treated usingmodel-based procedures, which allow parameter estimates

to be obtained directly on the basis of the incomplete data (e.g., Little & Rubin, 2002). In
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practice, this is often achieved by employing maximum-likelihood (ML) or Bayesian estimation

procedures (e.g., Enders, 2010; Little & Rubin, 2002). In the following, I briefly discuss these

two model-based procedures for the treatment of missing data.

1.4.1 Maximum-likelihood estimation

The general approach ofML to the treatment ofmissing data is to directly estimate the parameters

of the model of interest by maximizing the observed-data likelihood (e.g., Little & Rubin, 2002).

However, because these estimates are seldom available in closed form with incomplete data,

obtainingMLestimates often requires iteration (e.g., Schafer&Graham, 2002). In the following,

I discuss two approaches for obtaining estimates in this manner: the expectation-maximization

(EM) algorithm and full information maximum likelihood (FIML).

EM algorithm. The EM algorithm (Dempster, Laird, & Rubin, 1977) is an iterative pro-

cedure that consists of two steps. In the expectation or E-step, the complete-data likelihood

function is calculated by replacing the missing elements in the likelihood with their expected

values, given Yobs and a current set of parameter estimates θ(t). In the maximization or M-step,

a new estimate θ(t+1) is determined as the value that maximizes the complete-data likelihood;

iterating these steps until convergence yields the ML estimate of θ. The EM algorithm bears

resemblance with MI in multiple ways (Schafer, 1997). However, instead of replacing missing

values, it “emulates” the expected contribution of the unobserved data to the complete-data

likelihood. For example, with multivariate normal data in yi, the likelihood can be written in

terms of the sufficient statistics
∑

i yi and
∑

i yT
i yi. Given current estimates µ(t) and Σ(t), the

E-step calculates the conditional mean and variance of yi,mis given yi,obs (see Step 3 during JM)

and augments the sufficient statistics with the expected contributions of yi,mis. The M-step then

computes a new estimate µ(t+1) and Σ(t+1) from the sufficient statistics.

Full information ML. As an alternative to EM, the observed-data likelihood function

can often be expressed and evaluated directly on the basis of the incomplete data. This is

often referred to as “direct” (Allison, 2001; Yuan & Bentler, 2000) or “full information” ML

(Arbuckle, 1996; Enders, 2001; Enders & Bandalos, 2001). Under FIML, each case contributes

to the likelihood function to the extent to which it has data. For example, if the model of interest
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is themultivariate normal distribution, the log-likelihood for each individual case i (i = 1, . . . , n)

can be written as

logL(θ|yi,obs) = −
1
2

log|Σi,obs | −
1
2
(yi,obs − µi,obs)

TΣ−1
i,obs(yi,obs − µi,obs) −

ri,obs

2
log(2π) , (1.11)

where the subscripts simply refer to only the observed data for each case. The observed-data

log-likelihood of Yobs is then obtained by summing the individual likelihoods, logL(θ|Yobs) =∑
i logL(θ|yi,obs). It is important to note that, in order to address missing data with FIML, the

variables with missing data must be included in the likelihood function. For example, in a

regression model, the likelihood is defined only in terms of the dependent variable. If missing

data occur in explanatory variables, the likelihood function must be adjusted in such a way that

it includes distributional assumptions about the explanatory variables with missing data, for

example, by assuming that the variables follow a multivariate normal distribution (e.g., Enders,

2010; see also Anderson, 1957).

1.4.2 Bayesian estimation

Instead ofML, themodel of interest can also be estimated using Bayesianmethods (e.g., Gelman

et al., 2014). In the Bayesian paradigm, inferences then focus on the observed-data posterior

distribution of the parameters in the model of interest, where the missing data are regarded as

an additional set of “nuisance” parameters (see Section 1.3). In practice, Bayesian estimation

of the model of interest again requires the imposition of distributional assumptions through a

statistical model for the variables with missing data (i.e., a predictive distribution for the missing

data; see Little & Rubin, 2002). For example, if the model of interest is a regression model with

missing data in the outcome variable, then Bayesian estimation could be carried out without

additional assumptions, treating the missing outcomes as additional parameters to be simulated.

If missing data occur in explanatory variables, the model must be extended, for example, by

making assumptions about the joint distribution of the variables (e.g., Little & Rubin, 2002) or

by factoring the (joint) posterior distribution into a sequence of conditionals (Ibrahim, Chen, &

Lipsitz, 2002; Ibrahim, Chen, Lipsitz, & Herring, 2005).



16 MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH

1.5 Summary

In the present chapter, I provided a short introduction to different procedures for the treatment

of missing data. Despite the growing body of research on missing data in general, relatively

little is known about the treatment of missing data in multilevel research. For example, there

are a number of open questions regarding the correct use of multilevel MI (i.e., with both JM

or FCS), especially with missing data in variables of different types or at different levels, and if

the model of interest includes random slopes or cross-level interactions (CLIs). Perhaps more

subtly, it is still not clear how best to incorporate information located at different levels of the

sample (Level 1 and 2) into the imputation model and how this may be achieved using multilevel

JM and FCS. Finally, little is known about the correct application and the performance of FIML

in multilevel analyses (however, see Black, Harel, & McCoach, 2011).

In the following chapters, I consider some of these problems in detail, thus motivating

the research articles enclosed in this dissertation. First, I consider model-based procedures

and multilevel MI in applications with random intercepts, random slopes, CLIs, and different

types of variables (Articles 1 and 2) as well as the particular problem of including cluster-level

information in the imputation model in multilevel MI (Article 3). Then, I consider the analysis

of multiply imputed data sets with an emphasis on multiparameter tests and model comparisons

(Article 4). Finally, I present the R package mitml, which is intended to simplify both the

application of MI and the analysis of multiply imputed data sets, thus promoting a regular use

of multilevel MI in practice (Article 5).



2
Multiple imputation of multilevel
data

In the context of multilevel data, it can be challenging to treat missing data using MI. Previous

research has shown that, in order for MI to yield valid results, the multilevel structure must be

taken into account during the specification of the imputation model (Andridge, 2011; Drechsler,

2015; Enders, Mistler, & Keller, 2016; Lüdtke, Robitzsch, & Grund, 2017; Taljaard, Donner, &

Klar, 2008; van Buuren, 2011). However, in multilevel research, what aspects of the multilevel

structure need to be considered often depends on the research question. For example, amultilevel

random intercept model may include explanatory variables at Level 1 and 2. In addition, it is

possible to allow for contextual effects (Cronbach &Webb, 1975; Firebaugh, 1978) of variables

at Level 1 by including the between-group components (e.g., the group means) as additional

explanatory variable (e.g., Marsh, 1987). In other applications, the model may include random

slopes of explanatory variables at Level 1, thus allowing for the relations between variables at

Level 1 to differ across groups, as well as cross-level interactions (CLIs) to explain some of that

variation (e.g., Hofmann, Morgeson, & Gerras, 2003).

Despite the growing interest in the problems associated with missing data in multilevel

research, it is still unclear how these features of multilevel data can be addressed in multilevel

MI. For example, although there is a consensus in the literature that relations between variables

at different levels (i.e., contextual effects) should be taken into account (for a discussion, see

17



18 MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH

Enders et al., 2016), it is not yet fully understood how the cluster-level components of variables

should enter the imputation model in multilevel MI (see also Carpenter & Kenward, 2013;

Resche-Rigon & White, in press). Furthermore, it is currently unclear how random slopes

and interactions effects (e.g., CLIs) should best be addressed (see also Gottfredson, Sterba,

& Jackson, 2017; Grund, Lüdtke, & Robitzsch, 2016a). Consequently, the following chapter

is dedicated the treatment of missing data in multilevel research and the specific challenges

associated with multilevel MI. I start with reviewing the structure of multilevel data and then

consider the treatment ofmissing data for (a) themultilevel random interceptmodel withmissing

data at Level 1 and 2, and (b) multilevel models with random slopes and CLIs.

2.1 Structure of multilevel data

In multilevel research, the data are characterized by a clustered, nested, or hierarchical struc-

ture (e.g., Raudenbush & Bryk, 2002), for example, with individuals (e.g., students) clustered

within groups (e.g., schools). In these data, observations from individuals are not independent,

for example, because members of the same group are more likely to share similar traits (e.g.,

motivation) or be exposed to similar influences (e.g., teacher characteristics; for further discus-

sion, see Goldstein, 2011; Snijders & Bosker, 2012b). This non-independence can be regarded

as a nuisance (e.g., Hedges, 2007); however, in multilevel research, the clustered structure is

itself regarded as an interesting phenomenon because it allows observing variables and relations

between them at different levels (Snijders & Bosker, 2012b).

Variables measured at Level 1 and 2. Consider the example above with students nested

within schools. In such a case, variables can be measured at the level of students (Level 1)

and the level of schools (Level 2), for example, with questionnaires handed out to students

and school principals, respectively. Consequently, research questions in multilevel designs are

often concerned with the relations between variables at different levels, for example, the effects

of variables at Level 2 (e.g., school type) on outcome variables at Level 1 (e.g., academic

achievement) and vice versa for outcome variables at Level 2 (e.g., Croon & van Veldhoven,

2007). Further examples include multilevel mediation analyses (e.g., Croon, van Veldhoven,

Peccei, & Wood, 2014; Preacher, Zyphur, & Zhang, 2010).
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Figure 2.1: Illustration for manifest and latent specification of between-group components of variables at Level 1.

Between-group components of variables at Level 1. In multilevel data, variables measured

at Level 1 can be decomposed into two independent components, where the first part varies

only within groups (the within-group component) and the second part varies only between

groups (the between-group component). The between- and within-group components can then

be included in a multilevel analysis model, thus allowing for separate effects to be estimated at

Level 1 and 2 or (alternatively) the estimation of contextual effects (Cronbach & Webb, 1975;

see also Kreft, de Leeuw, & Aiken, 1995). In the multilevel literature, it is well known that

the between-group components can be constructed in at least two different ways, as illustrated

in Figure 2.1 (see also Asparouhov & Muthén, 2006; Kreft & de Leeuw, 1998; Lüdtke et al.,

2008). For example, consider a single variable X , taking values xi j for student i (i = 1, . . . , n j)

in school j ( j = 1, . . . , J). This variable is typically decomposed as

xi j = x̄• j + (xi j − x̄• j) , (2.1)

where the between-group component is represented by the group mean x̄• j , and the within-

group component is represented by the individual deviations from the mean (xi j − x̄• j). This

is referred to as a manifest decomposition (Lüdtke et al., 2008) because the between-group

component, x̄• j , is directly observable in this specification: It is simply a summary measure

(i.e., the average) of the individual values xi j (see Figure 2.1). This represents the standard

specification of between- and within-group components in multilevel analyses (e.g., Hox, 1994;

Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002). As an alternative, the between-group

components of X can be regarded as an unobservable, latent variable, for which the individual
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values xi j act as indicators (e.g., Croon & van Veldhoven, 2007; Grilli & Rampichini, 2011;

Lüdtke et al., 2008). In such a case, the variable can be decomposed as

xi j = xB, j + xW,i j , (2.2)

where xB, j and xW,i j are normally distributed random variables denoting the between- and

within-group components, respectively. This is illustrated in Figure 2.1 (see also Mehta &

Neale, 2005). From this point of view, the between-group components xB, j can be regarded as a

latent variable, of which only the indicators xi j can be observed. This specification is identical

to the decomposition in the one-way mixed-effects ANOVA, where xB, j is a random effect for

group j at Level 2, and xW,i j is a residual at Level 1 (see also Searle, Casella, & McCulloch,

2009; Snijders & Bosker, 2012b).

In practice, it is often a matter of debate which specification of between-group components

is more appropriate (for a discussion, see Lüdtke et al., 2008; Stapleton, Yang, & Hancock,

2016). In the latent specification, the observed values in each group are regarded as a finite

sample from a potentially infinite population. This perspective is useful if interest lies primarily

in a construct at Level 2 (e.g., school climate) that is measured at Level 1 (e.g., student ratings

on school climate). In such a case, the true between-group component is unobserved (latent)

and measured only through a finite number of observations at Level 1. By contrast, in the

manifest specification, the observed values in each group are summarized by the group mean.

This perspective is useful if interest lies primarily in a construct at Level 1 (e.g., gender), for

which the group mean provides an exact summary of the construct at Level 2 (e.g., gender ratio).

Critically, the two specifications provide different estimates of group-level effects: If the latent

model holds in the population, the manifest mean provides only an unreliable measure of the

true between-group component, whereas the latent mean corrects for that unreliability. In such

a case, between-group effects calculated on the basis of manifest group means can be biased

(and vice versa; see Lüdtke et al., 2008).

Consequences for multilevel MI. These aspect of multilevel data have important conse-

quences for the treatment of missing data and multilevel MI. First, missing data may occur at

both Level 1 and 2. Second, if the substantive analysis model allows for different relations
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between variables between and within groups (e.g., contextual effects), it is important that the

imputation model acknowledges that by including the between-group components of variables

at Level 1 during the imputation of missing data at Level 1 and 2 (see also Enders et al., 2016).

Finally, either manifest or latent group means can be used to represent the between-group com-

ponents of variables at Level 1, and it is still not yet fully understood (a) how the between-group

components are handled in current implementations of multilevel JM and FCS and (b) which

option is to be preferred in a given scenario. In the following, I consider these issues in the

context of the multilevel random intercept model with missing data at Level 1 and 2.

2.2 Random intercept models

To guide the following discussion, consider the following multilevel random intercept model

(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). For individual i (i = 1, . . . , n j) in

group j ( j = 1, . . . , J),

yi j = γ00 + γ10(xi j − x̄• j) + γ01 x̄• j + γ02w j + u0 j + ei j , (2.3)

where yi j denotes the values of an outcome variable at Level 1, xi j those of an explanatory

variable at Level 1, x̄• j denotes the (manifest) group means of the xi j , and w j denotes the

values of an explanatory variable at Level 2. In addition, u0 j denotes the random intercepts at

Level 2, which is assumed to follow a normal distribution with mean zero and variance τ2
0, and

ei j denotes residuals at Level 1, which is assumed to follow a normal distribution with mean

zero and variance σ2.

In this model, the outcome variable Y is allowed to vary at both Level 1 and 2. In addition,

the model allows for different relations between Y and X at Level 1 and 2 by including different

regression coefficients for (xi j − x̄• j) and x̄• j . Finally, the model includes variables measured

directly at Level 2, which do not vary within groups (W). If missing data occur in some or all

of these variables, both joint modeling (JM) and the fully conditional specification (FCS) can

be used for multilevel JM (Enders et al., 2016; Lüdtke et al., 2017). In the following, I consider

these two approaches and describe how they incorporate the different features of the analysis

model.
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2.2.1 Joint modeling

In the JM approach, a single model is used to generate imputations for all variables simultane-

ously. In the context of multilevel data, the JM approach is based on amultivariate mixed-effects

model (Carpenter & Kenward, 2013; Goldstein, Carpenter, Kenward, & Levin, 2009; Schafer

& Yucel, 2002; Yucel, 2008). For a set of continuous variables measured at Level 1 and 2, the

model can be written as follows. For student i (i = 1, . . . , n j) in school j ( j = 1, . . . , J)

y1i j = µ1 + u1 j + ei j (Level 1)

y2 j = µ2 + u2 j , (Level 2)
(2.4)

where y1i j denotes values for variables at Level 1 with means µ1, random intercepts u1 j at

Level 2, and residuals e1i j at Level 1. Likewise, y2 j denotes values for variables at Level 2, with

meansµ2 and residuals u2 j at Level 2. The random intercepts and residuals at Level 2 combined,

u j = (u1 j, u2 j), are assumed to follow a multivariate normal distribution with mean zero and

covariance matrixΨ. The residuals at Level 1, e1i j , are assumed to follow a multivariate normal

distribution with mean zero and covariance matrix Σ. If applied to the example above, y1i j

would comprise X and Y as well as auxiliary variables at Level 1, and y2 j would comprise W

as well as auxiliary variables at Level 2. In addition, the model may include an additional set

of completely observed predictor variables with associated fixed and random effects, an option

that is not discussed here for simplicity (e.g., Schafer & Yucel, 2002).

In this formulation of multilevel JM, there are several points worth noting. First, multilevel

JM separates between- and within-group components of variables at Level 1. Specifically,

neglecting the overall means µ1, the values y1i j are decomposed into a vector of random effects

u1 j specific to each group and a vector of residuals e1i j specific to each individual. In doing

so, multilevel JM automatically adopts a latent decomposition for the variables at Level 1,

where u1 j represents the latent group means at Level 2, and e1i j the individual deviations at

Level 1. Moreover, multilevel JM allows for (a) between-group relations between all variables

(i.e., variables both at Level 1 and 2) by allowing for the random intercepts and the residuals at

Level 2 to be correlated (Ψ) and (b) within-group relations between the variables at Level 1 by

allowing the residuals at Level 1 to be correlated (Σ).
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Categorical data. The multilevel JM approach can also treat missing data in categorical

variables. For example, for a categorical variable with c categories, the model can be extended

to include c − 1 latent normal background variables that represent different categories, where

c is the number of categories (Carpenter & Kenward, 2013; Goldstein et al., 2009). Ordinal

data can be addressed in a similar manner with a single latent background variable and a set of

c − 1 threshold parameters that represent different categories (Asparouhov & Muthén, 2010b).

For categorical variables at Level 1, these strategies are equivalent to generating imputations

from a (multivariate) generalized linear mixed-effects model with appropriate link functions

(e.g., logistic or probit). Further details on the computational aspects of these models are

given by Carpenter and Kenward (2013). In the following, I outline the sampling algorithm for

the imputation of continuous data at Level 1 and 2 with multilevel JM (see also Carpenter &

Kenward, 2013; Goldstein et al., 2009).

Sampling algorithm. Let y1i j and y2 j be missing in arbitrary patterns so that they can

be partitioned into observed and unobserved parts, y1i j = (y
obs
1i j , y

mis
1i j ) and y2 j = (y

obs
2 j , y

mis
2 j ).

Note that the covariance matrices at Level 1 and 2, Σ and Ψ, can be partitioned according to

the missing and observed parts of y1i j and y2 j , respectively. For each individual, Σ can be

partitioned as
[
Σobs
i j Σmis,obs

i j

Σobs,mis
i j Σmis

i j

]
and for each group, Ψ can be partitioned as

[
Ψobs

j Ψmis,obs
j

Ψobs,mis
j Ψmis

j

]
. In

addition, Ψ can also be partitioned according to whether variables were measured at Level 1

and 2, namely
[
Ψ1 Ψ12
Ψ21 Ψ2

]
. Similarly, µ1 and µ2 can be partitioned as (µ

obs
1i j ,µ

mis
1i j ) and (µ

obs
2 j ,µ

mis
2 j ),

respectively.

The procedure seeks to find plausible imputations for ymis
1i j and ymis

2 j on the basis of the

observed data and the parameters of the imputation model, θ = (µ1,µ2,Ψ,Σ). Given flat

priors for µ1 and µ2, and inverse-Wishart priors W−1
(ν1,∆

−1
1 ) and W−1

(ν2,∆
−1
2 ) for Σ and Ψ,

respectively, as well as a set of starting values for the missing data and θ, the procedure can be

summarized as follows. For notational convenience, I describe the P- and I-steps in reversed

order. Then, at iteration t,

1. I-step (missing data at Level 2): Update yimp
2 j as follows.

i) Draw u(t+1)
1 j ∼ N(ũ(t)1 j,U

(t)
1 j ) with mean and covariance matrix as follows.
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a) ũ(t)1 j = (I − Λ
(t)
1|2 j)µ

(t)
1|2 j +

1
nj
Λ
(t)
1|2 j

∑
i(y
(t)
1i j − µ

(t)
1 ), where Λ

(t)
1|2 j = Ψ

(t)
1|2

[
Ψ
(t)
1|2 +

1
nj
Σ(t)

]−1

is the reliability of the group means, µ(t)1|2 j = Ψ
(t)
12

[
Ψ
(t)
2

]−1
u(t)2 j is the expected value of

u1 j , and Ψ
(t)
1|2 = Ψ

(t)
1 − Ψ

(t)
12

[
Ψ
(t)
2

]−1
Ψ
(t)
21 is the variance of u1 j , given u2 j

b) U(t)1 j =
1
nj
Λ
(t)
1|2 jΣ

(t) with Λ(t)1|2 j as above

ii) Calculate uobs,(t+1)
2 j = yobs

2 j − µ
obs,(t)
2 j for the observed data at Level 2.

iii) Draw uimp,(t+1)
2 j ∼ N(µ̃mis|obs,(t)

2 j ,Ψ
mis|obs,(t)
j ) with mean and covariance matrix as follows.

a) µ̃mis|obs,(t)
2 j = Ψ

obs,mis,(t)
j

[
Ψ

obs,(t)
j

]−1
uobs,(t+1)

j , where uobs,(t+1)
j = (uobs,(t+1)

1 j , uobs,(t+1)
2 j )

b) Ψmis|obs,(t)
j = Ψ

mis,(t)
j − Ψ

obs,mis,(t)
j

[
Ψ

obs,(t)
j

]−1
Ψ

mis,obs,(t)
j

iv) Form u(t+1)
2 j = (uobs,(t+1)

2 j , uimp,(t+1)
2 j ) and impute y(t+1)

2 j = µ
(t)
2 + u(t+1)

2 j .

2. I-step (missing data at Level 1): Update yimp
1i j as follows.

i) Calculate eobs,(t+1)
1i j = yobs

1i j − uobs,(t+1)
1 j − µ

obs,(t)
1i j for the observed data at Level 1.

ii) Draw eimp,(t+1)
1i j ∼ N(µ̃mis|obs,(t)

1i j ,Σ
mis|obs,(t)
i j ) with mean and covariance matrix as follows

a) µ̃mis|obs,(t)
1i j = Σ

obs,mis,(t)
i j

[
Σ

obs,(t)
i j

]−1
eobs,(t+1)

1i j

b) Σmis|obs,(t)
i j = Σ

mis,(t)
i j − Σ

obs,mis,(t)
i j

[
Σ

obs,(t)
i j

]−1
Σ

mis,obs,(t)
i j

iii) Form e(t+1)
1i j = (e

obs,(t+1)
1i j , eimp,(t+1)

1i j ) and impute y(t+1)
1i j = µ

(t)
1 + u(t+1)

1 j + e(t+1)
1i j .

3. P-step: Update θ = (µ1,µ2,Ψ,Σ) as follows.

i) Draw µ(t+1)
1 ∼ N(ỹ(t+1)

1 , 1
NΣ
(t)
), where ỹ(t+1)

1 = 1
N

∑
i, j(y

(t+1)
1i j − u(t+1)

1 j ) and N is the total

sample size.

ii) Draw µ(t+1)
2 ∼ N(ȳ(t+1)

2 , 1
JΨ
(t)
), where ȳ(t+1)

2 = 1
J
∑

j y(t+1)
2 j .

iii) Draw Σ(t+1)
∼ W−1

(ν1 + N,∆−1
1 + S(t+1)

1 ), where S(t+1)
1 =

∑
i, j e(t+1)T

1i j e(t+1)
1i j .

iv) Draw Ψ(t+1)
∼ W−1

(ν2 + J,∆−1
2 + S(t+1)

2 ), where S(t+1)
2 =

∑
j u(t+1)T

j u(t+1)
j and u(t+1)

j =

(u(t+1)
1 j , u

(t+1)
2 j ).

The procedure acknowledges both the between- and within-group relations between variables:

Missing data at Level 1 are imputed conditionally on the observed data at Level 1; missing data

at Level 2 are imputed conditionally on the observed data at Level 2 as well as the random

effects of the variables at Level 1. This also illustrates how exactly the latent group means (i.e.,

random effects) of variables at Level 1 are used in multilevel JM.
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2.2.2 Fully conditional specification

As an alternative to multilevel JM, the joint distribution of the variables can be approximated

with a sequence of conditional models by multilevel FCS. For example, in the context of

the multilevel random intercept model with continuous data, missing data at Level 1 can be

addressed with univariate mixed-effects models, and missing data at Level 2 with regression

models (e.g., van Buuren, 2011; Yucel, Schenker, & Raghunathan, 2007; see also Gelman &

Hill, 2006). Specifically, with missing data at Level 1 and 2, multilevel FCS can be based on

the following set of models. For the p-th variable with missing data at Level 1,

y1i jp = yi j(−p)β1p + u1 jp + ei jp , (2.5)

where yi j(−p) denotes all variables at Level 1 and 2 other than y1i jp (or a subset of these) as well

as the between-group components of the variables at Level 1, and β1p is a vector of regression

coefficients. For he q-th variable with missing data at Level 2,

y2 jq = y j(−q)β2q + u2 jq , (2.6)

where y j(−q) denotes all variables at Level 2 other than y2 jq as well as the between-group

components of the variables at Level 1 (or a subset of these), and β2q is a vector of regression

coefficients. The random intercepts u1 jp as well as the residuals u2 jq and ei jp are each assumed

to follow independent normal distributions with mean zero and variances ψ2
1p, ψ

2
2q, and σ

2
p,

respectively.

To address multivariate patterns of missing data, the FCS approach iterates across all

variables with missing data. Once imputations have been generated for variables at Level 1,

their between-group components must be updated in order to reflect the most recent imputations

(e.g., with “passive imputation”; Royston, 2004; van Buuren & Groothuis-Oudshoorn, 2011).

By including all other variables at Level 1 and 2 (or a subset) as well as the between-group

components of variables at Level 1 as predictor variables in each variable’s imputation model,

the multilevel FCS approach—like multilevel JM—allows for all between- and within-group

relations between variables to be included during MI. However, in contrast to multilevel JM,

the current implementations of multilevel FCS use manifest group means as the between-group
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components of variables at Level 1 (e.g., van Buuren, 2011; see also Enders, Keller, & Levy, in

press; Enders et al., 2016).

Categorical data. Because multilevel FCS employs a sequence of univariate models to

handle missing data adapting categorical variables with missing data is relatively straightfor-

ward. For example, categorical and ordinal variables with missing data at Level 1 can be

imputed on the basis of multinomial and ordered logistic (or probit) mixed-effects models, re-

spectively (Asparouhov &Muthén, 2010b; Carpenter & Kenward, 2013; Enders et al., in press;

see also W. Wu, Jia, & Enders, 2015). For categorical and ordinal variables with missing data

at Level 2, multinomial and ordered logistic (or probit) regression models can be used as in

the single-level case (see Chapter 1). In the following, I outline the sampling algorithm for the

imputation of continuous data at Level 1 with multilevel FCS. The algorithm for missing data

at Level 2 is identical with that in single-level data (Chapter 1) and is formally described in

Article 3.

Sampling algorithm. For the variables with missing data at Level 1 (y1i jp), each y1i jp can

be partitioned as y1i jp = (y
obs
1i jp, y

mis
1i jp). Furthermore, let Np,obs and Jp,obs denote the number of

individuals and groups, respectively, for which y1i jp is observed. Under “flat” priors for β1p,

with priors ψ2
1p ∼ inv-χ2

(ν1p, τ
2
1p) and σ

2
p ∼ inv-χ2

(νp, τ
2
p), and given a set of starting values,

imputations are generated as follows. At iteration t, for variable p,

1. Estimate β̂
(t)
1p, ψ̂

2,(t)
1p , and σ̂2,(t)

p from the multilevel random intercept model yobs
1i jp = y(t)i j(−p)β1p+

u1 jp + ei jp, where y(t)i j(−p) = (y
obs
i j(−p), y

imp,(t)
i j(−p) ).

2. P-step: Update θ = (β1p,ψ
2
1p, σ

2
p) as follows.

i) Draw ψ
2,(t+1)
1p ∼ inv-χ2

(ν1p + Jp,obs,
ν1pτ

2
1p+Jp,obsψ̂

2,(t)
1p

ν1p+Jp,obs
).

ii) Draw σ
2,(t+1)
p ∼ inv-χ2

(νp + Np,obs,
νpτ

2
p+Np,obsσ̂

2,(t)
p

νp+Np,obs
) .

iii) Draw β(t+1)
1p ∼ N(β̂

(t)
, V̂(t)), where V̂(t) is the estimated variance-covariance matrix of the

regression coefficients.

3. I-step: Update ymis
1i jp as follows.

i) Draw u(t+1)
1 jp ∼ N(ũ(t)1 jp,U

(t)
1 jp) with mean and covariance matrix as follows.



CHAPTER 2: MULTIPLE IMPUTATION OF MULTILEVEL DATA 27

a) ũ(t)1 jp = λ
(t+1)
pj ·

1
n j

nj∑
i=1

(
yobs

1i jp − y(t)i j(−p)β
(t+1)
1p

)
, where λ(t+1)

pj =
ψ

2,(t+1)
1p

ψ
2,(t+1)
1p +σ

2,(t+1)
p /nj

is the con-

ditional reliability of the group means of yobs
1i jp, given y(t)i j(−p)

b) U(t)1 jp = λ
(t+1)
pj ·

σ
2,(t+1)

n j
with λ(t+1)

pj as above

ii) Draw eimp,(t+1)
1i jp ∼ N(0, σ2,(t+1)

p ) for cases with missing y1i jp.

4. Impute yimp,(t+1)
1i jp = y(t)i j(−p)β

(t+1)
1p + u(t+1)

1 jp + e(t+1)
i jp .

It is important to note that, in current implementations of multilevel FCS, the predictors yi j(−p)

may include (a) all variables at Level 1 and 2 other than y1i jp and (b) the between-group

components—specifically, themanifest groupmeans—of the variables at Level 1. Once y1i jp has

been imputed, the group means of that variable have to be recalculated in a passive imputation

step (e.g., Royston, 2005) in order to be used in subsequent steps of the algorithm for the

imputation of missing data at Level 1 and 2.

2.2.3 Maximum-likelihood estimation

In addition to multilevel MI, it is also possible to treat missing data in multilevel analyses

with FIML. Consider the multilevel random intercept model in Equation 2.3. Using FIML, the

model parameters are estimated by evaluating the likelihood function directly on the basis of

the incomplete data. However, because the likelihood function encompasses only the dependent

variable Y , only missing data in Y are addressed by FIML (see also Allison, 2012; Hox, van

Buuren, & Jolani, 2016). In order to extend the treatment of missing data to explanatory

variables, the analysis model must be altered in such a way that the likelihood function includes

the explanatory variables with missing data. For this purpose, software for structural equation

modeling (SEM) can be used, which allows introducing additional distributional assumption

(e.g., multivariate normal) for the variables with missing data while estimating the parameters

of interest in the structural part of the model (see also Enders, 2010).

However, in multilevel data, this strategy can have unintended effects. For example, when

estimating the model in Equation 2.3 in the statistical software Mplus (L. K. Muthén &Muthén,

2012), missing data in X may be accommodated by treating X as a multilevel continuous
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variable that is correlated with W at Level 2 and with Y at both Level 1 and 2. However, in this

case, the model adopts a latent decomposition of the between- and within-group components

of X , thus changing the substantive analysis model and the interpretation of between-group

effects. The model given in Equation 2.3 can only be estimated directly by calculating the group

means of X beforehand while introducing distributional assumptions only for the within-group

components of X . However, although this strategy leaves the specification of between-group

components unchanged, the estimates of the group means may be biased if the values in X are

missing in a systematic manner (e.g., MAR).

2.2.4 Comparison of different procedures

Despite the broad selection of procedures for treating missing data in multilevel research, little is

known about how they compare with each other. Consequently, the present dissertation devoted

two articles to providing a comparison of these methods and guidance for how they might be

used in practice (see Articles 1 and 2). In this context, Article 1 provided an introduction to

the treatment of missing data in the context of the multilevel random intercept model using

both multilevel JM and FCS as well as FIML. It was shown that when the analysis model used

a latent specification of between-group effects (Lüdtke et al., 2008), all procedures provided

accurate results. However, when the analysis model used a manifest specification of between-

group effects (i.e., manifest means), only multilevel JM and FCS provided satisfactory results.

By contrast, the standard strategy for implementing FIML led to strongly biased parameter

estimates due to the unintentional change in the analysis model; this bias was reduced (but not

fully eliminated) by calculating the manifest group means beforehand.

In Article 2, these comparisons were extended in two different ways: First, missing data

in categorical variables and in variables at Level 2 were considered in detail. Second, the

comparison was extended to include multilevel models with random slopes and CLIs. For the

random intercept model, the results mimicked those in Article 1. In addition, both multilevel

JM and FCS were shown to provide accurate results in various conditions with missing data in

categorical variables and in variables at Level 2. However, the results presented in Article 2

raised two additional points, which I will consider in the following. First, the question remained
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whether there is a formal equivalence in the treatment of missing data with multilevel JM

and FCS, that is, whether their use of the between-group components of variables at Level 1

constitutes an equivalent treatment of missing data at Level 1 and 2. This is discussed in the

following in the context of missing data at Level 2, in Section 2.3. In addition, Article 2 pointed

out several limitations of current procedures for multilevel MI in the context of multilevel

models with random slopes and CLIs. This is discussed in Section 2.4.

2.3 Missing data at Level 2

Relatively few studies have considered the treatment of missing data at Level 2 (for recent

discussions, see Enders et al., 2016; van Buuren, 2011; see also Black, Harel, & Matthews,

2013; Gelman & Hill, 2006). Moreover, these studies often considered ad-hoc procedures, for

example, single-level MI or to restrict the MI procedure to include variables only at Level 2

(Cheung, 2007; Gibson & Olejnik, 2003). For this reason, Article 3 was concerned with the

treatment of missing data at Level 2 and the role of between-group components in variables at

Level 1. In the following, I argue that the use of manifest group means in multilevel FCS, while

usually safe in practice, is not strictly equivalent with multilevel JM. Furthermore, I outline a

computational procedure developed in Article 3, which allows including latent group means in

multilevel FCS by using the method of plausible values (Mislevy, 1991).

2.3.1 (Non-) Equivalence of manifest and latent group means

In order to treat missing data at Level 2, the between-group components of variables at Level 1

often need to be taken into account, for example, because they are (a) featured in the analysis

model, thus leading to bias in parameter estimates if they were omitted (Meng, 1994; Schafer,

2003), or (b) related to the variables with missing data or the propensity of missing data, thus

improving the performance of MI (Collins et al., 2001; Schafer & Graham, 2002). However, it

is currently an open question how best to do this. In the multilevel literature, it is well known

that the latent and manifest models tend to provide different estimates of group-level effects

(e.g., Lüdtke et al., 2008). For that reason, it may be hypothesized that the choice between
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the two specifications of between-group components may also affect parameter estimates when

they are used in MI.

Regarding the case with balanced data, it has been argued that FCS with manifest group

means provides imputations consistent with the joint model (i.e., with multilevel JM) because

the two models imply identical variance and covariance structures (Carpenter & Kenward,

2013; see also Mistler, 2015; Mistler & Enders, in press). However, regarding the case with

unbalanced data and missing values at Level 1, Resche-Rigon and White (in press) argued that

the conditional distribution implied by the joint model depend not only on the manifest group

means but also on group size and recommended a two-step variant of multilevel FCS that allows

for heteroscedasticity in Level-1 variances across groups (Audigier & Resche-Rigon, 2017). In

the present dissertation, I extend this line of reasoning and show that the use of manifest group

means in multilevel FCS can lead to biased estimates of covariances and regression coefficients

at Level 2 in unbalanced data.

Consider the case with two variables, where Y is measured at Level 1, and Z is measured at

Level 2 (for a more general expression, see Article 3). Under the assumption that Z is MCAR

and the number of groups goes to infinity (J → ∞), it can be shown that (a) the variance of Z

is preserved under FCS with manifest group means of Y , but (b) the covariance of Y with Z is

biased in the case with unbalanced data. Specifically, the bias (in %) can be shown to be

%Bias(σ̂yz) = p
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where σ̂yz is the estimator for the covariance of Y with Z at Level 2 (B. O. Muthén, 1994), p

is the probability of missing data, S is the set of unique group sizes in the sample, k is one of

the fixed group sizes in S, πk is the frequency of each k in S, n̄ is the average group size, and

σ
2
y and τ

2
y are the variances of Y at Level 1 and 2. The bias is zero in balanced samples (i.e.,

when k
n̄ = 1 for all k ∈ S) but tends to be negative in unbalanced samples (i.e., toward zero).

Though the bias is usually very small in most practical scenarios, this illustrates that multilevel

FCS with manifest group means is not fully equivalent to multilevel JM and may introduce bias

into estimates of regression coefficients at Level 2 if the joint model holds (for further details,

see Article 3).
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2.3.2 Latent group means in multilevel FCS

As an alternative to the standard implementations of multilevel FCS, latent means may be

included in in the imputation model for missing data at Level 2. Recall that, in multilevel FCS,

missing data at Level 2 can be treated by regressing each variable with missing data at Level 2 on

a set of predictor variables that may include any other variable at Level 2 and the between-group

components of variables at Level 1 (Equation 2.6). In order to include in latent group means

in the set or predictors, the method of plausible values can be used (Mislevy, 1991), which

provides a general framework for generating imputations for latent quantities (see also Little &

Rubin, 2002; for a similar application, see Yang & Seltzer, 2016). To this end, the latent means

are drawn from their posterior distribution, given the variables at Level 2 and between-group

components of all the other variables at Level 1. The sampling algorithm is given below (see

also Article 3).

Sampling algorithm. Recall that latent group means can be regarded as random effects in a

multilevel random intercept model. Therefore, the latent means can be sampled using standard

“empirical Bayes” methods for sampling random effects (e.g., Efron & Morris, 1973; see also

Raudenbush & Bryk, 2002). At iteration t, the latent group means yB,1 jp for the p-th variable

at Level 1 are sampled as follows,

1. Estimate β̂
(t)
1p, ψ̂

2,(t)
1p , and σ̂2,(t)

p from the multilevel random intercept model y(t)1i jp = y(t)j(−p)β1p+

u1 jp+ei jp, where y(t)j(−p) = (y
obs
j(−p), y

mis,(t)
j(−p) ) contains the variables at Level 2, the between-group

components of other variables at Level 1, and a constant (for the intercept).

2. Draw b(t)1 jp ∼ N(b̃(t)1 jp, B
(t)
1 jp) with mean and variance are calculated as follows.

i) b̃(t)1 jp = (1 − λ
(t)
pj) · µ

(t)
pj + λ

(t)
pj ·

1
n j

nj∑
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y
(t)
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ψ
2,(t)
1p
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1p +σ
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p /nj

is the conditional re-

liability of the group means, and µ(t)pj = y(t)j(−p)β̂
(t)
1p is the conditional mean of y(t)1i jp, given

y(t)j(−p)

ii) B(t)1 jp = λ
(t)
pj ·

σ̂
2,(t)

n j
with λ(t)pj as above

3. Impute y
(t)
B,1 jp = b(t)1 jp.
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Overall, the sampling procedure can be compared to the conventional sampling of random

effects in multilevel FCS (Yucel et al., 2007). For this reason, multilevel FCS approach with

latent groupmeans becomes very similar tomultilevel JM.Note that the latent groupmeansmust

be updated with a new posterior draw at each iteration of the procedure even if the underlying

variable is completely observed; this is required to preserve the uncertainty associated with the

(unobserved) latent means. Finally, it is worth pointing out that the procedure is not settled on

how the parameter estimates are obtained, that is, the procedure may be based on ML estimates,

Bayesian estimates, or a fully Bayesian approach, in which the point estimates β̂1p, ψ̂
2
1p, and

σ̂
2
p are replaced by draws from the posterior distributions of these parameters. The simulation

results of Article 3 indicated that multilevel FCS with latent cluster means provides results

that are asymptotically identical to those of multilevel JM and unbiased with both balanced

and unbalanced data. Both the implementation with Bayesian estimates and the fully Bayesian

procedure were found to yield adequate results, where the fully Bayesian procedure appeared

to be the most accurate overall (for further details, see Article 3).

2.4 Random coefficient models

If the model of interest includes additional random effects or non-linear terms such as cross-

level interaction effects (CLIs), the application of multilevel MI is less well understood. In

the following, I consider multilevel MI in the context of the random coefficients model (e.g.,

Snijders & Bosker, 2012b), which allows for relations between variables at Level 1 to vary

across groups and may include explanatory variables at Level 2 to account for some of that

variation. For example, assume a researcher is interested in the following model

yi j = γ00 + γ10(xi j − x̄• j) + γ01 x̄• j + γ02w j + γ11(xi j − x̄• j)w j

+ u0 j + u1 j(xi j − x̄• j) + ei j ,
(2.7)

where γ10 denotes the main (fixed) effect of (xi j − x̄• j), u1 j denotes the random effect of

(xi j − x̄• j) that varies across groups, γ11 denotes the cross-level interaction (CLI) associated

with the product term (xi j − x̄• j)w j . The two random effects, u0 j and u1 j , are assumed to follow

a multivariate normal distribution and can be interpreted as random (i.e., unexplained) variation
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in the regression coefficients. In that context, the CLI denotes the extent to which the effect of

(xi j − x̄• j) varies systematically with W . If missing data occur only in the dependent variable Y ,

both multilevel MI and FIML can be used to estimate the model of interest. Unfortunately, the

treatment of missing data is much less straightforward if missing data in explanatory variables

(e.g., X). In order to preserve the relevant features of the analysis model, the imputation model

must allow for the effect of (xi j − x̄• j) onY to vary both unsystematically and as a function ofW .

Below, I provide a short discussion about the problems one faces with standard implementations

of multilevel JM and FCS. In this context, I summarize the results of Article 2, which evaluated

these procedures in the context of the multilevel random coefficient model with and without

CLIs, and I present an alternative procedure for estimating the model of interest that relies on

Bayesian estimation.

2.4.1 Challenges with multilevel MI

In multilevel research, the random coefficients model is frequently used to gain a better under-

standing how the relations between individual-level variables (Level 1) vary across groups (at

Level 2) and which explanatory variables account for some of that variance (CLIs; for a dis-

cussion, see Aguinis & Culpepper, 2015). From the viewpoint of multilevel MI, the challenges

associated with missing data in the random coefficients model are twofold and concern both

random slopes of explanatory variables with missing data and the presence of non-linear terms

such as the CLI.

Random slopes. If missing data occur only in the dependent variable Y , the treatment of

missing data is straightforward. Specifically, missing data in Y can be imputed conditionally

on the explanatory variables with a univariate mixed-effects model that mimics the model

of interest (potentially with additional auxiliary variables) using either multilevel JM or FCS

(Schafer & Yucel, 2002; see also Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016a) or

simply estimated using FIML. However, if missing data occur in X , it is currently not possible

to directly include the random slope of (xi j − x̄• j) in the imputation model in multilevel MI;

it is possible to “reverse” the imputation model (e.g., with multilevel FCS; see Enders et al.,

2016; Grund, Lüdtke, & Robitzsch, 2016a) such that the imputation model for X contains a
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random slope for (yi j − ȳ• j), but this does not directly correspond to the relation specified in the

model of interest. Consequently, this strategy has been shown to induce bias into the estimates

of fixed effects and to underestimate the slope variance in subsequent analyses (Grund, Lüdtke,

& Robitzsch, 2016a; see also (Gottfredson et al., 2017)).

In the simulations conducted in Article 2, the performance of multilevel MI and FIML in

the context of the random coefficients model was evaluated in a broad range of settings both

with and without CLIs. The results for conditions without CLIs are largely in line with previous

findings: Both multilevel MI and FIML provide asymptotically unbiased parameter estimates

when missing data are confined to the dependent variable. However, if the explanatory variable

is affected bymissing data, “reversing” the imputationmodel (e.g., usingmultilevel FCS) results

in slightly biased estimates of the fixed effect and the slope variance. If the random slope is

omitted from the imputation model (e.g., using multilevel JM or FCS), the bias in the fixed

effects becomes smaller at the cost of larger bias in the slope variance.

Cross-level interactions (CLIs). Similar to the challenges associated with random slopes,

the treatment of missing data in models with CLIs is only straightforward if missing data are

confined to the outcome variable Y . By contrast, if the explanatory variables that partake in the

interaction contain missing data (e.g., X and W), it is currently an open question how best to

performMI. In single-level MI, several ad-hoc procedures have been proposed to accommodate

interaction effects. For example, the interaction term may be regarded as “just another variable”

(JAV) and imputed without further constraints (von Hippel, 2009; White et al., 2011). This

approach has produced mixed results overall but has also been termed “the best of a set of

imperfect methods” (Seaman, Bartlett, & White, 2012). However, in multilevel MI, using JAV

may not be straightforward if the model relies on group mean centering to separate between- and

within-group effects because the group means are themselves subject to uncertainty (see Article

2). As an alternative, it has been recommended to simply impute the variables underlying the

interaction effect (e.g., X and W), after which the product term can be updated using “passive

imputation” (e.g., White et al., 2011). This approach is particularly attractive in multilevel MI

because it is easy to implement and available in standard software; however, it has been shown

to be more prone to bias as compared with other methods (e.g., S. Kim, Sugar, & Belin, 2015;
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Seaman et al., 2012; von Hippel, 2009).

In Article 2, particular emphasis was placed on multilevel FCS with passive imputation of

the CLI. In this evaluation, multilevel MI still provided reasonable estimates of the main effects,

but estimates of the CLI and the (residual) slope variance were noticeably biased. If the random

slope was omitted, the bias in main effects and the CLI became slightly smaller at the cost of

larger bias in the slope variance. By contrast, LD provided biased estimates of the main effects

but the least biased estimates of the CLI; single-level MI generally performed worse than did

multilevel MI. Taken together, the results of the simulations in Article 2 indicated that, although

LD and single-level MI tended to perform worse than multilevel MI, current implementations

of multilevel MI are still not perfectly suited for dealing with missing data in the multilevel

random coefficients model. For that reason, Article 2 also includes a list of recommendations

and fully reproducible examples for the use of current software for multilevel MI.

2.4.2 New methods for accommodating random slopes and CLIs

In the context of single-level MI, it has previously been acknowledged that the conditional

distributions for the imputation of incomplete explanatory variables employed under passive

imputation and JAV are misspecified when the true model includes quadratic or interaction

effects (Seaman et al., 2012; see also S. Kim, Belin, & Sugar, in press; S. Kim et al., 2015). As

an alternative, Bartlett, Seaman, White, and Carpenter (2015) poposed an adjusted procedure

for single-level FCS which factorizes the joint posterior distribution into separate components

pertaining to the model of interest and the explanatory variables with missing data, thus taking

nonlinear and interaction effects in the model of interest into account during MI. Similar

approaches have also been applied in the context of regression (Zhang & Wang, 2016) and

multilevel analyses (Erler et al., 2016), which used Bayesian estimation to estimate the model

of interest directly from the incomplete data but can also be used to perform MI. In addition,

Goldstein, Carpenter, & Browne, 2014 proposed a procedure for fitting the joint model using

Bayesianmethods and generating imputationswithmultilevel JMwhile accommodating random

slopes and interaction effect in the model of interest. First implementations of this approach are

currently becoming available but still require further evaluation (Quartagno&Carpenter, 2017).
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Finally, similar methods have also been proposed for ML estimation, which likewise rely on a

factorization of the joint likelihood into separate components pertaining to the model of interest

and the explanatory variables with missing data (Ibrahim, Chen, & Lipsitz, 2001; Stubbendick

& Ibrahim, 2003). In the context of Article 2, preliminary simulations have demonstrated

that these procedures possess great potential for the treatment of missing data in the random

coefficients model. For this reason, I consider these approaches in some additional detail with

an emphasis on Bayesian estimation.

2.5 Bayesian estimation of the random coefficients model

The presence of interaction effects complicate matters because they imply a complex joint

distribution for the variables of interest (e.g., Seaman et al., 2012). Consider the model in

Equation 2.7 with missing data in X , in which case imputations would usually be generated

from the conditional distribution P(X |Y,W) using multilevel JM or FCS. However, it has been

shown that this distribution is not strictly linear in Y and W but also includes the interaction

between the two and higher-order effects of W (S. Kim et al., 2015). Then, according to Bayes’

theorem, the conditional distribution of X , given Y and W , can be expressed in the alternative

factorization

P(X |Y,W) ∝ P(Y |X,W)P(X |W)P(W) , (2.8)

where P(Y |X,W), which is the model of interest, and P(X |W)P(W), which represents a con-

ditional model for the (missing) covariates. In other words, instead of sampling directly from

P(X |Y,W), samples can be obtained equivalently by sampling from the factorization on the

right-hand side of the equation. In practice, this expression will not belong to a standard family

of distributions so that sampling can be achieved by rejection sampling or Metropolis-Hastings

(MH) steps with a suitable proposal distribution for missing xi,mis, after which the proposed

value x∗i,mis is rejected or accepted based on the joint likelihood of the data (see also Bartlett et

al., 2015; Goldstein et al., 2014). This provides the advantage that interactions and nonlinear

terms enter the joint density only through the model of interest but not the model for X , which

can now take simpler parametric forms.
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In the context of Bayesian estimation with missing data, this approach can be used to

factorize the joint posterior distribution in a similar manner (Erler et al., 2016). For example,

for the model of interest in Equation 2.7 with missing data in X , the joint posterior distribution

can be written as

P(θ, ξ, Xmis |Y, Xobs,W) ∝ P(Y |Xobs, Xmis,W, θ)P(θ)P(Xobs, Xmis |W, ξ)P(ξ) , (2.9)

which comprises the model of interest with parameters θ, and a conditional model for the

missing values in X , given the observed values for the explanatory variables, with parameters ξ.

Similar approaches have been used to obtain ML estimates for multilevel models with missing

data (e.g., Ibrahim, Chen, & Lipsitz, 1999; Ibrahim et al., 2001).

Computer code for Bayesian estimation with JAGS. The model can be fitted with standard

software for Bayesian estimation such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,

2000), JAGS (Plummer, 2016), or Stan (Stan Development Team, 2016). Given below is

compute code needed to specify the random coefficients model with missing data in X in the

statistical software JAGS.

model{

for(n in 1:N){

y[n] ~ dnorm( yhat[n] , tau1y )
x[n] ~ dnorm( xhat[n] , tau1x )

# model of interest
yhat[n] <- b0y + b1y * ( x[n] - xgm[group[n]] ) + b2y * xgm[group[n]] + b3y * z[n] +

b4y * ( x[n] - xgm[group[n]] ) * z[n] + uy[group[n],1] +
uy[group[n],2] * ( x[n] - xgm[group[n]] )

# "imputation" model for x
xhat[n] <- b0x + b1x * z[n] + ux[group[n]]

}

for(g in 1:G){

ux[g] ~ dnorm( 0 , tau2x )
uy[g,1:2] ~ dmnorm( M[1:2] , Tau[1:2,1:2] )

# group mean
xgm[g] <- mean( x[ ( (g-1)*ng + 1 ):( (g-1)*ng + ng ) ] )

}

# fixed effects
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b0x ~ dnorm( 0 , .001 )
b1x ~ dnorm( 0 , .001 )
b0y ~ dnorm( 0 , .001 )
b1y ~ dnorm( 0 , .001 )
b2y ~ dnorm( 0 , .001 )
b3y ~ dnorm( 0 , .001 )
b4y ~ dnorm( 0 , .001 )

# variances components
tau1x <- pow( sigma1x , -2 )
tau2x <- pow( sigma2x , -2 )
tau1y <- pow( sigma1y , -2 )
sigma1x ~ dunif( 0 , 10 )
sigma2x ~ dunif( 0 , 10 )
sigma1y ~ dunif( 0 , 10 )

Tau[1:2,1:2] ~ dwish( Id[1:2,1:2] , scaleId )
Sigma[1:2,1:2] <- inverse( Tau[1:2,1:2] )

}

It is easy to see that this procedure includes both (a) the model of interest and (b) an “imputation”

model for X , that is, a random intercept model in which W is used as a predictor at Level 2.

Despite its focus on estimation, this procedure can also be used to generate imputations for X ,

which may be preferable in some settings (see also Goldstein et al., 2014). In the following,

I present the results of a simulation study which evaluates the performance of the Bayesian

estimation approach.

Evaluation of performance. To evaluate the performance of the Bayesian estimation ap-

proach, I conducted a simulation study using the design fromArticle 2. The data were generated

from the random coefficients model in Equation 2.7, where all variables were simulated with

mean zero and unit total variance. The simulated conditions included different sample sizes at

Level 1 (n = 5, 10) and Level 2 (J = 50, 100, 200, 500), and different levels of the ICC for

the variables at Level 1 (ρI,X = ρI,Y = .10, .50). In addition, the simulation included different

levels of the CLI (γ11 = 0, .20) and the total slope variance (i.e., including the contribution of

the CLI; Var(β1 j) = γ
2
11 + τ

2
1 = .05, .10, .20). Missing data were induced in X according to a

MAR mechanism depending on Y , leading to 25% missing data in X . To provide a comparison

with other methods, missing data were also treated with the procedures evaluated in Article 2:

listwise deletion (LD), single-level FCS (FCS-SL), multilevel FCS passive imputation of the

CLI (FCS-CLI/RS), and multilevel JM. In order to allow a fair comparison between the proce-

dures, Bayesian estimation (JAGS) was used to generate imputations for X so that parameter
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estimates were obtained in the same way as under MI, that is, by fitting the model of interest

using lme4 (Bates, Maechler, Bolker, & Walker, 2016) and combining the results according

to Rubin (1987). The parameter estimates under each method and each condition were then

evaluated according to bias, RMSE, and the coverage rate of the 95% confidence interval.

The simulation results are summarized in Table 2.1 for selected conditions. In conditions

without CLI (γ11 = 0), the regression coefficients were estimated approximately without bias

under JM and JAGS. In addition, FCS-CLI/RS provided imperfect but reasonable estimates of

these parameters with bias below 6%. By contrast, FCS-SL and LD provided biased estimates

of the regressions coefficients, particularly under FCS-SL with large ICC (.50) and under LD

with small ICC (.10). In conditions with CLI (γ11 = .20), the results for the main effects

were similar; however, estimates for the CLI (γ̂11) were biased under FCS-SL, FCS-CLI/RS,

JM, and (to a lesser extent) LD; only JAGS provided approximately unbiased estimates of the

CLI. Finally, the slope variance (τ̂2
1) was estimated without bias only under JAGS, whereas the

estimates were biased downward under FCS-SL, FCS-CLI/RS, JM, and (to a lesser extent) LD.

Regarding the RMSE and the coverage rates of the 95% confidence interval, the results were

mostly in line with the bias. However, under FCS-CLI/RS and JM, the coverage rates of the

95% confidence intervals for the within-group regression coefficient of X (γ̂10) were below the

nominal value of 95% despite relatively low bias in these conditions, which may be attributed to

the fact that these methods underestimated (FCS-CLI/RS) or ignored (JM) the slope variance,

thus underestimating the uncertainty associated with the fixed effect (γ̂10). Taken together,

Bayesian estimation and imputations generated on that basis tended to outperform current

implementations of multilevel MI in terms of both accuracy and efficiency. For that reason,

Bayesian estimation and related procedures appear to be promising approaches for estimating

the multilevel random coefficients model with missing data.

2.6 Summary

In this chapter, I attempted to (a) provide an overview of the treatment of missing data and

multilevel MI and (b) motivate the research conducted as part of the present dissertation. In
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Table 2.1: Bias (in %), RMSE, and Coverage (in %) of the 95% Confidence Interval for the Within-Group
Regression Coefficient of X , the Between-Group Regression Coefficient of W , the CLI of X with W , and
the Residual Slope Variance (Medium Group Size, n = 10, Total Slope Variance = .20)

LD FCS-SL FCS-CLI/RS JM JAGS

Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.

Random coefficients model without CLI (γ11 = 0)
ρI,X = ρI,Y = .10k = 100

γ̂10 −6.2 0.06 91.4 −8.5 0.07 85.5 −5.0 0.06 90.1 −1.4 0.05 90.7 −0.2 0.05 94.1
γ̂02 −10.2 0.05 80.0 −1.7 0.03 93.5 −0.0 0.03 94.7 −0.3 0.03 94.5 −0.0 0.03 94.7
γ̂11 −0.3a 0.06 92.8 −3.2a 0.04 96.4 −2.2a 0.05 94.3 −0.3a 0.05 96.6 −0.0a 0.06 94.1
τ̂

2
1 −10.8 0.05 — −37.7 0.08 — −22.2 0.06 — −33.6 0.07 — 1.2 0.04 —

k = 500
γ̂10 −6.0 0.04 75.1 −8.2 0.05 51.7 −4.1 0.03 85.9 −1.1 0.02 91.6 0.2 0.02 95.1
γ̂02 −10.4 0.04 34.0 −1.9 0.02 90.5 −0.2 0.01 93.7 −0.5 0.01 94.1 −0.2 0.01 93.9
γ̂11 −1.3a 0.02 94.7 −4.0a 0.02 96.0 −2.1a 0.02 95.6 −1.0a 0.02 96.8 −0.5a 0.03 94.1
τ̂

2
1 −11.3 0.03 — −37.3 0.08 — −24.4 0.05 — −33.1 0.07 — 0.1 0.02 —

ρI,X = ρI,Y = .50k = 100
γ̂10 −4.6 0.06 93.7 −34.6 0.18 3.6 −5.5 0.06 90.9 −2.0 0.05 93.5 −0.8 0.05 95.2
γ̂02 −5.0 0.07 93.9 −1.8 0.07 94.7 1.1 0.07 95.2 1.0 0.07 95.2 1.0 0.07 95.2
γ̂11 −0.7a 0.05 96.2 −12.9a 0.04 95.4 −2.4a 0.05 95.8 −0.3a 0.04 97.1 −0.0a 0.05 94.7
τ̂

2
1 −6.0 0.05 — −53.3 0.11 — −21.5 0.06 — −32.8 0.07 — 1.0 0.04 —

k = 500
γ̂10 −4.1 0.03 85.3 −34.5 0.17 0.0 −4.2 0.03 82.7 −1.4 0.03 89.9 −0.3 0.02 95.4
γ̂02 −5.7 0.03 88.8 −3.0 0.03 93.5 −0.0 0.03 95.8 −0.0 0.03 95.8 −0.0 0.03 95.8
γ̂11 −0.4a 0.02 95.8 −12.6a 0.03 79.2 −1.6a 0.02 96.6 −0.5a 0.02 97.1 −0.1a 0.02 95.8
τ̂

2
1 −7.5 0.02 — −54.6 0.11 — −24.2 0.05 — −33.3 0.07 — −0.4 0.02 —

Random coefficients model with CLI (γ11 = .20)
ρI,X = ρI,Y = .10k = 100

γ̂10 −5.8 0.06 89.1 −10.0 0.07 80.6 −6.1 0.06 90.5 −3.0 0.05 92.0 0.3 0.05 94.5
γ̂02 −18.9 0.08 50.3 −1.6 0.03 93.1 −0.3 0.03 92.6 −0.5 0.03 93.5 −0.3 0.03 93.7
γ̂11 −6.8 0.05 93.5 −27.3 0.07 80.0 −15.8 0.05 91.6 −21.2 0.06 87.8 −1.0 0.05 96.2
τ̂

2
1 −10.2 0.04 — −36.7 0.06 — −22.4 0.05 — −32.9 0.06 — 2.1 0.04 —

k = 500
γ̂10 −6.6 0.04 67.5 −10.7 0.06 27.6 −6.3 0.04 66.7 −3.8 0.03 82.3 −0.4 0.02 93.5
γ̂02 −18.7 0.07 0.8 −1.2 0.01 94.3 0.1 0.01 96.2 −0.1 0.01 94.9 0.1 0.01 95.6
γ̂11 −6.6 0.02 93.2 −26.8 0.06 23.0 −15.1 0.04 72.8 −20.7 0.04 47.7 −0.5 0.02 97.7
τ̂

2
1 −10.3 0.02 — −36.5 0.06 — −24.3 0.04 — −32.5 0.05 — 1.0 0.02 —

ρI,X = ρI,Y = .50k = 100
γ̂10 −4.4 0.06 93.1 −37.3 0.19 1.5 −7.1 0.06 88.0 −4.2 0.06 91.4 −0.9 0.05 94.5
γ̂02 −11.2 0.08 88.0 −2.5 0.08 92.8 0.3 0.07 94.7 0.3 0.07 94.9 0.3 0.07 94.9
γ̂11 −2.1 0.05 95.6 −52.5 0.11 28.4 −14.3 0.05 93.3 −19.0 0.06 89.7 1.3 0.05 94.1
τ̂

2
1 −8.8 0.04 — −51.4 0.08 — −23.0 0.05 — −33.6 0.06 — −0.6 0.04 —

k = 500
γ̂10 −3.7 0.03 86.9 −37.1 0.19 0.0 −5.5 0.04 74.1 −3.2 0.03 87.1 0.0 0.02 95.8
γ̂02 −11.9 0.05 71.3 −2.7 0.03 94.9 −0.1 0.03 94.9 −0.1 0.03 95.1 −0.1 0.03 94.9
γ̂11 −3.5 0.02 93.9 −53.2 0.11 0.0 −14.3 0.04 72.8 −19.6 0.04 53.0 0.2 0.02 94.1
τ̂

2
1 −6.3 0.02 — −50.8 0.08 — −23.5 0.04 — −31.5 0.05 — 1.0 0.02 —

Note. γ̂10 = within-group regression coefficient of X; γ̂02 = between-group regression coefficient of W ; γ̂11 = CLI;
τ̂

2
1 = residual slope variance; LD = listwise deletion; FCS-SL = single-level FCS; FCS-CLI/RS = multilevel FCS in-
cluding product terms and random slopes; JM = joint modeling; JAGS = model-based MI (via Bayesian estimation).
a If the true CLI was zero, the scale of the bias was adjusted to mimic conditions with CLI = .20.



CHAPTER 2: MULTIPLE IMPUTATION OF MULTILEVEL DATA 41

general, multilevel MI is a powerful approach for dealing with missing data in many application

of multilevel analysis models. In the context of the multilevel random intercept model, it is

important that the imputation model allows for different relations between variables at Level 1

and 2, which can be accomplished in a very general manner with standard implementations

of both multilevel JM and FCS (for a detailed discussion, see Articles 1 and 2). However, in

applications of multilevel JM and FCS, it is important to acknowledged that they tend to use the

between-group components of variables at Level 1 in different ways (i.e., latent vs. manifest

group means). The two approaches tend to provide equivalent answers only in balanced but not

in unbalanced data; in order for multilevel FCS to be fully consistent with JM, it is possible to

simulate latent group means with the method of plausible values as outlined in Article 3 (for a

related discussion, see also Article 1).

In the context of the multilevel random coefficients model, it can be challenging to use

multilevel MI. Specifically, current implementations of multilevel MI are facing problems when

the model of interest includes random slopes or interaction effects (e.g., CLIs) and missing data

occur in explanatory variables (for a discussion, see Article 2). As an alternative, it is possible

to explicitly take the model of interest into account during model estimation or multilevel MI,

for example, using extensions of standard multilevel JM and FCS or by relying on specialized

Bayesian or ML estimation procedures. These procedures, though not yet widely available

in standard software for multilevel MI, provide promising results in the simulations studies

included in the present dissertation and should further be considered in future studies. Further

details and a comprehensive set of recommendations regarding the treatment of missing data

in multilevel research in various settings are provided in Article 2. In the following chapters,

I consider the analysis of multiply imputed data sets and the use of multilevel MI in research

practice.
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3
Analysis of multiply imputed data

Naturally, the application of MI involves not only the imputation itself but also analyzing the

imputed data sets. To this end, the imputed data sets are analyzed separately with regular

complete-data methods, and the results are pooled into a final set of parameter estimates and

inferences (Rubin, 1987). In the missing data literature, several procedure have been proposed

for this task, including procedures for scalar estimands (e.g., individual regression coefficients)

aswell as for complex statistical hypotheses that involvemultiple parameter simultaneously (e.g.,

model comparisons; for an overview, see Reiter & Raghunathan, 2007). However, relatively

little is known about how these procedures perform in practice (e.g., Allison, 2001; Enders,

2010; Schafer, 1997; van Buuren, 2012). In the following chapter, I discuss the procedures

available for the pooling of parameter estimates in MI. In that context, I summarize the results

of Article 4, which was concerned with the evaluation of different methods for conducting

multiparameter tests in the context of the analysis of variance (ANOVA). In addition, I present

the results of two simulation studies, which evaluated these methods for testing hypotheses

about (a) fixed effects and (b) variance components in multilevel analyses.

3.1 Pooling of scalar estimands

In order to obtain final estimates and inferences for scalar estimands (e.g., regression coeffi-

cients), pooling is most frequently achieved with the procedure outlined by Rubin (1987). Let

43
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Q be the quantity of interest, which is estimated in the complete data by Q̂ with variance Û.

Furthermore, assume that we obtained a number of M (m = 1, . . . ,M) imputed data sets. From

each of the imputed data sets, we obtain an estimate Q̂m of the quantity of interest as well as

an estimate Ûm of its variance (e.g., its squared standard error). Then, according to Rubin, the

final estimate of Q under MI is

Q̄ =
1
M

M∑
m=1

Q̂m , (3.1)

the average of the individual estimates Q̂m. Under the assumption that Q̂ is distributed normally

around Q in the compete data, the (total) sampling variance of Q̄ can be written as

T = Ū +
(
1 +

1
M

)
B , (3.2)

where Ū is known as the within-imputation variance, which is simply the average of the

individual variance estimates Ûm,

Ū =
1
M

M∑
m=1

Ûm , (3.3)

and B is known as the between-imputation variance and calculated as

B =
1

M − 1

M∑
m=1
(Q̄ − Q̂m)

2 . (3.4)

In the calculation of the total sampling variance T , the component B/M can be regarded as a

penalty term that accounts for the fact that the variance tends to be estimated less precisely if

the number of imputations is low.4

Statistical hypotheses about Q can be tested similar to complete-data analyses by comparing

Q̄/
√

T against a t distribution with v degrees of freedom,

v = (M − 1)
[
1 +

1
RIV

]2
, (3.5)

where

RIV =
(1 + 1/M)B

Ū
(3.6)

4More formally, Rubin (1987) derives the variance T as an approximation to the posterior variance of Q with
M →∞ (e.g., with hypothetical estimates Q̄∞, Ū∞, and B∞) but based on only a finite number of imputations M .
In that context, B/M is an estimator of the variance of Q̄ around Q̄∞ (e.g., Schafer, 1997; see also Carpenter &
Kenward, 2013).
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is the relative increase in variance due to nonresponse. The idea behind this expression for

the degrees of freedom ν is to “widen” the reference distribution in the complete data (i.e., the

standard normal) to account for the loss of information that is due to the missing data (Schafer,

1997). On the basis of the RIV, the fraction of missing information (FMI) can be estimated as

F̂MI =
RIV + 2/(v + 3)

RIV + 1
, (3.7)

which can provide a useful diagnostic tool in practice because it quantifies the extent to which

the available information about the quantity of interest is affected by missing data (see also

Andridge & Thompson, 2015; Bodner, 2008).

Small-sample modification. Barnard and Rubin (1999) proposed an alternative expression

for the degrees of freedommore suitable for applications in smaller samples. Instead of Rubin’s

original large-scale approximation, Barnard and Rubin recommend using the adjusted degrees

of freedom

ṽ =

(
1
v
+

1
vobs

)−1
, (3.8)

where νobs are the observed-data degrees of freedom, calculated as

vobs =
vcom + 1
vcom + 3

vcom

(
1

1 + RIV

)
, (3.9)

and vcom are the complete-data degrees of freedom.5 In practice, using ν̃ can be useful because

it (a) never exceeds νcom and (b) is always smaller than ν. For this reason and because ν̃ is only

slightly conservative in larger samples, Barnard and Rubin recommend using this expression

regardless of sample size.

Other modifications. Further modifications and alternatives to Rubin’s rules for scalar

quantities include variance estimator for complex sampling designs of J. K. Kim, Brick, Fuller,

and Kalton (2006), the rules for nested imputations of Shen (2000), and the alternative variance

estimator of Robins and Wang (2000), which has been shown to be robust against certain types

of misspecification of the imputation model (for further discussion, see Reiter & Raghunathan,

5 The observed-data degrees of freedom vobs can be better understood by observing that the estimated FMI can
be written as F̂MI = 1 − v+1

v+3
Ū
T . Therefore, vobs can be understood as vobs = vcom(1 − F̂MIcom), where F̂MIcom is

an estimate of the FMI based on vcom (Equation 3.7). From this perspective, vobs reflects a reduced sample size,
where the reduction is determined by the FMI.
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2007). In the following, I focus on the procedures available for pooling multidimensional

estimands (i.e., multiparameter tests).

3.2 Pooling of multidimensional estimands

In research practice, statistical hypotheses often involve more than one parameter. For example,

when including a set of explanatory variables in a regression model, it is often interesting

to test for the simultaneous contribution of these variables. In the complete data, this test

can be carried out, for example, with a Wald-test on the vector of regression coefficients, by

testing the difference in variance explained that is attributable to the explanatory variables,

or with likelihood-ratio test (LRT). In the following, I discuss the procedures available for

multiparameter tests and model comparisons with multiply imputed data sets.

3.2.1 Moment-based procedure (D1)

Similar to the scalar case, let Q be the K-dimensional quantity of interest (e.g., a vector of

regression coefficients), and let Q̂m and Ûm denote the estimates of the parameter vector and

its variance-covariance matrix obtained from M (m = 1, . . . ,M) imputed data sets. Then,

according to Rubin (1987) and Li, Raghunathan, and Rubin (1991), hypotheses about Q can be

tested with the following test statistic

D1 =
(Q̄ −Q0)

T Ū−1
(Q̄ −Q0)

K(1 + ARIV1)
, (3.10)

where Q̄ is the pooled estimate Q (i.e., the average Q̂m), Q0 is the hypothesized value of Q

under the null hypothesis (e.g., a vector of zeros), Ū is the within-imputation variance (i.e., the

average Ûm), and ARIV1 is an estimate of the average relative increase in variance (ARIV),

ARIV1 =
(1 + M−1

)tr(BŪ−1
)

K
, (3.11)

whereB is the between-imputation variance. Li, Raghunathan, and Rubin (1991) recommended

comparing D1 against an F distribution with K numerator and v1 denominator degrees of

freedom. For a = K(M − 1),

v1 =

{
4 + (a − 4)[1 + (1 − 2a−1

)ARIV−1
1 ]

2 if a > 4
(K + 1)(M − 1)(1 + ARIV−1

1 )
2
/2 otherwise

. (3.12)
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Small-sample modification. Reiter (2007) proposed an alternative for the degrees of free-

dom to be used in smaller samples (henceforth referred to as D∗1). Conceptually, thismodification

is similar to that of Barnard and Rubin (1999) and derived using Taylor series expansion. For

brevity, the expression is not given in detail here (for further discussion, see Reiter, 2007;

Reiter & Raghunathan, 2007). Further adaptions of D1which allow for different RIVs across

components of the parameter vector are given by Licht (2010).

Current recommendations regarding D1 and D∗1. In the missing data literature, D1 and

D∗1 are often recommended because they utilize a (near) maximum of the information provided

by the imputed data (e.g., Enders, 2010; Schafer, 1997; van Buuren, 2012). Previous research,

though limited in scope, has shown that both D1 and D∗1 performwell as long as their assumptions

are not severely violated (e.g., Li, Raghunathan, & Rubin, 1991; Licht, 2010). Similarly, in

Article 4 of the present dissertation, D1 and D∗1 were always among the most reliable procedures

for testing hypotheses in the context of the ANOVA, especially in conditions with larger FMIs,

in which other procedures tended to be less robust. In smaller samples, D1 tended to be slightly

liberal, whereas D∗1 provided Type I error rates close to the nominal level across throughout

the study (for further details, see Article 4; see also Reiter, 2007; van Ginkel & Kroonenberg,

2014).

3.2.2 Procedure based on individual χ2 statistics (D2)

In some cases, it may not be feasible to use D1, for example, because estimates for the variance-

covariance matrix of the quantity of interest are not available. Therefore, Li, Meng, Raghu-

nathan, and Rubin (1991) proposed a simple alternative which requires only a χ2-distributed

test statistic Wm (or a p-value, equivalently) from each of the imputed data sets. The pooled test

statistic D2 is then calculated as

D2 =
WK−1

− (M + 1)(M − 1)−1ARIV2
1 + ARIV2

, (3.13)

whereW is the average of the Wm, K is the number of parameters being tested, and ARIV2 is

another estimate of the ARIV,

ARIV2 = (1 + M−1
)

[
1

M − 1

M∑
m=1

(√
Wm −

√
W

)2
]
. (3.14)
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To conduct hypothesis tests on the basis of D2, Li, Meng, et al. recommended to compare it

against an F distribution with K numerator and v2 denominator degrees of freedom

v2 = K−3/M
(M − 1)(1 + ARIV−1

2 )
2 . (3.15)

Because D2 requires only the test statistics Wm, it tends to be very flexible and can be used for

pooling both Wald-like hypothesis tests and LRTs.

Current recommendations regarding D2. In the literature, D2 has been both praised for its

simplicity (e.g., Allison, 2001; Snijders & Bosker, 2012b) and criticized because (a) it tends

to be less reliable than D1 when the number of parameters K to be tested is large, and (b) it

may provide overly conservative or liberal inferences depending on the FMI, producing Type I

error rates well above or below the nominal value (e.g., Enders, 2010; van Buuren, 2012; see

also Li, Meng, et al., 1991). However, much of the previous research focused on applications

of D2 with relatively few imputations (e.g., as little as M = 3). In Article 4, these results

were only partially replicated. Specifically, with M = 10 or fewer imputations, D2 was far

more conservative (and less powerful) than other procedures. However, with a larger number of

imputations (e.g., M = 100), it provided Type I error rates close to the nominal value with good

statistical power as long as the FMI was not too large (i.e., larger than 35%). In conditions with

larger FMI, D2 became increasingly liberal with Type I error rates above the nominal value.

Based on these findings, D2 may very well be used in many conditions that are likely to occur in

psychological research, particularly if the number of missing values is not too large or auxiliary

variables are available that reduce the FMI (for further details, see Article 4).

3.2.3 Likelihood ratio tests (D3)

Finally, hypothesis tests for multiple parameters can be conducted by comparing two nested

statistical models using the LRT. For example, when testing for the contribution of a set of

explanatory variables, then the LRT may be used to compare the full model with a reduced

model that does not include the variables in question. For that reason, Meng and Rubin (1992)

proposed a procedure for pooling the LRT, which relies only on the individual LRTs and

parameter estimates from each of the M imputed data sets. Let Lm denote the individual LRT
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statistics. Then, the pooled LRT can be calculated as

D3 =
L̃

K(1 + ARIV3)
, (3.16)

where L̃ is the average LRT statistic evaluated at the average parameter estimates, K is the

number of parameters being tested, and ARIV3 is another estimate of the ARIV

ARIV3 =
M + 1

K(M − 1)
(L̄ − L̃) , (3.17)

where L̄ is the averageLRT statistic (i.e., the average Lm). Meng andRubin (1992) recommended

comparing D3 against an F distribution with K numerator and v3 denominator degrees of

freedom. For a = K(M − 1),

v3 =

{
4 + (a − 4)[1 + (1 − 2a−1

)ARIV−1
3 ]

2 if a > 4
(K + 1)(M − 1)(1 + ARIV−1

3 )
2
/2 otherwise

. (3.18)

The D3 procedure can be useful in practice because, similar to D2, is does not require an estimate

of the variance-covariance matrix for the quantity of interest. However, because D3 requires

multiple evaluations of the likelihood function, it can be difficult to implement and is currently

used primarily in software for structural equation modeling (SEM; see also Asparouhov &

Muthén, 2008).

Current recommendations regarding D3. In the missing data literature, D3 is often recom-

mended because it is asymptotically equivalent to D1 (e.g., Schafer, 1997; van Buuren, 2012).

However, relatively few studies have evaluated the performance of D3 (Enders, 2010); the re-

sults of those that have suggest that the procedure performs well but that it tends to be more

conservative than D1 in conditions with smaller samples and larger FMIs (Y. Liu & Enders,

in press; Meng & Rubin, 1992). Similarly, in Article 4, the performance of D3 was often

comparable with that of D1 and D∗1. However, D3 tended to be more conservative than the other

procedures in smaller samples with slightly lower statistical power. In addition, the procedure

became more conservative in conditions with very large FMIs (e.g., larger than 60%). Taken

together, these results indicated that D3 is relatively robust against conditions with larger FMIs

but slightly worse in terms of statistical power when compared with D1 and D∗1.
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3.3 Conducting multiparameter tests and model comparisons in
multilevel analyses

In the context of multilevel MI, the evaluation of multiparameter tests is particularly interesting

because the different test statistics may be used in a more or less flexible manner for various

kinds of hypothesis tests. For example, hypotheses about fixed effects are usually tested with

Wald-like hypothesis tests (D1, D∗1, and D2; for a discussion, see Manor & Zucker, 2004;

Snijders & Bosker, 2012b). By contrast, variance components are often tested with LRTs (D2

and D3), especially with multilevel software that constrain 6 the variance components to be

positive (Snijders & Bosker, 2012b). In the following, I provide the results from two additional

simulation studies, which evaluated the performance of different procedures for multiparameter

tests with respect to (a) fixed effects and (b) variance components in multilevel MI.

3.3.1 Fixed effects

The first simulation study examined the performance of the different pooling methods—D1, D∗1,

D2, and D3—for testing a subset of the fixed effects in a multilevel random intercept model.

Specifically, the data were generated from the following multilevel model. For individual i

(i = 1, . . . , n) in group j ( j = 1, . . . , J),

yi j = γ10(xi j − x̄• j) + γ01 x̄• j + γ
(1)
02 d(1)j + . . . + γ

(K)
02 d(K)j + u0 j + ei j , (3.19)

where (xi j − x̄• j) and x̄• j denote the within- and between-group components of a continuous ex-

planatory variable X at Level 1 with regression coefficients γ10 and γ01, and d j = (d
(1)
j , . . . , d

(K)
j )

denotes the values of a set of dummy indicator variable representing the K + 1 levels of a cat-

egorical explanatory variable D at Level 2 with regression coefficients γ02 = (γ
(1)
02 , . . . , γ

(K)
02 ).

The multiparameter test was concerned with the effect of the categorical variable D, that is,

with the simultaneous test of the regression coefficients γ02 against zero. For example, D may

represent school types in educational research. In this case the multiparameter test can be used

6The use of D1 and D∗1 for variance components may be inappropriate because their sampling distribution may
be skewed due to the constrained estimation procedures in some multilevel software (e.g., lme4). However, with
unconstrained estimation (e.g., Mplus), D1 and D∗1 may perform well; however, this option is not further explored
here in detail (for a discussion, see Savalei & Kolenikov, 2008; Stoel, Garre, Dolan, & van den Wittenboer, 2006).
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Figure 3.1: Type I error rates for different pooling methods and LD (α = 5%) depending on the sample size at Level
2 (J), the number of parameters being tested (K), and the effect of X (γ10 and γ01). The shaded areas represent the
results in complete-data. D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

to test for overall differences between school types in the outcome variable Y , where the null

hypothesis states that there are no differences between school types.

Missing values were induced in Y as a function of X (MAR, 25%). For simplicity, the

sample size at Level 1 was fixed at n = 10, and the ICCs of X and Y were fixed at .20. I varied

the number of groups (J = 60, 120) and the number of parameters being tested (K = 2, 5),

which corresponds to conditions with 3 and 6 levels of the categorical variable D, respectively.

The overall effect of X was varied (γ10 = γ01 = 0, .35, .70) in order to allow for conditions with

different FMIs. The parameters γ02 were specified in such a way that either (a) the differences

between the categories in D were all zero or (b) the coefficients representing one third of

the categories were set to .35. The missing values were treated with LD and multilevel JM

(number of imputations, M = 100). In line with current recommendations in the multilevel

literature (e.g., Snijders & Bosker, 2012b), the multiparameter test for the fixed effects was

carried out using both Wald-tests with standard errors based on restricted maximum likelihood

estimation (REML; applicablewith LD, D1, D∗1, and D2) andLRTs on the basis ofML estimation

(applicable with LD and D3). To calculate D∗1, the complete-data degrees of freedom were set

to J − (K + 1) − 1 (see also Manor & Zucker, 2004).

The results are summarized in Figures 3.1 and 3.2. As can be seen, the Type I error rates
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Figure 3.2: Power for different pooling methods and LD (α = 5%) depending on the sample size at Level 2 (J),
the number of parameters being tested (K), and the effect of X (γ10 and γ01). The dotted lines indicate the power
obtained in complete data. D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

usually remained within reasonable bounds under MI (i.e., between 2.5% and 7.5%, given

α = 5%). However, the procedures tend to differ in comparison with one another. First, the

Type I error rates tended to be slightly higher in conditions with smaller samples at Level 2

(J = 60) under LD, which further reduced sample size, as well as D1 and (to a lesser extent)

D2. By contrast, D∗1 and (to a lesser extent) D3 tended to be more conservative, especially in

smaller samples (J = 60), a larger number of parameters being tested (K = 5), and larger FMIs

(γ10 = γ01 = 0). The results for the statistical power essentially matched the differences in Type

I error rates with slightly higher power under D1, D2, and LD as compared with D∗1 and D3. The

power was strongly increased in conditions with larger effects of X , which may be attributed

both to the differences in the expected power (i.e., by reducing the residual variance at Level 2),

and a reduction in the FMI (i.e., by increasing the information available about missing Y ). Due

to the simulation design, the reduction of the FMI was also beneficial for statistical power under

LD; however, this may not be the case if auxiliary variables are available that are not included

in the analysis model (see also Article 4). In summary, the results under MI maintained Type

I error rates close to the nominal value with only small differences in statistical power, this

lending support to the use of all procedures, including D2, within the scope of the simulated

conditions (see also Article 4).

3.3.2 Variance components

The second simulation study examined the performance of the different methods conducting

multiparameter hypothesis tests for testing variance components, that is, the slope variance, in a
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multilevel random coefficients model. The data were generated from the following model. For

individual i (i = 1, . . . , n) in group j ( j = 1, . . . , J),

yi j = γ10(xi j − x̄• j) + γ01 x̄• j + u0 j + u1 j(xi j − x̄• j) + ei j , (3.20)

where u1 j denotes the random slopes pertaining to the within-group components of X , and

the random effects (u0 j, u1 j) were assumed to follow a multivariate normal distribution. In

multilevel research, the slope variance is often tested using the LRT by comparing the model

of interest with a reduced model which included the same fixed effects but only the random

intercept (see Snijders & Bosker, 2012b). This test involves K = 2 parameters: the slope

variance and the intercept-slope covariance. Therefore, the test can be carried out by comparing

the LRT statistic with a χ2 distribution with two degrees of freedom. However, if the variances

are constrained to be larger than zero during model estimation, it has been argued that the LRT

statistic under the null hypothesis follows a 50/50 mixture of two χ2 distributions with two

and one degrees of freedom, respectively, resulting in overly conservative inferences with the

standard procedure (Self & Liang, 1987; Stram & Lee, 1994; see also LaHuis & Ferguson,

2009).

Missing data were induced in Y dependent on X (MAR, 25%). The sample size at Level

1 was fixed at n = 10, and the ICCs of X and Y were fixed at .20. Similar to the previous

study, I varied the number of groups (J = 50, 100), the slope variance (τ2
1 = 0, .05, .10), and

the overall effect of X (γ10 = γ01 = 0, .35, .70) to allow for conditions with different FMIs. The

missing data were treated using LD and multilevel JM (number of imputations, M = 100). In

contrast to before, I implemented multilevel JM in two different ways: with standard “least-

informative” priors and with data-dependent priors7 on the basis of LD (Grund, Lüdtke, &

Robitzsch, 2016a). The slope variance was tested using LRTs on the basis of ML using LD, D2,

and D3, each compared with both the standard and the mixture-χ2 distribution. To this end, D2

and D3 were multiplied by K , where the transformed statistics D2 ·K and D3 ·K asymptotically

7The use of data-dependent priors is a controversial topic in the statistical literature (e.g., Gelman et al., 2014).
However, it has been shown that least-informative priors can lead to biased estimates of the variance components
in multilevel models, especially when the variance components are small (e.g., McNeish, 2016). In practice, the
use of data-dependent priors may be avoided by specifying a “prior guess” for the variance-covariance matrix of
the random effects (see Grund, Lüdtke, & Robitzsch, 2016a; Schafer & Yucel, 2002).
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follow a distribution to a χ2 distribution with K degrees of freedom—or a mixture-χ2 under the

null—as the denominator degrees go to infinity (see also Asparouhov & Muthén, 2008).

The results are summarized in Figures 3.3 and 3.4. For simplicity, I do not consider the

results obtained with least-informative priors because they introduced large biases into the

estimates of the slope variance in some conditions, leading to inflated Type I error rates under

MI. In contrast with the results for the fixed effects, D3 tended to provide a more liberal test

of the slope variance as compared with D2 and LD. Specifically, Type I error rates under D3

were relatively close to the nominal level (α = 5%) with the standard test but exceeded the

nominal level with the mixture-χ2. By contrast, the Type I error rates with D2 and LD were

more similar to those in the complete data and were closer to the nominal when compared

with the mixture-χ2. The results for the statistical power mostly resembled the differences

in Type I error rates, with slightly larger power with D3 as compared with D2 and LD and

slightly larger power with the mixture-χ2 as compared with the standard test. In summary, the
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differences between pooling methods were again relatively small in the selected conditions.

However, the results obtained from D3 were surprisingly liberal, whereas D2—though slightly

more conservative—maintained Type I error rates close to the nominal value and benefited from

the mixture-χ2 in a manner similar to the complete data.

3.4 Summary

In the present chapter, I summarized the most widely known procedures for obtaining parameter

estimates and inferences from multiply imputed data set. These procedures include relatively

general procedures for scalar and multidimensional estimands (e.g., one or several regression

coefficients) and methods for testing statistical hypotheses about these parameters (e.g., Wald

tests, LRTs). However, even though recommendations tend to favor some procedures (D1, D∗1,

and D3) over others (D2), little is known about the performance of these methods in research

practice. The present dissertation contributes to this topic in a number of ways. First, in Article

4, the performance of these procedures was compared in the context of the ANOVA, including

a large number of simulated conditions and a varying number of imputations of each method.

Second, the same procedures were evaluated in two additional simulation studies that were

concerned with multilevel analyses. The results indicated that (a) D1 and D∗1 are often the most

reliable among the procedures but also that (b) D2 performs well in a surprisingly large range

of conditions provided that the number of imputations is reasonably large.

In addition to these findings, many open questions remain about the analysis of multiply

imputed data sets. For example, researchers often wish to assess how well statistical models

“fit” the data by examining “goodness-of-fit” indices (Bentler, 1990; Bentler & Bonett, 1980);

however, not much is known about how these measures can be obtained from the imputed

data and how the resulting statistics perform in practice (see also Enders & Mansolf, in press;

Kientoff, 2011). Furthermore, very few studies have investigated the use of procedures for

model selection such as the LASSO (Tibshirani, 1996) or the elastic net (Zou & Hastie, 2005)

as well as resampling-based methods such as the bootstrap (Efron, 1981) when missing data are

treated with MI (Q. Chen &Wang, 2013; Claeskens & Consentino, 2008; Geronimi & Saporta,
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2017; Heymans, van Buuren, Knol, van Mechelen, & de Vet, 2007). Finally, the analysis of

multiply imputed data sets is further complicated if imputations are generated in multiple stages,

resulting in “nested imputations” of missing data (e.g., Rubin, 2003). Such applications are

common in educational large-scale assessments and require the use of an adjusted set of rules

for pooling parameter estimates and inferences (Reiter & Raghunathan, 2007; Shen, 2000).

Because many of these methods are frequently used in educational and psychological research,

they should be considered in future studies.

Despite these interesting theoretical questions, the challenges associated with conducting

analyses underMI are often of a very practical nature. Specifically, relatively few statistical soft-

ware packages—especially in the context of multilevel modeling—include an implementation

of procedures for multiparameter tests and model comparisons under MI. This is problematic

because using complex statistical procedures such as D3 then requires programming skills and

formal statistical knowledge. For this reason, the following chapter introduces the R package

mitml, which is intended to provide a more user-friendly interface for specifying the imputation

model as well as a fully automated set of tools for analyzing multiply imputed data sets with

particular emphasis on multilevel MI.



4
The R package mitml

Thus far, the present dissertation has been focused on the theoretical aspects of multilevel MI.

However, despite the tremendous advances in the methodological and statistical literature on

multilevel MI over the past years, few studies appear to be using it to treat missing data in

research practice (Diaz-Ordaz et al., 2014; Jelicic et al., 2009; Nicholson et al., 2017; Peugh

& Enders, 2004; see also Chapter 1). I argue that this is, at least in part, because (a) the

literature is still lacking accessible introductory articles about multilevel MI, and (b) the current

implementations of multilevel MI tend to be technically very sophisticated and often require

programming skills or advanced statistical knowledge to use them effectively. For this reason,

one of the goals of the present dissertation was (a) to provide a comprehensive tutorial on the use

of multilevel MI, and (b) the development of the R package mitml, which provides simple and

automated procedures for the imputation of missing data and the analysis of multiple imputed

data sets. In this chapter, I provide a brief overview of mitml with the aid of an illustrative data

example. In addition, the chapter includes a summary of Article 5 of the present dissertation,

which provides an in-depth tutorial for multilevel MI using mitml in the statistical software R.

4.1 Multiple imputation in practice

Despite the theoretical appeal of MI, conducting multilevel MI can be a daunting task because

researchers need to incorporate a number of additional steps in their analytical efforts. For

57
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example, a typical application of multilevel MI requires specifying the imputation model,

running the procedure to generate imputations, checking convergence, fitting the analysis model

to each data set, and pooling the results to obtain final parameter estimates and inferences. The

mitml package attempts to provide a comprehensive set of tools for each of these steps, enabling

users to follow a simpleworkflow that requires only aminimumof computer programming skills.

In the present chapter, I outline the core features of the package with a number of examples and

notes on their implementation.

4.1.1 Features of mitml

The mitml package is available in the statistical software R (R Core Team, 2016) and can be

installed from the Comprehensive RArchive Network (CRAN). To illustrate the implementation

of the different features in mitml and the intended workflow, I make use of the leadership data

set, which contains artificial data from 750 employees (Level 1) in 50 work teams (Level 2),

including data on the teams’ cohesion and the employees’ work load (categorical, high/low), job

satisfaction, and ratings on negative leadership style. As illustrated below, all variables contain

missing data.

library(mitml) # load package
data(leadership) # load data

# GRPID JOBSAT COHES NEGLEAD WLOAD
# Min. : 1.0 Min. :-7.32934 Min. :-3.4072 Min. :-3.13213 low :416
# 1st Qu.:13.0 1st Qu.:-1.61932 1st Qu.:-0.4004 1st Qu.:-0.70299 high:248
# Median :25.5 Median :-0.02637 Median : 0.2117 Median : 0.08027 NA's: 86
# Mean :25.5 Mean :-0.03168 Mean : 0.1722 Mean : 0.04024
# 3rd Qu.:38.0 3rd Qu.: 1.64571 3rd Qu.: 1.1497 3rd Qu.: 0.79111
# Max. :50.0 Max. :10.19227 Max. : 2.5794 Max. : 3.16116
# NA's :69 NA's :30 NA's :92

To generate imputations, mitml builds on two existing packages that implement the JM approach

tomultilevelMI: the pan package (Schafer&Yucel, 2002), which can be used to addressmissing

data in continuous variables at Level 1, and the jomo package (Quartagno, 2016), which extends

this functionality to mixed continuous and categorical variables at both Level 1 and 2. In the

present case, I will use jomo.

Specifying the imputation model. With mitml, the imputation model can be specified in

two different ways. First, the imputation model can be specified as a formula similar to the R
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package lme4 (Bates, Mächler, Bolker, & Walker, 2015). In the present case, the imputation

model comprises two components, one pertaining to variables at Level 1 and the other to

variables at Level 2 (see Chapter 2). Specifically, with missing data in all variables in the data

set, the imputation model is specified as follows.

fml <- list( JOBSAT + NEGLEAD + WLOAD ~ 1 + (1|GRPID) , # Level-1 model
COHES ~ 1 ) # Level-2 model

The first entry in the list denotes the imputation model for missing data at Level 1. The second

entry denotes the imputation model for the variable at Level 2. The ~ symbol separates the

target and predictor variables in the model. Here, the predictor side includes only a 1 for the

intercept. The | operator denotes the clustering variable as well as the random effects to be

included in the model (i.e., random intercepts and slopes). Here, the data are clustered by GRPID

and the model includes only a random intercept; further random effects may be included for

completely predictor variables should these be available. Categorical variables are recognized

automatically, provided that they are formatted as factors in R.

As an alternative, the imputation model can be specified using an integer vector denoting the

“type” of each variable (i.e., its role in the imputation model). The corresponding type vectors

equivalent to the formulas above are as follows.

type <- list( c( -2, 1, 0, 1, 1) , # Level-1 model
c( -2, 0, 1, 0, 0) ) # Level-2 model

The integer values -2 and 1 denote the cluster variable and the target variables in the model,

respectively. In addition, the values 2 and 3 can be used to include predictor variables with

fixed and random effects, respectively (see the package documentation). The type interface

can be helpful when dealing with large data sets, where writing formulas can be tedious.

By contrast, the formula interface is more convenient and easy to understand; it is also be

very flexible because, similar to general formulas in R, it can be used to include functions of

predictor variables as additional predictors in the model (e.g., group means, squared terms, or

interactions).

Running MI. Given the imputation model represented as a model formula or type vector,

the imputation procedure can be run by calling one of the wrapper functions panImpute (for
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pan) or jomoImpute (for jomo). This requires the specification of the number of iterations and

imputations for which the procedure should run. In the present example, the imputation is run

as follows.

imp <- jomoImpute(data=leadership, formula=fml, n.burn=5000, n.iter=250, m=20)

The total number of iterations is determined by the number of burn-in iterations (n.burn),

which are performed before any imputations are generated, the number of iterations between

imputations (n.iter), and the number of imputations (m). In addition, the user has the option to

designate an additional grouping variable, in which case imputations are generated separately

within the levels of that variable, to specify the Bayesian prior distributions for the parameters of

the imputation model, and to pass other parameters to the function that can be used to influence

the behavior of the procedure (see the package documentation). In particular, with jomoImpute,

it is possible to allow for heterogeneity in the Level-1 residual covariance matrix across groups

(see Quartagno & Carpenter, 2016b; Yucel, 2011).

Convergence diagnostics. Once the imputation is completed, users are required to ensure

that the parameter chains of the imputation procedure converged to stationary distributions

(Gelman et al., 2014). The mitml package offers two options to do so. First, convergence

statistics can be calculated with the summary function, which includes the R̂ criterion (Gelman

& Rubin, 1992) as well as (optionally) the autocorrelation at lag k and 2k, where k is the

number of iterations between imputations, and a measure for the goodness of approximation

in the central tendency of the posterior distribution (see Hoff, 2009). For example, the default

command which requests only R̂ is as follows.

summary(imp)

# Call:
#
# jomoImpute(data = leadership, formula = fml, n.burn = 5000, n.iter = 250,
# m = 20)
#
# Level 1:
#
# Cluster variable: GRPID
# Target variables: JOBSAT NEGLEAD WLOAD
# Fixed effect predictors: (Intercept)
# Random effect predictors: (Intercept)
#
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Figure 4.1: Convergence plot for the fixed intercept of job satisfaction (JOBSAT), including the trace plot (top left),
the autocorrelation plot (bottom left), the density plot (top right), and the posterior summary (bottom right).

# Level 2:
#
# Target variables: COHES
# Fixed effect predictors: (Intercept)
#
# Performed 5000 burn-in iterations, and generated 20 imputed data sets,
# each 250 iterations apart.
#
# Potential scale reduction (Rhat, imputation phase):
#
# Min 25% Mean Median 75% Max
# Beta: 1.002 1.002 1.003 1.003 1.004 1.004
# Beta2: 1.000 1.000 1.000 1.000 1.000 1.000
# Psi: 1.000 1.000 1.001 1.001 1.001 1.004
# Sigma: 1.000 1.002 1.008 1.004 1.010 1.025
#
# Largest potential scale reduction:
# Beta: [1,2], Beta2: [1,1], Psi: [4,3], Sigma: [3,1]

As can be seen, the output is separated by parameter class and includes a reference to the

parameter with the most problematic value (e.g., the largest R̂) in order to assist users in finding

the source of convergence problems, should they occur. As a second option, the mitml package

offers diagnostic plots to assess convergence in a graphical manner (see also Schafer & Olsen,

1998). The plots can be requested as follows, with an example given in Figure 4.1.

plot(imp, trace="all")
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The diagnostic plots include the trace plot for each parameter in the imputation model, a plot

for the autocorrelation in the parameter chain, a density plot, and a summary of the posterior

distribution (for a general discussion of convergence in Bayesian data analysis, see also Gelman

et al., 2014; Gill, 2014; Hoff, 2009; Jackman, 2009).

Transforming and analyzing data. Having assessed that the algorithm converged, a list

containing the imputed data sets can be extracted from the imputed data object as follows.

implist <- mitmlComplete(imp, "all")

In order to manipulate and analyze the data, mitml implements additional methods for the

generic functions within and with from base R. First, the within function can be used to

evaluate a given expression in each of the imputed data sets, thus creating transformations of

the imputed data. For example, the following code illustrates this for the calculation of group

means and the group mean centering of employees’ ratings of negative leadership style.

implist <- within( implist,{
M.NEGLEAD <- clusterMeans(NEGLEAD, GRPID) # calculate group means
I.NEGLEAD <- NEGLEAD - M.NEGLEAD # group mean centering

})

Second, the analysis of the imputed data sets can be carried out with the with function.

Formally, with also evaluates an expression in each data set but returns the result of the

evaluated expression instead. For example, the following command fits a multilevel model to

each of the imputed data sets using the R package lme4, where job satisfaction is explained by

negative leadership style, work load, and cohesion.

library(lme4)
fit <- with( implist, lmer(JOBSAT ~ 1 + I.NEGLEAD + M.NEGLEAD + WLOAD + COHES + (1|GRPID)) )

This results in a list of fitted models, one for each of the imputed data sets, the results of which

can be pooled in subsequent steps.

Pooling. The mitml package offers several function for pooling the results obtained from

multiply imputed data sets. In the simplest case, parameter estimates and inferences can be

obtained by pooling the individual (i.e., scalar) estimands in the fitted models. This can be

achieved with the testEstimates function as follows.
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testEstimates(fit, var.comp=TRUE)

# Call:
#
# testEstimates(model = fit, var.comp = TRUE)
#
# Final parameter estimates and inferences obtained from 20 imputed data sets.
#
# Estimate Std.Error t.value df P(>|t|) RIV FMI
# (Intercept) 0.246 0.141 1.740 1084.906 0.082 0.153 0.134
# I.NEGLEAD -0.536 0.088 -6.112 553.853 0.000 0.227 0.188
# M.NEGLEAD -1.516 0.352 -4.303 625.680 0.000 0.211 0.177
# WLOADhigh -0.828 0.190 -4.352 698.799 0.000 0.197 0.167
# COHES 0.234 0.094 2.481 1691.155 0.013 0.119 0.107
#
# Estimate
# Intercept~~Intercept|GRPID 0.315
# Residual~~Residual 4.966
# ICC|GRPID 0.060

By default, testEstimates employs Rubin’s rules for pooling individual parameters, but the

small-sample correction by Barnard and Rubin (1999) can be applied by providing the complete-

data degrees of freedom as an additional argument to the function call (df.com). This method

is automatic for all model classes that define methods for the generic functions coef and vcov,

which includes most of the standard models in R (e.g., linear and generalized linear models)

as well as some additional8 model classes (e.g., multilevel models, generalized estimating

equations).

In addition, pooling methods for more complex statistical hypothesis are provided with

mitml. This includes the procedures for multiparameter tests and model comparisons discussed

in Chapter 3. Specifically, the function testModels allows the comparison of different statistical

models using either Wald-tests (D1, D∗1, and D2) or LRTs (D2 and D3). The procedures for

pooling Wald-tests (D1, D∗1, and D2) are again automatic for model classes that define methods

for coef and vcov and some additional models. In addition, D2 provides an implementation for

pooling LRTs that is automatic for model classes that define methods for the generic function

logLik as well as some additional models (e.g., the Cox proportional hazards model). For D3,

which cannot be implemented in a generic manner, mitml includes implementations specific

8It is worth noting that the framework of generic functions in R provides a simple method for extending the
pooling methods to additional model classes because the required methods for coef and vcov (or similar functions)
can simply be defined by mitml if they are not defined by the model classes.
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to linear models and (linear) multilevel models with a single level of clustering (i.e., two-level

models). The anova function provides a convenience wrapper for likelihood-based comparisons

using D2 and D3. Finally, the testConstraints function includes an implementation of the

delta method for multiply imputed data sets which can be used to test contrasts and constraints

on the model parameters (e.g., Casella & Berger, 2002; Fox, 2008). This procedure is based on

the rules for pooling multiparameterWald-tests (D1, D∗1, and D2) and is thus automatic provided

that coef and vcov methods exist.

4.1.2 Practical guidelines on multilevel MI

It may be argued that, in addition to comprehensive tools in statistical software, the missing

data literature is still in need of accessible tutorials on conventional and multilevel MI. For this

reason, Article 5 of the present dissertation includes an in-depth tutorial about multilevel MI.

Specifically, the article includes examples for multilevel MI using the data from the German

subsample of primary school students in the Progress in International Reading Literacy Study

(PIRLS). In two examples—one concerning the multilevel random intercept model, the other

concerning a model with random slopes—the tutorial illustrates multilevel JM using the R pack-

ages pan and mitml. In that context, particular emphasis is placed on the correct specification

of the imputation model, which is often crucial in multilevel MI (see also Enders et al., 2016;

Lüdtke et al., 2017). In addition, the article discusses the assessment of convergence and the

analysis of multiply imputed data sets, including examples for multiparameter tests, that is,

model comparisons (e.g., inclusion of random slopes) and tests for constraints on the model

parameters (e.g., contextual effects).

4.2 Summary

In the present chapter, I focused on the practical aspects of multilevel MI in greater detail. In

this context, I summarized the main features of the R package mitml, which is intended to

provide a user-friendly interface to multilevel MI, as well as the contents of Article 5, which

provides an introduction in the form of a tutorial article for researchers who are not yet familiar
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with multilevel MI. In line with my original argument stating that the current literature on

multilevel MI is still lacking clear introductions to the topic and accessible implementations in

statistical software, these contributions can be regarded as an effort to bridge the divide between

theory and practice of multilevel MI, thus promoting a more consistent use of these methods in

psychological research.

Over the past years, many interesting developments have been proposed in the literature

on missing data and multilevel MI. However, as outlined earlier, there are still a number of

open questions regarding the imputation of multilevel data (see Chapter 2) and the analysis of

multiply imputed data sets (see Chapter 3). For both of these reasons, it is important that new

and improved procedures are made available to a wide audience of researchers in the form of

free and accessible statistical software. For the future, there are many ways in which mitml

can be improved and extended. This includes technical aspects of the package as well as the

continued development of improvements and extensions to the interface and the implementation

of new procedures for the imputation of different types of multilevel data (e.g., as implemented

in the R package jomo; see also Quartagno, 2016) and different methods for analyzing multiply

imputed data sets (e.g., with respect to “nested” MI and procedures for model fit, resampling,

or model selection). In addition, the existing procedures (e.g., pooling methods) should be

further extended to accommodate a wider variety of statistical models, especially in the context

of multilevel analyses.
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5
Conclusion

The present dissertation was concerned with the treatment of missing data in multilevel research

with particular emphasis on multilevel MI. It included five articles that addressed some of the

theoretical and practical challenges associatedwithmultilevelMI and also featured anR package

that was developed in the context of these studies. In the following conclusion, I provide a short

summary of the topics considered in the dissertation and the articles provided with it and a

critical discussion of their limitations and weaknesses. In addition, I will discuss some of the

more general points regarding missing data and the utility and challenges associated with MI.

In this context, I also provide an outlook on possible extensions and topics for future research.

In the first part of the dissertation, I considered the theoretical basis of missing data and MI

and discussed the theoretical challenges associated with multilevel MI (Chapters 1 and 2). In

particular, I discussed the treatment of missing data in two broad classes of multilevel analysis

models: the random intercept model and the random coefficients model with and without CLIs.

First, in the context of the multilevel random intercept model, I outlined two computational

paradigms—multilevel JM and FCS—for conducting multilevel MI and discussed how these

approaches relate to one another both conceptually and computationally (Articles 1 and 2).

A major point in this discussion was related to the structure of multilevel data, that is, the

components in and relations between the variables in multilevel data. In this context, I argued

that the statistical models employed by multilevel JM and FCS are very similar on a conceptual

level but not entirely equivalent due to the different use of between-group components in
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multilevel variables if the data are unbalanced (Article 3). The second class of multilevel

analysis models included multilevel models with random slopes and CLIs. In this context, I

provided a discussion about the intricacies associated with multilevel MI when missing data

occur in the explanatory variables of the model. Specifically, it can be shown that the current

procedures for multilevel MI, though very powerful in a general manner, still have room for

improvement in models with random slopes and CLIs; in these cases, modern methods that

explicitly take the model of interest into account appear to provide essentially unbiased results

(see also Article 2).

In the second part of the dissertation, I considered the analysis of multiply imputed data sets

with an emphasis on multiparameter tests and model comparisons. In this context, I outlined

some of the more frequently-used procedures for conducting multiparameter tests, namely D1,

D2, and D3 (and variants thereof). Although current recommendations in the missing data

literature clearly convey that D1 and D3 should always be preferred over D2, several simulation

studies that were conducted in the course of this dissertation suggest a more nuanced view.

Specifically, D2 appeared to be reliable and often comparable to the other procedures as long as

the number of imputations was appropriately high and the FMI did not become too extreme; a

finding that was present both in the context of the ANOVA as well as in multilevel analyses with

multiparameter tests of fixed effects and variance components (see also Article 4). Contrary to

previous findings, these results illustrate that D2 may be a useful alternative in many (albeit not

all) plausible research scenarios.

Finally, in the third part of the dissertation, I considered the practical aspects of multilevel

MI. In line with earlier research regarding the use of missing data methods in psychological

research (see also Chapter 1), it appears that multilevel MI is currently not in widespread use;

a potential reason for this may be that its application can introduce new problems and may

add several steps to conventional statistical analyses. For this reason, the present dissertation

made a two-fold attempt to improve the accessibility of multilevel MI. First, the dissertation

features a tutorial on multilevel MI, illustrating its use in two examples from educational

research (Article 5). Second, it features the R package mitml, which aims to provide a user-

friendly interface to multilevel MI. The package is free, open-source, and includes a number
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of statistical tools to enable a user-friendly workflow without requiring sophisticated statistical

expertise or programming skills. Taken together, these contributions build on the previous parts

of the dissertations and attempt to make the procedures discussed therein available to a wider

audience.

The works in this dissertation come with several limitations and points to consider. For

example, the articles enclosed in this dissertation all focused on multilevel data with a two-level

structure (i.e., Level 1 and 2). By contrast, multilevel data in general may include multiple levels

of nesting, cross-classified random effects, or multiple-membership structures (e.g., Goldstein

et al., 2014; Raudenbush & Bryk, 2002; see also Baayen, Davidson, & Bates, 2008; Browne,

Goldstein, & Rasbash, 2001; Quené & van den Bergh, 2008). From a theoretical point of

view, these applications face similar challenges as the two-level case, and similar procedures

have been proposed for the treatment of missing data in three-level (e.g., Yucel, 2008) and

cross-classified data (e.g., Clayton & Rasbash, 1999; Rasbash & Browne, 2008; Yucel, Ding,

Uludag, & Tomaskovic-Devey, 2008). However, on the practical side, these procedures are not

widely available in statistical software, and little is known about their performance in plausible

research scenarios. For that reason, a further evaluation of these methods in future studies

seems to be warranted.

Furthermore, the present dissertation was focused on applications in which the missing data

mechanism is ignorable (i.e., MCAR or MAR). However, in research practice, the missing data

mechanism can also be nonignorable (i.e., MNAR), for example, in longitudinal research when

dropout can reasonably be assumed to depend directly on the outcome of interest (e.g., Diggle

& Kenward, 1994; Molenberghs, Kenward, & Lesaffre, 1997) or in educational achievement

tests when missing item responses can be directly related to student ability (e.g., Glas, Pimentel,

& Lamers, 2015; Holman & Glas, 2005; Rose, von Davier, & Nagengast, 2017). In such a

case, statistical inferences are no longer possible without introducing additional assumptions,

for example, by extending the statistical models in such a way that it includes a model for the

propensity of the missing data (see also Little & Rubin, 2002; Moustaki & Knott, 2000). In

multilevel data, similar questions arise in the context of missing data mechanisms that depend

on random effects or other latent variables, which may be regarded as nonignorable (e.g., latent
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group means; see also Gottfredson et al., 2017; Little, 1995; Skrondal & Rabe-Hesketh, 2004).

Finally, the works presented in this dissertation focused on the treatment of missing data

in conventional multilevel models (e.g., Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002;

Snijders & Bosker, 2012a), whereas multilevel modeling is often conducted in a structural

equation modeling (SEM) framework (e.g., Skrondal & Rabe-Hesketh, 2004). It is important

to note that the procedures discussed in the present dissertation can also be used for the

treatment item-level missing data in multilevel SEM (Gottschall, West, & Enders, 2012; Mazza,

Enders, & Ruehlman, 2015; Schafer & Graham, 2002). However, there are a number of

interesting questions regarding the use of multilevel MI in the context of SEM that warrant

further investigation, for example, the assessment of “goodness-of-fit” (e.g., Enders &Mansolf,

in press) or the combined treatment of missing data andmeasurement error usingMI (Blackwell,

Honaker, & King, 2017a; Blackwell et al., 2017b). Similar problems also arise in the context of

educational large-scale assessment, when latent proficiency scores are estimated (i.e., imputed)

with missing data in the context questionnaire (Assmann, Gaasch, Pohl, & Carstensen, 2015;

Kaplan & Su, 2016; Weirich et al., 2014).

Future research may consider a number of possible topics. First, the application of mul-

tilevel MI is still challenging in certain scenarios and for certain types of research questions,

for example, if the model of interest includes random slopes or nonlinear effects such as CLIs.

Although previous studies have indicated that model-based procedures that rely on Bayesian or

ML estimation can provide accurate results in these cases, these methods are still not well under-

stood, and general implementations in standard software are not yet widely available (however,

see Quartagno, 2016). Procedures for multilevel MI may benefit from these developments, thus

allowing a wider range of statistical models to be accommodated with multilevel MI (see also

Chapter 2). Regarding the analysis of multiply imputed data sets, future studies may consider a

wider range of statistical methods that are commonly used in research practice. This includes,

for example, the use of “nested” imputations in educational research (e.g., latent proficiency

scores and missing data), the calculation and assessment of “goodness-of-fit” indices under MI

as well as procedures for model selection (e.g., the LASSO) and nonparametric statistical infer-

ence (e.g., the bootstrap; see also Chapter 3). Finally, I believe that it is imperative that future
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research continues to provide recommendations and accessible introductions to the increasingly

sophisticated methods that are used for multilevel MI. This includes not only the presence of

tutorial articles and educational resources on these topics but also a continued implementation

of these procedures in user-friendly and accessible statistical software. In conclusion, although

the literature on the treatment of missing data in multilevel research has brought fourth many

exciting developments during the past years, there are a number of interesting questions that are

yet to be considered. In this spirit, I hope that the present dissertation and the works enclosed

therein will contribute to the fascinating though ever growing literature on missing data in

multilevel research.
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Zusammenfassung

In der psychologischen Forschung haben sich Mehrebenenanalysen zu einem der am meisten

verwendeten Verfahren zur Analyse hierarchischer Daten entwickelt (z.B. Goldstein, 2011;

Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). Solch hierar-

chische Daten treten auf, wenn Beobachtungen (Ebene 1) in übergeordneten Einheiten (Ebene 2)

organisiert sind, zum Beispiel Schülerinnen und Schüler organisiert in Schulen, Angestellte in

Arbeitsgruppen oder Unternehmen sowie in längsschnittlichen Untersuchungen, in denen für

alle Teilnehmenden mehrere Beobachtungen vorliegen (für weitere Beispiele siehe z.B. Gold-

stein et al., 2014; Snijders & Bosker, 2012b). Weiterhin können empirische Daten häufig nicht

vollständig erhoben werden und enthalten dadurch fehlendeWerte, zum Beispiel weil einige der

Teilnehmenden einen Fragebogen nicht vollständig ausgefüllt haben oder einem Teil der Un-

tersuchung gänzlich fernbleiben. In der psychologischen und statistischen Literatur ist bekannt,

dass einfache Verfahren zum Umgang mit fehlenden Werten (z.B. listenweiser Fallausschluss)

zur Verzerrung statistischer Analysen und der daraus gezogenen Schlussfolgerungen führen

können. Demgegenüber werden modernere Verfahren wie die multiple Imputation (MI) sowie

die SchätzungmitMaximum-Likelihood (ML)Verfahren allgemein zumUmgangmit fehlenden

Werten empfohlen (z.B. Enders, 2010; Little & Rubin, 2002; Schafer & Graham, 2002).

Die vorliegende Dissertation beschäftigt sichmit demUmgangmit fehlendenWerten in hier-

archischenDaten. Besonderes Augenmerkwird dabei auf diemultiple Imputation hierarchischer

Daten gelegt. Obwohl sich bereits zahlreiche Arbeiten mit der Behandlung fehlender Werte und

73



74 ZUSAMMENFASSUNG

MI beschäftigt haben, bestehen weiterhin offene Fragen und Herausforderungen bezüglich der

Anwendung von MI in hierarchischen Daten. Die vorliegende Arbeit liefert eine umfassende

Diskussion dieses Themas und setzt sich in fünf Publikationen mit der Nutzung von MI zur

Behandlung fehlender Werte in hierarchischen Daten auseinander. In dieser Folge widmete sich

die Dissertation auch der Analyse imputierter Daten mit einem Fokus auf Mehrparametertests

(Modellvergleiche u.a.). Darüber hinaus stellt die Dissertation ein Softwarepaket vor, welches

das Ziel verfolgt, eine einfache Anwendung von MI in hierarchischen Daten sowie eine auto-

matisierte Analyse imputierter Daten in der Forschungspraxis zu ermöglichen. Im Folgenden

fasse ich die verschiedenen Teile der Dissertation kurz zusammen.

Fehlende Werte und multiple Imputation

Ein angemessener Umgang mit fehlendenWerten ist für die Ziehung statistischer Inferenzen un-

erlässlich, vor allem wenn fehlende Werte in systematischer Form auftreten (z.B. Allison, 2001;

Enders, 2010). Nach Rubin (1976) können die hypothetischen, vollständigen Daten Y unterteilt

werden in einen beobachteten Teil Yobs und einen unbeobachteten Teil Ymis. Ein vollkommen

zufälliger Ausfall (“missing completely at random”, MCAR) liegt vor, wenn die Wahrschein-

lichkeit eines Ausfalls unabhängig ist von beobachteten und unbeobachteten Daten, das heißt

P(R|Y) = P(R). Ein bedingt zufälliger Ausfall (“missing at random”, MAR) liegt vor, wenn

die Wahrscheinlichkeit eines Ausfalls von den beobachteten Daten abhängt, jedoch nach deren

Kontrolle von den unbeobachteten Daten unabhängig ist, P(R|Y) = P(R|Yobs). Bei einem nicht-

zufälligenAusfall (“missing not at random”,MNAR) steht dieWahrscheinlichkeit eines Ausfalls

jedoch außerdem mit den unbeobachteten Daten in Beziehung, P(R|Y) = P(R|Yobs,Ymis). In

solchen Fällen ist es nur unter starken Annahmen möglich überhaupt statistische Inferenzen zu

ziehen (Carpenter & Kenward, 2013; Little & Rubin, 2002). In der Literatur zu fehlenden Wer-

ten ist vielfach gezeigt worden, dass traditionelle Verfahren zum Umgang mit fehlenden Werten

(z.B. listenweiser Fallausschluss) nur unter MCAR zu allgemein unverzerrten Schlussfolgerun-

gen führen. Demgegenüber erlauben es moderne Verfahren wie MI und ML die beobachteten

Daten vollständig zu nutzen und ermöglichen somit (a) unverzerrte Schlussfolgerungen auch

unter MAR und (b) eine höheren Teststärke nachfolgender statistischer Analysen (z.B. Collins
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et al., 2001).

Die multiple Imputation (Rubin, 1987) ist ein Verfahren zum Umgang mit fehlenden Wer-

ten, in dem plausible Ersetzungen für die fehlenden Werte anhand der beobachteten Daten und

eines statistischen Modells erzeugt werden. Die so vervollständigten Datensätze können dann

mit konventionellen Verfahren analysiert und deren Ergebnisse in einem einzelnen Ergebnis zu-

sammengefasst werden (Little & Rubin, 2002; Rubin, 1987). In der Praxis können verschiedene

Implementationen vonMI unterschieden werden, in denen Imputationen entweder anhand eines

multivariaten Modells für alle Variablen simultan (“joint modeling”, JM) oder schrittweise für

jede Variable nacheinander erzeugt werden (“fully conditional specification”, FCS). Beispiels-

weise können kontinuierliche Variablen entweder anhand der multivariaten Normalverteilung

(Schafer, 1997) oder mithilfe mehrerer (univariater) Regressionsmodelle imputiert werden (van

Buuren et al., 2006; für eine vergleichende Diskussion siehe auch Carpenter & Kenward, 2013).

Darüber hinaus werden in der Praxis häufig modellbasierte Verfahren wie etwa ML (auch “full

information” ML, FIML) oder Bayesianische Verfahren verwendet, die es erlauben ein Ana-

lysemodell direkt anhand der unvollständigen Daten zu schätzen (z.B. Enders, 2010; Little &

Rubin, 2002). Trotz der umfangreichen Literatur zu fehlenden Werten und MI, ist aktuell nur

wenig darüber bekannt, wie fehlende Werte in hierarchischen Daten behandelt werden und

die besonderen Eigenschaften und Anforderungen hierarchischer Daten dabei berücksichtigt

werden können (siehe auch Enders et al., 2016; Hox et al., 2016; van Buuren, 2011).

Multiple Imputation hierarchischer Daten

Eine angemessene Anwendung von MI erfordert im Allgemeinen, dass das gewählte Imputa-

tionsmodell die Struktur der Daten und die vom Analysemodell implizierten Zusammenhänge

mit einbezieht (z.B. Meng, 1994; Schafer, 2003). In hierarchischen Daten muss deshalb die

hierarchische Datenstruktur bei der Imputation berücksichtigt werden (siehe auch Andridge,

2011; Drechsler, 2015; Enders et al., 2016; Lüdtke et al., 2017; Taljaard et al., 2008). Die

Struktur der Daten ist dabei in zweierlei Weise von Bedeutung. Erstens können Variablen in

hierarchischen Daten auf verschiedenen Ebenen erfasst werden, zumBeispiel direkt auf Ebene 1

(z.B. Personen) oder 2 (z.B. Gruppen), und fehlende Werte können auf allen Ebenen auftreten.



76 ZUSAMMENFASSUNG

Zweitens können die für die Analyse hierarchischer Daten bestimmten Mehrebenenmodelle

teilweise komplexe Zusammenhänge zwischen den Variablen auf Ebene 1 und 2 enthalten,

zum Beispiel zufällige Effekte von Variablen auf Ebene 1 oder “cross-level”-Interaktionseffekte

(CLIs; für eine allgemeine Diskussion siehe Raudenbush & Bryk, 2002; Snijders & Bosker,

2012b). Darüber hinaus können Variablen in hierarchischen Daten in der Regel in zwei Anteile

zerlegt werden, die ausschließlich zwischen Gruppen beziehungsweise innerhalb von Gruppen

variieren (z.B. Kreft et al., 1995). In diesem Zusammenhang zeigten Lüdtke et al. (2008), dass

eine solche Zerlegung sowohl im Sinne manifester und latenter Gruppenmittelwerte möglich

ist, wobei die Bedeutung der Konstrukte auf Ebene 2 und die Schätzung von Zusammenhängen

(z.B. Kontexteffekte) von der Art der Zerlegung abhängen kann (siehe auch Asparouhov &

Muthén, 2006; Croon & van Veldhoven, 2007; Grilli & Rampichini, 2011).

Trotz einer umfangreichen Literatur bestehen zahlreiche offene Fragen zum Umgang mit

fehlenden Werten in hierarchischen Daten. Beispielsweise sind die genauen Auswirkungen

der Nutzung manifester und latenter Gruppenmittelwerte unter MI nicht bekannt. Dies ist

besonders bedeutsam, da (a) die Nutzung manifester und latenter Gruppenmittelwerte mit

unterschiedlichen Schätzungen der Effekte auf Ebene 2 einhergeht und (b) die verschiedenen

Implementation von MI sich in der Nutzung der Gruppenmittelwerte unterscheiden. Dies wirft

ebenfalls die Frage auf, wie fehlende Werte auf Ebene 2 behandelt und Informationen auf

Ebene 1 dabei berücksichtigt werden sollten. Darüber hinaus ist aktuell unklar, wie genau

fehlende Werte im Rahmen von Random-Coefficients-Modellen mit oder ohne CLIs behandelt

werden können. Die vorliegende Dissertation widmet sich diesen Fragen in insgesamt drei

Publikationen. Artikel 1 beinhaltet eine Einführung in die Behandlung fehlender Werte in

hierarchischen Daten mit besonderem Fokus auf Random-Intercept-Modelle und betrachtete

neben verschiedenen Implementationen von MI (JM und FCS) auch FIML. Artikel 2 erweiterte

diese Betrachtungen und berücksichtigte zusätzlich Random-Coefficients-Modellemit und ohne

CLI sowie kategoriale Daten und fehlendeWerte auf Ebene 2. Artikel 3 widmete sich schließlich

explizit der Imputation fehlender Werte auf Ebene 2, wobei im Besonderen auf die Nutzung

manifester und latenter Gruppenmittelwerte eingegangen wurde. Im Folgenden fasse ich den

theoretischen Hintergrund und die Befunde dieser Arbeiten kurz zusammen.
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Random-Intercept-Modelle. Für die multiple Imputation hierarchischer Daten stehen er-

neut mehrere Implementationen zur Verfügung. Im Rahmen des “joint modeling”-Ansatzes

(JM) können fehlende Werte in hierarchischen Daten auf der Grundlage eines multivariaten

Mehrebenenmodells imputiert werden (Goldstein et al., 2009; Schafer & Yucel, 2002). Für

fehlende Werte auf Ebene 1 und 2 kann dieses Modell in einer leicht vereinfachten Notation

wie folgt ausgedrückt werden:

y1i j = µ1 + u1 j + ei j (Ebene 1)

y2 j = µ2 + u2 j , (Ebene 2)
(1)

wobei y1i j die Variablen auf Ebene 1 bezeichnet und y2 j die Variablen auf Ebene 2. Die zufäl-

ligen Achsenabschnitte der Variablen auf Ebene 1 und die Residuen der Variablen auf Ebene 2,

u j = (u1 j, u2 j), sind multivariat normalverteilt mit Kovarianzmatrix Ψ. Die Residuen der Va-

riablen auf Ebene 1, e1i j , sind multivariat normalverteilt mit Kovarianzmatrix Σ. Durch die

Kovarianzstruktur auf Ebene 1 und 2 (Σ und Ψ) berücksichtigt JM folglich die Zusammen-

hänge aller Variablen auf beiden Ebenen. Bei näherer Betrachtung wird zudem deutlich, dass

die Zusammenhänge auf Ebene 2 durch latente Gruppenmittelwerte (d.h. zufällige Effekte)

repräsentiert werden (siehe auch Kreft & de Leeuw, 1998; Lüdtke et al., 2008).

Alternativ können fehlende Werte in hierarchischen Daten erneut mithilfe der “fully condi-

tional specification” (FCS) imputiert werden (siehe auch van Buuren, 2011; Yucel et al., 2007).

Für fehlende Werte auf Ebene 1 können hierfür univariate Mehrebenenmodelle verwendet

werden. Für die p-te Variable mit fehlenden Werten auf Ebene 1 gilt damit:

y1i jp = yi j(−p)β1p + u1 jp + ei jp , (2)

wobei yi j(−p) alle anderen Variablen auf Ebene 1 und 2 bezeichnet sowie die zwischen Gruppen

variierenden Anteile (z.B. Gruppenmittelwerte) der Variablen auf Ebene 1. Für die q-te Variable

mit fehlenden Werten auf Ebene 2 kann hingegen ein Regressionsmodell verwendet werden:

y2 jq = y j(−q)β2q + u2 jq , (3)

wobei y j(−q) alle anderen Variablen auf Ebene 2 bezeichnet sowie die zwischen Gruppen va-

riierenden Anteile (z.B. Gruppenmittelwerte) der Variablen auf Ebene 1. Der FCS-Ansatz

berücksichtigt folglich ebenfalls die Zusammenhänge zwischen Variablen auf Ebene 1 und 2,
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da die Variablen (und deren Gruppenmittelwerte) als Prädiktoren in die jeweils anderen Imputa-

tionsmodelle eingehen. Durch die sequentielle Natur von FCS müssen die Gruppenmittelwerte

aktualisiert werden, wenn die zugrundeliegenden Variablen auf Ebene 1 imputiert worden sind.

Obwohl FCS prinzipiell sowohl manifeste als auch latente Gruppenmittelwerte nutzen könnte,

verwenden aktuelle Implementationen ausschließlich manifeste Gruppenmittelwerte.

Vergleich der verschiedenen Verfahren. In Artikel 1 wurden verschiedene Verfahren zur

Imputation fehlender Werte (JM und FCS) sowie FIML im Rahmen des Random-Intercept-

Modells betrachtet, wobei zusätzlich zwischen Analysemodellen unterschieden wurde, in de-

nen die Schätzung der Effekte auf Ebene 2 anhand manifester oder latenter Gruppenmittel-

werte erfolgte. Solange das Analysemodell latente Gruppenmittelwerte verwendete, lieferten

alle Verfahren unverzerrte Ergebnisse. Verwendete das Analysemodell jedoch manifeste Grup-

penmittelwerte, lieferten nur JM und FCS unverzerrte Ergebnisse, wohingegen FIML (in der

statistischen Software Mplus; L. K. Muthén & Muthén, 2012) zu stark verzerrten Schätzun-

gen der Regressionskoeffizienten auf Ebene 2 führte. Dies kann dadurch erklärt werden, dass

FIML zur Behandlung fehlender Werte in unabhängigen Variablen latente Gruppenmittelwerte

adaptiert, wodurch sich eine ungewollte Änderung des Analysemodells ergibt (siehe Lüdtke et

al., 2008). Dies kann verhindert werden, indem manifeste Gruppenmittelwerte vorab berechnet

werden. Diese Prozedur führt ebenfalls zu einer leichten Verzerrung bei systematisch fehlenden

Werten (z.B.MAR); die Verzerrung fällt jedoch deutlich geringer aus. InArtikel 2wurden neben

dem Random-Intercept-Modell auch Anwendungen in Random-Coefficients-Modellen mit und

ohne CLI sowie mit kategorialen Variablen und fehlenden Werten auf Ebene 2 untersucht. Die

Befunde zum Random-Intercept-Modell waren im wesentlichen identisch zu jenen in Artikel 1.

Darüber hinaus zeigten die Ergebnisse aus den zusätzlichen Bedingungen mit fehlendenWerten

in kategorialen Variablen und auf Ebene 2, dass MI (sowohl JM als auch FCS) in diesem Fällen

zu ebenfalls unverzerrten Ergebnissen führt. Allerdings konnten diese Ergebnisse noch nicht

die Frage beantworten, ob auch eine formale Äquivalenz zwischen JM und FCS besteht bezie-

hungsweise zwischen der Nutzung vonmanifesten und latentenGruppenmittelwerten. In Artikel

2 wurden weiterhin Probleme gängiger Imputationsverfahren in Anwendungen des Random-

Coefficients-Modells identifiziert. Diese Fragen betrachte ich im Folgenden gesondert.
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Fehlende Werte auf Ebene 2. In Artikel 3 wurden verschiedene Ansätze zur Imputation

fehlender auf Ebene 2 untersucht. Bislang haben nur wenige Studien fehlende Werte auf Ebe-

ne 2 überhaupt berücksichtigt (Enders et al., 2016; van Buuren, 2011; siehe auch Cheung, 2007;

Gibson & Olejnik, 2003). Insbesondere stellt sich die Frage, wie genau die zwischen Gruppen

variierenden Anteile der Variablen auf Ebene 1 in das Imputationsmodell für fehlende Werte

auf Ebene 2 mit einfließen sollten (d.h. als manifeste oder latente Gruppenmittelwerte). Frühere

Arbeiten zur Beziehung zwischen manifesten und latenten Gruppenmittelwerte zeigten für den

Fall balancierter Stichproben (d.h. mit Gruppen identischer Größe), dass manifeste und laten-

te Gruppenmittelwert zu identischen Ergebnissen führen (z.B. Carpenter & Kenward, 2013).

Kürzlich argumentierten Resche-Rigon und White Resche-Rigon and White (in press) jedoch

in Bezug auf fehlende Werte auf Ebene 1, dass im Falle unbalancierter Daten die bedingte

Verteilung der Variablen nicht nur von den manifesten Gruppenmittelwerten sondern auch von

der Gruppengröße abhängt. Resche-Rigon und White empfahlen daher die Verwendung eines

Imputationsmodells mit heteroskedastischen Fehlertermen auf Ebene 1. Artikel 3 erweiterte

diese Argumentation in zweierlei Hinsicht. Erstens wurde anhand mathematischer Herleitungen

gezeigt, dass die Verwendung manifester Gruppenmittelwerte im Falle unbalancierter Daten

zu (negativ) verzerrten Schätzungen der Kovarianzen und Regressionskoeffizienten auf Ebe-

ne 2 führen kann. Obwohl das Ausmaß der Verzerrung in der Regel gering ausfällt, wurde

gezeigt, dass die Verzerrungen umso größer ausfällt, je kleiner die Gruppen insgesamt sind

und je stärker sie in ihrer Größe variieren. Zweitens wurde eine alternative Spezifikation von

FCS präsentiert, die mithilfe der “plausible values”-Technik (Mislevy, 1991) eine direkte Be-

rücksichtigung der latenten Gruppenmittelwerte in FCS erlaubt (für eine ähnliche Anwendung

siehe Yang & Seltzer, 2016). In zwei Simulationsstudien wurde gezeigt, dass dieser Ansatz

selbst in stark unbalancierten Stichproben zu unverzerrten Schätzungen von Kovarianzen und

Regressionskoeffizienten auf Ebene 2 führt.

Random-Coefficients-Modelle und CLIs. Während die Behandlung fehlender Werte im

Kontext von Random-Intercept-Modellen relativ unproblematisch sowohl mit JM als auch mit

FCS möglich ist, zeigten die Simulationsstudien in Artikel 2, dass die aktuell verfügbaren Ver-

fahren zur Imputation hierarchischer Daten im Rahmen von Random-Coefficients-Modellen zu
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teils verzerrten Parameterschätzungen führen können. Während diese Verfahren im Falle feh-

lender Werte in der abhängigen Variable noch zu unverzerrten Ergebnissen führten, führte die

Anwendung von MI (sowohl JM als auch FCS) im Falle fehlender Werte in den unabhängigen

Variablen zu teils verzerrten Ergebnissen. Dies war insbesondere der Fall für Schätzungen der

Slopevarianz, die unter FCS nur durch das “Umdrehen” des Imputationsmodells adressiert wer-

den konnte (Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016a), sowie für Schätzungen

der CLI, die unter FCS mithilfe der “passiven Imputation” mit einbezogen wurde. Aus statis-

tischer Sicht sind diese Befunde nicht überraschend, da in mehreren Arbeiten gezeigt wurde,

dass Analysemodelle mit nicht-linearen Effekten (z.B. der CLI) zu komplexen bedingten Ver-

teilungen der Variablen führen, die mithilfe konventioneller Imputationsverfahren nicht adäquat

berücksichtigt werden können (S. Kim et al., 2015; siehe auch Seaman et al., 2012; von Hippel,

2009; Zhang &Wang, 2016). In diesem Zusammenhang wurden kürzlich alternative Verfahren

vorgeschlagen, die das Analysemodell bei der Behandlung (bzw. Imputation) der fehlenden

Werte explizit mit berücksichtigen (Bartlett et al., 2015; Goldstein et al., 2014; siehe auch Stub-

bendick & Ibrahim, 2003). Für die Anwendung in Mehrebenenanalysen sind diese Verfahren

bislang noch nicht in konventioneller Software verfügbar und erfordern deshalb die Nutzung

allgemeiner Software für Bayesianische Analysen (z.B. Erler et al., 2016). In Artikel 2 wur-

de die Schätzung des Random-Coefficientes-Modells anhand modellbasierter, Bayesianischer

Verfahren in einer Simulation näher betrachtet und im Rahmen der Dissertation noch weiter

ausgebaut. Die Ergebnisse dieser Simulationsstudien legen nahe, dass modellbasierte, Bayesia-

nische Verfahren zu unverzerrten Parameterschätzungen in Random-Coefficients-Modellen mit

und ohne CLI führen können. Dies war auch der Fall, wenn diese Verfahren verwendet wur-

den, um Imputation für die fehlenden Werte zu erzeugen, die anschließend mit konventionellen

Methoden ausgewertet wurden (siehe auch Quartagno, 2016).

Die Analyse multipel imputierter Daten

Die vorliegende Dissertation beschäftigte sich ebenfalls mit der Analyse multipel imputierter

Datensätze. Besonderes Augenmerk wurde dabei auf Mehrparametertests gelegt, bei denen sta-

tistische Hypothesen anhand mehrerer Parameter getestet werden. Beispiel hierfür sind etwa
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der Omnibus-Test in der Varianzanalyse (ANOVA), bei dem mehrere Mittelwertsunterschiede

simultan gegen Null getestet werden, sowie Modellvergleiche im Allgemeinen (z.B. der Wald-

oder der Likelihood-Ratio-Test, LRT). Während relativ klare Empfehlungen darüber existieren,

wie einzelne Parameterschätzungen aus multipel imputierten Daten getestet werden können,

sind die Empfehlungen für Mehrparametertests weit weniger klar (Enders, 2010; Little & Ru-

bin, 2002; Schafer, 1997; van Buuren, 2012). In der Literatur zur Analyse multipel imputierter

Daten werden verschiedene Verfahren für Mehrparametertests diskutiert. Das erste der betrach-

teten Verfahren ist die D1-Statistik (Li, Raghunathan, & Rubin, 1991). Diese wird direkt auf

Grundlage der Parameterschätzungen und deren Kovarianzmatrizen aus den multipel imputier-

ten Daten berechnet und überträgt somit den klassischen Wald-Test auf multipel imputierte

Daten (siehe auch Schafer, 1997). Für Anwendungen, in denen die Kovarianzmatrix des Schät-

zers nicht zur Verfügung stehen, schlugen außerdem Li, Meng, et al. (1991) die D2-Statistik

vor, die lediglich anhand der χ2-Statistiken (oder p-Werte) aus den multipel imputierten Daten

berechnet wird. Das dritte Verfahren, die D3-Statistik bietet schließlich die Möglichkeit die

Teststatistik des LRTs für den Vergleich zweier Modelle anhand multipel imputierten Daten zu

berechnen (Meng & Rubin, 1992).

Obwohl relativ wenig über die Leistung dieser Verfahren bekannt ist (siehe auch Enders,

2010; Schafer, 1997), besagen aktuelle Empfehlungen zur Anwendung vonMehrparametertests,

dass D1 und D3 gegenüber D2 unbedingt zu empfehlen seien, da D2 nur eine geringe Teststärke

aufweisen würde und sowohl zu konservativen als übermäßig liberalen Schlussfolgerungen füh-

ren könne. Aus diesem Grunde evaluierte Artikel 4 diese Verfahren zunächst im Rahmen der

ein- und mehrfaktoriellen ANOVA. Darüber hinaus wurden im Rahmen der Dissertation weite-

re Simulationsstudien durchgeführt, die diese Verfahren im Rahmen von Mehrebenenmodellen

miteinander verglichen, wobei sowohl Tests mehrerer (fester) Regressionskoeffizienten sowie

Tests von Varianzkomponenten (d.h. auf zufällige Effekte) betrachtet wurden. Insgesamt wiesen

die Simulationsergebnisse auf ein komplexeres Befundmuster hin, das nur teilweise den Emp-

fehlungen in der Literatur entspricht. Im Einklang mit der Literatur wurde in Artikel 4 gezeigt,

dass D1 in der Regel das genaueste Verfahren zur Durchführung von Mehrparametertests dar-

stellt. Allerdings legen die Befunde auch nahe, dass D2 zu vergleichbaren Ergebnissen wie D1
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und D3 führt, wenn die Anzahl der Imputationen angemessen hoch und der Datenausfall nicht

zu extrem ausfällt. Dies umfasst relativ viele realistische Datenkonstellationen, sodass D2 in

vielen Anwendungen in der psychologischen Forschung als Alternative zu D1 oder D3 gesehen

werden könnte. Dies ist insbesondere von Bedeutung, da D2 besonders einfach anzuwenden ist,

besonders im Vergleich mit D3. Im Rahmen von Mehrparametertests in Mehrebenenmodellen

konnten diese Ergebnisse im wesentlichen bestätigt werden. Die Ergebnisse für den Test der

Varianzkomponenten, für den D1 nicht verwendet werden kann, legten sogar nahe, dass die

Ergebnisse von D2 hierfür insgesamt verlässlicher sein könnten als die von D3.

Das R-Paket mitml

Obwohl die multiple Imputation zu den am häufigsten empfohlenen Verfahren zum Umgang

mit fehlenden Werten gehört, wird MI in der psychologischen Forschung nur relativ selten

verwendet, vor allem inAnwendungenmit hierarchischenDaten (Diaz-Ordaz et al., 2014; Jelicic

et al., 2009; Nicholson et al., 2017; Peugh & Enders, 2004). In der vorliegenden Dissertation

vertrete ich den Standpunkt, dass die geringe Verbreitung von MI unter anderem dadurch

bedingt ist, dass (a) die verfügbaren Imputationsverfahren häufig technisch sehr anspruchsvoll

und teilweise umfassende Kenntnisse der Programmierung oder Statistik erfordern und (b) die

unter MI nötigen Analyseverfahren für komplexere Fragestellungen (z.B. Mehrparametertests)

nur spärlich in statistischer Software implementiert sind. Aus diesem Grund wurde im Rahmen

der vorliegenden Dissertation das R-Paket mitml entwickelt, welches das Ziel verfolgt eine

einfachere Anwendung von MI in hierarchischen Daten zu ermöglichen und weiterhin eine

Anzahl größtenteils automatischer Werkzeuge für die Analyse multipel imputierter Daten zur

Verfügung stellt. In diesem Sinne beinhaltete Artikel 5 der vorliegenden Dissertation eine

umfangreiche Einführung in die multiple Imputation hierarchischer Daten.

Zur Imputation fehlender Werte baut das R-Paket mitml auf bestehenden Implementationen

von JM auf (Quartagno & Carpenter, 2016a; Schafer & Yucel, 2002). Um die Spezifikation der

Imputationsmodelle zu vereinfachen, verwendet mitml eine Formelsprache, die die Spezifika-

tion des JM in Form einer Modellgleichung ermöglicht (siehe Gleichung 1); alternativ können

Imputationsmodelle inAnalogie zumR-Paket mice (vanBuuren&Groothuis-Oudshoorn, 2011)
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anhand numerischer Codes definiert werden. Insgesamt ermöglicht mitml auf diese Weise mit

nur wenigen Zeilen Code die Spezifikation selbst komplexer Imputationsmodelle für katego-

riale und kontinuierliche Variablen sowie für fehlende Werte auf Ebene 1 und 2. In diesem

Zusammenhang werden auch Imputationsmodelle für heteroskedastische Varianzstrukturen auf

Ebene 1 unterstützt (Quartagno & Carpenter, 2016b; Yucel, 2011). Darüber hinaus ermög-

licht mitml (a) die Diagnose des Konvergenzverhaltens der Imputationsalgorithmen anhand

statistischer Kennwerte (z.B. Gelman & Rubin, 1992) und diagnostischer Grafiken, (b) eine

einfache Transformation und Analyse der imputierten Daten sowie (c) die Durchführung ein-

facher und komplexerer Hypothesentests anhand größtenteils automatischer Funktionen. Dies

beinhaltet die verschiedenen Verfahren für Mehrparametertests (D1, D2, D3), die in teils all-

gemein anwendbarer Form (D1 und D2) und teils für spezifische Modellklassen implementiert

wurden (erforderlich für D3). Neben einfachen Hypothesentests (Rubin, 1987) ermöglicht dies

die Durchführung vonModellvergleichen sowie Tests komplexerer Kontrasthypothesen (anhand

der “delta-Methode”; siehe auch Casella & Berger, 2002; Fox, 2008) mit multipel imputieren

Datensätzen.

In diesem Zusammenhang nutze Artikel 5 der vorliegenden Dissertation viele Aspekte die-

ses Pakets für eine umfassende Einführung in die Imputation hierarchischer Daten anhand eines

Datensatzes aus der deutschen Teilstudie der “Progress of International Reading Literacy Study”

(PIRLS). Neben der Berücksichtigung verschiedener Analysemodelle wurde hierbei besonderes

Augenmerk auf die korrekte Spezifikation des Imputationsmodells gelegt. Darüber hinaus be-

sprach der Artikel in umfangreicher Form die Konvergenzdiagnostik im Rahmen von MI sowie

die Analyse imputierter Daten anhand realistischer Beispielfragestellungen. Diese Einführung

richtete sich vor allem an praktisch arbeitende Wissenschaftler und Wissenschaftlerinnen und

verfolgte unter anderem das Ziel eine nützliche und dabei leicht verständliche Einführung in

die Behandlung fehlender Werte in hierarchischen Daten zu bieten und somit zur weiteren

Verbreitung und Nutzung der multiplen Imputation beizutragen.
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Article 1: Missing data in multilevel research

This pre-publication chapter is copyrighted by the American Psychological Association and will be published in
the upcoming Handbook of Multilevel Theory, Measurement, and Analysis (Stephen E. Humphrey and James M.
LeBreton, Eds.) It is used by special permission of the publisher and may not be redistributed without written
permission from the American Psychological Association. All rights to this chapter are retained by the American
Psychological Association.

Grund, S., Lüdtke, O., & Robitzsch, A. (in press). Missing data in multilevel research. In S. E. Humphrey & J.
M. LeBreton (Eds.), Handbook for multilevel theory, measurement, and analysis. Washington, DC: American
Psychological Association.

Multilevel research is often faced with missing data. Over the past years, powerful methods such
as multiple imputation (MI) and maximum likelihood estimation (ML) have become available for
the treatment of incomplete data. In this chapter, we provide a general introduction to the problem
of missing data, and we discuss the theory and application of these methods as well as their
individual strengths and weaknesses. We offer guidance on how ML and MI may be used for an
effective treatment of missing values in multilevel research and what role the multilevel structure
may play in the treatment of incomplete data. Finally, we provide results from a computer
simulation study as well as an empirical example that illustrates the use of these methods in
multilevel analyses.

Multilevel data are often incomplete, for example, when participants refuse to answer some

items in a questionnaire or they drop out of a study with several measurement occasions. Even

though there is a consensus that current state-of-the-art procedures for statistical analyses with

missing data should be preferred (e.g., Allison, 2001; Enders, 2010; Little & Rubin, 2002;

Newman, 2014; Schafer & Graham, 2002), simpler methods such as listwise deletion (LD)

85
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prevail and are still widely applied in research practice (Jelicic et al., 2009; Nicholson et al.,

2017; Peugh & Enders, 2004). This is problematic because these methods can distort parameter

estimates and statistical inference. In this chapter, we provide a general introduction to the

problem of missing data in multilevel research, and we present two principled methods for

handling incomplete data: multiple imputation (MI) and maximum likelihood estimation (ML).

We discuss how these procedures may be used to address missing data in multilevel research,

and we consider their commonalities as well as their individual strengths and weaknesses. A

brief computer simulation study is used to illustrate the statistical behavior of the parameter

estimates obtained from these methods. Finally, we illustrate their application in a data analysis

example and provide the syntax files and computer code needed to reproduce our results.

Example: Job satisfaction and leadership style

To provide an illustration of the ideas presented here, we adopt a running example in which we

examine the relationship between job satisfaction and several work-related variables. For the

purpose of this chapter, we regard the multilevel structure as cross-sectional, for example, with

employees at Level 1 nested within work groups at Level 2. The example is based on the data in

Klein et al. (2000). It features a sample of 750 employees from 50 work groups with measures

of job satisfaction (SAT), negative leadership style (LS), workload (WL), and cohesion (COH).

We slightly altered the data set by (a) transforming workload into a categorical variable (high

vs. low) and (b) treating cohesion as a global variable that was directly assessed at level 2

(e.g., a supervisor rating). We investigated the relationship of employees’ job satisfaction with

negative leadership style, workload, and cohesion using a multilevel random intercept model

(Snijders & Bosker, 2012b). In the hierarchical notation of Raudenbush and Bryk (2002), the

Level-1 equation of the model reads

SATi j = β0 j + β1 j(LSi j − LS• j) + β2 jWLi j + ri j (1)

with Level-2 equations
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β0 j = γ00 + γ01LS• j + γ02COH j + u0 j

β1 j = γ10

β2 j = γ20 .

(2)

Here, SATi j denotes the job satisfaction of an employee i in group j. The ratings on leadership

style were subjected to group-mean centering, where LSi j denotes the employees’ individual

ratings on leadership style, and LS• j denotes the average rating in group j. Finally, WLi j

denotes employees’ workload, and COH j denotes a work group’s cohesion (e.g., a supervisor

rating). The random intercept, u0 j , and the residuals, ri j , were each assumed to follow a normal

distribution with mean zero and variances τ2
0 and σ2. In the remainder of this chapter, we will

express this model in a combined notation (e.g., Snijders & Bosker, 2012b),

SATi j = γ00 + γ10(LSi j − LS• j) + γ01LS• j + γ20WLi j + γ02COH j + u0 j + ri j . (3)

In this chapter, we focus on multilevel models in which only the intercept varies across groups.

Longitudinal research designs as well as multilevel models with additional random effects (e.g.,

random slopes) are considered in the Discussion section.

Missing data in multilevel research

It is well known that simpler methods of dealing with missing data (e.g., LD) can severely

compromise statistical decisionmaking (e.g., Enders, 2010; Little &Rubin, 2002). For example,

when analyses are based only on the complete cases, then parameter estimates can be biased (i.e.,

the estimates may systematically differ from the “true” values that hold in the population) when

data are missing in a systematic manner (e.g., see Schafer & Graham, 2002). However, even

when data are missing in an unsystematic manner, inferences based on LD are often inefficient

(i.e., low statistical power) due to the reduction in sample size and because potentially useful

information about the missing data is being ignored (e.g., Newman, 2014). Therefore, the

common goal of the “principled” methods for handling missing data is to (a) provide unbiased

estimates for the statistical parameters of interest, (b) acknowledge the uncertainty that is due to

missing data, and (c) make full use of the data in order to limit the loss of efficiency. However,

before we devote ourselves to these methods, it is useful to first establish a formal framework for
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discussing the missing data problems and the challenges that may arise in multilevel research.

In the following section, we discuss (a) possible mechanisms that may have led to missing data

and (b) different patterns of missing data that may occur in multilevel data.

Missing data mechanisms

Rubin (1976) considered three broad classes of missing data mechanisms. We assume that

there is a hypothetical complete data set, Y, which can be decomposed into an observed part,

Yobs, and an unobserved part, Ymis, where an indicator matrix, R, denotes which elements are

observed and which ones are missing. Rubin defined data to be missing at random (MAR) if the

probability of observing data, P(R), is independent of the missing data given the observed data,

that is, P(R|Y) = P(R|Yobs). In other words, under MAR there remains no link between the

chance of observing data and the data themselves (i.e., they occur at random) once the observed

data are taken into account. A special case of this scenario occurs if the probability of missing

data is even completely independent of the data, that is, P(R|Y) = P(R), which is referred to

as missing completely at random (MCAR). By contrast, if the probability of missing data is

related to the unobserved data, that is, P(R|Y) = P(R|Yobs,Ymis), it is more difficult to infer

from incomplete data, and strong assumptions must be made about the missing data mechanism

(see Carpenter & Kenward, 2013; Enders, 2011). This is referred to as missing not at random

(MNAR).

The meaning of these mechanisms can be subtle, and they are best explained in an example

(see also Enders, 2010). Consider the simple scenario illustrated in Figure 1, where negative

leadership style is associated with lower job satisfaction, and ratings on leadership style are

missing (RLS) as a function of job satisfaction, say, because employees with low job satisfaction

were less willing to answer questions about their supervisors (single-headed arrows). In this

scenario, larger values of leadership style would be more likely to be missing (double-headed

arrow), rendering statements about this variable misleading as long as they do not take the

missing datamechanism into account (left panel). For example, the estimatedmean of leadership

stylemay bewell below the “true”mean because larger values have a higher chance to bemissing.

However, with job satisfaction taken into account, these ties are broken (right panel): Given the
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SATSAT

With job satisfactionWithout job satisfaction

(MAR)(MNAR)

LS LS RLSRLS

Figure 1: Example for systematic data loss and the effects of ignoring possible causes of missing data. LS =
leadership style; SAT = job satisfaction; RLS = indicator for missing values in leadership style.

values of job satisfaction, the scores of leadership style are now MAR, allowing us to estimate

the conditionalmean of leadership style given job satisfaction (e.g., using linear regression) and

to make statements about the overall mean on that basis (see also Carpenter & Kenward, 2013).

The notion of missing data mechanisms allows us to identify conditions under which a

missing data treatment may yield more or less accurate results in some model of interest. For

example, listwise deletion (LD) generally provides unbiased estimates for a model of interest

only under MCAR (see also Newman, 2014). In addition, LD may provide unbiased results

in some very specific scenarios in which data are MAR or MNAR (e.g., Galati & Seaton,

2016; Little, 1992). However, since the assertion of specific missing data mechanisms requires

making untestable assumptions, LD should be avoided in favor of procedures that make full

use of the data and which are applicable under a more general set of assumptions (e.g., ML

and MI; see also Schafer & Graham, 2002). Both ML and MI provide unbiased results under

MAR. In such a case, the exact mechanism need not be known and may even be different from

individual to individual as long as the observed data are sufficient to “break the link” between

the unobserved data and the probability that they are missing (Carpenter & Kenward, 2013). To

make this assumption more plausible, it is often recommended to include auxiliary variables

in the missing data treatment which are not part of the model of interest but which are related

to the probability of missing data or the variables with missing data themselves (Collins et al.,

2001; Enders, 2008; Graham, 2003). Including such variables is also beneficial if they are

related to the variables of interest because they provide information about missing values and

may improve statistical power (Collins et al., 2001).



90 ARTICLE 1: MISSING DATA IN MULTILEVEL RESEARCH

Table 1: Hypothetical Example for a Pattern of Missing Data in a Multilevel
Sample

Case Group SATi j LSi j WLi j COHj LS•j
1 1 2.3 ? high 3.8 ?
2 1 1.7 ? low 3.8 ?
3 1 1.7 ? high 3.8 ?
4 2 1.8 2.3 low ? 2.2
5 2 1.4 2.1 high ? 2.2
6 2 ? ? ? ? 2.2
7 3 3.4 1.2 low 2.7 1.4
8 3 2.8 1.8 ? 2.7 1.4
9 3 3.1 1.2 low 2.7 1.4
10 ? 2.1 2.3 high ? ?

Note. Missing observations are indicated by question marks.

Patterns of missing data

For the treatment of missing data, it can also be useful to distinguish different patterns of

missing data. Such a distinction may help to identify problems with the data and navigate

choices regarding the missing data treatment. On the basis of Newman (2014), we distinguish

three basic patterns: item, construct, and unit nonresponse. Item nonresponse denotes cases

in which participants fail to answer a single item on a questionnaire (e.g., an item concerning

payment in a questionnaire for job satisfaction). By contrast, construct and unit nonresponse,

respectively, denote cases in which all items pertaining to a certain construct or even the full

questionnaire for a participant may be missing (e.g., because a participant was absent on the

day the company conducted a survey). In the present chapter, we focus on item nonresponse,

though construct missing data can often be addressed using similar methods (see also Gottschall

et al., 2012). Unit nonresponse can be more complicated to deal with and is often addressed by

employing survey weights (e.g., Särndal, Swensson, & Wretman, 2003).

In multilevel research, item, construct, and unit nonresponse may occur at different levels of

the sample (see also van Buuren, 2011). On the basis of Kozlowski and Klein (2000), we may

again distinguish three different patterns: missing data at Level 1, in shared variables at Level

2, and in global variables at Level 2. Missing data at Level 1 refer to the lowest level of the

sample (e.g., missing data for employees). Global variables refer to variables that are directly
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assessed at Level 2 (e.g., missing data in supervisor rating), whereas shared variables denote

variables that are assessed at Level 1 and then aggregated at Level 2 (e.g., a group average based

on incomplete data collected from employees). Because missing data in both at Level 1 and

in shared variables at Level 2 originate at Level 1, they can usually be addressed by the same

methods. Missing data in global variables sometimes require additional considerations but can

be treated using similar tools. Additional patterns of missing data are possible, for example,

incomplete data about group membership, but these will not be our focus in the present chapter

(for a discussion, see Goldstein, 2011; Hill & Goldstein, 1998).

For example, consider Table 1. In the first group of employees, only a single response to

the workload variable is missing (Level 1, item missing). In the second group, the ratings on

leadership style are missing for all employees (Level l, item missing), and the group mean is

missing as a result (shared Level 2, item missing). In the third group, one employee did not

respond to any item (Level 1, unit missing). In that group, the group mean might be calculated

from the observed values, but it will be subject to uncertainty and possible bias because the

underlying items are incomplete (shared Level 2, item missing). In addition, the cohesion score

is missing for all employees in that group (global Level 2, item missing). Finally, the last

employee could not be assigned to a group with sufficient certainty.

Methods for handling missing data

In the following section, we consider two general procedures that are currently regarded as

principled methods for handling missing data (e.g., Schafer & Graham, 2002). First, we

consider multiple imputation (MI). We elaborate on different approaches to multilevel MI, and

we discuss potential challenges when specifying imputation models for multilevel data. As

a second procedure, we consider the estimation of multilevel models by maximum likelihood

(ML). Finally, we provide a comparison of the two procedures from a practical point of view.

Multiple imputation (MI)

The basic idea of MI is to replace missing values with an “informed guess” obtained from the

observed data and a statistical model (the imputation model). A schematic representation of
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Figure 2: Schematic representation of multiple imputation (MI) and the analysis of multiply imputed data sets. Q̂
= estimator of the parameter of interest.

this process is displayed in Figure 2. Multiple imputation generates several (M) replacements

for the missing data by drawing from a predictive distribution of the missing data, given the

observed data and the parameters of the imputation model. The M data sets are then analyzed

separately, yielding M sets of parameter estimates (i.e., Q̂1, . . . , Q̂M), and these are combined

into a set of final parameter estimates (i.e., Q̂MI) and inferences using the rules outlined by

Rubin (1987).

When performing MI, the imputation model must be chosen in such a way that it “matches”

the model of interest, that is, it must be specified in such a way that it preserves the relationships

among variables and the relevant features of the analysis model (Meng, 1994; Schafer, 2003).

For example, if the model of interest is a regression model with an interaction effect, then the

imputation model must also include the interaction; otherwise, it will be more difficult to detect

the interaction effect in subsequent analyses (Enders, Baraldi, & Cham, 2014). In multilevel

research, it is important that the imputation model incorporates the multilevel structure of

the data. In the following, we review different strategies for accommodating the multilevel

structure during MI, including ad hoc strategies on the basis of single-level MI. We consider

two broad approaches to MI: joint modeling and the fully conditional specification of MI. In

the joint modeling approach, a single statistical model is specified for all incomplete variables

simultaneously. In the fully conditional specification, each variable is imputed in turn using a
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sequence of models (for a discussion, see Carpenter & Kenward, 2013). Finally, we discuss

strategies for analyzing multiply imputed data sets and pooling their results.

Strategies based on single-level MI. Perhaps the simplest approach to multilevel MI is to

ignore the multilevel structure of the data and employ single-level MI. Using this strategy, the

multilevel structure is disregarded altogether. Not surprisingly, it has been shown that single-

level MI may lead to biased estimates in subsequent multilevel analyses (Black et al., 2011;

Enders et al., 2016; Taljaard et al., 2008). Lüdtke et al. (2017) demonstrated that single-level

MI tends to underestimate the intraclass correlation (ICC; also known as ICC(1)) of variables

with missing data and may either under- or overestimate within- and between-group effects in

multilevel random intercept models. Figure 3 shows the expected bias in the ICC of a variableY

relative to its true value (i.e., in percent) and for different numbers of individuals per group (n),

different values of the ICC of Y and an auxiliary variable X , and different amounts of missing

data (25%, 50%). As can be seen, single-level MI tends to underestimate the true ICC. For

example, in the scenario with n = 5 individuals per group and 25% missing data, single-level

MI is expected to yield an estimate of only .062 when the true ICC is .100 and of only .191

when the true ICC is .300. In either case, the true ICC is underestimated by approximately

37%.

To remedy this situation, it has been suggested that the multilevel structure be represented by

a number dummy indicator variables (i.e., the DI approach; e.g., Graham, 2009). This strategy

effectively estimates a separate group mean for each group by estimating the imputation model

conditional on group membership, thus incorporating group differences during MI (see also

Enders et al., 2016). For example, the differences in job satisfaction between the 50 work

groups in our running example may be represented in a regression model by the intercept and an

additional 49 dummy variables (with one group selected as a reference group). The performance

of this strategy depends on the situation in which it is applied. As demonstrated by Drechsler

(2015), the DI approach tends to overestimate the ICC of variables with missing data but yields

approximately unbiased estimates of the regression coefficients in a multilevel analysis model

when missing data are restricted to the dependent variable (see also Andridge, 2011). However,

because the DI approach exaggerates the variance between groups, it provides only a biased
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Figure 3: Expected bias for the estimator of the ICC of a variable of interest (Y ) under single-level MI (SL) and
the dummy-indicator approach (DI). It is assumed that all groups contain the same number of individuals (n) and
the same proportion of missing data (MD) in Y . ICCY = intraclass correlation of the variable of interest; ICCX =
intraclass correlation of an auxiliary variable.

estimate of the between-group effect if missing values occur in explanatory variables (Lüdtke

et al., 2017). As shown in Figure 3, the DI approach tends to overestimate the true ICC. The

bias is particularly strong when the true ICC is small and there are only few individuals per

group. For example, with n = 5 individuals per group and 25% missing data, the DI strategy

is expected to yield an estimate of around .186 when the true ICC is .100 and of around .353

when the true ICC is .300. This corresponds to an overestimation of the ICC by approximately

86% and 18%, respectively.

Joint modeling. To accommodate the nested structure of multilevel data, it has been

recommended that MI be performed using mixed-effects models (e.g., Enders et al., 2016;

Lüdtke et al., 2017; Yucel, 2008). In the joint modeling approach to multilevel MI, a single

model is specified for all variables with and without missing data, and imputations are generated

from this model for all variables simultaneously.1 The joint model may be regarded as a

multivariate extension of univariate multilevel models, that is, it addresses multiple dependent

variables simultaneously. The model reads

y1i j = γ1 + u1 j + r1i j (Level 1)

y2 j = γ2 + u2 j , (Level 2)
(4)

1The joint model can be expressed in a more general way, which allows including fully observed variables as
predictor variables on the right-hand side of the model. However, in the present chapter, we consider only the
“empty” specification of the model because it is easy to specify and widely applicable in the context of multilevel
random intercept models (for a discussion, see Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016b).
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where y1i j denotes a vector of responses for individual i in group j with fixed intercepts γ1,

random intercepts u1 j , and residuals ri j , and y2 j denotes a vector of responses for group j (i.e.,

global variables) with fixed intercepts γ2 and residuals u2 j . The random effects and residuals

at Level 2 (u1 j, u2 j), are assumed to jointly follow a multivariate normal distribution with mean

zero and covariance matrixΨ. The residuals at Level 2 follow amultivariate normal distribution

with mean zero and covariance matrix Σ. The joint model was originally developed by Schafer

and Yucel (2002) to treat missing data at Level 1 and has since been extended to address missing

data in categorical variables and variables at Level 2 (Asparouhov &Muthén, 2010b; Carpenter

& Kenward, 2013; Goldstein et al., 2009).

To illustrate how the joint model accommodates the multilevel structure, consider our

running example and the illustration in Figure 4. The model of interest is a random intercept

model which includes variables assessed at Level 1 and 2 as well as relations between job

satisfaction and leadership style both within and between groups (Equation 3). The joint model

includes all variables as dependent variables in amultivariate random interceptmodel (Figure 4).

For each variable at Level 1, the model includes a random intercept u1 j = (uSAT, j, uLS, j, uWL, j),

representing the components of these variables that vary between groups, and a residual term

r1i j = (rSAT,i j, rLS,i j, rWL,i j), representing the differences within groups. For cohesion, which was

assessed directly at Level 2, the model includes a residual term u2 j = (uCOH, j). The critical

point in this model is that it assumes that the random effects and residuals at Level 2 (i.e., global

and shared variables) may be correlated (Ψ) and that residuals at Level 1 may be correlated as

well (Σ). This illustrates that the joint model indeed “matches” the multilevel structure because

it allows differentiating (a) the within- and between-group components that can be present in

variables at Level 1 and (b) the relations between variables within and between groups. The

joint model or variants thereof are implemented in the packages pan (Schafer & Zhao, 2014) and

jomo (Quartagno & Carpenter, 2016a) for the statistical software R as well as in the standalone

software packages SAS (Mistler, 2013b), Mplus (Asparouhov &Muthén, 2010b), and REALCOM

(Carpenter, Goldstein, & Kenward, 2011).

Fully conditional specification. As an alternative to the joint model, the joint distribution

of the variables with missing data may be approximated by imputing one variable at a time
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Figure 4: Schematic representation of the joint imputation model and its distributional assumptions in the running
example. SAT = job satisfaction; LS = leadership style; WL = workload; COH = cohesion.

using a sequence of univariate models. To address multivariate patterns of missing data, the

procedure iterates back and forth between variables with missing data, conditioning on the other

variables in the data set (or a subset of them). This approach is referred to as the fully conditional

specification of MI (FCS; van Buuren et al., 2006). Specifically, for a set of variables at Level

1 and 2, a sequence of conditional imputation models may be specified as follows

y1i jp = yi j(−p)γp + u jp + ri jp (Level 1)

y2 jq = y j(−q)γq + u jq , (Level 2)
(5)

where y1i jp is the p-th variable with missing data at Level 1, and yi j(−p) is a set of predictors for

that variable which may include any variable other than y1i jp. Similarly, y2 jq is the q-th variable

with missing data at Level 2 (i.e., a global variable), and y j(−q) is a set of predictor variables

which may include any other variable at Level 2 (i.e., global variables) as well as the group

means of any variable at Level 1 and (between-group components). The random intercepts

u jp as well as the residuals ri jp and u jq in each model are each assumed to follow independent

normal distributions (see also van Buuren, 2011). To address multiple variables with missing

data, the FCS algorithm arranges them in a sequence and visits one variable at a time, generating

imputations from the imputation model assigned to each variable. Once a variable has been

completed in this manner, it may be used as a predictor in any of the other imputation models.

Once all variables have been visited, the sequence is repeated, and new imputations are generated

until the algorithm converges, yielding the first of multiple imputations.

The sequential nature of the FCS algorithm requires some re-thinking. In contrast to the
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joint model, the FCS algorithm allows that different predictors may be selected for each target

variable, and—conversely—that all target variables may act as predictors in any other target’s

imputationmodel. Moreover, in order to preserve the relationships between variables, it is in fact

required that the imputation model for each target variables conditions on the other variables.

To incorporate relationships between variables at Level 2, the group means of variables at Level

1 must be calculated and included as predictors. In addition, the group means must be updated

once new imputations for the underlying variables have been obtained; this process of updating

the group means is known as passive imputation (e.g., Royston, 2005).

To illustrate multilevel FCS, consider our running example and the illustration in Figure 5.

Missing data in job satisfaction, leadership style, and workload can be imputed using separate

multilevel models, where the latter incorporates a model appropriate for binary categorical data

(e.g., a logistic model). Cohesion may be imputed using a regression model at Level 2. In order

to preserve the relationship between the variables within and between groups, all variables are

included as predictor variables in the other variables’ imputation models. In addition, the group

means are updated once new imputations have been generated for the underlying variables (i.e.,

passive imputation). The FCS and similar approaches for multilevel data are implemented in

the package mice (van Buuren & Groothuis-Oudshoorn, 2011) for the statistical software R as

well as in the standalone software packages Mplus (Asparouhov & Muthén, 2010b) and Blimp

(Keller & Enders, 2016).

Incomplete categorical variables. There are several options for treating missing values in

categorical and ordinal variables. The first option is to treat categorical variables as continuous

for the purpose of MI and to round the resulting values to comply with the original categories

in that variable. For example, imputations for ordinal data may be rounded using 0.5, 1.5, etc.

as thresholds; for binary data, adaptive rounding may be used, which adjusts this threshold

according to the mean of the imputed values (see Carpenter & Kenward, 2013). Adaptive

rounding has been shown to perform well for binary missing data (Bernaards, Belin, & Schafer,

2007), but alsoMIwithout rounding appears toworkwell for binary and (some) ordinal variables

(Schafer, 1997; W. Wu et al., 2015). Finally, it is possible to impute categorical and ordinal

variables using a latent variable approach. In this approach, imputations are generated for a set
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Figure 5: Schematic representation of the sampling steps in the fully conditional specification (FCS) of multilevel
MI in the running example. SAT = job satisfaction; LS = leadership style; WL = workload; COH = cohesion.

of underlying latent variables that represent the relative probability of being assigned to a given

category. Based on the latent scores, the assignment to a category can then be simulated using

an appropriate link function (e.g., a probit link for latent normal variables; see Carpenter &

Kenward, 2013). For a variable with C categories, this approach assumes C − 1 latent variables

that represent the possible contrasts between categories (see also Carpenter & Kenward, 2013;

Goldstein et al., 2009). For binary variables, this is equivalent to generating imputations from

a generalized linear mixed-effects model (e.g., a logistic or probit model). These procedures,

too, appear to work well for both binary and polytomous data (Demirtas, 2009; W. Wu et al.,

2015; see also Enders et al., 2016).

Analyzing multiply imputed data. The idea underlying MI is to generate plausible replace-

ments for each missing value, thus transforming a data set with “missing data” to a data set with

“complete data.” This process is repeated M times (hence the qualifier “multiple”), yielding M

completed versions of the original data (see Figure 2). Once the set of M data sets has been

obtained, the model of interest must be fit separately to each data set, yielding M estimates of

some parameter of interest, say Q̂m (e.g., regression coefficients; m = 1, . . . ,M), and M esti-

mates of the sampling variance of that estimate, V̂m (e.g., squared standard errors). According
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to Rubin (1987), the combined point estimate is the average of the individual estimates,

Q̂MI =
1
M

M∑
m=1

Q̂m . (6)

The combined estimate of the sampling variance of the estimator incorporates two different

sources of uncertainty,

V̂MI = Ŵ +
(
1 +

1
M

)
B̂ , (7)

where Ŵ denotes the sampling variance within imputations, that is, the average of the individual

variance estimates,

Ŵ =
1
M

M∑
m=1

V̂m , (8)

and B denotes the sampling variance between imputations, that is, the variance of the point

estimates across data sets,

B̂ =
1

M − 1

M∑
m=1
(Q̂m − Q̂MI)

2 . (9)

Using the combined point and variance estimates, Q̂MI and V̂MI, standard hypothesis tests can

be carried out on the basis of a Student’s t distribution with ν degrees of freedom. Rubin (1987)

recommended calculating the degrees of freedom as follows

ν = (M − 1)
[
1 +

1
RIV

]2
, (10)

where the expression

RIV =
Ŵ

(1 + 1
M )B̂

(11)

denotes the relative increase in the sampling variance of the estimator that is due to missing data

(see also Barnard & Rubin, 1999). In addition, several alternative formulas have been proposed

for more complex hypotheses that may involve several parameters simultaneously, for example,

when testing the overall effect of categorical explanatory variables or when testing for random

slopes using a likelihood-ratio test (see Appendix A; see also Reiter & Raghunathan, 2007).

The general idea of Rubin’s rules is to approximate the sampling distribution of Q̂ that would

be obtained with infinite M but based on only a small number of imputations. Naturally, the

larger this number is chosen the better the approximation becomes, which raises the question of

“how many are needed?” Traditionally, M = 5 imputations have been recommended (Rubin,
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1987), but more can be necessary when the amount of missing data increases or the model of

interest becomes more complex (Bodner, 2008; Graham, Olchowski, & Gilreath, 2007). This

is especially important because most software packages for multilevel MI generate M = 5

imputations by default. In our experience, M = 20 imputations are usually sufficient for

estimating and testing the parameters in most applications of multilevel models. However,

when large portions of the data are missing (say above 50%) or complex hypotheses are tested

that involve multiple parameters, we recommend generating 50-100 imputed data sets (see also

Bodner, 2008; Raghunathan, 2015).

Maximum likelihood (ML)

The general principle of maximum likelihood estimation (ML) is to choose the values of the

parameters in a statistical model in such a way that the likelihood of the data becomes maximal.

When the data contain missing values, it is often possible to estimate the model directly using

only the observed data. This procedure is often referred to as direct or full information ML.

Using ML, the likelihood is evaluated on a case-by-case basis, that is, cases with incomplete

records contribute to the likelihood only to the extent to which they have data (Little & Rubin,

2002). The ML estimates of the parameters in a model of interest are consistent when the data

are MAR or MCAR, that is, missing data occur in an unsystematic fashion when the variables

in the model are taken into account (Little & Rubin, 2002).

The main principle by which ML “deals” with missing data is that it imposes distributional

assumptions on incomplete variables. For this reason, common multilevel software packages

often handlemissing values only in the dependent variable of themodel (e.g., HLM, SAS),where

such assumptions are already in place, but cases with missing values in explanatory variables

are discarded because no distributional assumptions have been made for them. To circumvent

this restriction, it has been suggested to adopt the framework of structural equation modeling

(SEM), which allows introducing distributional assumptions for all variables by defining them

as endogenous (i.e., dependent) variables in a single analysis model (e.g., Allison, 2012; Enders,

2010). For example, in the statistical softwareMplus, this is achieved by including the variances

and covariances of the explanatory variables in the modeling statement. Using this strategy



MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH 101

it is often possible to prevent the software from discarding these cases and to apply the ML

principle to both the dependent and explanatory variables in a model of interest. Furthermore,

this perspective allows for including auxiliary variables that may improve the plausibility of

the MAR assumption and the accuracy of estimates under ML (Enders, 2008; Graham, 2003).

Software that supports ML for multilevel models from the perspective of SEM includes the

standalone software packages Mplus (L. K. Muthén & Muthén, 2012), Latent GOLD (Vermunt

& Magidson, 2013), gllamm (Rabe-Hesketh, Skrondal, & Pickles, 2004), and xxM (Mehta,

2013).

As an alternative to direct ML, estimates for the parameters in a multilevel model may

be obtained from a two-stage procedure by first estimating a covariance matrix within and

between groups based on the observed data; in the second stage, the parameters of interest

are derived from the variances and covariances estimated in the first stage (Yuan & Bentler,

2000). Conceptually, the two-stage ML is similar to the perspective taken in SEM. We do not

consider this approach further, but using two-stageMLmay offer advantages whenworking with

nonnormal variables and because auxiliary variables are easily incorporated in the estimation

procedure (Savalei & Bentler, 2009; Yuan, Yang-Wallentin, & Bentler, 2012).

Comparison of ML and MI

From a theoretical point of view, ML and MI are not vastly different, and both can be expected

to yield similar results when they operate under similar assumptions (Schafer & Graham, 2002).

However, from a practical point of view, the differences may be substantial. Fitting models

using ML is often easy, provided that a software package can be found that supports estimating

the model of interest. Furthermore, because ML does not separate the treatment of missing

data from the analysis, the missing data model is always consistent with the analysis model,

that is, both models are always based on the same set of assumptions Allison, 2012. However,

integrating the treatment of missing data and the estimation of the analysis model into a single

step also has disadvantages. First, the distributional assumptions needed for the treatment of

missing data now also enter the analysis model even though they may not have been an original

part of it. Second, auxiliary variables must be incorporated directly into the model of interest,
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thus making the analysis model more complex (Graham, 2003). In applications with few, well-

behaved variables, this is usually no problem; but in practice, it can become problematic, for

example, when the inclusion of auxiliary variables leads to a mix of continuous and categorical

variables at both Level 1 and 2. Such models are difficult for the user to specify, and a given

software package may not even fully support it, forcing the user to alter the model or make

decisions he or she would not have made otherwise.

Conducting MI, on the other hand, is more complicated at first glance. First, an imputation

model must be chosen that is consistent with the model of interest. Then, the user must specify

the number of imputations and for how many iterations the sampling procedure should run.

Finally, he or she must ensure that the algorithm has converged before any analyses can be

carried out (see also Allison, 2012). Once the imputations have been generated, the user must

fit the analysis model to each of the imputed data sets and combine their results into a final

set of parameter estimates and inferences. Especially for unexperienced users, performing MI

can be a daunting task. On the other hand, modern procedures for multilevel MI are powerful

and very flexible in accommodating a variety of models. In addition, many software packages

for multilevel MI automatize at least some of these steps. Finally, the separation between the

treatment of missing data and the analysis phase makes it straightforward to handle a variety of

variables and to include auxiliary variables without altering the model of interest.

Simulation

Next, we report the results from a computer simulation study. This study was intended to

illustrate the general performance of ML and MI in a controlled setting. We conducted this

study with two models of interest in mind. The first model of interest (Model 1) was the model

from our running example

SATi j = γ00 + γ10(LSi j − LS• j) + γ01LS• j + γ20WLi j + γ02COH j + u0 j + ri j . (3 revisited)

This represents the standard formulation of multilevel models, in which the observed group

means represent the shared perception of leadership style among members of the same group.

The second model of interest (Model 2) is also known as the “multilevel latent covariate model”
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(Lüdtke et al., 2008) and differs from the first model in that it uses the true, unobserved group

means or between-group components to represent the shared perception of individuals in each

group. The model reads

SATi j = γ00 + γ10LSW,i j + γ01LSB, j + γ20WLi j + γ02COH j + u0 j + ri j , (12)

where LSW,i j and LSB, j denote the within- and between-group components of leadership style

(Asparouhov & Muthén, 2006; Lüdtke et al., 2008). Formulating the model in terms of the

true within- and between-group components can be beneficial because it corrects for the fact

that the group mean is calculated from a finite number of observations and thus provides only

an unreliable measure of the true between-group component (see Croon & van Veldhoven,

2007; Raudenbush & Bryk, 2002). In the organizational literature, the reliability of the group

mean is also known as the ICC(2), and it expresses the extent to which differences between the

observed group means reflect true differences between groups (see also Bliese, 2000; LeBreton

& Senter, 2008). It is a matter of debate in the multilevel literature which formulation of the

model of interest is more appropriate. For example, it may be argued that the formulation in

Model 2 is appropriate if the shared perception among individuals is of primary interest (e.g.,

ratings of team climate, leadership effectiveness), whereas Model 1 may be appropriate if the

variation within groups is itself of interest or if the observed group mean is simply regarded

as a summary measure (e.g., gender ratio, socioeconomic status; for further discussion, see

Lüdtke et al., 2008). However, the main motivation for including these two approaches to

modeling between-group effects in the present chapter was that their distinction is important for

the treatment of missing data under ML (see below).

In the simulation study, the samples were generated from either Model 1 (the “standard”

model) or Model 2 (the “latent covariate” model) in order to allow a comparison between

conditions in which one of the twomodels is the “true” model. The parameters of the simulation

were loosely based on the data from Klein et al. (2000). The samples consisted of G = 50

groups of size n = 10. All variables were standardized across groups with mean zero and

unit total variance. For the ratings on leadership style and job satisfaction, we assumed an

ICC of .10 and .20, respectively. In addition, we assumed that negative leadership style was
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Table 2: Mean Estimates (and Coverage Rates for the 95% Confidence Interval) for the Two Models of
Interest for MI and ML

Model 1 Model 2
True JM FCS ML1 ML2 True JM FCS ML1

γ00 0.000 0.003 0.002 0.004 0.011 0.000 0.001 0.000 0.001
(95.0) (95.0) (96.1) (94.1) (94.8) (94.3) (95.1)

γ10 −0.200 −0.202 −0.200 −0.203 −0.200 −0.200 −0.201 −0.200 −0.200
(94.7) (94.7) (94.9) (94.7) (93.8) (94.0) (94.3)

γ01 −0.700 −0.648 −0.660 −1.215 −0.633 −0.700 −0.708 −0.714 −0.803
(94.6) (94.5) (91.8) (90.5) (95.4) (95.1) (96.1)

γ20 −0.300 −0.301 −0.300 −0.302 −0.303 −0.300 −0.298 −0.297 −0.299
(94.8) (95.0) (94.9) (94.8) (94.9) (94.9) (94.9)

γ02 0.100 0.102 0.102 0.067 0.105 0.100 0.098 0.099 0.095
(94.3) (93.8) (95.5) (92.7) (95.0) (94.4) (95.4)

τ
2
0 0.083 0.085 0.082 0.035 0.081 0.088 0.079 0.078 0.069

(95.4) (94.0) (91.9) (91.5) (95.0) (93.9) (92.3)
σ

2 0.751 0.747 0.747 0.746 0.749 0.790 0.786 0.786 0.786
(94.1) (94.1) (94.1) (94.3) (94.6) (94.5) (94.8)

Note. JM = joint modeling of MI; FCS = fully conditional specification of MI; ML1 = maximum likelihood with
true within- and between-group components for leadership style; ML2 = maximum likelihood with group means
for leadership style calculated from the observed data; γ00 = intercept; γ10 = within-group effect of leadership style;
γ01 = between-group effect of leadership style; γ20 = effect of workload; γ02 = effect of cohesion; τ2

0 = intercept
variance; σ2 = residual variance.

correlated with cohesion at the group level (r = −.15). For the two workload categories (high

vs. low), we generated a standard normal variable with an ICC of .20, and we dichotomized

that variable using 0.38 as a breaking point, resulting in 35% and 65% of individuals with high

and low workload, respectively. For simplicity, we assumed that workload was uncorrelated

with the other explanatory variables. Finally, we assumed the following fixed effects in the data

generating model: γ00 = 0 (intercept), γ10 = −.20 and γ01 = −.70 (leadership style), γ20 = −.30

(workload), and γ02 = .10 (cohesion). The variance components τ2
0 and σ2 then followed. We

induced missing values in cohesion completely at random (5%), and in leadership style (15%)

and workload (10%) based on job satisfaction (lower job satisfaction corresponded to higher

chance of missing data). Finally, we induced missing values in job satisfaction completely at

random (10%).

Using this procedure, we generated 5,000 data sets from both Model 1 and 2. In each data

set, we carried out MI using both joint modeling (using jomo; Quartagno & Carpenter, 2016a)
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and FCS (using mice; van Buuren & Groothuis-Oudshoorn, 2011) in the statistical software R.

Afterwards, we fitted the respective model of interest using Mplus 7 (L. K. Muthén & Muthén,

2012). To estimate the model using ML, we also used Mplus, and we addressed missing

data in explanatory variables by specifying distributional assumptions for these variables. In

the context of Model 2, applying ML is relatively easy because Mplus already imposes the

necessary distributional assumptions when decomposing leadership style into its within- and

between-group components. The distributional assumptions for the remaining variables can be

added by defining them as endogenous variables at Level 1 and 2, respectively.2 On the other

hand, in the context of Model 1, missing data in explanatory variables pose a greater challenge

when estimating the model using ML. We consider two strategies for this case, neither of which

are completely satisfying. In the first strategy (ML1), distributional assumptions are specified as

before by defining explanatory variables as endogenous variables at Level 1 or 2, respectively.

However, this strategy unintentionally adopts the within- and between-group decomposition

for leadership style (as in Model 2), thus correcting between-group effects that did not require

correction. As a second option (ML2), the group means of leadership style may be calculated

beforehand from the observed data, and distributional assumptions may be imposed only on

the within-group deviations of leadership style. In this specification, the group means are

consistent with the analysis model, but the between-group effects of leadership style may be

biased if values are missing in a systematic manner (similar to LD).

In Table 2, we included the mean estimates of the three procedures for the two models of

interests as well as the coverage of the 95% confidence interval. Ideally, the mean estimates

should be close to the true values in the data-generating model, and the coverage rates should

be close to 95%. In the context of Model 2, both MI and ML yielded parameter estimates

that were very close to the true values, and coverage rates were close to the nominal value

of 95%. However, the between-group effect of leadership style (γ01) was slightly too large

under ML, which may be attributed to the small sample size at Level 2 (Lüdtke et al., 2008).

2Using ML, it was also not straightforward to accommodate both (a) the multilevel structure of the variables
and (b) the fact that workload is categorical. Therefore, we treated workload as a continuous variable. While this
may be acceptable for a dichotomous variable with similar frequencies in both categories, it will lead to problems
when explanatory variables have multiple categories or some categories occur much more frequently than others.
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In the context of Model 1, the parameter estimates obtained from MI were again close to the

true values, but the between-group effect of leadership style (γ01) was slightly underestimated.

Under ML, specifying leadership style as an endogenous variable (ML1), thus adopting the

within- and between group decomposition, led to severe bias in the between-group regression

coefficients. By contrast, when the group means were calculated beforehand from the observed

data (ML2), thus treating only the within-group deviations as endogenous, the group-level effect

of leadership style (γ01) was only slightly underestimated. The coverage rates were relatively

close to the nominal value of 95% for most parameters but tended to be slightly smaller under

ML, especially when the group means were calculated from the observed data (ML2).

In conclusion, both ML and MI provided accurate results when their assumptions were met

and when these assumptions were consistent with the model of interest. These requirements

were more easily fulfilled in the context of Model 2, in which case both MI and ML yielded

reasonable parameter estimates. However, in the context of Model 1, the results were more

diverse. Under ML, following the usual advice to treat explanatory variables as endogenous

may lead to an unwanted “shift” in the analysis model, which severely distorted parameter

estimates. When the group means were calculated beforehand, we observed only little bias.

However, this approach slightly overestimated the precision of the parameter estimates because

it ignored the fact that group means were calculated from incomplete records. Under MI,

estimates were accurate and confidence intervals showed good coverage properties, providing

the most reasonable approximation to the true parameters overall.

Example application

In the following section, we apply themissing datamethods to our running example. The running

example is based on the data in Klein et al. (2000) and essentially mimics the conditions in our

simulation study except that the example data set contained unstandardized variables instead.

Missing values were induced in the data set in the same way as in the simulation study. As

a result, 21.9% of the employees had missing values on at least one variable; these were

distributed across job satisfaction (9.2%), leadership style (12.3%), workload (11.5%), and
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Table 3: Estimates for the Parameters in the Model of Interest Obtained fromML and MI in the Running
Example

Mplus (ML2) jomo (MI)

Parameter Est. SE Est. SE RIV FMI
Intercept (γ00) 0.291∗ 0.136 0.257† 0.140 0.167 0.143
Level 1
Leadership style (γ10) −0.526∗∗∗ 0.091 −0.532∗∗∗ 0.092 0.341 0.255
Workload (γ20) −0.863∗∗∗ 0.197 −0.842∗∗∗ 0.195 0.259 0.206

Level 2
Leadership style (γ01) −1.491∗∗∗ 0.319 −1.566∗∗∗ 0.349 0.237 0.192
Cohesion (γ02) 0.237∗∗ 0.088 0.243∗∗ 0.091 0.075 0.070

Level 2 residual variance (τ2
0) 0.268∗ 0.128 0.286 — — —

Level 1 residual variance (σ2) 4.940∗∗∗ 0.283 4.962 — — —

Note. ML2 = maximum likelihood with group means for leadership style calculated from the observed data; SE =
standard error; RIV = relative increase in variance; FMI = fraction of missing information.
†p < .10, ∗p < .05, ∗∗p < .01, ∗∗∗p < .001 (two-tailed)

cohesion (4.0%). The data set is included in the R package mitml (Grund, Robitzsch, & Lüdtke,

2016). The model of interest was the “standard” multilevel model in Equation 3 (Model 1). We

applied MI using the joint model implemented in the jomo package in R, and we estimated the

model of interest using the lme4 package (Bates et al., 2016). To assist with the analyses, we

used the mitml package, which provides a wrapper function for the jomo package as well as tools

for analyzing multiply imputed data sets (see also Grund, Lüdtke, & Robitzsch, 2016b). For

ML estimation, we used Mplus, where we calculated the group means of leadership style from

the observed records (as in ML1) and adopted the within- and between-group decomposition

for the remaining variables (as in ML2). The computer code and the Mplus syntax file are

provided in Appendix B.

To set up the imputation model using jomo and mitml, two formulas had to be specified

which denoted the imputation model for variables at Level 1 and 2, respectively (see Equation

4 and Figure 4). In accordance with the “empty” specification of the model, all variables

are treated as target variables, and no predictor variables are specified except a “one” for the

intercept. We generated M = 100 imputations in this manner. The number of iterations for

the algorithm was chosen in such a way that convergence could be established by inspecting

convergence criteria (e.g., Gelman & Rubin, 1992) and diagnostic plots for the parameters of
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the imputation model (see also Grund, Lüdtke, & Robitzsch, 2016b; Schafer & Olsen, 1998).

After running MI, the model of interest was fitted to each of the imputed data sets using lme4,

and the parameter estimates were pooled using Rubin’s rules in order to obtain a final set of

parameter estimates and inferences. The results obtained from ML and MI are presented in

Table 3. The two analyses suggested that negative leadership style had a relatively strong impact

on employees’ job satisfaction when controlling for employees’ workload and the work group’s

cohesion. UnderMI, for any one-unit change in the leadership style ratings within groups (Level

1), the expected change in job satisfaction was −.532 (p < .001). Between groups, a one-unit

change in the shared perception of leadership style ratings (Level 2) was associated with an

expected change in job satisfaction of −1.566 (p < .001). Furthermore, there was a negative

effect of high (vs. low) workload (−0.842, p < .001) on job satisfaction and a positive effect of

cohesion (0.243, p = 0.007). The results obtained from ML were virtually identical. Perhaps

the largest difference between the two procedures was the standard error for the between-group

effect of leadership style, which might reflect the slightly too narrow confidence intervals under

ML observed in the simulation study.

In addition, we also investigated whether the within-group effect of leadership style varies

across groups, that is, whether there is significant variance in the slope of leadership style. To

this end, we fitted an alternative model that contains a random slope for within-group effect

of leadership style. The alternative model was compared with the model of interest using the

D3 statistic (Meng & Rubin, 1992), which can be interpreted as a pooled LRT for multiply

imputed data sets (Appendix A). The D3 statistic suggested that there is not enough evidence

to conclude that the effect of leadership style truly varies across groups, F(2, 3707.9) = 2.621

(p = .071). Therefore, the alternative model was rejected in favor of the model of interest.3

Furthermore, we were interested in whether the effect of leadership style was larger between

than within groups. For this purpose, we used the D1 statistic which allowed us to test the

difference between the two coefficients against zero using a linear constraint (Appendix A; see

3Note that, because the imputation model did not include random slopes, it did not “match” the alternative
model. For that reason, the hypothesis test is not completely trustworthy and is included here only for the purpose
of illustration.
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also Kreft et al., 1995). The D1 statistic suggested that the two parameters were significantly

different from one another, F(1, 2471.3) = 8.253 (p = .004), that is, the between-group effect

(−1.57) was significantly larger than the within-group effect (−0.53).

Discussion

In this chapter we provided an introduction to multilevel modeling with missing data. In

particular, we looked at two principled methods for handling missing data: multiple imputation

(MI) and estimation by maximum likelihood (ML). The general idea of ML and MI is not vastly

different, and both procedures may be regarded as state-of-the-art procedures for handling

missing data (Schafer & Graham, 2002). Differences between the two methods are most often

of a practical nature. Although both procedures tend to give the same answers if they are

based on similar assumptions, carrying out a given task is often easier with one procedure

as compared with the other. For example, ML is very easy to incorporate in one’s regular

workflow because the missing data treatment is performed during the estimation of the model

of interest (see also Allison, 2012). On the other hand, addressing missing values and including

auxiliary variables may prove to be challenging depending on where the missing data occur

and how complex the model becomes once all factors are taken into account, for example, if

categorical variables contain missing data or between group effects are represented by observed

group means. By contrast, MI allows for very flexible modeling of different types of variables,

and including auxiliary variables is straightforward. On the other hand, performing MI and

analyzing multiple data sets can be challenging, especially for less experienced users or if

nonstandard analyses and hypothesis tests are required. That being said, although we clearly see

ML as the easier-to-use alternative (see Allison, 2012; Enders, 2010), we tend to favor MI due

to its flexibility and because it separates the imputation from the analysis phase (see Carpenter

& Kenward, 2013; Schafer & Graham, 2002; see also Grund, Lüdtke, & Robitzsch, in press-b).

As in every introduction to these or similar procedures, it is not possible to consider all

possible research scenarios with the attention they deserve. In this chapter, we restricted our

discussion to cross-sectional multilevel models with a single level of clustering, that is, indi-
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viduals nested within some higher-level collective. In principle, the procedures discussed here

generalize naturally to models with further levels of clustering, for example, three-level models

(Goldstein, 2011;Keller, 2015;Yucel, 2008), modelswith cross-classified randomeffects (Gold-

stein, 2011; Hill & Goldstein, 1998), or models with multiple memberships (Goldstein, 2011;

Yucel et al., 2008). However, these procedures are not widely available in standard software,

and more research is needed to evaluate their performance in realistic research scenarios.

Another topic thatwe did not discuss explicitly is the treatment ofmissing data in longitudinal

research designs (e.g., repeated measurements, diary studies, experience sampling, ecological

momentary assessment). This topic is particularly interesting, however, because multilevel

models are frequently used for analyzing longitudinal data. Fortunately, many of the ideas

presented here can also be applied to longitudinal data (see also Black et al., 2013; Newman,

2003). For example, assume that a researcher is interested in estimating a growth curve model

with missing data in the dependent variable that should be treated using MI. It is then useful

to distinguish studies in which the longitudinal design is balanced or unbalanced with respect

to time, that is, whether all participants were measured at the same or a different set of time

points (see W. Wu, West, & Taylor, 2009). If all participants were measured on the same set

of time points, then the longitudinal data structure can be expressed in a wide data format, and

single-level MI may be used for treating the missing values in the dependent variable (for a

two-stage ML procedure, see Yuan et al., 2012). However, if participants were measured at

potentially different or unbalanced time points, then procedures based on mixed-effects models

for multilevel MI may be more appropriate (see Equation 4). However, even though the model

by Schafer and Yucel (2002) was developed explicitly with applications to longitudinal data

in mind, the model lacks flexibility to incorporate some covariance structures at Level 1 that

are commonly used in longitudinal analysis models (see Pinheiro & Bates, 2000). Similar

problems may be observed when estimating growth curve models using ML because it is

difficult to establish a homogeneous covariance structure for this type of data (W. Wu et al.,

2009).

Even though there has been a substantial interest in missing data methods for multilevel data

in recent years, some questions still provide challenges for the future. One such example is the
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treatment of missing data in multilevel models with random slopes or in models with nonlinear

and interaction effects. For example, it has been shown that current implementations of MI are

not perfectly suited for handling missing data in explanatory variables in multilevel models with

random slopes (e.g., Enders et al., 2016; Gottfredson et al., 2017; Grund, Lüdtke, & Robitzsch,

2016a; see also von Hippel, 2009). Similar problems may occur under ML but have yet to

be discussed more thoroughly in the applied missing data literature (however, see Enders et

al., 2014). In order to make sure that imputations are consistent with the model of interest, it

has been argued that the substantive analysis model should be taken into account during MI

(Bartlett et al., 2015; Carpenter & Kenward, 2013). Several authors have proposed procedures

that incorporate these ideas using rejection sampling or a Metropolis-Hastings algorithm for

multilevel MI, but these procedures are not yet available in standard software (Erler et al.,

2016; Goldstein et al., 2014; L. Wu, 2010). Similar procedures have been proposed in the

context of ML, where the likelihood function in a multilevel model can be factored into separate

components referring to the model of interest and additional models for explanatory variables

with missing data (Ibrahim et al., 2001; Stubbendick & Ibrahim, 2003).

To sum up, missing data are an ever-present problem in research practice. We believe that

both ML and MI provide powerful tools for the treatment of missing data in multilevel research.

The two procedures both come with their own strengths and weaknesses, and one may be

preferred over the other for a specific missing data problem. At the end of the day, however,

they are more similar than they are different, and both offer a substantial improvement over

approaches such as LD in terms of generality, theoretical foundation, accuracy of parameter

estimates, and statistical power. In the present chapter, we provided an introduction to these

methods, and we offered guidance on how to apply them in multilevel research. The treatment

of missing data is not without its challenges, and there remain many open (and interesting)

questions for the future. However, we believe that these methods are a valuable addition to the

researcher’s toolbox which, if applied correctly, can improve the quality of the conclusions we

draw from our data and that of our research altogether. We hope that this chapter will promote

the adoption of MI and ML and encourage researchers to use these procedures in their own

research projects.
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Appendix A: Multiparameter hypothesis tests in MI

In research practice, statistical hypotheses often involve multiple parameters simultaneously

(e.g., linear constraints, comparisons of nested models). In complete-data analyses, these are

often performed using theWald test or likelihood-ratio tests (LRT). For pooling a series of Wald

tests based on a series of parameter vectors, Q̂m, and covariance matrices, V̂m, Li, Raghunathan,

and Rubin (1991) proposed using the test statistic

D1 =
(Q̂MI −Q0)

TŴ−1
(Q̂MI −Q0)

K(1 + ARIV1)
, (13)

where Q̂MI and Ŵ are the average estimates of the parameter vector and its covariance matrix

(see Equations 6 and 8), Q0 contains the hypothesized values of the parameters under the null

hypothesis, and ARIV1 is an estimate of the average relative increase in variance (ARIV) due

to nonresponse across parameters (see Enders, 2010). The D1 statistic can be used in a similar

manner as Rubin’s rules (1987), that is, it can be used for testing a set of parameters (or a

linear transformation thereof) that have an approximately normal sampling distribution (e.g.,

regression coefficients).

It is sometimes difficult to calculate D1, for example, because estimates of the covariance

matrix are unavailable. As an alternative, Li, Meng, et al. (1991) proposed pooling a set of

Wald-like test statistics, Dm, as follows

D2 =
D̄K−1

+ (M + 1)(M − 1)−1ARIV2
1 + ARIV2

, (14)

where D̄ is the average of the Dm, and ARIV2 is an alternative estimate of the ARIV. The D2

statistic can be used for any quantity that follows a χ2-distribution, for example, a Wald test of

a set of regression coefficients (or a linear transformation thereof) or an LRT comparing two

nested models (see also Snijders & Bosker, 2012b).

As a third option, Meng and Rubin (1992) have proposed a test statistic for pooling a series

of LRTs as follows

D3 =
L̃

K(1 + ARIV3)
, (15)

where the ARIV3 is another estimate of the average relative increase in variance, which includes

(a) the average LRT statistic evaluated at the actual parameter estimates, and (b) the average
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LRT statistic evaluated at the average parameter estimates for the two models (L̃). This test

statistic can be used in the same manner as the LRT, for example, for comparing two nested

statistical models (see above).

In general, D1 and D3 tend to be the more reliable procedures and should be used when

possible. However, because software implementations of D1 and D3 are sometimes not available,

D2 may be an interesting alternative given its ease of application. Even though D2 was optimized

to work with a small number of imputations (M = 3), results from D2 tend to be much more

robust when more imputations (say, M ≥ 20) are used (Grund, Lüdtke, & Robitzsch, 2016c;

Licht, 2010). Care should be taken when large portions of the data are missing (say, more than

50%) because D2 and (to a lesser extent) D3 tend to be less robust in these cases.

Appendix B: Computer code for the example application

Printed below is the computer code used for multilevel MI in the data analysis example.

# *** Description of the 'leadership' data set:
#
# GRPID: indicator for work groups
# JOBSAT: job satisfaction (Leve 1)
# NEGLEAD: ratings on negative leadership style (Level 1)
# WLOAD: workload (Level 1, "low" vs. "high")
# COHES: group cohesion (Level 2)

# Multiple imputation is performed with an "empty" joint model using jomo. The
# model of interest is fit using lme4, and the mitml package is used for pooling
# tests and parameters.

library(lme4)
library(mitml)

# set up random number generator
set.seed(1234)

# load data
data(leadership)

# *** Imputation phase:
#

# set up "empty" model
fml <- list( NEGLEAD + JOBSAT + WLOAD ~ 1 + (1|GRPID) , # Level 1 model

COHES ~ 1 ) # Level 2 model

# impute
imp <- jomoImpute(leadership, formula=fml, n.burn=5000, n.iter=500, m=100)



114 ARTICLE 1: MISSING DATA IN MULTILEVEL RESEARCH

# assess convergence
summary(imp) # convergence criteria ("Rhat")
plot(imp) # diagnostic plots

# create list of completed data sets
implist <- mitmlComplete(imp, print="all")

# *** Analysis phase:
#

# apply group mean centering
implist <- within(implist,{
G.NEGLEAD <- clusterMeans(NEGLEAD,GRPID)
I.NEGLEAD <- NEGLEAD - G.NEGLEAD

})

# fit model of interest and pool parameter estimates
fit <- with(implist, lmer(JOBSAT ~ I.NEGLEAD + G.NEGLEAD + WLOAD + COHES + (1|GRPID)))
testEstimates(fit, var.comp=TRUE)

# test for random slope of leadership style (using D3)
fit2 <- with(implist, lmer(JOBSAT ~ I.NEGLEAD + G.NEGLEAD + WLOAD + COHES +

(1+I.NEGLEAD|GRPID)))
anova(fit, fit2)

# test for contextual effect of leadership style (using D1)
context <- "G.NEGLEAD - I.NEGLEAD"
testConstraints(fit, constraint=context)

Printed below is the Mplus syntax that was used for ML estimation of the model of interest.

DATA:
file = leadership.dat;

VARIABLE:
names = GRPID JOBSAT COHES NEGLEAD WLOAD;
usevariables = JOBSAT COHES NEGLEAD WLOAD NEGLEADM;
within = NEGLEAD;
between = COHES NEGLEADM;
cluster = GRPID;
missing = all (-99);

DEFINE:
NEGLEADM = cluster_mean (NEGLEAD); ! calculate group means from the observed data
center NEGLEAD (groupmean); ! group mean centering

ANALYSIS:
type = twolevel;
estimator = ml;

MODEL:
%within%
JOBSAT on NEGLEAD
WLOAD (1); ! restrict effect of workload to be equal at both levels

NEGLEAD with WLOAD; ! explanatory variables as endogenous, allow covariances

%between%
JOBSAT on NEGLEADM COHES
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WLOAD (1); ! restrict effect of workload to be equal at both levels
NEGLEADM with COHES; ! explanatory variables as endogenous, allow covariances
NEGLEADM with WLOAD;
COHES with WLOAD;
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Article 2: Multiple imputation of missing data for multilevel models:
Simulations and recommendations

Grund, S., Lüdtke, O., & Robitzsch, A. (in press). Multiple imputation of missing data for multilevel models:
Simulations and recommendations. Organizational Research Methods. doi:10.1177/1094428117703686

Multiple imputation (MI) is one of the principled methods for dealing with missing data. In
addition, multilevel models have become a standard tool for analyzing the nested data structures
that result when lower level units (e.g., employees) are nested within higher level collectives
(e.g., work groups). When applying MI to multilevel data, it is important that the imputation
model takes the multilevel structure into account. In the present paper, based on theoretical
arguments and computer simulations, we provide guidance using MI in the context of several
classes of multilevel models, including models with random intercepts, random slopes, cross-
level interactions (CLIs), and missing data in categorical and group-level variables. Our findings
suggest that, oftentimes, several approaches to MI provide an effective treatment of missing data
in multilevel research. Yet we also note that the current implementations of MI still have room
for improvement when handling missing data in explanatory variables in models with random
slopes and CLIs. We identify areas for future research and provide recommendations for research
practice along with a number of step-by-step examples for the statistical software R.

Multilevel models have become one of the standard tools for analyzing clustered empirical data.

Such data are often found in organizational psychology, for example, when employees are nested

within work groups or enterprises, or in longitudinal studies when measurement occasions are

nested within persons. In addition, empirical data are often incomplete, for example, when

some participants fail to answer all of the items on a questionnaire. Several authors have

advocated the use of modern missing data techniques such as multiple imputation (MI) rather

than traditional approaches such as listwise deletion (LD; Allison, 2001; Enders, 2010; Little

& Rubin, 2002; Newman, 2014; Schafer & Graham, 2002). One central requirement of MI

is that the imputation model must be at least as general as the model of interest in order to

preserve its key features. In multilevel data, it is important that the imputation model takes the

multilevel structure into account (e.g., Andridge, 2011; Drechsler, 2015). However, depending

on the research question, the multilevel structure may manifest itself in the analysis model in

a number of ways (e.g., random intercepts and slopes, relations between variables within and

between groups), leading to a multitude of possible multilevel analysis models, each directed at

different research questions (e.g., Aguinis & Culpepper, 2015; Snijders & Bosker, 2012b).
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The motivation behind the present paper is twofold. First, we offer simulation results

regarding the performance of MI when the substantive analysis model belongs to one of several

types of multilevel models. Second, we provide an introduction to and recommendations for

MI of multilevel data directed toward readers who are not yet familiar with the often technical

literature on MI. Our article is divided into four sections. In the first, we focus on the multilevel

random intercept model and discuss imputation procedures that are suitable for application in

such models. In the second section, we focus on the random coefficients model and the specific

challenges that arise when working with random slopes and cross-level interactions (CLIs).

In the third section, we briefly discuss missing data in categorical and group-level variables.

In each section, we present results from simulation studies in which we used different MI

procedures as well as full-information maximum likelihood (FIML). Finally, in the last section,

we provide recommendations for how to handle missing data for different types of multilevel

models. We conclude with a discussion of our findings and possible topics for future research.

Missing data and multiple imputation

The basic idea of MI is to replace missing values by forming an “informed guess” that is

based on the observed data and a statistical model (the imputation model). Multiple imputation

generates several (M) replacements for themissing data by drawing repeatedly from the posterior

predictive distribution of the missing data, given the observed data and the parameters of the

imputation model. The M data sets completed in this manner are then analyzed separately,

yielding M sets of parameter estimates. To obtain final estimates and inferences, these results

are pooled using the rules described in Rubin (1987; see also Enders, 2010).

The use of MI in most (but not all) implementations is predicated on the assumption that

the data are “missing at random” (MAR). The definition of MAR, according to Rubin (1976),

assumes that a hypothetical complete data set can be divided into observed and unobserved parts,

Y = (Yobs,Ymis), where an indicator matrix R denotes which data are missing or observed.

According to Rubin, data are MAR if the probability of observing data, P(R), is independent of

the unobserved data given the observed data, that is, P(R|Y) = P(R|Yobs). In other words, under
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MAR, there is no link between the chance of observing a value and the value itself, given the

data that one has observed. A special case of this occurs when P(R) is completely independent

of the data, that is, P(R|Y) = P(R). This is referred to as missing completely at random

(MCAR). If the MAR assumption is violated, that is, data are missing not at random (MNAR),

the application of MI requires strong assumptions about the missing data mechanism. Such

applications are relatively rare and are most often used as sensitivity analyses (see Carpenter &

Kenward, 2013). In the present paper, we focus on applications of MI that operate under MAR.

Two aspects make MI a particularly attractive method for dealing with missing data. First,

MI recognizes the uncertainty that is due to missing data by generating multiple (as opposed to

single) replacements for each missing value, and by drawing the parameters of the imputation

model from Bayesian posterior distributions, given the currently imputed data and a set of prior

beliefs. Second, because the imputation phase is separated from the analysis phase, MI is able to

make full use of the data by including variables in the imputation model that are either predictive

of missingness, thus improving the plausibility that MAR holds, or related to the variables of

interest, thus improving the power of its predictions (Collins et al., 2001).

Multiple imputation for multilevel models

A crucial point in the application of MI to multilevel data is that the imputation model not

only includes all relevant variables, but also that it “matches” the model of interest (i.e., the

substantive analysis model; see Meng, 1994; Schafer, 2003). In other words, the imputation

model must capture the relevant aspects of the analysis model, making the imputation model

at least as general as (or more general than) the analysis model. If the imputation model is

more restrictive than the analysis model, then imputations are generated under a simplified

set of assumptions, and the results of subsequent analyses may be misleading. For example,

consider the case in which the model of interest is a multilevel random intercept model (Snijders

& Bosker, 2012b) in which an individual-level outcome Y is regressed on an individual-level

explanatory variable X

Yi j = γ00 + γ10(Xi j − X̄• j) + γ01 X̄• j + u0 j + ei j , (1)
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where X̄• j denotes the group mean of X in group j, (Xi j − X̄• j) denotes the individual deviation

in X for a person i in group j, and γ10 and γ01 denote the regression coefficients of X within and

between groups, respectively (see Hofmann & Gavin, 1998; Kreft et al., 1995). The intercepts,

u0 j , and the residuals, ei j , are assumed to follow independent normal distributions with mean

zero and with variances τ2
0 and σ

2, respectively.

Two aspects of the model in Equation 1 are worth noting, and both must be accommodated

during MI in order for subsequent analyses to yield proper results. First, the model accounts

for the clustered structure of the data by including random effects for each group (Snijders &

Bosker, 2012b). Therefore, the imputation model must also take the clustered structure into

account. Failing to do so, for example, by using single-level MI, might lead to biased parameter

estimates andmight distort statistical decisionmaking (e.g., Andridge, 2011; Enders et al., 2016;

Lüdtke et al., 2017; Taljaard et al., 2008). Second, the model differentiates between the effects

of X at the individual and the group level (i.e., for (Xi j − X̄• j) and X̄• j). If the imputation model

does not allow these effects to be different, then the parameters will be “conflated” during MI,

and estimates obtained in subsequent analyses may be biased (see Enders et al., 2016; Lüdtke

et al., 2017; Preacher et al., 2010). In other words, ignoring the existence of separate effects

for (Xi j − X̄• j) and X̄• j in the imputation model will make it more difficult to find them in

subsequent analyses. In the following section, we discuss several MI procedures that can be

used to accommodate the multilevel random intercept model.

Joint modeling and the fully conditional specification of MI

The procedures available for multilevel MI can be roughly divided into two broad paradigms:

the joint modeling approach (JM) and the fully conditional specification of MI (FCS). Both

approaches offer the necessary tools for dealing with multilevel missing data. Here, we consider

the JM approach implemented in the pan package (Schafer&Yucel, 2002) and the FCS approach

known as “multiple imputation by chained equations” implemented in the mice package (van

Buuren & Groothuis-Oudshoorn, 2011) in the statistical software R (R Core Team, 2016).

Joint modeling (JM). In the JM approach, a single model is specified for all variables with

missing data, and imputations are simultaneously generated from this model for all variables
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with missing data. For individual-level variables, the joint model reads

Yi j = Xi jβ + Zi ju j + ei j , (2)

where Yi j contains a number of individual-level target variables with arbitrary patterns of

missing data, Xi j contains fully observed predictor variables with associated fixed effects β, Zi j

contains fully observed predictor variables with associated random effects u j , and ei j denotes the

residuals at the individual level. The random effects, u j , are assumed to follow a multivariate

normal distribution with mean zero and covariance matrix Ψ. The residuals, ei j , follow a

multivariate normal distribution with mean zero and covariance matrix Σ.

The design matrices, Xi j and Zi j , on the right-hand side of the model equation may contain

any number of variables as long as they are fully observed (see Schafer & Yucel, 2002).

If the model of interest is a multilevel random intercept model, it is possible to include all

variables (both partially and fully observed) as target variables on the left-hand side of the

model equation, whereas the right-hand side includes only the intercept (i.e., Xi j = Zi j = 1).

For example, consider the random intercept model in Equation 1 and assume that X and/or Y

are partially missing. Treating both X and Y as target variables, the JM becomes[
Xi j,Yi j

]T
=

[
β0(x), β0(y)

]T
+

[
u j(x), u j(y)

]T
+

[
ei j(x), ei j(y)

]T
, (3)

where the random effects
[
u j(x), u j(y)

]T and the residuals
[
ei j(x), ei j(y)

]T follow independent

multivariate normal distributions with mean zero and covariance matrices Ψ =
[
ψ

2
x ψxy

ψxy ψ
2
y

]
and

Σ =

[
σ

2
x σxy

σxy σ
2
y

]
. In this specification, the joint model decomposes the variables into separate

within- and between-group components represented by
[
ei j(x), ei j(y)

]T and
[
u j(x), u j(y)

]T , thus

allowing for different relations (i.e., covariances) between X and Y to be estimated at the

individual and the group level (Lüdtke et al., 2017; see also Grund, Lüdtke, & Robitzsch,

2016b).1 Similar models are also implemented in the statistical software Mplus (L. K. Muthén

& Muthén, 2012; see also Enders et al., 2016) and in the R package jomo (Quartagno &

Carpenter, 2016a).

1It is possible to include fully observed variables on the right-hand side of the JM (i.e., in Xi j and Zi j). This
strategy is conceptually close to the FCS approach described in the next section. Hence, for the JM, we restricted
our attention to the multivariate model in which all variables are treated as target variables (see also Enders et al.,
2016).
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The FCS approach. In contrast to the JM approach, the FCS approach imputes missing

data separately for each variable with missing data, conditioning on some or all of the other

variables in the data set. To address multivariate patterns of missing data, the FCS algorithm

iterates back and forth between different target variables. Again, consider the analysis model

in Equation 1. For missing data in X and Y , an appropriate FCS approach may generate

imputations on the basis of the following two univariate models

Xi j = β0(x) + β1(x)(Yi j − Ȳ• j) + β2(x)Ȳ• j + u j(x) + ei j(x)

Yi j = β0(y) + β1(y)(Xi j − X̄• j) + β2(y) X̄• j + u j(y) + ei j(y) .
(4)

The FCS approach iterates between these equations, generating imputations for each missing

variable in turn. If both variables are affected by missing data, then the group means are

updated at each iteration of the sampling algorithm on the basis of the most recent imputations

for X and Y (passive imputation; see below). Similar to JM, unsystematic differences between

groups in X and Y are captured by the inclusion of random effects, u j(x) and u j(y). In contrast

to JM, however, the FCS approach uses the observed group means, Ȳ• j and X̄• j , to represent the

different relations between X and Y at the individual and the group level.2 For missing Y , there

is no difference between the imputation and the analysis model. For missing X , the imputation

model has similar implications as in the JM approach, but it relies not only on random effects

but also on the observed group means to represent the relation between X and Y at the group

level. In applications with more than two variables, the general approach remains the same:

For each additional variable with missing data, an additional equation must be specified, each

conditioning on the other variables and their respective group means.

Summary. Summing up, there are two points worth noting. First, both the JM and the FCS

approach allow for different relations between variables to be estimated at the individual and the

group level. Second, the two approaches differ in the way in which they accomplish this task.

In the JM, the group level is represented by random effects, whereas the FCS approach relies on

the observed group means. However, even though the general approach is different, it has been

2It is possible to ignore the group means entirely in the FCS approach, for example, by imputing missing data
in X by assuming only an overall effect of Y . However, this strategy “conflates” the individual- and group-level
effects and may introduce bias into the parameter estimates. Here, we consider only the more general model that
includes the group means in the set of predictor variables (see also Enders et al., 2016).
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argued that the two approaches imply similar covariance structures at the individual and the

group level and can be used interchangeably (e.g., Carpenter & Kenward, 2013, p. 220; Lüdtke

et al., 2017; Mistler, 2015; however, see also Resche-Rigon & White, in press). Therefore, we

expected the two procedures to yield approximately the same, unbiased parameter estimates,

making both suitable for MI in quite general applications of the multilevel random intercept

model.

Model-based treatment using FIML

As an alternative to MI, it is often possible to use model-based procedures such as FIML to treat

missing data (for an introduction, see Enders, 2010). FIML is often considered to be very user-

friendly because missing data are handled directly during the estimation of the analysis model

without requiring any additional steps to be taken by the user (e.g., Allison, 2012; Graham,

2009). Currently, the most popular and versatile implementation of FIML for multilevel models

is available in the statistical software Mplus (L. K. Muthén & Muthén, 2012). FIML estimates

the parameters of the analysis model directly from the incomplete data set by maximizing the

observed-data likelihood. As a result, the use of FIML to treat missing data is closely tied

to the analysis model (Schafer & Graham, 2002). In the traditional multilevel model (e.g.,

Equation 1), the observed-data likelihood includes only the dependent variable in the analysis

(e.g., Y ), and distributional assumptions are imposed only on that variable. For that reason,

FIML initially deals with missing data only in the dependent variable, whereas cases with

missing data in explanatory variables are often discarded (see also Hox et al., 2016). To treat

missing data in explanatory variables (e.g., X), the model must be extended in such a way that

the likelihood function will incorporate all variables with missing data, thus imposing additional

distributional assumptions on the data. InMplus, this is typically achieved by specifying a set of

latent variables for the explanatory variables with missing data (for an illustration, see Enders,

2010).

Although it may not be immediately obvious, this strategy can have negative side-effects in

multilevel modeling because of the way in which Mplus estimates multilevel models with latent

variables. For example, consider the model in Equation 1 with missing values in X and Y . To
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estimate this model, Mplus uses a decomposition approach similar to the JM, in which the two

variables are decomposed into (latent) individual- and group-level components, each of which

is assumed to follow a multivariate normal distribution (Rabe-Hesketh, Skrondal, & Zheng,

2012). However, in doing so, Mplus adopts a different analysis model in which the group-level

effects of X on Y are represented by latent variables instead of observed group means (i.e.,

X• j) as they are in the analysis model (for a discussion, see Lüdtke et al., 2008). As a result,

parameter estimates may change substantially, both in meaning and in value (Grund, Lüdtke, &

Robitzsch, in press-a). To avoid this shift in the analysis model, the user may calculate the group

means beforehand from the observed data and specify a latent variable only for the within-group

component of the explanatory variables (i.e., Xi j − X̄• j). This strategy tends to reduce bias in

group-level effects and will be preferred for the remainder of this article (see also Grund et al.,

in press-a). In addition, because the individual- and group-level components are assumed to

follow a multivariate normal distribution, only linear relations are allowed between variables

with missing data, and handling missing data in categorical variables may be challenging. The

Mplus syntax files needed to perform FIML estimation for the models presented here are given

in the supplemental online materials.

Study 1: Random intercept models

Next, we present findings from a computer simulation study in which we compared the per-

formance of different MI procedures in the context of multilevel random intercept models. In

addition to the JM and the FCS approach, we also investigated single-level MI, which ignores

the multilevel structure altogether, LD, and FIML as discussed above. The main question was

which procedures would preserve the relevant features of the substantive analysis model. Here,

we provide only a brief sketch of the study’s design. For interested readers, we provide further

details in Appendix A.

The substantive analysis model was the random intercept model in Equation 1, and the data

were generated from this model. The parameters of the data-generating model were chosen in

such a way that they would imply a given value for the intraclass correlations (ICCs) of X and

Y . Missing data were generated on Y or X in either a random fashion (MCAR) or conditional
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Table 1: Simulation Conditions for the Data-Generating Model and the Generation of Missing Values

Study 1 Study 2 Study 3a Study 3b
Data conditions
No. of individuals 5, 10 5, 10 5, 10 5, 10
No. of groups 50, 100, 200, 500 50, 100, 200, 500 50, 100, 200, 500 50, 100, 200, 500
ICC of X and Y .10, .20, .50 .10, .20, .50 .10, .20, .50 .10, .20, .50
ICC of D .10, .20, .50
Correlation XW .20 .20
Correlation XD .20

Model parameters
Effect of (Xi j − X̄•j) .20 .50 .50 0
Effect of X̄•j .20, .50 0 .50 .20
Effect of Wj .35 .20
Effect of Di j .20
CLI (Xi j − X̄•j)Wj .0, .20
GLI X̄•jWj 0
Total slope variance .10
Int.-slope covariance 0

Missing values
Pattern/mechanism Y ∼ X , X ∼ Y Y ∼ X , X ∼ Y D ∼ Y W ∼ Y
Effect MCAR, MAR MCAR, MAR MCAR, MAR MCAR, MAR
Proportion 25% 25% 25% 25%

No. of conditions 192 192 48 48

Note. The residual intercept and slope variance were determined by the remaining simulation parameters and by
setting a target value for the ICC of Y and the total slope variance (γ2

11 + τ
2
1). CLI = cross-level interaction; GLI =

group-level interaction.

on the other variable (MAR). A summary of the simulation conditions is provided in Table 1.

We varied the number of groups (k = 50, 100, 200, 500), the number of individuals within

each group (n = 5, 10), the ICCs of X and Y (ρI,X = ρI,Y = .10, .20, .50), the effect of X̄• j

(γ01 = .20, .50), and the missing data mechanism. The effect of (Xi j − X̄• j) was held constant

at .20 (γ10), thus providing conditions in which the effects at the individual and the group level

were equal or different in the population model. Taken together, these conditions mimic typical

applications of multilevel models in cross-sectional and longitudinal organizational research

(e.g., smaller and larger ICCs, smaller and larger numbers of observations per unit or group).

In addition, they provide information about the small- and large-sample properties of each

procedure and about conditions that are interesting from a methodological point of view (e.g.,



MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH 125

with or without contextual effects). Each condition was replicated 1,000 times. We applied the

following procedures to each data set:

1. LD

2. single-level FCS, ignoring the multilevel structure (FCS-SL)

3. multilevel FCS with separate within- and between-group effects (Equation 4; FCS-ML)

4. multilevel JM (Equation 2; JM)

5. FIML

The parameters of interest were the ICC ofY , estimated from an emptymodel, and the regression

coefficients within and between groups, γ10 and γ01, from the substantive analysis model. For

each condition, each procedure, and each parameter, we calculated the bias, the RMSE, and

the coverage of the 95% confidence interval to evaluate performance. The bias is defined

as the difference between an estimator’s average value and its true value. The RMSE is

the square root of the average squared difference between average estimates and true values,

combining information about bias and efficiency of parameter estimates. The coverage of the

95% confidence interval denotes the relative frequency with which the 95% confidence interval

covers the true value. The properties of an estimator may be considered suboptimal if the bias

exceeds 10%, the RMSE is large in comparison with other procedures, or the coverage rate is

below 90% (or very close to 100%).

Results. Our findings are summarized in Table 2 and Figure 1. The complete collection of

results for the parameters of interest is provided in the supplemental onlinematerials. Consistent

with our expectations, single-level MI (FCS-SL) reduced the ICC of Y when Y was partially

missing. In such a case, the between-group regression coefficient was biased downwards, and

the within-group regression coefficient was biased upwards to different extents as determined

by the true magnitude of the ICCs of X and Y . With missing values in X , FCS-SL either over-

or understated the true size of the regression coefficients, depending on the ICCs. As shown

in Figure 1, this bias did not decrease in larger samples. The results from the two appropriate

MI procedures (FCS-ML and JM) were similar to one another. Both procedures had a slight

tendency to overestimate the ICC of Y and to underestimate the between-group coefficient in
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Figure 1: Estimated bias for the between-group regression coefficient of X (γ01) and the ICC of Y (ρI,Y ) in Study 1
for different numbers of individuals (n) and groups (k), moderate ICCs (ρI,X = ρI,Y = .20), and different missing
data mechanisms (MAR; Y ∼ X and X ∼ Y ). LD = listwise deletion; FCS-SL = single-level FCS; FCS-ML =
multilevel FCS; JM = multilevel JM; FIML = full-information maximum likelihood.

smaller samples (i.e., k = 100 or lower, with n = 5) with low ICCs (ρI,X = ρI,Y = .10).

However, this bias was seldom substantial and decreased as the sample size increased (see

Figure 1). FIML produced unbiased estimates of the regression coefficients with missing Y

but biased estimates of the between-group regression coefficient (γ01) with missing X . Finally,

LD led to substantially biased estimates of all parameters of interest when data were MAR,

especially when values were missing in X . In conditions in which the within- and between-

group coefficients were equal (γ01 = .20), the results were essentially the same, and both JM

and FCS-ML provided approximately unbiased estimates of the parameters of interest.

The coverage of the 95% confidence interval was acceptable in all conditions for FCS-ML
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Table 2: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the ICC of Y and the
Within- and Between-Group Regression Coefficients in Study 1 (Small Groups, n = 5)

LD FCS-SL FCS-ML JM FIML

Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.

Missing Y ∼ X (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ̂10 −1.4 0.06 94.2 9.6 0.06 94.0 −1.3 0.06 93.7 1.6 0.06 95.1 −1.4 0.06 94.5
γ̂01 −9.1 0.11 92.6 −10.0 0.10 95.0 1.1 0.10 95.7 −4.5 0.10 97.1 1.1 0.10 95.4
ρ̂I,Y −2.0 0.05 — −30.7 0.04 — 28.6 0.05 — 24.7 0.05 — 12.6 0.04 97.5
k = 500
γ̂10 0.0 0.03 95.8 10.4 0.03 90.0 −0.1 0.03 96.1 2.6 0.03 95.6 −0.1 0.03 96.0
γ̂01 −10.0 0.07 77.4 −10.9 0.07 76.3 −0.1 0.05 95.4 −3.7 0.05 94.4 −0.0 0.05 95.3
ρ̂I,Y −4.3 0.02 — −32.1 0.04 — 13.2 0.02 — 13.7 0.02 — 7.1 0.02 97.9

ρI,X = ρI,Y = .50k = 100
γ̂10 1.3 0.06 94.5 24.0 0.08 91.1 1.7 0.06 94.2 1.2 0.06 93.8 1.5 0.06 94.2
γ̂01 −2.7 0.09 94.6 −6.4 0.09 91.9 −0.5 0.09 95.1 −0.8 0.09 94.9 −0.5 0.09 94.8
ρ̂I,Y −1.5 0.05 — −35.0 0.18 — −0.8 0.05 — −0.8 0.05 — −1.3 0.05 95.8
k = 500
γ̂10 −0.2 0.03 95.5 22.3 0.05 72.4 −0.2 0.03 95.3 −0.3 0.03 96.0 −0.2 0.03 96.0
γ̂01 −2.6 0.04 92.9 −6.2 0.05 83.0 −0.4 0.04 93.5 −0.3 0.04 93.5 −0.3 0.04 93.7
ρ̂I,Y −1.3 0.03 — −34.7 0.17 — −0.5 0.02 — −0.4 0.02 — −0.5 0.02 94.2

Missing X ∼ Y (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ̂10 −6.9 0.06 94.3 5.9 0.06 96.1 1.5 0.06 94.6 4.2 0.06 94.6 1.2 0.06 95.1
γ̂01 −17.3 0.12 81.7 −1.7 0.09 98.5 −8.1 0.10 95.7 −11.5 0.10 94.1 −23.2 0.14 68.3
ρ̂I,Y −11.9 0.05 — −0.8 0.04 — −0.8 0.04 — −0.8 0.04 — 4.6 0.04 97.3
k = 500
γ̂10 −6.8 0.03 91.6 6.6 0.03 92.7 1.1 0.03 94.1 3.7 0.03 93.9 1.6 0.03 94.2
γ̂01 −18.0 0.10 36.0 −1.8 0.04 97.7 −4.1 0.04 93.9 −7.5 0.05 89.7 −24.1 0.13 8.4
ρ̂I,Y −11.8 0.03 — 0.5 0.02 — 0.5 0.02 — 0.5 0.02 — 3.8 0.02 96.8

ρI,X = ρI,Y = .50k = 100
γ̂10 −4.7 0.06 94.3 −9.6 0.05 96.7 −1.2 0.06 94.8 −1.1 0.06 94.5 0.1 0.06 94.1
γ̂01 −10.5 0.10 90.5 20.9 0.14 83.2 −0.9 0.09 95.6 −1.0 0.09 96.0 −9.2 0.09 90.9
ρ̂I,Y −4.8 0.06 — −0.9 0.05 — −0.9 0.05 — −0.9 0.05 — −1.5 0.05 93.8
k = 500
γ̂10 −4.0 0.03 93.9 −9.0 0.03 91.8 −0.1 0.03 95.3 −0.2 0.03 95.2 0.5 0.03 94.8
γ̂01 −9.8 0.06 74.8 21.4 0.12 36.3 −0.4 0.04 94.4 −0.4 0.04 95.2 −8.7 0.06 77.5
ρ̂I,Y −4.1 0.03 — −0.2 0.02 — −0.2 0.02 — −0.2 0.02 — −0.3 0.02 94.6

Note. γ̂10 = within-group regression coefficient; γ̂01 = between-group regression coefficient; ρ̂I,Y = ICC of Y (esti-
mated from an empty model); LD = listwise deletion; FCS-SL = single-level FCS; FCS-ML = multilevel FCS; JM
= multilevel JM; FIML = full-information maximum likelihood.

and in all but the most extreme conditions under JM. However, owing to persistent bias, the

coverage rates under FCS-SL frequently dropped below 90% in larger samples (i.e., above

k = 200, n = 10 or k = 500, n = 5). Coverage rates for FIML were acceptable with missing

Y , but dropped below 90% with missing X; those for LD were acceptable under MCAR but
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unacceptable under MAR. Finally, the RMSE tended to be lowest under FCS-ML and JM as

well as under FIMLwith missingY . By contrast, the RMSE for the parameters of interest tended

to be larger under FCS-SL as well as under LD and FIML with missing X , indicating that these

procedures were altogether less accurate and efficient. For example, the average RMSE for the

between-group regression coefficient was 3.3% larger under LD with missing Y as compared

with JM; with missing X , this difference increased to 9.7%. Note also that the small-sample

bias under JM and FCS-ML (e.g., for the ICC of Y ) did not increase the RMSE, indicating that

these procedures remained accurate and efficient overall, even in smaller samples. All in all,

our results suggest that the JM and the FCS-ML approach are equally appropriate in the context

of the multilevel random intercept model.

Random slopes and cross-level interactions

Beyond the scope of random intercept models, those engaged in organizational research often

seek to understand how the effects of various quantities differ across higher level organizational

units. Multilevel models with random slopes allow (a) individual-level effects to vary across

groups and (b) for the inclusion of group-level explanatory variables to explain that variability

(i.e., CLIs). Recently, Aguinis and Culpepper (2015) stated that random slopes and CLIs were

“at the heart of [...] any theory that considers outcomes to be a result of combined influences

emanating from different levels of analysis,” adding that “the extent to which we understand the

presence of cross-level interactions is an indication of theoretical progress” (p. 156).

Consider a multilevel random coefficients model (Snijders & Bosker, 2012b) in which an

individual-level outcome Y is regressed on an individual-level variable X and a group-level

variable W . In addition to the random intercept, we allow the individual-level slope to vary

across groups, and we include a CLI to account for some of that variation

Yi j = γ00 + γ10(Xi j − X̄• j) + γ01 X̄• j + γ02W j + γ11W j(Xi j − X̄• j) + γ03W j X̄• j+

u0 j + u1 j(Xi j − X̄• j) + ei j ,
(5)

where u1 j denotes the random slope associated with (Xi j − X̄• j) in group j, γ11 denotes the CLI,

and γ03 denotes the group-level interaction of X̄• j and W j . The random effects (u0 j, u1 j)
T are
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assumed to follow a multivariate normal distribution with mean zero and covariance matrix T.

Two aspects of the model in Equation 5 are worth noting. First, the slope of the regression

of Y on X is assumed to vary across groups. Incorporating the variability in the slope in the

imputation model is particularly important if the slope variance itself is of interest, because

ignoring the slope variance may lead one to underestimate it in subsequent analyses. Second,

the CLI denotes the degree to which the effect of (Xi j− X̄• j) changes as a function ofW j . Thus, if

estimating the CLI is of interest, then the imputation model should allow for the individual-level

effect of X to interact with W (similarly for the interaction at the group level).

Accommodating random slopes and CLIs

In contrast to applications in the multilevel random intercept model, performing MI is not

straightforward when the model of interest includes random slopes and CLIs, particularly when

the explanatory variables contain missing data (e.g., Enders et al., 2016; Gottfredson et al.,

2017; Grund, Lüdtke, & Robitzsch, 2016a). For example, consider the model of interest in

Equation 5. In order for an imputation model to be consistent with this model of interest, it has

to acknowledge the fact that the relation between X andY is assumed to vary both systematically

as a function of W (i.e., due to the interaction effects) and unsystematically (i.e., due to random

slopes). However, the presence of such terms implies a complex joint distribution for the

dependent and explanatory variables which is difficult to emulate in conventional software for

multilevel MI (e.g., S. Kim et al., 2015). More advanced methods for accommodating the model

of interest when generating imputations are currently being developed, but these are not yet

available in standard software for multilevel MI (for further details, see the Discussion section).

For this reason, we focus on the procedures that are available in standard software for multilevel

MI, which often provide options for accommodating random slopes and CLIs, albeit to different

(and arguably imperfect) extents.

Jointmodeling (JM). Asmentioned earlier, modeling the joint distribution of the dependent

and explanatory variables in a general manner is not a straightforward endeavor if the model of

interest includes random slopes or interaction effects. For this reason, we used pan to implement

the JM in a manner that is similar to what we presented above. We assume that X and Y are
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treated as target variables (i.e., on the left-hand side), whereas W is assumed to be completely

observed and written on the right-hand side of the model. Thus, the imputation model becomes[
Xi j,Yi j

]T
=

[
β0(x), β0(y)

]T
+W j

[
βw(x), βw(y)

]T
+

[
u j(x), u j(y)

]T
+

[
ei j(x), ei j(y)

]T
, (6)

where
[
βw(x), βw(y)

]T denotes the vector of regression coefficients from regressing X andY onW ,

and the remaining notation is as before. In this specification, the joint model includes possible

relations among the three variables at the group level as well as relations between X andY at the

individual and the group level. However, the joint model includes only a random intercept for

each target variable, whereas the slope variance and the interaction effects in the analysis model

are completely ignored. In general, the JM approach may still provide reasonable estimates of

the regression coefficients when the substantive analysis model contains random slopes because

the inclusion of random slopes does not change the expected value of the estimates for the

regression coefficients. However, when the substantive model also includes interaction effects,

the integrity of its estimates may be compromised.

The FCS approach. To address missing data in multilevel models with random slopes, it

has been recommended that researchers specify conditional models that include varying slopes

between pairs of variables (Enders et al., 2016). In addition, product terms involving W can be

introduced to accommodate the CLI. If both random slopes and product terms are included, the

two conditional models become

Xi j = β0(x) + β1(x)(Yi j − Ȳ• j) + β2(x)Ȳ• j + βw(x)W j + β1wy(x)W j(Yi j − Ȳ• j) + β2wy(x)W jȲ• j+

u0 j(x) + u1 j(x)(Yi j − Ȳ• j) + ei j(x)

Yi j = β0(y) + β1(y)(Xi j − X̄• j) + β2(y) X̄• j + βw(y)W j + β1xw(y)W j(Xi j − X̄• j) + β2xw(y)W j X̄• j+

u0 j(y) + u1 j(y)(Xi j − X̄• j) + ei j(y) , (7)

where u0 j(·) and u1 j(·) denote the random intercepts and slopes in the conditional models, and

the coefficients β1wy(x), β1xw(y), β2wy(x), and β2xw(y) denote the interaction effects by which the

within- and between-group relations of X and Y change as a function of W .

There are two aspects worth noting. The first is related to the way in which random slopes

are handled in the conditional models. The imputation model for missing values inY is identical

to the analysis model. Thus, imputingY should be straightforward. However, previous research
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has shown that missing values in the explanatory variable X pose a much greater challenge

because “reversing” the random slope model may produce biased estimates of the regression

coefficients and the slope variance in the analysis model (Gottfredson et al., 2017; Grund,

Lüdtke, & Robitzsch, 2016a; see also Enders et al., 2016). This is not entirely surprising

because the analysis model (Equation 5) and the imputation model for missing X (Equation 7,

first line) make different statements about the varying relation between X andY . In other words,

although replacing u1 j(Xi j − X̄• j) in the analysis model by u1 j(x)(Yi j − Ȳ• j) in the imputation

model may serve as a “proxy” for the relation of interest, the two statements are not equivalent.

The second aspect is related to the presence of nonlinear effects (i.e., interaction effects) in

the conditional models. At each iteration of the FCS algorithm, the product termsW j(Xi j − X̄• j)

andW j(Yi j − Ȳ• j)must be “updated” to incorporate the most recent imputations of X andY . The

simplest strategy for updating the products terms is to recalculate them after X and Y have been

imputed. This is commonly referred to as “passive imputation” (Royston, 2004; van Buuren,

2012). As an alternative, product terms may be regarded as “just another variable” (von Hippel,

2009). This strategy replaces the passive imputation step with an imputation model for each

product term (e.g., a regression model). However, both strategies have been shown to yield

biased parameter estimates (e.g., Seaman et al., 2012; Vink & van Buuren, 2013) because they

do not correctly reflect the complex joint distribution of the dependent and explanatory variables

in the model when the model of interest includes interaction effects (S. Kim et al., 2015). In

the present study, we used passive imputation because (a) it is easy to use and readily available

in standard software and (b) implementing “just another variable” is not straightforward with

group-mean-centered data.3

FIML. Similar to MI, analyzing the incomplete data with FIML can be difficult if the

model of interest includes random slopes and CLIs. As before, we focus on FIML estimation in

the statistical software Mplus. If missing data occur only on Y , estimating the model of interest

in Mplus is straightforward because the observed-data likelihood can be evaluated directly on

3Under FCS, fitting the imputation models requires that some instances of the product terms are observed.
However, with missing data at the individual level, the group means are no longer known, rendering the product
terms unobserved as a result. In other words, it is not clear how “just another variable” might differentiate
interaction effects at the individual level, the group level, and across levels without knowing the group means.
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the basis of the incomplete data. However, if missing values occur on X , it is currently not

possible to include X in the analysis model in Mplus without dropping cases with missing X

from the analysis (for a discussion, see also Shin & Raudenbush, 2010).

Summary. In contrast to applications in the multilevel random intercept model, missing

data pose a greater challenge when the model of interest includes random slopes. Multilevel

MI can be expected to provide proper results when only the dependent variable Y contains

missing data. However, if the explanatory variable with a random slope, X , contains missing

data, conducting MI is not straightforward. Specifically, the “reversed” imputation model for

missing X contains only a proxy for the relation of interest, and accommodating product terms

(i.e., CLIs and group-level interactions) is still an open area of research (see the Discussion

section). As a result, neither JM nor FCS was expected to provide perfect results.

Study 2: Random slope models

In this section, we present findings from a simulation study in which we compared different

MI procedures in the context of multilevel models with random slopes and CLIs. The model

of interest was the random coefficients model presented in Equation 5, and the data were also

generated from this model (see Appendix A). The parameters of the data-generating model were

chosen in such a way as to imply a given value for the ICCs of X and Y and a given “total”

variance for the random slope (i.e., Var(β1 j) = Var(γ11W j + u1 j) = γ
2
11 + τ

2
1). Missing data

were generated as before (MCAR andMAR on either X orY ). A summary is presented in Table

1. We varied the number of groups (k = 50, 100, 200, 500), the number of individuals (n = 5,

10), the size of the CLI (γ11 = 0, .20), and the missing data mechanism. The effect of (Xi j − X̄• j)

was held constant at .50 (γ10) and the effect of W j at .35 (γ02); the remaining effects were set to

zero. Each condition was replicated 1,000 times. We applied the following procedures to each

data set:

1. LD

2. single-level FCS, ignoring the multilevel structure and product terms (FCS-SL)
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3. multilevel FCS, ignoring random slopes but including passive imputation of product terms

(FCS-CLI/no RS)

4. multilevel FCS including random slopes and passive imputation of product terms (Equation

7; FCS-CLI/RS)

5. FIML

The FIML estimation was conducted in Mplus as described above. Because FIML could not be

used to estimate the model in conditions with missing X , we included FIML only for conditions

with missing Y . The parameters of interest were the within-group regression coefficient of X

(γ10), the effect of W (γ02), the CLI (γ11), and the slope variance (τ
2
1). For each condition, each

procedure, and each parameter, we calculated the bias, the RMSE, and the coverage rate of the

95% confidence interval as before.

Results. Our main findings are summarized in Table 3 and Figure 2. In presenting our

results, we focus on the MI procedures because FIML could be applied only in conditions with

missingY , and the estimateswere approximately unbiased in these conditions. For the remaining

procedures, the difference between cases with missing data in Y and X was substantial, and

sample size continued to play an important role. When only the dependent variable Y was

incomplete, FCS-CLI/RS provided approximately unbiased estimates for the parameters of

interest, with bias present for the slope variance (τ2
1) in smaller samples but tending toward

zero as the samples grew larger (Figure 2). The bias in smaller samples was quite large for

the slope variance, especially when the samples consisted of smaller groups (n = 5). With

larger groups (n = 10), the bias was reduced by approximately half (Figure 2).4 When the

random slope was ignored (FCS-CLI/no RS), we obtained almost identical estimates for the

regression coefficients, but the slope variance was underestimated regardless of sample size.

When both the interaction effects and the random slopes were ignored (JM), the estimates of the

CLI were biased as well. Moreover, when the imputation model ignored the multilevel structure

4The bias for the slope variance in small samples may be explained by the Bayesian prior distribution employed
during MI. In our study, we used the standard “least-informative” inverse-Wishart prior distributions, which imply
relatively large values for the variance components as compared with the true size of the slope variance (here,
τ

2
1 = .10 if γ11 = 0, and τ2

1 = .06 if γ11 = .20). Such problems are well known in the Bayesian literature and can
often be mitigated by choosing the prior distribution on the basisof the data (McNeish, 2016).
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Figure 2: Estimated bias for the CLI (γ11) and the slope variance (τ
2
1) in Study 2 for different numbers of individuals

(n) and groups (k), and different missing data mechanisms (MAR; Y ∼ X and X ∼ Y ). LD = listwise deletion;
FCS-SL = single-level FCS; FCS-CLI/no RS = multilevel FCS including only product terms; FCS = multilevel
FCS including product terms and random slopes; JM = multilevel JM.

altogether (FCS-SL), all regression coefficients were biased independent of sample size. In

conditions with no CLI (γ11 = 0), the performance of FCS-CLI/RS was the same, but the bias

in the slope variance was greatly reduced (see Footnote 4). In these cases, both FCS-CLI/no RS

and JM also provided approximately unbiased estimates of the regression coefficients (see also

Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016a). Finally, LD provided approximately

unbiased estimates of the slope variance, but the estimates of the regression coefficient for W

(γ02) were biased under MAR regardless of sample size. The results for the coverage of the

95% confidence interval and the RMSE were in line with the bias. However, the coverage was

slightly too low under FCS-CLI/no RS and JM, illustrating that the confidence intervals were
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Table 3: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Within-Group
Regression Coefficient of X , the Between-Group Regression Coefficient of W , and the CLI of X with W
in Study 2 (Small Groups, n = 5)

LD FCS-SL FCS-CLI/no RS FCS-CLI/RS JM

Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.

Missing Y ∼ X (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ̂10 0.0 0.06 94.7 −7.2 0.07 91.0 0.2 0.06 92.4 0.0 0.06 95.7 −2.2 0.06 92.8
γ̂02 −10.3 0.06 89.5 −11.1 0.06 87.8 −0.4 0.05 95.5 −0.2 0.05 94.0 −9.6 0.06 91.2
γ̂11 0.1 0.06 94.5 −30.7 0.08 83.4 0.2 0.06 92.4 0.3 0.06 96.1 −32.5 0.08 80.1

k = 500
γ̂10 −0.1 0.03 95.4 −7.6 0.05 68.3 −0.2 0.03 93.1 −0.1 0.02 95.9 −2.4 0.03 90.8
γ̂02 −9.8 0.04 70.0 −10.6 0.04 57.9 −0.0 0.02 95.5 0.1 0.02 95.6 −9.0 0.04 71.7
γ̂11 −0.5 0.03 95.2 −30.9 0.06 24.2 −0.5 0.02 94.1 −0.5 0.02 96.0 −32.2 0.07 16.5

ρI,X = ρI,Y = .50k = 100
γ̂10 0.2 0.06 94.0 −15.6 0.10 83.5 0.2 0.06 92.3 0.1 0.06 95.2 −1.3 0.06 92.1
γ̂02 −6.4 0.08 95.0 −6.7 0.08 90.5 0.3 0.08 95.1 0.4 0.08 94.5 −4.9 0.08 95.1
γ̂11 1.1 0.06 94.7 −31.0 0.08 92.8 1.0 0.06 93.6 1.1 0.06 96.1 −31.9 0.08 83.9

k = 500
γ̂10 0.2 0.03 95.4 −15.5 0.08 27.7 0.2 0.03 93.9 0.2 0.03 95.7 −1.3 0.03 92.0
γ̂02 −6.2 0.04 90.7 −6.2 0.04 83.9 0.4 0.03 94.7 0.4 0.03 94.7 −4.7 0.04 91.5
γ̂11 −0.8 0.03 94.9 −31.4 0.07 44.2 −0.8 0.03 93.1 −0.7 0.03 95.6 −33.1 0.07 17.1

Missing X ∼ Y (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ̂10 −4.9 0.06 91.4 −12.6 0.08 80.7 −2.9 0.06 92.8 −5.9 0.06 91.0 −2.7 0.06 93.4
γ̂02 −14.9 0.07 81.6 −1.7 0.04 95.2 0.1 0.04 95.5 0.0 0.04 95.2 −0.2 0.04 95.2
γ̂11 −4.2 0.06 93.8 −28.4 0.07 87.8 −14.8 0.05 94.3 −17.3 0.06 95.2 −19.9 0.06 93.2

k = 500
γ̂10 −5.1 0.04 82.4 −12.5 0.07 23.7 −3.2 0.03 87.9 −4.7 0.03 84.3 −2.8 0.03 89.9
γ̂02 −15.1 0.06 32.6 −2.0 0.02 92.6 −0.1 0.02 96.0 −0.1 0.02 95.8 −0.5 0.02 95.2
γ̂11 −4.9 0.03 94.0 −28.4 0.06 29.5 −15.3 0.04 77.2 −16.5 0.04 75.0 −20.2 0.04 62.3

ρI,X = ρI,Y = .50k = 100
γ̂10 −2.6 0.06 94.1 −37.9 0.19 4.3 −3.7 0.06 93.3 −6.6 0.06 92.8 −3.1 0.06 93.3
γ̂02 −10.7 0.08 89.9 −3.1 0.08 95.1 −0.6 0.07 95.3 −0.7 0.07 95.5 −0.4 0.07 95.2
γ̂11 −2.9 0.06 93.8 −54.5 0.12 46.5 −16.7 0.06 92.2 −19.5 0.06 92.4 −21.7 0.06 90.8

k = 500
γ̂10 −3.2 0.03 89.5 −38.6 0.19 0.0 −3.4 0.03 87.6 −4.8 0.03 82.0 −2.9 0.03 88.8
γ̂02 −10.5 0.05 78.2 −2.5 0.03 93.7 −0.1 0.03 95.3 −0.1 0.03 95.5 −0.0 0.03 95.2
γ̂11 −2.6 0.03 94.4 −54.4 0.11 0.1 −15.6 0.04 76.9 −16.6 0.04 74.6 −20.9 0.05 60.4

Note. γ̂10 = within-group regression coefficient of X; γ̂11 = CLI; LD = listwise deletion; FCS-CLI/no RS = mul-
tilevel FCS including only product terms; FCS-CLI/RS = multilevel FCS including product terms and random
slopes; JM = multilevel JM.

slightly too narrow when the slope variance was omitted from the imputation model.

When missing values occurred in the explanatory variable X , no procedure provided unbi-

ased estimates of the CLI and the slope variance (see Table 3 and Figure 2). Even when the

product terms and random slopes were included in the model (FCS-CLI/RS), multilevel MI
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provided only biased estimates of the CLI and the slope variance. Ignoring the slope variance

(FCS-CLI/no RS) led to slightly better estimates of the regression coefficients but increased the

bias in the slope variance. Ignoring both the interaction effects and the random slopes (JM)

led to further bias in the CLI but was otherwise comparable to FCS-CLI/no RS. On the other

hand, single-level MI (FCS-SL) led to strongly biased estimates of both the main and interaction

effects as well as the slope variance. It is interesting that LD provided the least biased estimates

of the CLI and the slope variance in conditions with small groups even under MAR. On the

other hand, LD introduced bias into the other estimates, particularly the main effect of W when

the data were MAR. In conditions with no CLI (γ11 = 0), FCS-CLI/RS still showed a slight

downward bias in the regression coefficient of (Xi j − X̄• j) and the slope variance but yielded

otherwise unbiased results. Ignoring the slope variance (FCS-CLI/no RS and JM) reduced the

bias in the regression coefficients to essentially zero but increased bias in the slope variance.

Results for LD were similar to conditions with CLI.

The coverage of the 95% confidence interval and the RMSE were closely related to the bias

in the parameter estimates. For FCS-CLI/RS, the coverage was close to the nominal value of

95% for most parameters, but the coverage of the regression coefficient of (Xi j− X̄• j) and the CLI

dropped below 90% unless the sample was very small (k = 50, n = 5). As a result of reduced

sample size, the coverage under LD was slightly higher but also fell below 90% as the sample

size increased. Similar to before, the RMSE indicated a relative loss of efficiency under LD for

estimates of the regression coefficients of W and to a lesser extent (Xi j − X̄• j). For example, the

average RMSE for regression coefficients of W were 13.8% larger under LD with missing Y as

compared with FCS-CLI/RS and 38.7% larger with missing X . For the CLI, the RMSE was

usually lowest under FCS-CLI/no RS and FCS-CLI/RS in smaller samples (k ≤ 100) and under

LD in larger samples (k ≥ 200). However, these differences were very small: The average

RMSE for the CLI under LD as compared with FCS-CLI/RS was approximately equal with

missing Y (< 1%) and only 3.5% larger with missing X .

Taken together, our results indicate that the FCS approach provides reliable estimates for

the parameters of interest when missing values are restricted to Y and still reasonable (though

imperfect) estimates with missing values on X . Even though some parameter estimates obtained
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from FCS were biased, they had better statistical properties overall than those of the competing

methods. Ignoring the slope variance sometimes reduced bias in the regression coefficients but

resulted in confidence intervals for these coefficients that were too narrow. LD provided the

least biased estimates of the slope variance and the CLI but introduced bias in other parameters

and tended to be slightly less efficient than MI.

Categorical and group-level missing data

In the previous two simulation studies, the models of interest were simplified in two ways: (a)

the data were always continuous, thus not accounting for missing categorical data, and (b) data

were missing only at the individual level, thus not accounting for missing data in group-level

variables. Therefore, we conducted two smaller simulation studies that addressed these issues

separately.

Study 3a: Missing categorical data

Turning back to the random intercept model, researchers are often interested in estimating the

differences between groups of participants by including categorical variables in the model of

interest, be it to control for group differences (e.g., due to gender, education, etc.) or to assess

the effectiveness of interventions (e.g., treatment vs. control group). Especially in the former

case, categorical variables may contain missing data. Here, we briefly discuss two procedures

for multilevel MI—one using JM, one using FCS—that address missing data in multilevel

categorical variables. We also discuss FIML estimation, and we evaluate their performance in

a simulation study.

Here, the model of interest is a multilevel random intercept model with two explanatory

variables at the individual level, one continuous and one binary

Yi j = γ00 + γ10Xi j + γ20Di j + u0 j + ei j , (8)

where D is a dummy-coded binary variable that takes on values for each individual i in group

j. This model was also used to generate the data (see Appendix A). To ensure that D had a

multilevel structure, we simulated a latent background variable D∗ with a given value of its ICC.
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Binary values were obtained by setting Di j = 1 if D∗i j > 0, and 0 otherwise, resulting in a 50%

prevalence of either category. Missing data were induced in D as before (MCAR and MAR,

based on Y ). In addition, we varied the number of individuals (n = 5, 10) and the number of

groups (k = 50, 100, 200, 500). The remaining parameters were held constant (see Table 1).

For comparison, we included LD and single-level FCS as before.

Joint modeling (JM). Quite general procedures that use the JM approach are available

for categorical data (e.g., Goldstein et al., 2009). These procedures have been implemented

recently in the jomo package in R (Quartagno&Carpenter, 2016a), which allows continuous and

categorical variables to be modeled simultaneously, where a categorical variable is represented

by c − 1 underlying latent continuous variables (where c is the number of categories). For our

model of interest involving three individual-level variables, the joint model reads[
Xi j,Yi j,D

∗
i j
]T
=

[
β0(x), β0(y), β0(d∗)

]T
+

[
u j(x), u j(y), u j(d∗)

]T
+

[
ei j(x), ei j(y), ei j(d∗)

]T
, (9)

where ei j(d∗) is constrained to have unit variance to identify the model. For missing data in D,

the model is essentially a generalized linear mixed-effects model conditioning on X and Y (see

Carpenter & Kenward, 2013; Goldstein et al., 2009). For dichotomous variables, equivalent

procedures are available in the statistical software Mplus. However, for categorical variables

with multiple categories, the procedures in Mplus differ from the approach taken in jomo.5

The FCS approach. Imputations for D may also be generated by directly conditioning on

X andY using FCS. Similar to the joint model, imputations may be generated from a generalized

linear mixed-effects model (e.g., with a probit or logit link function)

D∗i j = β0(d∗) + β1(d∗)(X − X̄• j) + β2(d∗) X̄• j + β3(d∗)(Yi j − Ȳ• j) + β4(d∗)Ȳ• j

+ u j(d∗) + ei j(d∗) ,
(10)

where ei j(d∗) is constrained in a manner similar to what is done in the JM. Unfortunately,

mice currently allows for MI of categorical variables only in single-level models. Procedures

for multilevel data have been proposed by Snijders and Bosker (2012b) and Zinn (2013). The

5When using the imputation module in Mplus to implement multilevel MI, categorical variables are treated as
ordinal, and a single latent variable is used for each categorical variable regardless of the number of categories;
variables with multiple categories are addressed by estimating c− 1 threshold parameters (Asparouhov &Muthén,
2010b).
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Table 4: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Overall Regression
Coefficients in Study 3a (Missing D ∼ Y , MAR, 25%)

LD FCS-SL FCS-ML JM FIML

Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.

Missing D ∼ Y (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ10 −6.0 0.05 90.2 −0.1 0.04 95.5 −0.1 0.04 95.3 −0.0 0.04 94.8 −0.1 0.04 95.0
γ20 −6.1 0.09 95.4 −1.1 0.09 95.5 −0.3 0.09 95.0 −1.5 0.09 95.0 −0.7 0.09 95.0

k = 500
γ10 −5.9 0.04 69.3 −0.1 0.02 95.3 −0.1 0.02 94.9 −0.1 0.02 95.1 −0.1 0.02 94.8
γ20 −5.9 0.04 94.5 −1.1 0.04 95.2 −0.3 0.04 95.8 −0.2 0.04 96.0 −0.7 0.04 95.5

ρI,X = ρI,Y = .50k = 100
γ10 −4.2 0.05 93.2 0.8 0.04 95.3 0.0 0.04 95.0 −0.1 0.04 95.0 0.4 0.04 95.1
γ20 −2.6 0.09 93.9 −17.2 0.08 93.1 −2.2 0.09 94.5 −0.4 0.09 94.4 −8.1 0.08 92.7

k = 500
γ10 −3.9 0.03 82.6 1.0 0.02 92.8 0.2 0.02 93.9 0.0 0.02 93.9 0.6 0.02 93.0
γ20 −2.7 0.04 95.7 −17.4 0.05 84.4 −2.3 0.04 95.6 0.6 0.04 94.9 −8.6 0.04 91.2

Note. γ̂10 = overall regression coefficient of X; γ̂20 = overall regression coefficient of D; LD = listwise deletion;
FCS-SL = single-level FCS; FCS-ML = multilevel FCS; JM = multilevel JM; FIML = full-information maximum
likelihood.

procedure used here is essentially a combination of the two and is implemented in the R package

miceadds (Robitzsch, Grund, & Henke, 2016).

FIML. As an alternative toMI, the model can also be estimated directly by applying FIML.

However, because Mplus assumes that the variables in the multilevel model are multivariate

normal, it was not straightforward to include D as a multilevel categorical variable. Instead, we

treated D as a multilevel continuous normal variable to estimate the model with FIML.

Results. Our main findings are summarized in Table 4. We restricted our reporting to

the overall effects of X (γ10) and D (γ20) because we felt that they were the most important

parameters for judging the performance of each method. Consistent with our expectations, both

FCS-ML and JM provided approximately unbiased estimates of the two regression coefficients,

whereas the other procedures each yielded biased estimates in some simulated conditions. The

coverage was close to the nominal value of 95%, and the RMSE tended to be lowest under

FCS-ML and JM. By contrast, LD yielded biased estimates of the two parameters. FCS-SL and

FIML introduced bias in the regression coefficient of D (γ20) in conditions with large ICCs,

although the RMSE and coverage remained acceptable under FIML. We concluded that both

multilevel JM and FCS are suitable for MI of multilevel categorical data. Note, however, that we
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limited our attention to missing binary data. The FCS procedure can be extended to variables

with multiple ordered or unordered categories.

Study 3b: Group-level missing data

The ideal case in which missing data occur only on the lowest level of multilevel data sets (i.e.,

on the level of individuals) rarely holds in practice. Moreover, data that are missing at the group

level can be particularly cumbersome because they can force researchers to discard complete

records at lower levels of the data. For example, consider a study in which employees were

asked to rate the frequency of benevolent behavior engaged in by supervisors, and supervisors

were asked the same question about their employees. If both variables were to be used as

explanatory variables in some model of interest, missing data in supervisor ratings would lead

one to discard employees’ ratings as well, resulting in a severe loss of information. Surprisingly,

the methodological literature has focused so far on ad hoc procedures, for example, separate

imputation of individual- and group-level variables (Gibson & Olejnik, 2003) or “flat file”

imputation using single-level MI (Cheung, 2007; for an overview, see Hox et al., 2016; van

Buuren, 2011). However, recent advances in statistical software have greatly improved our

ability to treat group-level missing data. Here, we briefly discuss two procedures—one using

JM, one using FCS—that can be used to impute missing data at the group level.

Here, the model of interest was a multilevel random intercept model with explanatory

variables at the individual (e.g., employee ratings) and the group level (e.g., supervisor ratings)

Yi j = γ00 + γ10(Xi j − X̄• j) + γ01 X̄• j + γ02W j + u0 j + ei j . (11)

Furthermore, we assumed that W was partially missing. The critical point in this model is

that W is measured at the group level; that is, it does not vary across individuals in the same

group. Thus, information located at the group level, including the information provided by

individual-level variables, may be used to predict missing scores in W . For comparison, we

also included LD and single-level FCS.

Joint modeling (JM). Computationally, the imputation of missing data at the group level

is not much different from imputation at the individual level. Specifically, imputations for
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group-level missing data can be obtained by conditioning on observed group-level variables and

on the between-group components of individual-level variables by employing the same general

paradigm that is already employed for multilevel MI (for details, see Carpenter & Kenward,

2013; Goldstein et al., 2009). Similar to before, the joint model for the three variables of interest

can be written as[
Xi j,Yi j,W j

]T
=

[
β0(x), β0(y), β0(w)

]T
+

[
u j(x), u j(y), u j(w)

]T
+

[
ei j(x), ei j(y), 0

]T
. (12)

where u j(w) is the residual of W in group j. For missing values in W , imputations are generated

in the present case by conditioning on
[
u j(x), u j(y)

]
at each iteration of the sampling algorithm

(see Carpenter & Kenward, 2013), thus incorporating the group-level information supplied by

X and Y in the prediction of missing W . The joint model can be implemented, for example,

with the jomo package in R or in the statistical software Mplus.

The FCS approach. Instead of conditioning on the random effects of individual-level

variables as in the JM approach, group-level variables can be imputed by applying an FCS

approach based on the observed group means of these variables. Specifically, for missing

values in W , missing data may be imputed by using the linear regression

W j = β0(w) + β1(w) X̄• j + β2(w)Ȳ• j + u j(w) , (13)

where u j(w) is the residual of W given X̄• j and Ȳ• j . If values are missing at both levels, then

the FCS algorithm iterates back and forth between the individual- and group-level equations

(Equations 4 and 13; see also Gelman & Hill, 2006; Yucel, 2008). As in the multilevel random

intercept model, it can be argued that the FCS and the JM approach imply similar covariance

structures that can be used interchangeably (see Study 1; Carpenter & Kenward, 2013).

FIML. Missing values in W can also be addressed using FIML. Because W is directly

measured at the group-level, missing data in W can be addressed simply by specifying W as a

latent variable in Mplus.

Results. Our main findings are summarized in Table 5. We restricted our reporting to the

group-level effects of X (γ01) and W (γ02) because we considered them to be the most important

in this situation. FCS-ML, JM, and FIML all provided approximately unbiased estimates of the
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Table 5: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Group-Level
Regression Coefficients in Study 3b (Missing W ∼ Y , MAR, 25%)

LD FCS-SL FCS-ML JM FIML

Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg. Bias RMSE Covg.

Missing W ∼ Y (MAR, 25%)
ρI,X = ρI,Y = .10k = 100

γ01 −0.8 0.10 94.7 6.3 0.09 94.4 1.3 0.09 94.4 2.9 0.09 95.0 0.7 0.09 94.2
γ02 −3.3 0.05 95.3 −0.6 0.06 94.9 −1.4 0.05 95.0 −5.9 0.05 95.9 −0.3 0.05 95.5

k = 500
γ01 −3.0 0.05 95.4 5.8 0.04 94.1 −0.0 0.04 94.9 0.4 0.04 95.3 −0.1 0.04 94.8
γ02 −3.2 0.03 92.7 −0.8 0.03 94.1 −0.5 0.03 93.5 −2.8 0.03 94.1 −0.3 0.03 93.2

ρI,X = ρI,Y = .50k = 100
γ01 −7.1 0.11 95.1 −0.8 0.10 95.3 −0.8 0.10 95.2 −0.7 0.10 95.6 −1.1 0.10 95.1
γ02 −7.9 0.08 95.3 6.8 0.09 92.3 −2.8 0.09 95.0 −2.6 0.09 95.0 −1.1 0.09 94.2

k = 500
γ01 −6.7 0.05 93.6 0.0 0.04 94.8 −0.1 0.04 95.3 −0.1 0.05 94.7 −0.2 0.04 94.9
γ02 −6.9 0.04 93.7 8.3 0.05 89.8 −0.5 0.04 94.6 −0.4 0.04 94.9 −0.1 0.04 94.5

Note. γ̂01 = between-group regression coefficient of X; γ̂02 = between-group regression coefficient of W ; LD
= listwise deletion; FCS-SL = single-level FCS; FCS-ML = multilevel FCS; JM = multilevel JM; FIML = full-
information maximum likelihood.

group-level effects in the model of interest. With a smaller number of groups and individuals

within each group, FCS-ML and JM exhibited a small negative bias, which tended toward

zero in larger samples. By contrast, LD and FCS-SL yielded only biased estimates of these

parameters regardless of sample size. The coverage of the 95% confidence interval was close

to the nominal value of 95% for FCS-ML, JM, and FIML, and the RMSE was lowest for these

procedures. We concluded that multilevel JM and FCS as well as FIML are suitable methods

for dealing with group-level missing data.

Recommendations for practice

There exist several approaches to the treatment of missing data in multilevel designs. As a result,

researchers are faced with a multitude of options, several but not all of which may be suitable

for a given task. In order to guide researchers in picking a suitable procedure, we provide a

detailed list of recommendations in Table 6. This table covers different applications ofmultilevel

models, including applications with random intercepts, random slopes, different variable types,

and interaction effects. For each application, we distinguish between a general case with

arbitrary patterns of missing data and a number of cases with missing data on specific variables
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(e.g., categorical and group-level variables). For each case, we list the recommended and not-

recommended procedures as well as the likely consequences of choosing the latter. Finally, we

list statistical software that implements one or more of the recommended procedures, and we
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Table 6: Recommended Missing Data Treatments and Software for Different Types of Multilevel Analysis Models

Model type (example) Missing Recommended Not recommended Current software (MI)

Random intercept model
Yi j = γ00+γ10(Xi j−X̄•j)+γ01 X̄•j+u0j+ei j

any • multilevel FCS
B passive imputation of group means
• multilevel JM
B all variables specified as targets

• listwise deletion
B biased estimates, power loss
• single-level MI
B biased estimates and SEs
• FIMLa

B biased estimates when using
group-mean centering

R (mice, pan, jomo), Mplus,
Blimp, SAS (MMI_IMPUTE),
MLwiN, REALCOM
→ see Example 1.1 (p. 53)

. . . with categorical variables (Di j)
Yi j = γ00 + γ10Di j + γ20Xi j + u0j + ei j

D • multilevel FCS
B passive imputation of group means
B using logistic or probit models
• multilevel JM
B all variables specified as targets
B using models for mixed data types

• listwise deletion
B biased estimates, power loss
• single-level MI
B biased estimates and SEs
• FIMLa

B biased estimates under
normality assumption

R (mice, jomo), Mplus, Blimp,
REALCOM

→ see Example 1.2 (p. 55)

. . . with variables at Level 2 (Wj)
Yi j = γ00 + γ10(Xi j − X̄•j) + γ01 X̄•j +
γ02Wj + u0j + ei j

W • multilevel FCS
B including group means
• multilevel JM
B all variables specified as targets
B using models for missing data at both
levels
• FIML

• listwise deletion
B biased estimates, power loss
• single-level MI
B biased estimates and SEs

R (mice, jomo), Mplus, Blimp,
REALCOM

→ see Example 1.3 (p. 56)

. . . with interactions or nonlinear terms
Yi j =
γ00+γ10Xi j+γ20Zi j+γ30Xi jZi j+u0j+ei j

X , Z • multilevel FCS
B passive imputation of group means and
product terms

• listwise deletion
B biased estimates, power loss

R (mice)
→ see Example 1.4 (p. 57)

(continued)
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Table 6: Recommended Missing Data Treatments and Software for Different Types of Multilevel Analysis Models (continued)

Model type (example) Missing Recommended Not recommended Current software (MI)

• single-level MI
B biased estimates and SEs
• multilevel JM
B biased estimates of interaction
effects
• FIMLa

Random slope model
Yi j = γ00 + γ10(Xi j − X̄•j) + γ01 X̄•j +
u0j + u1j(Xi j − X̄•j) + ei j

any • multilevel FCS
B passive imputation of group means
B including random slopes between pairs
of variables

• listwise deletion
B biased estimates, power loss
• single-level MI
B biased estimates and SEs
• multilevel JM
B biased SEs
• FIMLa

R (mice), Blimp
→ see Example 2.1 (p. 59)

. . . with interactions or nonlinear terms
Yi j = γ00 + γ10(Xi j − X̄•j) + γ01 X̄•j +
γ02Wj + γ11Wj(Xi j − X̄•j) + γ03Wj X̄•j +
u0j + u1j(Xi j − X̄•j) + ei j

X , W • multilevel FCS
B passive imputation of group means and
product terms
B including random slopes between pairs
of variables

• listwise deletion
B biased estimates, power loss
• single-level MI
B biased estimates and SEs
• multilevel JM
B biased estimates of interaction
effects and SEs
• FIMLa

R (mice)
→ see Example 2.2 (p. 60)

a The present recommendations refer to FIML as it is currently implemented in the statistical software Mplus.
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provide reference to one of the step-by-step examples in Appendix B, which illustrate the use

of multilevel MI for each application in the statistical software R (for a general introduction to

multilevel MI, see Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016b).

For applications in the multilevel random intercept model, multilevel MI—using either JM

or FCS—provides an effective and general method for dealing with missing data. Procedures

for multilevel JM, for example, are implemented in the software packages pan and jomo for

the statistical software R as well as Mplus, MLwiN (Rasbash, Charlton, Browne, Healy, &

Cameron, 2015), REALCOM (Carpenter et al., 2011), and the SAS macro MMI_IMPUTE (Mistler,

2013a); multilevel FCS is implemented in the R package mice as well as Mplus and Blimp

(Keller & Enders, 2016). When treating missing data in categorical or group-level variables,

researchers should choose implementations ofmultilevelMI that support these types of variables

(e.g., jomo, Mplus and REALCOM for multilevel JM; mice, Mplus, and Blimp for multilevel FCS).

FIML may be an option if missing data are restricted to the dependent variable in the analysis

or if the analysis model includes latent instead of observed (i.e., manifest) group means to

estimate group-level effects (Grund et al., in press-a; Lüdtke et al., 2008). By contrast, single-

level MI should be avoided unless only a few cases contain missing data (e.g., less than 5%)

and the ICC of the variables is relatively small (e.g., less than .10). Similarly, although LD

provided reasonable estimates of model parameters (e.g., the CLI), we do not recommend

that it be adopted in practice. This is because LD provides generally unbiased results only

under MCAR, whereas its performance under MAR depends on the “strength” of missing data

mechanism (i.e., the degree to which the data loss is systematic; see also Newman, 2014). This

is problematic, because the missing data mechanism can never be ascertained from the data

alone (e.g., Allison, 2001; Enders, 2010). For that reason, LD may provide an alternative if

missing data are guaranteed to be MCAR, for example, in “planned missing data designs” (e.g.,

Graham, Taylor, Olchowski, & Cumsille, 2006). However, under more general conditions, we

recommend against using LD. For applications involving random slopes or interaction effects, it

is more difficult to provide general recommendations at the present time. Software for multilevel

FCS may be used to treat missing data in such models if it supports the specification of random

slope imputation models as well as passive imputation steps for the product terms (e.g., mice).
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However, researchers should bear in mind that multilevel FCS with passive imputation is not

a definite solution to the problem of missing data in such applications. Instead, model-based

procedures may be considered in the future (for a brief exposition, see the Discussion section).

Apart from the procedure selected for the treatment of missing data, the performance of MI

also depends on a few general factors. For example, researchers should try to include auxiliary

variables in the imputation model, that is, variables that are related to either the occurrence of

missing data or the variables with missing data themselves (e.g., Collins et al., 2001; Graham,

2009; Schafer & Graham, 2002). When more information can be included from auxiliary

variables, then missing values can be inferred from the observed data with greater accuracy

(for a discussion about the use of auxiliary variables under FIML, see Enders, 2008; Graham,

2003). In addition, the quality of estimates and inferences obtained from MI can often be

improved by generating a larger number of imputations (Bodner, 2008; Graham et al., 2007).

In our experience, generating 20 imputations is sufficient for most applications in which the

primary goal is to estimate the model parameters, but as many as 100 or more imputations can

be useful if the analyses involve testing more elaborate statistical hypotheses (Bodner, 2008;

see also Grund, Lüdtke, & Robitzsch, 2016b).

Discussion

In the present article, we outlined several procedures for MI of multilevel missing data, each

intended to accommodate typical research questions in organizational psychology and other

areas in the social sciences. Through several smaller simulation studies, we tried to provide

a broad overview of multilevel MI. We demonstrated that the current implementations of

multilevel MI are able to accommodate quite general research questions and multilevel designs.

For example, several procedures for multilevel MI, using either the JM or the FCS approach,

were suitable in the broad context of random intercept models. In such a context, missing data

can be treated fairly accurately and in a very general manner even when missing data occur at

different levels of the sample or in categorical and continuous variables simultaneously.

However, we also pointed out applications inwhich the current implementations ofmultilevel
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MI do not correctly accommodate the model of interest. Specifically, it is still challenging to

implement multilevel MI for multilevel models with random slopes or interaction effects when

the explanatory variables contain missing data (see also S. Kim et al., 2015). Even though

multilevel FCS appears to be slightly more flexible than multilevel JM in accommodating the

substantive model, both approaches ultimately contain limitations due to the ways in which

they are currently implemented in statistical software. To alleviate this problem, it has been

recommended that the substantive analysis model be taken into account when conducting MI,

thus ensuring that imputations are generated in a manner consistent with the model of interest

(Bartlett et al., 2015). With this procedure, Bartlett et al. (2015) demonstrated that the bias

associated with nonlinear and interaction effects in single-level regression models can be greatly

reduced (see also Goldstein et al., 2014). Unfortunately, this approach is currently not available

in standard software for multilevel MI.

As an alternative to MI, multilevel models can be estimated directly from the incomplete

data by applying model-based procedures such as FIML (e.g., in Mplus). Even though current

implementations of FIML are still quite general and easy to use, it can be challenging to estimate

multilevel models with missing values in explanatory variables, for example, when the model of

interest uses observed group means to incorporate group-level effects or it includes categorical

variables, random slopes, or interaction effects (see also Shin & Raudenbush, 2010). The

challenges of FIML are ultimately similar to those of MI, and similar proposals have been

made with respect to how one might overcome these challenges. For example, Stubbendick and

Ibrahim (2003) proposed a factorization approach to FIML estimation of multilevel models with

missing data in explanatory variables (see also L. Wu, 2010). Unfortunately, this approach is

also currently not available in standard software. As an alternative, the model-based treatment

of missing data can be implemented in a Bayesian analysis approach (Erler et al., 2016; see

also Goldstein et al., 2014; Zhang & Wang, 2016). However, the Bayesian approach requires

specialized software for Bayesian analyses such as WinBUGS (Lunn et al., 2000) or JAGS

(Plummer, 2016), and such software can be challenging to use in practice (e.g., syntax-based

model specification, selection of priors and starting values). Our own experiences indicate

that these procedures can provide unbiased estimates with good coverage properties even in
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multilevel models with random slopes and CLIs. For interested readers, we provide an example

of a model-based procedure in the supplemental online materials. This example includes a

multilevel model with random slopes and cross- and group-level interactions with missing data

in explanatory variables (i.e., the conditions simulated in Study 2). The model syntax for

the JAGS software is provided. However, before they can be widely adopted, we recommend

that these procedures be subjected to further research and implemented in standard software.

Additional software packages that implement FIML for multilevel models are xxM (Mehta,

2013) and Latent GOLD (Vermunt & Magidson, 2013).

Despite limitations in complex multilevel analyses, multilevel MI provides a more reliable

and efficient approach to the treatment of missing data in comparison with simpler methods

(e.g., single-level MI). As an alternative, it has been suggested that the multilevel structure

might be expressed by including dummy-indicator variables in a single-level imputation model

(Drechsler, 2015). Although this strategy substantially increases the complexity of the impu-

tation model when the model of interest includes random slopes or interaction effects, it may

be interesting to investigate its performance more thoroughly under such conditions (see also

Andridge, 2011; Enders et al., 2016). In the context of multilevel models with random slopes,

it has also been recommended that single-level MI be performed separately within each group

(Graham, 2009). However, this strategy has been shown to be inefficient (i.e., low power) and

should be avoided (Taljaard et al., 2008)

Every simulation study has its limitations, and owing to their smaller frame, the simulation

studies presented here are no exception. In each study, we focused on varying the sample sizes

rather than creating a diverse pattern of possible effects and effect sizes. However, this came

at the price of choosing constant values for many of the population parameters. Therefore, the

results should not be generalized to arbitrary patterns of effects. On the other hand, it is nearly

impossible to address the diversity of possible research designs in a single study. Future studies

should investigate the performance of multilevel MI in more specialized applications, including

settings with very small samples at the individual level (e.g., dyadic data) or the group level

(e.g., research in large organizations), a larger variety of patterns of effects and missing data

mechanisms (see Newman, 2009), low ICCs, or a large number of continuous and categorical
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variables (see Vermunt, 2003; Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008). Further

topics for future research also include the application of multilevel MI in longitudinal data,

which share many but not not all of the features of cross-sectional data, and in models with

additional levels of hierarchy (see Yucel, 2008). In principle, however, these models can be

addressed with existing statistical software.

Summing up, we believe that MI is already a powerful tool for treating missing data in

multilevel research. Several procedures that make MI both generally applicable and easy

to use have become available. In the present article, we attempted to provide guidance on

the application of multilevel MI in research practice by providing both simulation results

and recommendations for different applications of multilevel models. Our findings suggest

natural directions for future research. For example, even though multilevel MI yielded reliable

results in most applications, this was not the case in multilevel models with random slopes or

interaction effects when data were missing in explanatory variables. Several procedures that

might alleviate these problems have been proposed, but before these procedures can widely

be adopted in practice, they must be evaluated more thoroughly in the context of multilevel

designs, and they must be implemented in standard software. In this spirit, we hope that the

present study and the materials provided with it will stimulate further research in this area and

contribute to the regular use of MI in research practice.

Appendix A: Simulation design

In all simulation studies, the data were generated on the basis of the following model

Yi j = γ10(Xi j − X̄• j) + γ01 X̄• j + γ02W j + γ11W j(Xi j − X̄• j) + u0 j + u1 j(Xi j − X̄• j) + ei j , (A1)

where u0 j and u1 j followed a multivariate normal distribution with mean zero and covariance

matrix T =
[
τ

2
0 τ01
τ01 τ

2
1

]
, and ei j was normally distributed with mean zero and variance σ2. All

variables were assumed to be standardized with mean zero and unit variance.

The data were generated in several steps. First, we simulated the between- and within-group

components of X , which followed a normal distribution with mean zero and variances τ2
x and

σ
2
x , respectively, which were determined by fixing the intraclass correlation (ICC) of X (ρI,x).
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Then, we applied group-mean centering in order to obtain X̄• j and (Xi j − X̄• j). In the next step,

we generated W j from a linear regression on X̄• j according to a correlation coefficient ρx̄w. The

regression coefficient was given by ρx̄w/

√
τ

2
x + σ

2
x/n and the residual variance by (1 − ρ2

x̄w).

Finally, Y was simulated from Equation A1. The residual variance was set to

σ
2
= 1− γ2

01

(
τ

2
x +

σ
2
x

n

)
− γ

2
02 − 2γ01γ02ρx̄w

√
τ

2
x +

σ
2
x

n
−

(
γ

2
10 + γ

2
11 + τ

2
1

) (
σ

2
x −

σ
2
x

n

)
− τ

2
0 . (A2)

The parameters of the simulations were chosen in such a way as to imply certain values for the

ICC of Y (see also Aguinis & Culpepper, 2015, for a very general decomposition of variance).

For this purpose, the ICC was calculated as follows
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Missing data were simulated according to a missing data mechanism T ∼ P, where T is a target

and P is a predictor variable. For person i in group j, we simulated a latent response propensity

Ri j = λ0 + λ1Pi j + ri j (A4)

where R denotes T’s response propensity, λ0 is a quantile of the standard normal distribution

according to a missing data probability, and λ1 is the weight with which P drives the missing

data mechanism. The residuals ri j were drawn from a normal distribution with mean zero and

variance 1 − λ2
1. A value Ti j was deleted if Ri j > 0. To generate MCAR and MAR data, we set

λ1 = 0 and .50, respectively. In Study 3b, the missing data mechanism was based on the group

means.

In Study 3a, which included a dichotomous variable D, we generated the data as follows:

First, we simulated within- and between-group components for a latent background variable

D∗ according to the ICC of D (ρI,d). We set Di j to one if D∗i j > 0 and zero otherwise. Then,

X was simulated conditional on D, and Y was simulated conditional on D and X . Because

the within- and between-group components of D could not be partitioned in the same way as

for continuous variables, we generated X and Y by specifying residual ICCs for both variables

(ρI,x |d and ρI,y |dx). These were chosen in such a way that they implied marginal ICCs for both

variables that were similar to those in Studies 1, 2, and 3b.
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Appendix B: Step-by-step examples for multilevel MI

Here, we provide examples for multilevel MI in the statistical software R, using the packages

jomo (JM), mice (FCS), and miceadds (FCS). We make use of the justice data set included

in the mitml package, which contains simulated data from 1,400 employees organized in

200 organizations (id) denoting employees’ sex (sex), their organizational satisfaction (sat),

their orientation toward procedural justice (jor), and scores for justice climate at the level of

organizations (jcl).

library(jomo) # load "jomo" multilevel JM
library(mice) # load "mice" for multilevel FCS
library(miceadds) # load "miceadds" for multilevel FCS

library(mitml) # load "mitml"
data(justice, package="mitml") # load "justice" data set

The structure of the data set is as follows.

# id sex sat jor jcl
# 1 female 4.783 0.886 -0.336
# 1 male 5.392 0.205 -0.336
# 1 male 6.696 0.328 -0.336

All variables contain missing data. For each of the following examples, we focus on one model

of interest. For the purpose of illustration, we use a subset of the data in each example in which

missing data occur only in the variables included in the model of interest. In practice, these

examples can (and should) be combined to treat missing data for all variables simultaneously.

Example 1.1: Random intercept model

In this example, we demonstrate multilevel MI in a multilevel random intercept model with only

continuous variables. Assume a researcher is interested in estimating the following model

SATi j = γ00 + γ10(JORi j − JOR• j) + γ01JOR• j + u0 j + ei j . (B1)

Either the JM or the FCS approach can be used in this case. In order to set aside the treatment

of missing data in categorical and group-level variables (see Examples 1.2 and 1.3), the data set

is reduced in such a way that only the variables in the model of interest require imputation.

ex1.1 <- subset(justice, !is.na(sex) & !is.na(jcl))
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Option 1: multilevel FCS. In the FCS approach, it is necessary to specify the imputation

model for each variable as well as the predictor variables for each model. Using mice, the

imputation model is specified by defining an imputation method and predictor variables for

each target variable with missing data. The imputation methods are specified in a character

vector (impMethod). Here, we assign a two-level model to each variable with missing data.

# set up imputation methods
impMethod <- character(ncol(ex1.1)) # create empty vector for
names(impMethod) <- colnames(ex1.1) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)

The predictors in each model are then defined in the predictor matrix (predMatrix), where

each line corresponds to one target variable, and integer values denote the relations between the

target and predictor variables.

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex1.1), ncol(ex1.1)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.1) # matrix

# ... define predictors for each variable
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1) # -2 = cluster variable
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1) # 1 = overall effect

# 3 = overall + group-level effect

The imputation is then carried out by issuing the following command.

imp <- mice::mice(data=ex1.1, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix)

Option 2: multilevel JM. Because the model of interest is a multilevel random intercept

model, all variables (including auxiliary variables) can be treated as target variables in the JM

approach. In the mitml package, imputation models can be specified as a list of two model

formulas, pertaining to individual- and group-level variables, respectively (for an alternative

model specification similar to FCS, see the package documentation).

fml <- list( sat + jor + sex ~ 1 + (1|id), # level-1 targets = sat + jor + sex (no predictors)
jcl ~ 1 ) # level-2 targets = jcl (no predictors)

The imputation is then carried out by issuing the following command.

imp <- mitml::jomoImpute(data=ex1.1, formula=fml, n.burn=5000, n.iter=500, m=20)
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Example 1.2: Random intercept model with categorical variables

In this example, we demonstrate multilevel MI with a mix of continuous and categorical

variables. Assume a researcher us interested in the following model

SATi j = γ00 + γ10JORi j + γ20Sexi j + u0 j + ei j . (B2)

Either the JM or the FCS approach can be used in this case. As before, the data set is reduced

in such a way that only these variables require imputation.

ex1.2 <- subset(justice, !is.na(jcl))

Option 1: multilevel FCS. The specification of the FCS approach is similar to the previous

example but now includes a logistic two-level model for the categorical target variable (sex).

# set up imputation methods
impMethod <- character(ncol(ex1.2)) # create empty vector for
names(impMethod) <- colnames(ex1.2) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)
impMethod[ "sex" ] <- "2l.binary" # use '2l.binary' for 'sex' (two-level logistic)

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex1.2), ncol(ex1.2)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.2) # matrix

# ... define predictors for each variable
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1) # -2 = cluster variable
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1) # 1 = overall effect
predMatrix[ "sex" , c("id","sat","jor","jcl") ] <- c(-2,3,3,1) # 3 = overall + group-level effect

The imputation is then run as follows. Note that categorical variables must be converted into a

numeric data type beforehand in order to be imputed using mice.

# convert "sex" to dummy variable
ex1.2 <- within(ex1.2, sex <- as.integer(sex)-1)

imp <- mice::mice(data=ex1.2, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix)

Option 2: multilevel JM. The specification of the JM approach is identical to the previous

example, treating all variables (including auxiliary variables) as target variables in the imputation

model.
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fml <- list( sat + jor + sex ~ 1 + (1|id), # level-1 targets = sat + jor + sex (no predictors)
jcl ~ 1 ) # level-2 targets = jcl (no predictors)

The imputation is then carried out by issuing the following command. Not that, in contrast to

mice, jomo requires that categorical variables are formatted as factor variables in R, as is the

case in the original data set.

imp <- mitml::jomoImpute(data=ex1.2, formula=fml, n.burn=5000, n.iter=500, m=20)

Example 1.3: Random intercept model with group-level variables

In this example, we demonstrate multilevel MI with explanatory variables at both the individual

and the group level. Assume a researcher is interested in the following model

SATi j = γ00 + γ10(JORi j − JOR• j) + γ01JOR• j + γ02JCL j + u0 j + ei j . (B3)

Either the JM or the FCS approach can be used in this case. As before, the data set is reduced

in such a way that only these variables require imputation.

ex1.3 <- subset(justice, !is.na(sex))

Option 1: multilevel FCS. The specification of the FCS approach is similar to the previous

example but now includes a group-level regression model for the target variable at the group

level (jcl).

# set up imputation methods
impMethod <- character(ncol(ex1.3)) # create empty vector for
names(impMethod) <- colnames(ex1.3) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)
impMethod[ "jcl" ] <- "2lonly.norm" # use '2lonly.norm' for 'jcl' (group-level regression)

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex1.3), ncol(ex1.3)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.3) # matrix

# ... define predictors for each variable
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1) # -2 = cluster variable
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1) # 1 = overall effect
predMatrix[ "jcl" , c("id","sex","sat","jor") ] <- c(-2,1,1,1) # 3 = overall + group-level effect

The imputation is then carried out by issuing the following command.
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imp <- mice::mice(data=ex1.3, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix)

Option 2: multilevel JM. The specification of the JM approach is identical to the previous

example, treating all variables (including auxiliary variables) as target variables in the imputation

model.

fml <- list( sat + jor + sex ~ 1 + (1|id), # level-1 targets = sat + jor + sex (no predictors)
jcl ~ 1 ) # level-2 targets = jcl (no predictors)

The imputation is then carried out by issuing the following command.

imp <- mitml::jomoImpute(data=ex1.3, formula=fml, n.burn=5000, n.iter=500, m=20)

Example 1.4: Random intercept model with interaction effects

In this example, we demonstrate multilevel MI for a multilevel random intercept model with

two explanatory variables and an interaction effect. Assume a researcher is interested in the

following model

SATi j =γ00 + γ10(JORi j − JOR• j) + γ20Sexi j + γ30Sexi j(JORi j − JOR• j) + γ01JOR• j+

u0 j + ei j .
(B4)

In order to include the interaction effect in the imputation model, we make use of passive

imputation steps in the FCS approach. As before, the data set is reduced in such a way that only

these variables require imputation.

ex1.4 <- subset(justice, !is.na(jcl))

To define passive steps, new variables must be created for the components of organizational

satisfaction (sat) and justice orientation (jor) and for the product terms that allow relations

between individual-level organizational satisfaction (sat) and justice orientation (jor) to vary

by sex (sex) and vice versa.

ex1.4 <- within(ex1.4,{
sex <- as.integer(sex)-1 # recode 'sex' as a dummy variable
sat.GRP <- sat.IND <- NA # passive variables for components of 'sat'
jor.GRP <- jor.IND <- NA # passive variables for components of 'jor'
sat.IND_sex <- NA # passive variable for interaction of 'sat' and 'sex'
jor.IND_sex <- NA # passive variable for interaction of 'jor' and 'sex'
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sat.IND_jor.IND <- NA # passive variable for interaction of 'sat' and 'jor'
})

The specification of the imputation methods proceeds in a similar manner as before. In addition,

passive steps are defined for the components of organizational satisfaction (sat) and justice

orientation (jor) as well as for the product terms by employing the ~I() identity function.

# set up imputation methods
impMethod <- character(ncol(ex1.4)) # create empty vector for
names(impMethod) <- colnames(ex1.4) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)
impMethod[ "sex" ] <- "2l.binary" # use '2l.binary' for 'sex' (two-level logistic)

impMethod[ "sat.GRP" ] <- "2l.groupmean" # passive step for updating the group means
impMethod[ "jor.GRP" ] <- "2l.groupmean" # means and within-group deviations of 'sat'
impMethod[ "sat.IND" ] <- "~I(sat-sat.GRP)" # and 'jor'
impMethod[ "jor.IND" ] <- "~I(jor-jor.GRP)"

impMethod[ "sat.IND_sex" ] <- "~I(sat.IND*sex)" # passive steps for updating the
impMethod[ "jor.IND_sex" ] <- "~I(jor.IND*sex)" # product terms involving 'sat',
impMethod[ "sat.IND_jor.IND" ] <- "~I(sat.IND*jor.IND)" # 'jor', and 'sex'

The predictors for each model are specified as before. However, two additional entries that

allow the group means to be updated are added.

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex1.4), ncol(ex1.4)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.4) # matrix

# ... define predictors for each variable
predMatrix[ "sat.GRP" , c("id","sat") ] <- c(-2,1) # -2 = cluster variable
predMatrix[ "jor.GRP" , c("id","jor") ] <- c(-2,1) # 1 = variable to be aggregated

predMatrix[ "sat" , c("id","sex","jor","jcl","jor.IND_sex") ] <- c(-2,1,3,1,1)
predMatrix[ "jor" , c("id","sex","sat","jcl","sat.IND_sex") ] <- c(-2,1,3,1,1)
predMatrix[ "sex" , c("id","sat","jor","jcl","sat.IND_jor.IND") ] <- c(-2,3,3,1,1)

Finally, the imputation is carried out by issuing the following command. In addition, we specify

a visit sequence (visitSeq), which defines the order in which the variables are to be imputed

and the passive steps are to be carried out. Passive steps are updated after obtaining a new

imputation to the extents to which they are needed in subsequent imputation steps.

# set up visit sequence
visitSeq <- c(
"sat","sat.GRP","sat.IND","sat.IND_sex", # impute 'sat', then update terms for 'jor'
"jor","jor.GRP","jor.IND","sat.IND_jor.IND", # impute 'jor', then update terms for 'sex'
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"sex","jor.IND_sex" # impute 'sex', then update terms for 'sat'
)

visitSeq <- match(visitSeq, colnames(ex1.4))

imp <- mice::mice(data=ex1.4, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix, allow.na=TRUE)

Example 2.1: Random slope model

In this example, we demonstrate multilevel MI for a multilevel model with random slopes.

Assume a researcher is interested in the following model

SATi j = γ00 + γ10(JORi j − JOR• j) + γ01JOR• j + u0 j + u1 j(JORi j − JOR• j) + ei j . (B5)

To accommodate the fact that the individual-level relation of organizational satisfaction (sat)

and justice orientation (jor) varies across groups, the FCS approach will be used. As before,

the data set is reduced in such a way that only the variables in the model of interest require

imputation.

ex2.1 <- subset(justice, !is.na(sex) & !is.na(jcl))

The specification of the FCS approach is very similar to Example 1.1 but now includes a random

slope in the imputation model for both organizational satisfaction (sat) and justice orientation

(jor), which is denoted by the number 4 in the predictor matrix.

# set up imputation methods
impMethod <- character(ncol(ex2.1)) # create empty vector for
names(impMethod) <- colnames(ex2.1) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex2.1), ncol(ex2.1)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex2.1) # matrix

# ... define predictors for each variable
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,4,1) # 4 = individual-level (random)
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,4,1) # and group-level (fixed) effect

# ... otherwise as above

The imputation is then carried out by issuing the following command.

imp <- mice::mice(data=ex2.1, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix)
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Example 2.2: Random slope model with interaction effects

In this example, we demonstrate multilevel MI with two explanatory variables, one at the

individual and one at the group level, including a random slope and interaction effects. Assume

a researcher is interested in the following model

SATi j = γ00 + γ10(JORi j − JOR• j) + γ01JOR• j + γ02JCL j + γ11(JORi j − JOR• j) JCL j+

γ03JOR• jJCL j + u0 j + u1 j(JORi j − JOR• j) + ei j .
(B6)

In order to include the random slopes and the interaction effects in the imputation model, we

make use of passive imputation steps in the FCS approach. As before, the data set is reduced in

such a way that only these variables require imputation.

ex2.2 <- subset(justice, !is.na(sex))

To define passive steps, new variables must be created for the components of organizational

satisfaction (sat) and justice orientation (jor) as well as for the product terms at the individual

and the group level.

ex2.2 <- within(ex2.2,{
sat.GRP <- sat.IND <- NA # passive variables for components of 'sat'
jor.GRP <- jor.IND <- NA # ... for components of 'jor'
sat.IND_jcl <- NA # ... for individual-level interaction of 'sat' and 'jcl'
sat.GRP_jcl <- NA # ... for group-level interaction of 'sat' and 'jcl'
jor.IND_jcl <- NA # ... for individual-level interaction of 'jor' and 'jcl'
jor.GRP_jcl <- NA # ... for group-level interaction of 'jor' and 'jcl'
sat.GRP_jor.GRP <- NA # ... for group-level interaction of 'sat' and 'jor'

})

The specification of the imputation methods proceeds as before. Passive steps are defined for

the components of organizational satisfaction (sat) and justice orientation (jor) as well as for

the product terms by imploying ~I().

# set up imputation methods
impMethod <- character(ncol(ex2.2)) # create empty vector for
names(impMethod) <- colnames(ex2.2) # imputation methods

# ... define method for each variable
impMethod[ "sat" ] <- "2l.pan" # use '2l.pan' for 'sat' (two-level normal)
impMethod[ "jor" ] <- "2l.pan" # use '2l.pan' for 'jor' (two-level normal)
impMethod[ "jcl" ] <- "2lonly.norm" # use '2lonly.norm' for 'jcl' (group-level regression)

impMethod[ "sat.GRP" ] <- "2l.groupmean" # passive step for updating the group means
impMethod[ "jor.GRP" ] <- "2l.groupmean" # means and within-group deviations of 'sat'
impMethod[ "sat.IND" ] <- "~I(sat-sat.GRP)" # and 'jor'
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impMethod[ "jor.IND" ] <- "~I(jor-jor.GRP)"

impMethod[ "sat.IND_jcl" ] <- "~I(sat.IND*jcl)" # passive steps for updating the
impMethod[ "jor.IND_jcl" ] <- "~I(jor.IND*jcl)" # individual-level product terms

impMethod[ "sat.GRP_jcl" ] <- "~I(sat.GRP*jcl)" # passive steps for updating
impMethod[ "jor.GRP_jcl" ] <- "~I(jor.GRP*jcl)" # the group-level product terms
impMethod[ "sat.GRP_jor.GRP" ] <- "~I(sat.GRP*jor.GRP)"

The predictors in each model are specified as before.

# set up predictor matrix
predMatrix <- matrix(0, ncol(ex2.2), ncol(ex2.2)) # create empty predictor
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex2.2) # matrix

# ... define predictors for each variable
predMatrix[ "sat.GRP" , c("id","sat") ] <- c(-2,1) # -2 = cluster variable
predMatrix[ "jor.GRP" , c("id","jor") ] <- c(-2,1) # 1 = variable to be aggregated

predMatrix[ "sat" , c("id","sex","jor","jcl","jor.IND_jcl","jor.GRP_jcl") ] <- c(-2,3,3,1,1,1)
predMatrix[ "jor" , c("id","sex","sat","jcl","sat.IND_jcl","sat.GRP_jcl") ] <- c(-2,3,3,1,1,1)
predMatrix[ "jcl" , c("id","sex","sat","jor","sat.GRP_jor.GRP") ] <- c(-2,1,1,1,1)

The imputation is carried out by issuing the following command. The visit sequence (visitSeq)

is specified in such a way that passive steps are updated after obtaining a new imputation to the

extents to which they are needed in subsequent imputation steps.

# set up visit sequence
visitSeq <- c(
"sat","sat.GRP","sat.IND","sat.IND_jcl","sat.GRP_jcl", # impute 'sat', then update terms for 'jor'
"jor","jor.GRP","jor.IND","sat.GRP_jor.GRP", # impute 'jor', then update terms for 'jcl'
"jcl","jor.IND_jcl","jor.GRP_jcl" # impute 'jcl', then update terms for 'sat'

)
visitSeq <- match(visitSeq, colnames(ex2.2))

imp <- mice::mice(data=ex2.2, maxit=10, m=20, imputationMethod=impMethod,
predictorMatrix=predMatrix, allow.na=TRUE)
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Article 3: Multiple imputation of missing data at Level 2: A comparison
of fully conditional and joint modeling in multilevel designs

Grund, S., Lüdtke, O., & Robitzsch, A. (2017b). Multiple imputation of missing data at Level 2: A comparison
of fully conditional and joint modeling in multilevel designs. Manuscript submitted for publication.

Multiple imputation (MI) can be used to address missing data at Level 2 in multilevel research.
In this article, we compare joint modeling (JM) and the fully conditional specification (FCS) of
MI as well as different strategies for including auxiliary variables at Level 1 using either their
manifest or latent cluster means. We show with theoretical arguments and computer simulations
that (a) an FCS approach that uses latent cluster means is comparable to JM, and (b) usingmanifest
cluster means provides similar results except in relatively extreme cases with unbalanced data.
We outline a computational procedure for including latent cluster means in an FCS approach
using plausible values and provide an example using data from the PISA 2012 study.

Multiple imputation (MI) of missing data has received considerable attention in the method-

ological and applied missing data literature (e.g., Allison, 2001; Enders, 2010; Little & Rubin,

2002; Schafer & Graham, 2002). However, many open questions remain when the data have

a multilevel structure (e.g., when students are clustered within schools; for recent reviews, see

Enders et al., 2016; Hox et al., 2016). Most studies to date have focused on missing data that

occur at Level 1 (e.g., when students do not answer all items on a questionnaire). These studies

have shown that the multilevel structure must be taken into account during MI because ignoring

the multilevel structure in the imputation model may lead to biased estimates in subsequent

analyses (Andridge, 2011; Black et al., 2011; Drechsler, 2015; Enders et al., 2016; Lüdtke et

al., 2017; Taljaard et al., 2008; for a more general discussion, see Carpenter & Kenward, 2013;

Meng, 1994).

Much less attention has been paid to missing data at Level 2, even though the treatment

of missing data at Level 2 can be of great practical importance when the model of interest

includes variables at both Level 1 and 2. For example, in a study of teacher effects on student

achievement, a whole class of students would have to be dropped from the analysis if a certain

teacher’s data are missing. Currently, the methodological literature provides little guidance

about how to carry out MI when data are missing at Level 2 (see also van Buuren, 2011). In one

of the first studies to consider this topic, Gibson and Olejnik (2003) applied single-level MI to a
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subset of the data that included only variables at Level 2 but ignored the contribution of variables

at Level 1. Later, Cheung (2007) applied single-level MI to the data set as a whole (also known

as “flat-file” imputation; see also van Buuren 2011), thus including variables at both levels but

ignoring the multilevel structure. In contrast to most of the missing data literature, these studies

concluded that “the performance of MI was (...) poorest among all of the methods that were

studied” (Cheung 2007, p. 625; see also Gibson and Olejnik 2003, p. 233). This illustrates

that the performance of MI depends on the specification of the imputation model; if the model

does not reflect the characteristics of the data or the intended analysis, then using MI may

even be harmful. In recent years, however, more advanced methods that specifically take into

account the multilevel structure of the data as well as missing data at different levels of analysis

have been developed for MI (e.g., Asparouhov & Muthén, 2010b; Carpenter & Kenward, 2013;

Goldstein et al., 2009).

The present article pursues three different goals. First, we compare two popular approaches

for MI of missing data at Level 2, joint modeling (JM) and the fully conditional specification

(FCS) of MI, as well as two popular ad hoc procedures, single-level MI and listwise deletion

(LD; see also Enders et al. 2016). Second, we discuss different strategies for including variables

at Level 1 when specifying the imputation model for missing data at Level 2. More precisely,

we evaluate the consequences of including the manifest or latent cluster means of variables at

Level 1 as auxiliary variables (i.e., covariates) in the imputation model at Level 2 (see also

Asparouhov & Muthén, 2006; Lüdtke et al., 2008). In this context, we present a procedure

for including latent cluster means in the FCS paradigm using the method of plausible values

(Mislevy, 1991). In two simulation studies, we investigate the performance of each of these

approaches in various conditions, including applications with small samples and unbalanced

data, and the role of Level 1 variables when treating missing data at Level 2. Finally, we provide

an empirical example using data from the Programme for International Student Assessment

(PISA; OECD, 2014) and conclude with a discussion of our findings.

Cluster-level components in multilevel data

In two-level data with observations (e.g., students) nested within clusters (e.g., school classes),
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variables can be measured directly at Level 1 (e.g., student self-concept) or Level 2 (e.g., class

size, teacher qualification). In addition, variables at Level 1 can be decomposed into one part

that varies only within clusters (within-cluster component), and a second part that varies only

between clusters (cluster-level component), the latter of which can be used to estimate cluster-

level effects of Level 1 variables (e.g., Cronbach, 1976; Preacher et al., 2010). In the following,

we identify twoways of including the cluster-level component of predictor variables at Level 1 in

multilevel models. In the first approach, the cluster mean of the Level 1 variable is calculated and

included as a manifest predictor variable. However, the methodological literature has pointed

out that the observed cluster mean is sometimes not a reliable measure of the unobserved,

true cluster mean (e.g., Croon & van Veldhoven, 2007; Shin & Raudenbush, 2010). Thus, in

the second approach, the cluster-level component of the Level 1 variable is treated as a latent

variable, correcting for the unreliability that comes from estimating cluster means with only a

finite number of observations (Lüdtke et al., 2008). In the following, we provide a more formal

comparison of the two approaches.

Consider a set of variables (xi j, z j), where P variables xi j = (xi j1, . . . , xi jP) are recorded at

Level 1, and Q variables z j = (z j1, . . . , z jQ) are recorded at Level 2. Using manifest or latent

cluster means, the values xi j for an observation i in cluster j can be expressed as

xi j = x̄• j + (xi j − x̄• j) (manifest)

xi j = u j + ei j , (latent)
(1)

where x̄• j denotes the manifest cluster mean, u j denotes the latent component at Level 2, and

u j and ei j are independent and distributed normally with mean zero and covariance matrices T

and Σ. Consequently, assuming latent cluster means, the joint distribution of xi j and z j can be

expressed as
Var(xi j, z j) =

(
T + Σ σT

σ Φ

)
, (2)

where Φ is the covariance matrix of z j , and σ denotes the covariance of xi j with z j . The

manifest and latent cluster means express the joint structure of xi j and z j in slightly different

ways, which becomes clear when noting that x̄• j = u j + ē• j . Although the covariances between

variables at Level 1 and 2 are equivalent in complete data, Cov(x̄• j, z j) = Cov(u j, z j), the
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manifest means tend to have a larger variance across clusters, Var(x̄• j) = Var(u j) + Var(ē• j).

This is particularly important in multilevel analyses because the manifest and latent cluster

means can imply different correlation and regression coefficients at Level 2 (Croon & van

Veldhoven, 2007; Grilli & Rampichini, 2011; Lüdtke et al., 2008).

Substantive analysis models

Consider the case with only one variable at Level 1 (yi j) and one variable at Level 2 (z j), where

yi j = u j + ei j with latent cluster means u j . In the following, we consider two analysis models

that can be used to describe the relation between yi j and z j . In the first model, yi j is an outcome

variable at Level 1 that is predicted by z j ,

yi j = β0 + βyzz j + υ j + εi j , (3)

where βyz denotes the regression coefficient of yi j regressed on z j (see Snijders & Bosker,

2012b). In the second model, reusing some of the same notation, z j is an outcome variable at

Level 2 that is predicted by the latent cluster means of yi j ,

z j = β0 + βzyu j + ν j , (4)

where βzy denotes the regression coefficient of z j regressed on yi j (for a discussion, see Croon

& van Veldhoven, 2007; Lüdtke et al., 2008). Notice that the model in Equation 4 could also

be estimated on the basis of the manifest cluster means (i.e., with ȳ• j instead of u j), yielding

an alternative estimate of the regression coefficient of z j on yi j , say β̃zy. In general, βzy and

β̃zy will not be identical unless either the clusters become large or the variance of yi j at Level

1 becomes small in comparison with the variance at Level 2 (Croon & van Veldhoven, 2007;

Lüdtke et al., 2008). Specifically, if the u j were known, the population values of the two

regression coefficients could be expressed as follows. For balanced clusters of size n,

βzy = Var(u j)
−1Cov(u j, z j) = T−1σ and β̃zy = Var(ȳ• j)

−1Cov(ȳ• j, z j) = (T + 1
nΣ)
−1σ . (5)

The fact that the two regression coefficients differ is well known in the multilevel literature (e.g.,

Lüdtke et al., 2008; Preacher et al., 2010; Shin & Raudenbush, 2010). In the present article, we

elaborate on the consequences of this finding for the treatment of missing data: When dealing
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with missing data at Level 2, the manifest and latent cluster means offer two different ways of

incorporating the cluster-level components of variables at Level 1 in the imputation model for

missing data at Level 2.

Imputation models for missing data at Level 2

In the following section, we present two popular approaches to multilevel MI: joint modeling

(JM) and the fully conditional specification of MI (FCS). In order to discuss how the two

approaches take the cluster-level component of variables at Level 1 into account when dealing

with missing data at Level 2, we also compare the main features of the computational algorithms

underlying the two approaches (see also Enders et al., 2016). For the purpose of this article, we

focus on applications with normally distributed variables and missing data at Level 2. However,

either approach can be used to deal with missing data at both Level 1 and 2; nonnormal and

categorical variables can also be addressed and will be considered in the Discussion section.

Joint modeling (JM)

The general idea of MI is to draw multiple replacements for the missing values from the

conditional distribution of the missing data, given the observed data and a statistical model (the

imputation model). In JM, a single imputation model is specified for all variables with missing

data, and imputations are generated for all variables simultaneously (Carpenter & Kenward,

2013; Goldstein et al., 2009; see also Schafer & Yucel, 2002). To simplify1 its presentation,

we consider a variant of the JM that does not include predictor variables but instead treats all

variables as target variables in the imputation procedure. This model can be written as

y1i j = µ1 + u1 j + e1i j

y2 j = µ2 + u2 j ,
(6)

1In the general formulation of the JM, predictor variables can be included in the model if they do not contain
any missing data (i.e., they are completely observed). The simplified model discussed here was chosen because (a)
it facilitates the presentation and comparison of the computational procedures, (b) it allows for arbitrary patterns of
missing data, and (c) it can be applied in any situation in which the analysis model is a multilevel random intercept
model.
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where y1i j denotes a number of target variables at Level 1, taking on values for observation i

in cluster j, with mean vector µ1, random intercepts u1 j at Level 2, and residuals e1i j at Level

1. Likewise, y2 j denotes target variables at Level 2, with mean vector µ2 and residuals u2 j at

Level 2. The random intercepts and residuals at Level 2 combined, u j = (u1 j, u2 j), are assumed

to follow a multivariate normal distribution with mean zero and covariance matrix Ψ. The

residuals at Level 1, e1i j , are assumed to follow a multivariate normal distribution with mean

zero and covariance matrix Σ.

To illustrate the computational procedure for sampling from the JM, we consider the case

where there are J clusters ( j = 1, . . . , J) each with n j observations (i = 1, . . . , n j), P completely

observed variables at Level 1, and Q variables at Level 2 with arbitrary patterns of missing

data (see also Carpenter & Kenward, 2013; Goldstein et al., 2009). Then, for each missing data

pattern, y2 j can be decomposed into an observed and an unobserved part, y2 j = (y
obs
2 j , y

mis
2 j ). The

goal of MI is to draw replacements yimp
2 j for the ymis

2 j on the basis of the observed data y1i j and

yobs2 j , and the parameters of the imputation model, θ = (µ1,µ2,Ψ,Σ). The covariance matrix at

Level 2 is a (P +Q) × (P +Q)matrix which, for computational convenience, can be partitioned

by reordering its rows and columns as
[
Ψ1 Ψ12
Ψ21 Ψ2

]
, with subscripts referring to variables at Level

1 and 2, or
[
Ψobs

j Ψobs,mis
j

Ψmis,obs
j Ψmis

j

]
, with superscripts referring to observed and missing data for each

cluster j. From a set of starting values and given appropriate prior distributions, the Gibbs

sampler iterates along the following steps. At iteration t,

1. Draw u(t+1)
1 j ∼ P(u1 j |y1i j, u

(t)
2 j, θ

(t)
) from a multivariate normal distribution N(ũ(t)1 j,U

(t)
1 j ),

conditional on u2 j , with mean and covariance matrix as follows.

i) ũ(t)1 j = (IP − Λ
(t)
1|2 j)µ

(t)
1|2 j +

1
n j
Λ
(t)
1|2 j

nj∑
i=1
(y1i j − µ

(t)
1 ), whereΛ

(t)
1|2 j = Ψ

(t)
1|2

[
Ψ
(t)
1|2 +

1
nj
Σ(t)

]−1
is

the reliability of the conditional cluster mean of y1i j given y2 j , µ
(t)
1|2 j = Ψ

(t)
12

[
Ψ
(t)
2

]−1
u(t)2 j is

the expected value of u1 j given u2 j , and Ψ
(t)
1|2 = Ψ

(t)
1 −Ψ

(t)
12

[
Ψ
(t)
2

]−1
Ψ
(t)
21 is the conditional

variance of u1 j given u2 j

ii) U(t)1 j =
1
n j
Λ
(t)
1|2 jΣ

(t) , where Λ(t)1|2 j is as defined above

2. Calculate the residuals uobs,(t+1)
2 j = yobs2 j − µ

(t)
2 for observed cases at Level 2 by subtraction.
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3. Impute uimp,(t+1)
2 j ∼ P(umis

2 j |u
(t+1)
1 j , u

obs,(t+1)
2 j , θ(t)) for the ymis

2 j by drawing from a multivariate

normal distribution N(µmis|obs,(t)
2 j ,Ψ

mis|obs,(t)
j ), with mean and covariance matrix as follows.

i) µmis|obs,(t)
2 j = Ψ

obs,mis,(t)
j

[
Ψ

obs,(t)
j

]−1
uobs,(t+1)

j , the expected value of umis
2 j given uobs

j with

uobs,(t+1)
j = (u(t+1)

1 j , u
obs,(t+1)
2 j )

ii) Ψmis|obs,(t)
j = Ψ

mis,(t)
j − Ψobs,mis,(t)

[
Ψ

obs,(t)
j

]−1
Ψ

mis,obs,(t)
j , the conditional variance of umis

2 j

given uobs
j

4. Form u(t+1)
2 j = (uobs,(t+1)

2 j , uimp,(t+1)
2 j ), and calculate y(t+1)

2 j = µ
(t)
2 + u(t+1)

2 j .

5. Draw θ(t+1)
∼ P(θ|y1i j, y

(t+1)
2 j , u

(t+1)
1 j , u

(t+1)
2 j ), given appropriate priors, where P(·) is an

inverse-Wishart distribution for Ψ and Σ, and multivariate normal for µ1 and µ2.

Two important steps in this procedure ensure that the relations between variables are taken into

account when performing MI. First, the random effects u1 j of variables at Level 1 are drawn

conditionally on the variables at Level 2 (Step 1). Second, the missing residuals at Level 2, u2 j ,

are drawn conditionally on the random effects of y1i j and the observed y2 j (Step 3). Here, it

becomes clear that the JM uses the latent cluster means (i.e., random effects) of y1 to predict

missing values in y2.
2 Formally, the expression in Step 1a can be seen as a shrinkage estimator

for the cluster means of y1. Using this estimator, the latent means (i.e., random effects) are

“pulled” away from the observed (i.e., manifest) means and toward the grand mean to an extent

that is determined by the reliability of the cluster means (see also de Leeuw & Kreft, 1995;

Raudenbush & Bryk, 2002; Skrondal & Rabe-Hesketh, 2004).

Fully conditional specification (FCS)

As an alternative to JM, the joint distribution of the variables with missing data can be approx-

imated by imputing one variable at a time using a sequence of univariate imputation models,

where each model conditions on the other variables in the data set (or a subset of them). This

procedure is known as the fully conditional specification of MI (FCS) but sometimes also re-

2In the more general formulation of the JM, which includes additional predictor variables on the right-hand
side of the model, it is possible to include manifest cluster means as predictor variables as long as the respective
variables are completely observed. This specification of the JM is conceptually similar to the FCS approach and
will not be considered further (for a discussion, see Enders et al., 2016).
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ferred to as “chained equations” or sequential MI (Raghunathan et al., 2001; Royston & White,

2011; van Buuren et al., 2006).

Let y1i jp denote observation i in cluster j for the p-th variable at Level 1 (p = 1, . . . , P),

and let y2 jq denote the value of cluster j for the q-th variable at Level 2 (q = 1, . . . ,Q). Then,

imputations for missing values in individual-level variables may be generated from a set of

conditional distributions

y1i jp ∼ P(y1i jp |y1i j(−p), ỹ1 j(−p), y2 j, θp) , (7)

where the subscript (−p) denotes the set of variables from which p is excluded, ỹ1 j denotes

the cluster-level components of variables at Level 1 (e.g., manifest or latent means), and θp

denotes the parameters of the p-th imputation model. Similarly, for missing values at Level 2,

imputations may be generated from

y2 jq ∼ P(y2 jq |ỹ1 j, y2 j(−q), θq) , (8)

where the subscript (−q) denotes the set of variables from which q is excluded, and θq denotes

the parameters of the q-th imputation model. For example, the imputation model at Level 1

may be a multilevel random intercept model (e.g., Schafer & Yucel, 2002; Snijders & Bosker,

2012b; van Buuren, 2011), and the imputation model at Level 2 may be a regression model

based on the other variables and cluster-level components at Level 2 (e.g., Rubin, 1987; van

Buuren, 2012). The relations between the variables are preserved in the FCS approach by

iterating across variables and using each variable and its cluster-level components as predictor

variables in every other imputation model. In contrast to JM, however, the FCS approach makes

it possible to extract the cluster-level components of variables at Level 1 in different ways, that

is, ỹ1 j may include either manifest or latent cluster means of y1 j (or a mixture thereof). Once

new imputations have been drawn, the cluster-level components must be updated accordingly.

To illustrate the computational procedure used in the FCS approach, we first describe the

general procedure for imputing missing data at Level 2. Then, we describe how manifest

and latent cluster means can be generated and incorporated into that procedure. Consider the

scenario above, where there are P completely observed variables at Level 1, and Q partially

observed variables at Level 2. For the q-th variable, denote observed and missing values as
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yobs2 jq and ymis
2 jq, and denote the parameters of the imputation model as θq = {β0q, β1q,φ

2
q}. For

variable q at iteration t,

1. Calculate ỹ(t)1 j from y1i j either as manifest or latent cluster means (see below).

2. Draw θ(t+1)
q ∼ P(θ|ỹ(t)1 j, y

(t)
2 j ) given appropriate priors, where P(·) is inverse-Gamma for φ2

q

and multivariate normal for β0q and β1q combined.

3. Impute yimp,(t+1)
2 jq ∼ P(ymis

2 jq |θ
(t+1)
q , ỹ(t)1 j, y

(t)
2 j(−q)) from a univariate normal distribution N

(
β
(t+1)
0q +

x̃(t)j(−q)β
(t+1)
1q ,φ2,(t+1)

q
)
, conditional on the predictor variables x̃(t)j(−q) = (ỹ

(t)
1 j, y

(t)
2 j(−q)).

In order to include the manifest means in ỹ1 j , an additional step is carried out which simply

calculates the manifest mean based on the current scores of y1i j . In the literature, this strategy

is more widely known as passive imputation (Royston, 2005; van Buuren, 2012). For the p-th

variable at Level 1,

1. Calculate ỹ(t)1 jp = ȳ1• jp =
1
n j

nj∑
i=1

y1i jp .

Alternatively, latent means may be included in ỹ1 j . To this end, the latent means are drawn

from their posterior distribution, given the other variables and cluster-level components at

Level 2. Here, we present a procedure for sampling the latent means using the plausible value

technique, which regards the observed responses at Level 1 as indicators of an unobserved,

latent variable at Level 2 (Mislevy, 1991; Yucel et al., 2007). For the p-th variable at Level 1,

let θ∗p = {β0p, β1p,ψ
2
p|(−p), σ

2
p}. Then,

1. Fit3 the multilevel random intercept model y1i jp = β̂
(t)
0p + β̂

(t)
1px̃(t)j(−p) + υ j + εi j , obtaining

estimates for the conditional mean µ(t)p|(−p) j = β̂
(t)
0p + β̂

(t)
1px̃(t)j(−p) and the (residual) conditional

variances ψ̂2,(t)
p|(−p) (at Level 2) and σ̂

2,(t)
p (at Level 1) of y1i jp, given the predictor variables

x̃(t)j(−p) = (ỹ
(t)
1 j(−p), y

(t)
2 j ).

2. Draw u(t)1 jp ∼ P(u1 jp |ỹ
(t)
1 j(−p), y

(t)
2 j, θ̂

∗(t)
p ) from a univariate normal distribution N(ũ(t)1 jp,U

(t)
1 jp),

where the mean and variance are calculated as follows.
3This approach is similar to obtaining “empirical Bayes” estimates for random effects in multilevel modeling

(e.g., Laird & Ware, 1982; Morris, 1983). The estimation of the model parameters can be achieved by maximum-
likelihood (ML) or Bayesian methods. Here, we used Bayesian estimates of the model parameters because ML led
to convergence issues in smaller samples. As an alternative, a fully Bayesian procedure can be used in which the
estimates θ̂∗(t) are replaced with Bayesian posterior draws θ∗(t) (see the Discussion section).
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i) ũ(t)1 jp = µ
(t)
p|(−p) j + λ

(t)
p|(−p) j ·

1
n j

nj∑
i=1
(y1i jp − µ

(t)
p|(−p) j) , where λ

(t)
p|(−p) j =

ψ̂
2,(t)
p |(−p)

ψ̂
2,(t)
p |(−p)j

+σ̂
2,(t)
p /nj

is the

reliability of the conditional cluster means of y1i jp, given ỹ1 j(−p) and y2 j

ii) U(t)1 jp = λ
(t)
p|(−p) j ·

σ̂
2,(t)
p

n j
, where λ(t)p|(−p) j is as defined above

3. Set ỹ(t)1 jp = u(t)1 jp .

Because the latent cluster means are regarded as unobservable in the plausible value approach,

new values for the latent means must be generated at each iteration even if the underlying

variable is completely observed. This acknowledges the fact that, because only a finite number

of observations are used to estimate the cluster-level component, any single estimate of the

(latent) cluster mean is subject to uncertainty (for related approaches involving plausible values,

see Blackwell et al., 2017b; Yang & Seltzer, 2016).

Notice that, when using latent cluster means, FCS becomes very similar to JM. Only in

Step 2a above does the expression appear to be slightly different from the corresponding step in

JM (Step 1a). However, the similarity becomes fully visible when the expression in Step 2a is

rearranged:

ũ1 jp = (1 − λp|(−p) j) · µp|(−p) j + λp|(−p) j ·
1
n j

nj∑
i=1

yi j . (9)

This illustrates that the FCS approach with latent cluster means employs the same kind of

shrinkage that is also used in JM. The handling of the overall mean of y1i jp differs because the

conditional mean µp|(−p) j is redefined in FCS to include the overall mean.

Using manifest versus latent cluster means. The fact that either manifest (FCS-MAN) or

latent cluster means (FCS-LAT) can be used in FCS raises the question of which procedure

is most appropriate in a given scenario. For the purposes of this article, we assume that the

distributional assumptions of the JM hold in the population, and FCS is used to treat missing

data at Level 2. For FCS to be consistent with the JM, the conditional distributions employed in

FCS must imply the same joint distribution as the JM. Even though several authors have argued

that this is the case for balanced data (i.e., with clusters of the same size; Carpenter & Kenward,

2013; Lüdtke et al., 2017; Mistler, 2015), it has been suggested that the same does not hold in

unbalanced data for FCS-MAN (i.e., with clusters of different sizes; Resche-Rigon &White, in
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press). More precisely, Resche-Rigon and White demonstrated that the conditional distribution

implied by the JM does not depend solely on the manifest means but also on cluster size, to the

effect that FCS-MAN would need to account for the Level 1 heteroscedasticity that is due to

differences in cluster size.

In the present article, we extend this line of reasoning in two different ways. First, we show

in the Appendix that, when missing data at Level 2 are treated with FCS-MAN, (a) variance

estimates for variables at Level 2 remain unbiased, but (b) estimates of covariances at Level 2

are biased towards zero in unbalanced data. Second and in contrast to FCS-MAN, we argue

that FCS-LAT provides estimates that are consistent with the JM regardless of whether or not

the data are balanced because the “shrinkage” estimates of the latent cluster means take the

differences in cluster size into account (i.e., the differences in reliability of the cluster means;

see also Raudenbush & Bryk, 2002). The bias under FCS-MAN is difficult to evaluate in detail

because it depends on the distribution of clusters sizes in the sample. In the Appendix, the bias

is derived under the assumption that the number of clusters goes to infinity and that the missing

data occur completely at random (MCAR) and independently of cluster size. Consider again

the case with only one variable at Level 1 (y) and one variable at Level 2 (z). Then, the bias of

the estimator of the covariance of y with z can be expressed as

%Bias(σ̂yz) = α

[∑
k∈S

(
k
n̄ − 1

)
πk

(
τ

2
y +

σ
2
y

k

)] [∑
k∈S

πk

(
τ

2
y +

σ
2
y

k

)]−1

, (10)

where α denotes the probability of missing data, S denotes the set of cluster sizes (k) uniquely

present in the data, πk the proportion of clusters with size k, n̄ the average cluster size, and

σ
2
y and τ2

y the variance components of y at Level 1 and 2, respectively. The fraction in this

expression relates the variability of the cluster means for each k ∈ S to the variability of the

cluster means overall. Because smaller clusters, which tend to have larger variability in the

observed cluster means, receive negative weights ( k
n̄ − 1) as opposed to larger clusters with less

variability, the bias in σ̂yz tends to be negative (i.e., towards zero). In balanced data (k = n̄

for all k ∈ S), the bias is zero. However, even with unbalanced data, the bias appears to be

relatively small. This is illustrated in Figure 1 for the special case of uniformly distributed

cluster sizes (n j), different levels of the average cluster size (n̄), different choices for the range
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Figure 1: Expected bias for the covariance of y with z under FCS-MAN, for varying amounts of missing data,
different intraclass correlations of y (ρIy), different average cluster sizes (n̄), and different ranges of cluster sizes
(nj , assuming a uniform distribution).

of the cluster sizes, different amounts of missing data, and different values for the intraclass

correlation (ICC) of y (ρIy). Relatively extreme conditions appear to be necessary in order for

the parameter estimates to be distorted to a degree that is no longer tolerable (e.g., < −10%).

Note also that, although the nonequivalence of FCS-LAT and FCS-MAN in unbalanced data

holds in general, the expression for the bias was derived under relatively strong assumptions

and should not be generalized to more general conditions.

Even though the use of FCS-LAT and JMmay be preferred from a theoretical point of view,

it is important to acknowledge that the statistical models underlying these procedures may be

more difficult to estimate than those underlying FCS-MAN, especially in smaller samples or

when variables at Level 1 have little variance at Level 2 (e.g., Croon & van Veldhoven, 2007;

Lüdtke et al., 2008). Similarly, the different procedures may be more or less accurate depending

on the missing data mechanism, the proportion of missing values, and the information available

from auxiliary variables at Level 1 (e.g., Andridge & Thompson, 2015). Thus, it is important

to study the properties of the different procedures in less than ideal conditions (e.g., very few

clusters, small vs. large ICCs, more or less informative data loss, different types of unbalanced
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data). Finally, either procedure may provide substantial gains in accuracy and efficiency when

compared with still popular but simpler methods such as single-level MI or LD. To this end,

we conducted two computer simulation studies. In Study 1, we evaluated the performance of

the different methods under a variety of conditions with balanced data. In Study 2, we focused

on the more general case with unbalanced data and the potential bias associated with using

manifest cluster means (i.e., with FCS-MAN).

Study 1

In the following section, we present the results of the first simulation study inwhichwe compared

the performance of JM and FCS for missing data at Level 2 with balanced data.

Simulation procedure

Data generation. For the purpose of this study, we focused on the special case where there

is only one variable at Level 1 (y) and one variable at Level 2 (z). The data were generated

using the model in Equation 6. For the two variables y and z, the model reads:

yi j = µy + uy j + ei j

z j = µz + uz j .
(11)

For simplicity, we assumed that all variables were standardized with mean zero (µy = µz = 0)

and unit variance. To specify the variances and covariances at Level 1 and 2, we defined the

ICC of y (ρIy) and the correlation between the two variables at Level 2 (ρyz). Missing values

were induced in z depending on the observed cluster means ȳ• j using the following generalized

linear model

r j = α0 + λȳ• j + δ j , (12)

where r j denotes the latent propensity for observing z j , α0 is a quantile of the standard normal

distribution according to somemissing data probabilityα (e.g., α0 = −.842 forα = 20%missing

data), and λ is the effect of y on the response propensity of z. The variance of r j was fixed at

1, and the residuals δ j were drawn from a normal distribution with variance 1 − λ2 Var(ȳ• j). A

value z j was deleted if r j > 0.
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Table 1: Simulated conditions in Study 1 and Study 2

Design Conditions Study 1 Study 2
Cluster size (n or n̄) 5, 20 5, 20
Number of clusters (J) 30, 50, 100, 200, 500, 1000 50, 200, 1000
Range in cluster size – uniform (±40%, 80%), bimodal

(±40%, 80%)
ICC of y (ρIy) .10, .30 .10, .30
Correlation of y and z (ρyz) .5 .5
Effect of y on missingness (λ)a 0, 0.5, 1 0.5
Portion of missing data (α) 20%, 40% 20%, 40%

a The values for λ are given in a standardized metric. A value of 1 constitutes a strong, deterministic
missing data mechanism, in which all values that lie beyond a certain cutoff are deleted.

Table 1 summarizes the simulation conditions. In Study 1, we simulated conditions with

different cluster sizes (n = 5, 20) that are typical in educational research (e.g., students in school

classes, repeated measurements). We varied the number of clusters between J = 30 and 1, 000

to examine both the small- and large-sample properties of the procedures. We varied the ICC of

y in two steps (ρIy = .10, .30) to reflect conditions with more or less information, respectively, in

y located at Level 2 (see also Lüdtke et al., 2008). We simulated conditions in which data were

missing completely at random (MCAR, λ = 0) or moderately or strongly missing at random

(MAR, λ = 0.5 or 1), and either 20% or 40% of the data were missing.4 Each condition was

replicated 1,000 times.

Imputation. To impute missing values with JM, we used the R package jomo (Quartagno

& Carpenter, 2016a). To implement the FCS approach, we used the R packages mice (van

Buuren & Groothuis-Oudshoorn, 2011) and miceadds (Robitzsch, Grund, & Henke, 2017) for

imputation with FCS-MAN and FCS-LAT, respectively. In addition, we included single-level

MI with FCS (FCS-SL) and listwise deletion (LD) for the purpose of comparison. Single-level

FCS was implemented as “flat-file” imputation thus treating all variables as variables at Level

1 (see also van Buuren, 2011); because this resulted in different imputations within clusters for

variables at Level 2, imputations were averaged within clusters prior to being analyzed. With

4The values for λ are given here in a standardized metric. The actual values of λ in the data-generating model
were different because they also depended on the ICC of y and the sample size at Level 1. The actual values were
chosen in such a way that they implied a standardized effect of y of size 0, 0.5, and 1, respectively.
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each procedure, we generated 10 imputed data sets. For JM, we chose 1,000 burn-in iterations

and 500 iterations between imputations. For the FCS approach, we chose 20 iterations per

imputation. These values were found to be sufficient to ensure convergence as determined by

assessing diagnostic plots. Default flat prior distributions were used for all procedures.

Analysis and parameters of interest. The software Mplus was used to analyze the data

(L. K. Muthén & Muthén, 2012). Using Mplus, we estimated the mean (µz) and the variance

(σ2
z ) of z as well as the (latent) covariance between y and z (σyz). Furthermore, we estimated

the regression coefficients relating y and z at Level 2 using two additional regression models

with y regressed on z (βyz) and z regressed on y (βzy). For each parameter and each simulation

condition, we calculated the bias, the root mean squared error (RMSE) and the coverage rate of

the 95% confidence interval. To calculate the bias and RMSE, we used the average estimates

from the complete data sets as a point of reference instead of the “true” values in the data-

generating model. This was necessary because, even without missing data, the estimates of

some parameters were biased in some conditions, rendering a comparison with the “true” values

less useful. The complete set of results, including the raw bias and RMSE for all missing data

procedures as well as those for the complete data sets, is provided in Supplement D of the

supplemental online materials.

Results

We first focus on the estimates of the mean and variance of z (µ̂z and σ̂
2
z ), and the covariance

of y with z (σ̂yz). The bias for the mean, variance and covariance is presented in Figure 2

for conditions with different cluster sizes (n) and numbers of clusters (J), different amounts

of information at Level 2 as reflected by the ICC of y (ρIy), and 20% missing data under

moderate MAR (λ = 0.5). All procedures for multilevel MI provided approximately unbiased

estimates of the three parameters in larger samples (J → 1, 000).The procedures differed only

in the sample size needed to achieve these results. Whereas FCS-MAN and FCS-LAT provided

approximately unbiased estimates of the population parameters even in small samples (n = 5,

J = 30) and with little information at Level 2 (ρIy = .10), JM required slightly larger samples

to provide unbiased estimates of these parameters (J ≥ 100). By contrast, FCS-SL and LD
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Figure 3: Relative RMSE for the covariance of y with z (σ̂yz) with n = 5 and J = 200, for varying ICCs of y
(ρIy), different missing data mechanisms (λ), and different portions of missing data (MD). LD = listwise deletion;
FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS
with latent cluster means; JM = joint modeling.

provided strongly biased results of the mean and covariance regardless of sample size, and

FCS-SL also led to biased estimates of the variance of z.

The results obtained from the different procedures were also affected by the missing data

mechanism (λ), the amount of missing data, and the ICC of y (ρIy), as illustrated in Figure 3 for

the RMSE of the covariance of y with z (σ̂yz). These factors can be regarded as determinants of

the fraction ofmissing information (FMI), that is, the loss of precision associated with parameter

estimation with missing data (e.g., Andridge & Thompson, 2015). Larger portions of missing

data and more informative missing data mechanisms (λ) both increased the RMSE, whereas an

increase in the ICC of y reduced it. In comparison with LD, the different MI procedures tended

to benefit more from a larger ICC of y, especially under more severe losses of data (i.e., 40%

missing data, MAR).

The results for the regression models with y regressed on z (β̂yz) and z regressed on y (β̂zy)

are summarized in Table 2. Overall, the results were consistent with the results presented above;

that is, we obtained approximately unbiased estimates of βyz and βzy in larger samples, but the

estimates had slight downward biases in smaller samples. By contrast, estimates obtained from

FCS-SL and LD were biased, especially under MAR and regardless of sample size (see also
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Table 2: Study 1: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the
Regression Coefficients of y on z and z on y (β̂yz and β̂zy) for Small ICC of y (ρIy = .10) and 20%
Missing Data (MAR, λ = 0.5)

Bias (%) Rel. RMSE Coverage (%)

FCS-
SL

FCS-
MAN

FCS-
LAT JM FCS-

SL
FCS-
MAN

FCS-
LAT JM FCS-

SL
FCS-
MAN

FCS-
LAT JM

Regression y ∼ z (β̂yz)

n = 5
J = 30 −7.0 −6.7 −3.6 −14.1 0.708 0.712 0.727 0.666 90.4 90.4 89.6 93.6
J = 50 −4.2 −2.0 0.7 −9.2 0.520 0.525 0.539 0.504 93.1 93.4 91.6 95.0
J = 100 −5.3 −1.6 0.8 −6.8 0.373 0.381 0.383 0.371 93.9 94.3 93.9 95.3
J = 200 −5.2 −0.7 0.9 −4.2 0.253 0.254 0.257 0.253 94.6 95.1 94.1 95.2
J = 500 −5.1 −0.3 0.3 −2.0 0.166 0.162 0.163 0.161 93.3 94.8 94.5 95.0
J = 1000 −5.0 0.1 0.3 −0.8 0.121 0.115 0.115 0.114 92.8 94.6 94.2 94.7
n = 20
J = 30 −4.5 −3.4 −2.8 −11.1 0.481 0.473 0.471 0.458 90.7 92.3 92.0 94.5
J = 50 −5.7 −3.0 −2.6 −8.8 0.348 0.349 0.349 0.345 93.1 92.9 93.1 95.1
J = 100 −5.3 −1.5 −1.1 −4.8 0.256 0.255 0.252 0.252 92.6 94.0 93.6 94.3
J = 200 −5.5 −1.0 −0.7 −3.0 0.185 0.180 0.179 0.179 92.6 94.4 93.8 95.0
J = 500 −5.2 −0.2 −0.1 −1.1 0.119 0.108 0.107 0.107 91.3 95.3 95.8 95.9
J = 1000 −5.6 −0.4 −0.4 −0.9 0.096 0.079 0.079 0.079 88.0 94.0 93.9 94.5

Regression z ∼ y (β̂zy)

n = 5
J = 30 −20.3 −12.9 −9.5 −17.1 1.067 0.961 1.025 1.001 86.3 93.3 93.4 94.2
J = 50 −16.8 −3.2 −0.2 −8.8 0.822 0.760 0.797 0.794 84.9 93.5 93.1 92.9
J = 100 −19.6 −1.0 1.8 −6.7 0.585 0.589 0.605 0.576 82.4 94.2 94.7 94.0
J = 200 −21.0 −0.5 1.7 −4.7 0.389 0.379 0.400 0.382 80.5 95.1 95.3 93.8
J = 500 −20.9 0.0 0.6 −2.1 0.273 0.220 0.223 0.211 72.2 96.8 96.2 96.1
J = 1000−20.9 0.3 0.4 −1.0 0.243 0.156 0.155 0.151 59.0 96.0 95.5 95.8
n = 20
J = 30 −24.0 0.3 2.0 −11.9 0.544 0.584 0.595 0.541 82.7 92.7 92.7 94.4
J = 50 −24.6 −0.4 0.7 −9.2 0.408 0.409 0.415 0.379 81.5 93.7 93.9 94.5
J = 100 −24.4 −0.0 0.3 −5.1 0.333 0.286 0.284 0.271 75.3 94.2 94.2 95.2
J = 200 −24.9 −0.5 −0.0 −3.2 0.292 0.196 0.197 0.190 60.4 94.3 93.4 94.8
J = 500 −24.5 0.2 0.4 −1.0 0.262 0.119 0.118 0.115 27.8 95.1 95.4 95.0
J = 1000−24.8 −0.3 −0.2 −0.9 0.258 0.086 0.086 0.085 6.0 95.2 94.4 94.7

Note. n = cluster size; J = number of clusters; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT
= two-level FCS with latent cluster means; JM = joint modeling.

Supplement D). It is interesting that, even though the bias observed in smaller samples was

largest for JM, the estimates under JM were also the most accurate overall in these conditions

as reflected by the RMSE, indicating that the variability of the estimates was lower under JM

as compared with FCS-MAN and FCS-LAT. The coverage of the 95% confidence interval was
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Figure 4: Fraction of missing information (FMI) for estimates of the covariance of y with z (σ̂yz) with n = 5 and
J = 200, and 20% missing data (MAR, λ = 0.5), for varying ICCs of y (ρIy) and different correlations between y

and z (ρyz).

close to the nominal 95% in most conditions but was sometimes too low under FCS in very

small samples (n = 5 and J = 30, with ρIy = .10) or in conditions with larger portions of

missing data (see Supplement D). However, as might be expected from this collection of results,

the near-optimal coverage under JM (and to a lesser extent under FCS) occurred at the expense

of standard errors that were sometimes too large as compared with the variance of the parameter

estimates in smaller samples (n = 5, J ≤ 100).

Summary

Taken together, these results indicate that (a) the overall performance of FCS-MAN, FCS-LAT,

and JM is similar in terms of bias, RMSE, and coverage of the 95% confidence interval, (b) the

performance of the procedures may differ in smaller samples or when larger portions of the data

are missing, and (c) including variables with substantial variance between clusters (i.e., large

ICC) can be extremely beneficial for MI because these variables can provide crucial information

about missing values at Level 2. To further illustrate the importance of including variables at

Level 1 for imputing variables at Level 2, we conducted an additional simulation study in which

we varied the ICC of y in a range from .05 to .95 and the correlation of y and z between .20 and

.80; we then estimated the fraction of missing information (FMI) under JM in each condition

(otherwise n = 5, J = 200, λ = 0.5, 20% missing data). The results are shown in Figure 4.

As can be seen, the FMI tended to decrease as the ICC of y (ρIy) increased depending on the
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correlation between y and z (ρyz). For example, increasing the ICC of y from .10 to .30 reduced

the FMI by approximately 7.6% when the correlation was moderate (ρyz = .5) and by 27.4%

when the correlation was strong (ρyz = .8). With weak correlation (ρyz = .2), increasing the

ICC of y did not noticeably change the FMI, as may be expected from the fact that such weakly

correlated variables are not able to explain much variance associated with missing values. This

illustrates that researchers who want to treat missing data at Level 2 by means of MI should

include auxiliary variables at Level 1, especially when the auxiliary variables (a) are strongly

related to the variables with missing data and (b) contain substantial variance between clusters

as indicated by their ICCs.

Study 2

In Study 1, we evaluated the performance of JM and FCS in balanced data. In practice, however,

most research conducted with multilevel data is based on unbalanced data. For this reason, in

Study 2, we focused on the more general case with unbalanced data (i.e., clusters of different

sizes).

Simulation procedure

Following the same general procedures as in Study 1, we generated clusters of varying size n j

in Study 2, where n j was drawn either from a uniform distribution in the range of ±40% or 80%

around the average cluster size n̄ (e.g., for n̄ = 5 and range ±80%, n j = 1, 2, . . . , 9) or a bimodal

distribution that included only the extreme points of this range (e.g., for n̄ = 5 and range ±80%,

n j = 1 or 9; see Table 1). Even though the resulting range of n j is quite typical in educational

research, the two distributions should be regarded as extreme choices given that the distribution

of cluster sizes in practice is often bell-shaped and possibly asymmetrical. For this reason, the

results presented here should be regarded as a lower bound for the performance of the different

MI procedures in practice.

Imputation. We used the same procedures as in Study 1. In addition, on the basis of

Resche-Rigon and White’s (in press) suggestions, we included an MI procedure that used
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manifest cluster means similar to FCS-MAN but also acknowledged heteroscedasticity at Level

1 by including n j and the interaction of n j with ȳ• j as additional predictor variables in the

imputation model (FCS-NJ).

Results

To avoid redundancy, we focus on reporting the results for the covariance of y with z (σ̂yz; for the

remaining results, see Supplement D). These results are summarized in Table 3 for conditions

with a low ICC of y (ρIy = .10) and 20% missing data. Consistent with our expectations, FCS-

MAN provided slightly biased estimates of the covariance, even in conditions with very large

samples (J → 1, 000). However, the bias usually remained relatively small and was restricted

to conditions with few observations per cluster (n = 5) and strongly unbalanced data (±80%).

Biases larger than −10% were obtained under FCS-MAN only in conditions with 40% missing

data and strongly unbalanced data (±80%, uniform or bimodal). In line with our expectations,

the bias was approximately twice as large in conditions with 40% missing data than in the

conditions displayed in Table 3 (see Supplement D). In line with the recommendations in the

literature, the bias under FCS-MAN was reduced to essentially zero when the cluster size was

included in the imputation model (FCS-NJ). Similarly, under FCS-LAT or JM, the bias was

approximately zero in larger samples even with strongly unbalanced data (J → 1, 000). In

smaller samples, estimates of the covariance were slightly biased upwards under FCS-LAT

(J = 50) and downwards under JM (J ≤ 200). In terms of the RMSE, estimates obtained from

JM were slightly more accurate in smaller samples (J = 50). In larger samples, differences

in the RMSE tended to be very small. Similarly, the coverage of the 95% confidence interval

was very close to the nominal 95% for all procedures in all but very extreme conditions (e.g.,

for FCS-MAN; see Supplement D). Under JM (and to a lesser extent under FCS), we again

observed standard errors that were sometimes too large as compared with the variance of the

parameter estimates in smaller samples (n = 5, J = 50). Taken together, these results indicate

that (a) covariance estimates obtained under FCS-MAN can be biased in unbalanced data, (b)

this bias is likely to be very small in any practical application of multilevel MI, (c) FCS-NJ,

FCS-LAT, and JM all provide approximately unbiased results when samples are sufficiently
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Table 3: Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for
Covariance of y and z (σ̂yz) in Unbalanced Data for Small ICC of y (ρIy = .10) and 20% Missing Data
(MAR, λ = 0.5)

Bias (%) Rel. RMSE Coverage (%)

FCS-
MAN

FCS-
NJ

FCS-
LAT JM FCS-

MAN
FCS-
NJ

FCS-
LAT JM FCS-

MAN
FCS-
NJ

FCS-
LAT JM

Moderately unbalanced (uniform, ±40%)

n̄ = 5
J = 50 0.4 0.9 5.1 −8.4 0.591 0.601 0.611 0.547 94.5 95.3 94.0 94.5
J = 200 0.1 0.3 2.1 −3.8 0.285 0.284 0.289 0.273 96.1 96.5 95.5 96.7
J = 1000 −0.9 −0.4 −0.1 −1.5 0.132 0.132 0.131 0.130 93.8 94.3 94.5 94.1
n̄ = 20
J = 50 −0.0 1.0 1.0 −8.0 0.446 0.466 0.452 0.421 92.6 93.9 92.4 91.4
J = 200 −0.5 −0.5 −0.3 −3.4 0.215 0.214 0.213 0.211 94.1 94.4 94.1 93.9
J = 1000 −0.1 −0.1 0.0 −0.6 0.094 0.095 0.093 0.094 94.7 94.2 94.8 95.0

Strongly unbalanced (uniform, ±80%)

n̄ = 5
J = 50 −0.8 2.5 4.5 −7.5 0.608 0.639 0.621 0.566 94.3 96.1 93.9 94.2
J = 200 −2.3 0.4 1.7 −3.6 0.300 0.302 0.307 0.291 94.1 94.1 93.8 93.6
J = 1000 −3.2 −0.3 0.2 −1.2 0.136 0.132 0.133 0.131 94.2 94.7 94.1 94.3
n̄ = 20
J = 50 1.1 1.5 2.2 −7.5 0.437 0.449 0.435 0.401 94.1 95.0 93.7 93.6
J = 200 −0.4 0.2 0.5 −2.5 0.219 0.216 0.218 0.213 94.3 94.7 94.7 94.5
J = 1000 −0.9 −0.3 −0.1 −0.8 0.099 0.098 0.098 0.097 94.4 94.2 93.8 94.1

Moderately unbalanced (bimodal, ±40%)

n̄ = 5
J = 50 −0.4 1.4 3.8 −8.5 0.629 0.644 0.648 0.570 92.9 93.1 92.4 92.5
J = 200 −0.8 0.2 1.6 −3.8 0.290 0.289 0.294 0.278 93.8 95.0 94.0 94.3
J = 1000 −1.1 0.0 0.3 −1.1 0.132 0.132 0.132 0.130 94.4 94.2 94.6 94.3
n̄ = 20
J = 50 0.5 0.5 1.3 −8.5 0.427 0.435 0.439 0.403 93.5 94.0 92.9 92.4
J = 200 −0.8 −0.7 −0.6 −3.5 0.209 0.207 0.208 0.205 95.1 95.5 95.5 95.2
J = 1000 −0.1 0.1 0.2 −0.4 0.096 0.096 0.096 0.095 94.3 94.6 94.5 94.6

Strongly unbalanced (bimodal, ±80%)

n̄ = 5
J = 50 −3.6 1.8 2.9 −7.2 0.627 0.653 0.652 0.600 93.7 94.2 92.6 92.7
J = 200 −6.0 0.1 1.5 −3.2 0.298 0.296 0.298 0.290 93.8 95.3 95.3 95.0
J = 1000 −7.1 −0.7 0.0 −1.0 0.149 0.135 0.137 0.135 91.0 94.0 94.0 94.5
n̄ = 20
J = 50 −1.6 0.7 2.0 −7.7 0.471 0.473 0.479 0.444 93.1 94.2 93.3 92.6
J = 200 −2.7 −0.4 0.1 −2.8 0.231 0.227 0.228 0.223 94.4 95.3 94.3 94.1
J = 1000 −2.8 −0.4 0.3 −0.6 0.110 0.104 0.105 0.105 92.9 94.0 93.6 93.7

Note. n̄ = average cluster size; J = number of clusters; FCS-MAN = two-level FCS with manifest cluster means;
FCS-NJ = two-level FCS with manifest cluster means and cluster size (nj); FCS-LAT = two-level FCS with latent
cluster means; JM = joint modeling.
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large, and (d) the performance of the procedures may differ in smaller samples in terms of bias

and overall accuracy (RMSE).

Empirical example

To illustrate the treatment of missing data at both Level 1 and 2 using MI, we applied the

procedures used in Study 1 to the German subsample of the Programme for International

Student Assessment (PISA; OECD 2014). We were interested in the effects of the availability

of computers at school on students’ mathematics achievement when controlling for general

aspects of students’ learning environment. We controlled for students’ gender, their economic,

social, and cultural status (ESCS), and ratings on classroom management and student-teacher

relations. To control for confounding effects of school size, we also included the number of

students who were 15 years of age as an additional covariate. For the purpose of illustration,

we used only the first plausible value for students’ mathematics achievement and ignored issues

related to unequal probabilities of being selected into the sample that may have been due to the

sampling design.5

The data set included a total of 5,001 students nested within 230 schools with 3 to 25 students

participating per school (with 90% of the schools having between 11 and 25 participants;

n̄ = 21.7). The number of computers at school (Level 2) was missing for 17.4% of the schools

and the number of students at age 15 for 14.8%. At the student level (Level 1), observations

were missing for ESCS (17.2%), classroommanagement (45.1%), and student-teacher relations

(44.6%; see OECD, 2014). We generated 20 imputations for the missing data using (a) JM

as implemented in the R package jomo, (b) the FCS approach implemented in the R package

mice with manifest cluster means for all student-level variables using passive imputation (FCS-

MAN), (c) the FCS approach similar to approach (b) but with latent cluster means for students’

math achievement and their ratings on classroom management and student-teacher relations

using the plausible value approach implemented in miceadds (FCS-LAT), and (d) single-level

5In practice, the procedure would need to be repeated for each plausible value, resulting in imputations “nested”
within plausible values (Rubin, 2003; Weirich et al., 2014). Unless differences in selection probability were fully
accounted for by the observed variables, these issues would need to be addressed by including survey weights in
the imputation and the analysis model (Rust, 2013; Rutkowski, Gonzalez, Joncas, & von Davier, 2010).
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Table 4: Parameter Estimates Obtained From the PISA 2012 Data in the Empirical Example Using
Different MI Procedures

FCS-SL FCS-MAN FCS-LAT JM
Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)
Intercept 482.410 (11.096) 474.541 (7.299) 475.043 (7.668) 474.585 (7.870)
Level 1
Gender 25.287 (1.754) 25.234 (1.760) 25.152 (1.756) 25.237 (1.751)
ESCS 12.458 (1.327) 10.203 (1.340) 10.260 (1.328) 10.304 (1.294)
Classroom management 3.582 (1.069) 3.697 (1.439) 3.572 (1.215) 3.696 (1.362)
Student-teacher relations 1.488 (1.184) 4.168 (1.398) 4.565 (1.485) 3.888 (1.380)

Level 2
Number of computers 0.166 (0.111) 0.198 (0.091) 0.213 (0.097) 0.197 (0.090)
Number of students 0.034 (0.090) 0.104 (0.068) 0.093 (0.071) 0.101 (0.066)
ESCS 112.520 (8.126) 106.306 (5.930) 106.177 (6.278) 108.139 (5.828)
Classroom management 98.069 (49.026) 42.964 (20.510) 44.705 (20.019) 39.807 (19.320)
Student-teacher relations −47.962 (39.633) −32.630 (13.032) −30.334 (15.044) −30.597 (14.557)

Intercept variance 1140.753 (202.834) 1257.663 (158.599) 1280.906 (173.783) 1265.579 (163.697)
Residual variance 4044.420 (86.424) 4058.046 (87.204) 4055.189 (87.459) 4060.389 (87.049)
Note. FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level
FCS with latent cluster means; JM = joint modeling.

FCS using mice (“flat-file”, FCS-SL). We used Mplus to fit the multilevel analysis model in

which students’ mathematics achievement was regressed on students’ gender, ESCS, and ratings

on classroom management and student-teacher relations as well as the number of students and

computers at school. The analysis model included latent cluster means for the ratings on

classroom management and student-teacher relations as well as manifest cluster means for

ESCS, centering the individual scores around the cluster-level components. The computer code

and the Mplus syntax file are provided in Supplement A of the supplemental online materials.

The results are presented in Table 4. The estimates obtained from FCS-MAN, FCS-LAT,

and JM as well as their standard errors were very similar to each other. For example, the effect

of the number of computers at school when confounding variables at Level 2 were controlled

for was 0.197 for JM (SE = 0.090, p = .028), 0.198 for FCS-MAN (SE = 0.091, p = .029), and

0.213 for FCS-LAT (SE = 0.097, p = .027). Estimates of the remaining parameters were also

close, and the same pattern of results was observed for these procedures. By contrast, the results

obtained from FCS-SL oftentimes did not agree with the results from the other procedures, and

the standard errors tended to be smaller at Level 1 and larger at Level 2. Overall, these results
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illustrate that FCS-MAN, FCS-LAT, and JM may provide similar results in many applications,

especially when compared with simpler methods such as single-level MI (FCS-SL).

Discussion

The goals of the present article were (a) to compare the computational procedures underlying

JM and FCS for MI of missing data at Level 2, (b) to examine the different options (manifest

vs. latent cluster means) for including the cluster-level components of variables at Level 1 in

the imputation model for variables at Level 2, and (c) to provide recommendations for research

practice by conducting an evaluation of the different procedures in a computer simulation study.

We showed that JM and FCS are conceptually similar when both use latent cluster means, and

we outlined a computational procedure for including latent cluster means in the FCS approach

using plausible values (FCS-LAT). Using theoretical arguments, and building on the previous

literature, we showed that using manifest means (FCS-MAN) is equivalent to using latent means

in balanced data but produces slightly biased estimates of covariances at Level 2 in unbalanced

data. In line with previous research, we found that (a) controlling for cluster size (FCS-NJ) or (b)

using latent cluster means during MI (FCS-LAT and JM) provides unbiased results regardless

of whether or not the cluster sizes are balanced. However, it was also evident that the bias

obtained under FCS-MAN was relatively small and limited to conditions with few observations

per cluster (n = 5), low ICCs of variables at Level 1 (ρIy = .10), and extremely unbalanced

data. On the basis of our findings, we believe that all three procedures provide effective tools for

dealing with missing data at Level 2 in most applications in practice. Especially when compared

with procedures that delete cases with missing data (LD) or ignore the multilevel structure of

the data (FCS-SL), all procedures for multilevel MI provide tremendous improvements in the

accuracy of parameter estimates and inferences.

Even though both JM and FCS can be used to treat missing data at Level 2, the use of FCS has

often been discouraged because software solutions that iterate back and forth between variables

at Level 1 and 2 while still acknowledging the cluster-level components of variables at Level 1

have not been available (e.g., Enders et al., 2016). However, the FCS procedures discussed in
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this article all fulfill these requirements. Moreover, using FCS may even have advantages for

applications in practice (for a comparison, see Carpenter & Kenward, 2013). Specifically, FCS-

MAN allows for flexible selection of auxiliary variables and is computationally very efficient

even for large data sets. At least in the context of educational research, which often features

cross-sectional data with moderate ICCs and relatively large clusters, it may be argued that FCS-

MAN provides a good compromise between accuracy and computational speed. In addition, it

is straightforward to extend FCS-MAN to address categorical variables as well as three-level or

cross-classified data structures without greatly increasing computational demands.

On the other hand, FCS-LAT can be especially useful for applications that make specific

use of the latent cluster means (e.g., Croon & van Veldhoven, 2007) because their plausible

values are directly added to the imputed data sets and can be treated, stored and made available

in a similar way as imputations for missing data (Yang & Seltzer, 2016). In addition, the use of

FCS-LAT may be advised when working with constructs that exhibit low ICCs or with samples

that include a small but variable number of observations per cluster. In the present article, FCS-

LAT was implemented in an “empirical Bayes” approach on the basis of a posteriori Bayesian

estimates (e.g., Laird & Ware, 1982). However, it may be argued that the properties of FCS-

LAT can further be improved by adopting a fully Bayesian approach that includes an additional

posterior draw in the model that is used to generate plausible values for latent cluster means.

Additional simulations conducted over the course of this study indicated that the efficiency

and coverage properties in smaller samples improve noticeably under such an approach at the

cost of only a slight increase in bias (see Supplement B in the supplemental online materials).

The software implementation of FCS-LAT in the R package miceadds allows either of the two

methods to be used (Robitzsch et al., 2017).

It is interesting that the results obtained from JM were relatively sensitive to small-sample

bias. We believe that this may be due to the standard least-informative priors employed in JM.

Depending on the number of variables in the model, these priors can imply variance components

at Level 2 that are much larger than those that might be expected from the data (Grund, Lüdtke,

& Robitzsch, 2016a; McNeish, 2016). Consequently, it may be possible to improve parameter

estimates by adjusting the prior to cover a more plausible range of values (see also Schafer &
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Yucel, 2002). In an additional simulation study reported in Supplement C of the supplemental

online materials, we evaluated the effects of using data-dependent priors, where the priors forΨ

and Σ were based on empirical estimates obtained from the complete data. Using these priors

strongly reduced the small-sample bias under JM, providing results similar to those of FCS, even

in relatively small samples (i.e., for J = 50). However, note that the use of data-dependent priors

is not without criticism (e.g., Gelman et al., 2014) and should not be adopted lightheartedly

when there are other sources of prior information available.

As in all of research, the present study comes with several limitations and points to consider.

For example, the simulation studies were based on M = 10 imputations. However, larger

numbers of imputations are often recommended for practice (e.g., Graham et al., 2007; see also

the Empirical Example). Choosing a value larger than M = 10 may be beneficial in terms of

efficiency and coverage properties, especially in applications with large fractions of missing

information (Bodner, 2008). Furthermore, the procedures for multilevel MI featured in the

present study all used standard (i.e., conjugate) families of prior distributions (e.g., see Schafer

& Yucel, 2002). Alternative priors have been suggested in the context of Bayesian analyses and

may also improve the results obtained with MI (Barnard, McCulloch, & Meng, 2000; Gelman,

2006). Future research may choose to elaborate on the sensitivity of MI to the specification of

different prior distributions, particularly under JM (see also H. Liu, Zhang, & Grimm, 2015;

Schuurman, Grasman, & Hamaker, 2016).

The present study also suggests several possible extensions and topics for future research.

Throughout the study, we assumed that the latent model—that is, the JM—holds in the pop-

ulation (see also Carpenter & Kenward, 2013; Lüdtke et al., 2017; Resche-Rigon & White,

in press). However, the manifest model can often be considered “true” as well, and manifest

cluster means may be the preferred choice for estimating cluster-level effects in some multilevel

analysis models (Lüdtke et al., 2008). Although we expect that the procedures considered here

for the treatment of missing data at Level 2 would again provide results similar to one another,

future research should elaborate on the properties of estimators under each method when the

manifest model holds in the population (see also Grund et al., in press-b; Mistler, 2015).

Finally, we assumed that all variables followed a multivariate normal distribution, which is
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often not appropriate when working with categorical and nonnormal data. In principle, all of

the procedures presented here can be applied or adapted to categorical data, for example, by

defining a set of underlying latent variables (e.g., with threshold parameters or an appropriate link

function) that represent different categories (Carpenter & Kenward, 2013). This approach has

been implemented for multilevel JM for missing categorical data at Level 1 and 2 (Asparouhov

& Muthén, 2010b; Quartagno & Carpenter, 2016a). In multilevel FCS, the same procedures

as for single-level data can be used for missing data at Level 2 in conjunction with FCS-

MAN (i.e., on the basis of cluster means at Level 2; see Robitzsch et al., 2017). Finally, the

generation of plausible values under FCS-LAT can be adapted to categorical data by employing

an appropriate model for the underlying variables at Level 1 (e.g., binary, multinomial or

ordered logit). Nonnormal data can be addressed by performing MI on the basis of transformed

variables (Carpenter & Kenward, 2013; He & Raghunathan, 2006; Schafer, 1997; Schafer &

Olsen, 1998); however, it has also been shown that normal-distribution-based MI is fairly robust

against departures from normality (e.g., Demirtas, Freels, & Yucel, 2008; von Hippel, 2013).

To summarize, we believe that the current state of statistical software offers several options

for treating missing data at Level 2 in an adequate way. Especially when compared with

simpler methods such as LD or single-level MI, both of which ignore important characteristics

of the data, the current procedures for multilevel MI are useful and effective additions to the

researcher’s toolbox. Instead of arguing for the use of only one of these procedures, we believe

that it is most important for researchers to be aware of the specific challenges that arise during

multilevel MI and make an informed decision about which procedure best fits the structure of

their data and their respective research question. Finally, we hope that the thoughts presented in

this article will open up and motivate questions for future research on the treatment of missing

data in multilevel studies.

Appendix

This Appendix provides additional theoretical arguments regarding the use of manifest versus

latent cluster means under FCS for missing data at Level 2.
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Population model

Let z j denote the values of a centered variable at Level 2 and xi j = u j + ei j denote values for a

set of centered variables at Level 1 with independent components u j and ei j . Then, for cluster

j of size n j we can write z j as

z j = u jγ + w j . (A1)

where w j is independent of u j and ei j . Further defining Var(u j) ≡ T, Var(ei j) ≡ Σ, and

Var(w j) ≡ φ
2 as well as σ ≡ Tγ, the joint distribution of all variables yi j = (xi j, z j) can be

summarized as

Var(yi j) =

(
T + Σ σT

σ γTTγ + φ2

)
. (A2)

We introduce the following notation for further development. Specifically, we define a proba-

bility distribution for the cluster sizes n j independent of xi j and z j , where S denotes the set of

unique cluster sizes, so that P(n j = k) ≡ πk with 0 ≤ πk ≤ 1 for all k ∈ S and
∑

k∈S πk = 1. We

assume that z is partially missing, z = (zmis, zobs), with probability αwhereas x is observed. For

simplicity, we omit superscripts for x where possible. We further assume (a) that the number

of clusters approaches infinity (J → ∞), so that posterior variances become zero, and (b) that

z j is MCAR so that α is independent of xi j and n j . With no loss of generality, we assume that

the first J0 clusters have z j missing, the other J1 observed ( j = 1, . . . , J0, J0 + 1, . . . , J), where

the proportion J0
J of missing values in z converges to α as the sample size goes to infinity (i.e.,

limJ→∞
J0
J = α).

FCS with latent cluster means (FCS-LAT)

To generate imputations zimp
j , a regression model on the basis of the latent cluster means (u j)

of xi j can be used. To show that the joint distribution of yi j is preserved during MI, one must

show that the distribution of the completed data ycomi j = (yimp
i j , y

obs
i j ) including zimp

j is identical

to Equation A2. As argued by van Buuren (2012) and Hughes et al. (2014), sampling from a

sequence of univariate conditional normal distributions is equivalent to sampling from a joint

multivariate normal distribution. This can be applied to the joint distribution P(xi j, u j, z j) with

unknown u j and missing z j by sampling from the following conditional distributions
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uimp
jp ∼ P(u jp |xi j, u j(−p), z j)

zimp
j ∼ P(z j |xi j, u j) ,

(A3)

with the notation as defined in the main text. The conditional distributions can further be

simplified as P(z j |xi j, u j) = P(z j |u j) because z j is conditionally independent of xi j given u j .

Consequently, under FCS-LAT, imputations zimp
j are generated from the conditional model

zimp
j = uimp

j γ + w
imp
j , (A4)

where estimates of γ and φ2 are obtained from the observed data, and posterior draws for uimp
j

are obtained as described in the main text (e.g., using the plausible value approach by Mislevy,

1991). This is sufficient because (a) all u jp are conditionally independent of xi j given z j and

u j(−p), and (b) z j is conditionally independent of xi j given u j (see above). As a result, the model

in Equation A4 is consistent with Equations A2 and A3, and FCS-LAT on the basis of uimp
j is

consistent with drawing imputations directly from the joint model (Equation A2).

FCS with manifest cluster means (FCS-MAN)

Alternatively, the imputation model can be based on the manifest cluster means (x̄• j = u j + ē• j)

of xi j , and imputations can be generated from the following equation

zimp
j = x̄• jβ + ε

imp
j , (A5)

where the εimp
j are distributed normally with mean zero and variance Var(εimp

j ). In general,

the regression coefficients in the manifest (β) and latent imputation model (γ) do not coincide

(Croon & van Veldhoven, 2007). The regression coefficients in Equation A5 are estimated as

β̂ =


1
J1

J∑
j=J0+1

x̄T
• j x̄• j


−1 ©­« 1

J1

J∑
j=J0+1

x̄T
• j z

obs
j

ª®¬ . (A6)

Note that E(x̄T
• j x̄• j) = T + 1

nj
Σ and E(x̄T

• j z
obs
j ) = Tγ. Then, as the number of clusters goes to

infinity (J →∞), the expected value of β̂ can then be expressed as

E(β̂) J→∞
= =

[∑
k∈S

πk(T + 1
kΣ)

]−1

Tγ . (A7)
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In the special case with balanced data with a constant cluster size n j = k0, it is further worth

noting that E(x̄T
• j x̄• j) = (T + 1

k0
Σ), in which case Equation A7 reduces to

E(β̂) J→∞
= (T + 1

k0
Σ)−1Tγ , (A8)

Carpenter and Kenward (2013) showed that for the case with balanced data, that the conditional

independence of z j and xi j also holds given x̄• j , that is, P(z j |xi j) = P(z j |x̄• j), so that FCS-MAN

would be consistent with the joint model (Equation A2). However, it may be expected that this

no longer holds in the general, unbalanced case (see also Resche-Rigon & White, in press). In

the following, we show which aspects of the joint distribution are preserved under FCS-MAN

in balanced and unbalanced data.

Variance of z. The fact that the variance of z is unbiased can easily be shown with the

decomposition of variance in the linear model. Let ẑ j = x̄• j β̂. Under the given assumptions, it

holds that Var(ẑmis
j ) = Var(ẑobsj ) and Var(εimp

j ) = Var(εobsj ). As a result, Var(zimp
j ) = Var(ẑmis

j )+

Var(εimp
j ) = Var(z j), showing that the variance of zcomj = (zobsj , z

imp
j ) is unbiased.

Estimators of the covariance of x and z. To elaborate on the estimation of the covariance,

we focus onmaximum likelihood (ML) estimation. However, because the standardMLestimator

cannot be expressed in closed form in the general case with unbalanced data, we studyMuthén’s

ML estimator (MUML; B. O. Muthén, 1990). The MUML estimator (σ̂) allows estimating σ in

closed form and can be expressed as

σ̂ =
1
J

J∑
j=1

n j

cJ
x̄T
• j z j , (A9)

where cJ =
[
(
∑J

j=1 n j)
2
−

∑J
j=1 n2

j

] [∑J
j=1 n j(J − 1)

]−1
is a function of the cluster sizes with

limJ→∞ cJ = n̄∞ =
∑

k∈S πk · k (i.e., the average cluster size). In complete data, σ̂ is identical

to the ML estimator in the case with balanced data (B. O. Muthén, 1990) and remains an

asymptotically (J → ∞) unbiased estimator of σ in the unbalanced case (Yuan & Hayashi,

2005). In balanced data with cluster size n j = k0, the estimator reduces to

σ̂ =
1
J

J∑
j=1

x̄T
• j z j . (A10)
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In the following, we use this estimator to show the potential bias in estimating σ from the

completed data zcomj , where imputations zimp
j have been generated under FCS with manifest

cluster means.

Covariance of x and z in balanced data. In balanced data with cluster size n j = k0, the

covariance in Equation A10 is estimated on the basis of both the observed and imputed data

zcomj = (zobsj , z
imp
j ) as follows

σ̂ =
1
J

©­«
J0∑

j=1
x̄T
• j z

imp
j +

J∑
j=J0+1

x̄T
• j z

obs
j

ª®¬ . (A11)

The expected value of σ̂ can then be expressed as

E(σ̂) = E

1
J

©­«
J0∑

j=1
x̄T
• j z

imp
j +

J∑
j=J0+1

x̄T
• j z

obs
j

ª®¬
 = E

(
J0
J

)
E

(
x̄T
• j z

imp
j

)
+ E

(
J1
J

)
E

(
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In the limit of J → ∞, it holds that E(x̄T
• j z

imp
j )

J→∞
= E(x̄T

• j x̄• j)E(β̂). Then, by further noting

that E(x̄T
• j z

obs
j ) = Tγ as before and by plugging in Equation A8, it can be shown that Equation

A12 converges to

E(σ̂) J→∞
= α (T + 1

k0
Σ)

[
T + 1

k0
Σ
]−1

Tγ + (1 − α)Tγ = Tγ = σ , (A13)

which shows that σ̂ is asymptotically unbiased in balanced data.

Covariance of x and z in unbalanced data. In the general case with unbalanced data, the

potential bias in σ̂ is more difficult to evaluate because (a) the cluster sizes included in Equation

A9 complicate calculations, and (b) the zimp
j are not independent of ei j under FCS-MAN as

would be the case in complete data (Croon & van Veldhoven, 2007). Instead, we follow the

law of total expectation by averaging over the conditional expectations with fixed cluster sizes

n j = k. Let σ̂k denote the value of σ̂ for clusters of size n j = k. By conditioning on cluster size,

we also obtain balanced subsets of the data, in which we can use Equation A10 instead of A9.

Consequently, σ̂k can be expressed as

σ̂k = σ̂ |nj=k =
1

J(k)

©­«
∑

j∈J0(k)

x̄T
• j z

imp
j +

∑
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x̄T
• j z

obs
j

ª®¬ , (A14)

where J0(k) and J1(k) denote two sets of clusters with size k and with missing and observed

z j , respectively, J0(k) and J1(k) denote the number of clusters therein, and J(k) denotes the total
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number of clusters of size k. By noting that E(x̄T
• j z

imp
j )

J→∞
= E(x̄T

• j x̄• j)E(β̂) as before and by

plugging in Equation A7, the expected value of σ̂k can be written as
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where k′ ∈ S is used to denote all cluster sizes besides and including k. This expression is

generally not equal to σ unless T + 1
kΣ =

[∑
k ′∈S πk ′(T + 1

k ′Σ)
]−1

.

In the full data set, σ̂ is again based on both the observed and imputed data, zobsj and zimp
j ,

and can be written as

σ̂ =
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The expected value of σ̂ can then be expressed as
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which illustrates the contribution of the conditional expectations given in Equation A15. In the

limit as J →∞, this expression converges to

E(σ̂) J→∞
= α
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k∈S

k
n̄∞
πk(T + 1

kΣ)
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(A18)

This expression is generally not equal to σ. Consequently, the asymptotic bias of σ̂ as an

estimator of σ can be expressed as
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Bias(σ̂) = α
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(A19)

which is not generally zero in unbalanced data. Because the expected value of σ̂ converges

with that of the ML estimator as the number of cluster becomes large (J →∞), we expect that

regression coefficients obtained under FCS-MAN should be biased as well.6

6It is interesting that unbiased estimates of σ might be obtained under FCS-MAN with an estimator that does
not weight by cluster size, which can be seen by plugging in k

n̄∞
= 1 into Equation A19. However, because such

an estimator is unlikely to perform well in general, this is left as a topic for future research.



MULTIPLE IMPUTATION IN MULTILEVEL RESEARCH 195

Article 4: Pooling ANOVA results from multiply imputed datasets: A
simulation study

Grund, S., Lüdtke, O., & Robitzsch, A. (2016b). Pooling ANOVA results from multiply imputed datasets: A
simulation study. Methodology, 12, 75–88. doi:10.1027/1614-2241/a000111

The analysis of variance (ANOVA) is frequently used to examinewhether a number of groups differ
on a variable of interest. The global hypodissertation test of the ANOVA can be reformulated as a
regression model in which all group differences are simultaneously tested against zero. Multiple
imputation offers reliable and effective treatment of missing data; however, recommendations
differ with regard to what procedures are suitable for pooling ANOVA results from multiply
imputed datasets. In this article, we compared several procedures (known as D1, D2 and D3)
using Monte Carlo simulations. Even though previous recommendations have advocated that D2

should be avoided in favor of D1 or D3, our results suggest that all procedures provide a suitable
test of the ANOVA’s global null hypodissertation in many plausible research scenarios. In more
extreme settings, D1 wasmost reliable, whereas D2 and D3 suffered from different limitations. We
provide guidelines on how the different methods can be applied in one- and two-factorial ANOVA
designs and information about the conditions under which some procedures may perform better
than others. Computer code is supplied for each method to be used in freely available statistical
software.

The analysis of variance (ANOVA) is a popular method for analyzing data in many fields of

psychology and the social sciences (Cohen, Cohen, West, & Aiken, 2003; Maxwell & Delaney,

2004). One of the major goals of an ANOVA is to examine whether a number of groups (e.g.,

demographic features, experimental conditions) differ with respect to some variable of interest.

The global null hypothesis, according to which all groups stem from the same population, is

tested by comparing the portions of variance that reside between and within groups. Under

the null hypothesis, the ratio of the mean squares between and within groups follows an

F distribution. If group differences are reasonably large compared with individual differences,

the global null hypothesis is rejected, and groups are believed to differ with respect to the

variable of interest.

Missing data are a pervasive problem in the social sciences. Deleting the missing values

(e.g., listwise deletion) is an easy but inefficient way of dealing with missing data that can

seriously distort statistical analyses (Little & Rubin, 2002). Other techniques such as multiple

imputation (Rubin, 1987) promise a more reliable and efficient treatment of missing data

(Schafer & Graham, 2002). Multiple imputation (MI) draws a number of M replacements for
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the missing values from their posterior predictive distribution, given the observed data and

a statistical model. The completed datasets are then analyzed using regular complete-data

methods, and the parameter estimates are pooled according to the rules described in Rubin

(1987) to form final parameter estimates and inferences.

Rubin’s rules are easily applied to one-dimensional estimands such as means or regression

coefficients, but multidimensional estimands (e.g., comparing multiple groups in the ANOVA’s

F test) call for different methods. Several such methods are discussed in the literature, and clear

recommendations can be found in various books and articles (Little & Rubin, 2002; Marshall,

Altman, Holder, & Royston, 2009; Reiter & Raghunathan, 2007; Schafer, 1997). However,

some authors’ conclusions are less than definite and they emphasize the need for further research

concerning realistic applications of thesemethods (Enders, 2010; Snijders &Bosker, 2012b; van

Buuren, 2012). In addition, previous studies have often focused on a technical understanding of

these methods without considering specific research designs. Using computer simulations, we

compared several pooling methods for the F test in one- and two-factorial ANOVA designs. We

examined the robustness of these methods as well as the conditions under which some methods

may be more trustworthy than others. We attempted to complement the existing literature with

simulation results that can be easily applied to research practice. Computer code is given for

each method to be used in freely available software.

Pooling ANOVA results

The one-factorial ANOVA can be reformulated as a regression model in which the outcome

variable is regressed on a number of dummy variables that represent the membership in a group i

(i = 1, . . . , I). For I groups, the group membership can be coded by K = I −1 dummy variables

such that the regression coefficients reflect differences between groups. In complete datasets,

the Wald test of the K-dimensional vector of regression coefficients (without the intercept) is

equivalent to testing the ANOVA’s null hypothesis that there are no differences between groups

(e.g., Cohen et al., 2003). Over the past years, several methods have become available for

carrying out multiparameter hypothesis tests in multiply imputed datasets (e.g., Enders, 2010;

Little & Rubin, 2002; Schafer, 1997; van Buuren, 2012). These methods build on different
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aspects of the completed-data analyses and thus differ in behavior and ease of application.

Here, we provide a brief overview of the procedures featured in our study, illustrated for the

one-factorial ANOVA. The procedures extend naturally to two-factorial designs, with effect

coding instead of dummy coding.

Moment based statistics (D1 and D∗1). The D1 procedure extends Rubin’s rules to multidi-

mensional estimands such as the K-dimensional vector of regression coefficients in the ANOVA.

Using D1, the vectors of regression coefficients and their associated covariance matrices are

pooled across the imputed datasets. Given a set of coefficient vectors Q̂m (m = 1, . . . ,M) and

estimates of their sampling covariance matrix Ûm, the D1 statistic reads

D1 =
(Q̄ −Q0)

TŪ−1
(Q̄ −Q0)

K(1 + ARIV1)
, (1)

where K = I −1 is the number of regression coefficients that represent group differences, Q̄ and

Ū are the average point and covariance estimates, and Q0 is the vector of regression coefficients

expected under the null hypothesis. The ARIV1 denotes the average relative increase in variance

due to nonresponse, that is, the extent to which the sampling variance of the estimator has

increased due to missing data

ARIV1 =
(1 + M−1

)tr(BŪ−1
)

K
, (2)

where B is the covariance matrix of the estimates Q̂m across the imputed datasets (see Enders,

2010, for an illustration). The ARIV is conceptually related to the fraction of missing infor-

mation (FMI; Rubin, 1987), which denotes the portion of the total sampling variance of an

estimator that is due to missing data1. Rubin (1987) and Li, Raghunathan, and Rubin (1991)

derived an F reference distribution for D1, along with K numerator and v1 denominator degrees

of freedom. For a = K(M − 1), the denominator degrees of freedom are calculated as

v1 =

{
4 + (a − 4)[1 + (1 − 2a−1

)ARIV−1
1 ]

2 if a > 4
(K + 1)(M − 1)(1 + ARIV−1

1 )
2
/2 otherwise

. (3)

In its original formulation, the degrees of freedom for D1 were derived under the assumption

of infinite complete-data degrees of freedom. Reiter (2007) proposed a correction formula

1Estimates of the FMI were based on estimates of the ARIV such that FMI = ARIV/(1+ARIV).
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that adjusts the denominator degrees of freedom v1 for finite samples. The resulting test is

henceforth called D∗1. Calculating D1 and D∗1 requires pooling the point and variance estimates

across datasets, a task that is relatively simple and well documented (see Enders, 2010).

The D1 procedure is frequently recommended in the literature (e.g., Allison, 2001; Enders,

2010; Graham, 2012; Little &Rubin, 2002; Schafer, 1997; van Buuren, 2012). Li, Raghunathan,

and Rubin (1991) showed that D1 is reliable and robust unless the FMI is very large and variable

across parameters. Reiter (2007) showed that D∗1 produced accurate Type I error rates even in

small samples. Licht (2010) proposed an adjustment of D1 and replicated the favorable results of

Li, Raghunathan, andRubin (1991) for finite samples and largerK . vanGinkel andKroonenberg

(2014) illustrated the use of D∗1 in empirical datasets. However, simulation results regarding

D1 and D∗1 are still relatively scarce, and van Buuren (2012) suggests evaluating them “in more

general settings” (p. 157). Enders (2010) found it “difficult to assess the trustworthiness of the

D1 statistic in realistic research scenarios” (p. 236).

p values from Wald-like hypothesis tests (D2). Li, Meng, et al. (1991) developed a test

statistic that is computed from a series of Wald tests (or their p values, equivalently) rather than

from point and variance estimates. This is especially useful if K is large or variance estimates

(e.g., standard errors) are not available. Given a number of M Wald-like test statistics Wm, the

D2 statistic reads

D2 =
WK−1

− (M + 1)(M − 1)−1ARIV2
1 + ARIV2

, (4)

where W is the average test statistic across datasets and K is again the number of parameters

that represent group differences. The ARIV2 is another estimate of the average relative increase

in variance that is based solely on the individual test statistics Wm

ARIV2 = (1 + M−1
)

[
1

M − 1

M∑
m=1

(√
Wm −

√
W

)2
]
, (5)

where
√

W denotes the average
√

Wm across the imputed datasets (see Enders, 2010). Li, Meng,

et al. (1991) proposed an F reference distribution for D2 with K numerator and v2 denominator

degrees of freedom

v2 = K−3/M
(M − 1)(1 + ARIV−1

2 )
2 . (6)
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In order to apply D2, the individual test statistics (Wm) should follow a χ2 distribution.

Hence, in ANOVA models, the F values for all datasets (Fm) must be transformed such that

Wm = KFm, each of which approach a χ2 distribution as the denominator degrees of freedom

go to infinity. The D2 statistic is easily calculated by pooling the test statistics across datasets.

No specialized software or programming skills are required in order to calculate D2, and only

the M test statistics from the imputed datasets must be entered into the formulae, which are

routinely included in the output of most statistical software.

However, the literature often advises against D2. Li, Meng, et al. (1991) suggested that it be

used only as a rough guide because its Type I error rates can be too high or too low depending

on the FMI. It is usually recommended that D1 be used whenever possible because D2 is less

precise, less powerful, and only loosely correlated with the “more nearly optimal” D1 (Schafer,

1997, p. 116; Enders, 2010; Little & Rubin, 2002). Nonetheless, D2 has been acknowledged

for its ease of implementation because it operates directly on the test statistics (e.g., Allison,

2001; Snijders & Bosker, 2012b). Van Buuren (2012) advised that D2 may be used if nothing

but the test statistics are available but that D2 is “considerably less reliable” than other pooling

methods (p. 159).

Pooled likelihood-ratio tests (D3). Coming from the perspective of model comparison,

hypotheses about a set of parameters can be tested using likelihood-ratio tests (LRTs). The D3

procedure was developed by Meng and Rubin (1992) to enable LRTs with multiply imputed

datasets. The procedure does not require variance estimates; instead, it operates on the likeli-

hood. Meng and Rubin (1992) showed that it is not sufficient to simply combine the individual

LRT statistics Lm into an average L̄. In addition, the LRT statistic needs to be evaluated at the

average estimates of the model parameters for all imputed datasets. The D3 statistic reads

D3 =
L̃

K(1 + ARIV3)
, (7)

where L̃ is the mean LRT statistic across the imputed datasets evaluated at the average parameter

estimates, and K is the number of parameters being tested. Estimating the ARIV3 includes the

two pooled LRTs evaluated at the individual and pooled estimates, respectively (see Enders,

2010)
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ARIV3 =
M + 1

K(M − 1)
(L̄ − L̃) . (8)

According to Meng and Rubin (1992), the F reference distribution for D3 has K numerator and

v3 denominator degrees of freedom. For a = K(M − 1),

v3 =

{
4 + (a − 4)[1 + (1 − 2a−1

)ARIV−1
3 ]

2 if a > 4
(K + 1)(M − 1)(1 + ARIV−1

3 )
2
/2 otherwise

. (9)

Calculating D3 can be tedious because it requires that users have access to the likelihood

function and that it is possible to evaluate it at user-defined values. Due to its complexity, the

procedure is not frequently used, but it has been implemented in likelihood-oriented software

such as Mplus (Asparouhov &Muthén, 2008), SAS (Mistler, 2013b) and the semTools package

for R (Pornprasertmanit, 2014). The D3 statistic is frequently recommended when D1 cannot be

calculated, that is, in the absence of standard errors (Little & Rubin, 2002; van Buuren, 2012). It

has been argued that D1 and D3 should behave similarly, and more reliably than D2, because the

two are approximately equal (Meng & Rubin, 1992; Schafer, 1997). However, Enders (2010)

pointed out that “virtually no research studies have compared the two test statistics” (p. 241).

Present study

Even though recommendations regarding D1, D∗1, D2 and D3 can be found in the literature, the

behavior of these methods is still not fully understood. Earlier studies focused on the general

properties of these methods, and simulation studies considered the FMI as a pivotal point (e.g.,

Li, Meng, et al., 1991; Li, Raghunathan, & Rubin, 1991). Their usual recommendation is that,

in general, some procedures should be preferred (D1, D∗1, D3), while others should be avoided

(D2). However, in the present article, we argue that all of these methods provide suitable

tests for ANOVAmodels in most conditions that are encountered in psychological research. We

conducted computer simulations that explore their performance from the perspective of practical

research. Our results are intended to complement the existing literature with results that can be

easily applied to practical research, and to assist researchers in their statistical decision making.

We examined the Type I error rates and the statistical power of the four pooling methods.

Study 1 features a fully crossed simulation design in which the number of groups, the group
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size, the effect size, the missing data mechanism, and the amount of information available from

an auxiliary variable were varied. This design allowed us to examine possible interactions

between the simulation factors. However, in order to reduce computational effort, some of its

conditions had to be restricted. The conditions were chosen to mimic what frequently occurs in

applications of the ANOVA in psychological research. Two additional studies were conducted

that relaxed some of the restrictions made in Study 1. This made it possible to examine specific

findings in greater detail. Study 2a provides details on how including an auxiliary variable into

the imputation model may influence statistical power (Collins et al., 2001). For this purpose, we

varied the correlation between outcome and auxiliary variable in very fine steps, thus exploring

the conditions in which the ANOVA might benefit from using MI. In Study 2b, we examined

the effects of larger FMIs on the Type I error rates, that is, for larger amounts of missing data

and given different amounts of auxiliary information. In this context, we elaborate on the

“link” between the simulation factors and the FMI in our simulation design. This was deemed

helpful for judging the severity of missing data problems in research practice and for providing

a reference frame for the results of earlier studies. Study 3 extends the paradigm of Study 1 to

two-factorial ANOVA designs. In the two-factorial design we took special interest in testing

the overall interaction effect, which, especially in large ANOVA designs, may involve a large

number of parameters.

Study 1

The first simulation studywas conducted to assess the performances of D1, D∗1, D2, and D3 under

conditions that are commonly encountered in one-factorial ANOVA designs. All simulation

factors were fully crossed in order to examine the factors that drive the performance of these

methods.

Simulation procedure

Data generating model. The ANOVA provided the foundation for the data generating

model. A continuous outcome Y was simulated from a normal distribution given the group
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means µi for a factor A with groups i = 1, . . . , I, that is,

Y = µi + ε with ε ∼ N(0, σ2
ε ), (10)

where σ2
ε denotes the variance within groups. According to Cohen (1988), the variance of the

group means around the population mean (i.e., the grand mean) µ̄ can be defined as

σ
2
A =

∑I
i=1(µi − µ̄)

2

I
. (11)

The sum of the two variances (σ2
A and σ2

ε ) was defined to be one. The population mean was

assumed to be zero. Differences between groups were simulated according to Cohen’s (1988)

f , here

fA =
σA

σε
. (12)

Thus, the two variances followed as

σ
2
A =

f 2
A

1 + f 2
A

and σ
2
ε = 1 −

f 2
A

1 + f 2
A

. (13)

Different patterns of group means were simulated in order to mimic plausible research

scenarios. This was achieved by rephrasing all group means as µi = pidA, where the pi form

a pattern of group means pA = (p1, . . . , pI) that sums to zero, and dA is a scaling factor that

enlarges this pattern so that it would imply the correct portions of variance as given by Equation

13. The scaling factor dA was derived by rearranging Equation 11, which yields

dA = σA

√
I∑I

i=1 p2
i

. (14)

We simulated two patterns of group means labeled “difference” and “trend,” respectively, in

which either one third of the groups differed greatly from the others or all groups differed

in such a way that they formed a linear trend. For example, with I = 3 groups, the two

patterns can be written pA,difference = (−1/2, 1,−1/2) and pA,trend = (−1, 0, 1), respectively. To

illustrate, suppose we wanted to establish an effect of size fA = .40 forming a difference pattern

pA = (−1/2, 1,−1/2). This implies a variance of group means σ2
A = 0.16/1.16 = 0.14; thus,

the scaling factor would become dA = 0.37
√

3/(0.25 + 1 + 0.25) = 0.53. Finally, the group

means µi would be (−0.26, 0.53,−0.26).
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Table 1: Simulation Design of the Different Simulation Studies

Design conditions Study 1 Study 2a Study 2b Study 3
Group size (n) 25, 50, 100 25 25, 100 10, 30, 50
Levels of A and B (I, J) 3, 6, 12 12 12 3 × 3, 5 × 5
Main effect A ( fA) 0, .10, .25, .40 .25 0 0, .10, .25
Main effect B ( fB) – – – 0
Interaction effect ( fAB) – – – 0, .10, .25
Effect patterns difference, trend difference difference difference
Correlation XY (ρxy) 0, .35, .70 0, .05, . . . , .95 0, .20, .35, .50, .70, .90 0, .35, .70
MD effect of X (λ) 0, .35, .70 0 0 0, .35, .70
MD probability 25% 25%, 50% 5%, 10%, . . . , 80% 25%
Number of Imputations 5, 10, 20, 50, 100 100 100 5, 10, 20, 50, 100

Note. The correlation ρxy and the MD probability were varied in steps of .05 and 5% in Studies 2a and 2b,
respectively. MD = missing data.

A second continuous variable X was simulated to allow for different missing data mecha-

nisms and to mimic situations in which auxiliary information can be included in the imputation

model. The covariate X was simulated as

X = ρxy Y + εX with εX ∼ N(0, 1− ρ2
xy) , (15)

where ρxy denotes the correlation between X and Y . Table 1 provides an overview of the

simulation design of all studies. In Study 1, we varied the number of groups (I = 3, 6, 12), the

sample size within each group (n = 25, 50, 100), the effect size ( fA = 0, .10, .25, .40), and the

correlation between X and Y (ρxy = 0, .35, .70).

Imposition of missing values. Missing data were imposed on the outcome Y , whereas the

covariate X and the group membership of each person were fully observed. Different missing

data mechanisms were defined according to Rubin (1976). In this classification, the hypothetical

complete data Y are divided into observed and unobserved portions, Yobs and Ymis, respectively.

An indicator variable R denotes which values in Y are observed. Rubin (1976) introduced

several broad classes of missing data mechanisms. If the missing values are simply a random

sample of the hypothetical completely observed Y , then the values are missing completely at

random (MCAR), that is, P(R|Yobs,Ymis) = P(R). If the chance of observing Y depends on the

observed data but does not further depend on the missing part, then the values are missing at

random (MAR), that is, P(R|Yobs,Ymis) = P(R|Yobs). The two are often called ignorablemissing
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data because the exact missing data mechanism need not be known in order to perform MI.

Treating nonignorable missing data requires making strong assumptions about the missing data

mechanism and thus was not considered in this study (see Carpenter & Kenward, 2013).

The missing values were simulated using a latent response variable R∗, which determined

whether values in Y were missing dependent on the covariate X under a linear model

R∗= λX + εR∗ where εR∗ ∼ N(0, 1 − λ2
) . (16)

Values in Y were set missing if R∗< z, where z is a quantile of the standard normal distribution

according to the desired probability of missing data (e.g., z = −0.67 for 25% missing data).

As presented in Table 1, we varied the effect of X on the latent response indicator to simulate

different missing data mechanisms. For Y to be MCAR, we set λ = 0, and for Y to be MAR

given X , we set λ = .35 or .70. The probability of missing data was held constant at 25% but

was varied in Study 2b. Note that our simulation design implicitly varies the FMI by varying

population and sample characteristics that influence the FMI. This is in contrast to previous

studies, in which the FMI was varied explicitly (e.g., Li, Meng, et al., 1991; Li, Raghunathan,

& Rubin, 1991; Licht, 2010). As mentioned before, the simulation design was chosen to mimic

situations that are encountered in real-world applications of the ANOVA. Thus, we manipulated

the severity of the missing data problem in terms of the design factors (e.g., amount of missing

data, presence of auxiliary variables) rather than the FMI. This perspective was chosen so that

the simulation design would directly relate to research practice, whereas the FMI would occur

only insofar as it emerged from the simulated conditions.

Imputation and analysis. Imputationswere carried out using the mice package (vanBuuren

& Groothuis-Oudshoorn, 2011) in the statistical software R (R Core Team, 2014). The “norm”

imputation method was used; therefore, missing values on Y were assumed to be normally dis-

tributed given the group membership and the covariate X . Following recent recommendations,

we created M = 100 imputed datasets for each simulated dataset (Bodner, 2008; Graham et al.,

2007). However, all analyses were repeated with different subsets of M , that is, with the first

5, 10, 20, and 50 of the total 100 datasets, respectively (see Table 1). The ANOVA model was

fitted by dummy coding the grouping variable and regressing the outcome Y on the K = I − 1
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dummy variables. All methods—D1, D∗1, D2, and D3—were implemented in the software R.

The computer code is provided in the supplemental online material along with an example

application to artificial data (see also Grund, Lüdtke, & Robitzsch, 2016a). In addition, listwise

deletion (LD) was included as a strategy for handling missing data because it is still frequently

used in research practice.

We compared the poolingmethods with respect to Type I error rates and their power to detect

nonzero effects. The Type I error rate is the relative frequency with which the null hypothesis

is rejected when the population effect ( f ) is zero. Ideally, the Type I error rate should be close

to the predefined significance level α (e.g., 5% or 1%). A procedure was considered liberal or

conservative when its Type I error rate was higher or lower, respectively, than the nominal α.

Bradley (1978) suggested a criterion for robustness, according to which Type I error rates within

α ± 0.5α are considered acceptable (e.g., within 2.5% and 7.5% for α = 5%). In addition, we

calculated the Type I error rates for the complete datasets (i.e., before imposing missing values)

to provide a benchmark for the different pooling methods. The statistical power is the relative

frequency with which the null hypothesis is rejected when the population effect is not zero.

Assessing differences in statistical power is difficult because the expected power is not a fixed

value for all conditions (Cohen, 1988). Thus, the expected power itself served as a benchmark

for the pooling methods.

Results

The first study featured six simulation factors and 648 conditions in total. All conditions were

replicated 10,000 times to ensure that the Type I error rates and the power to detect nonzero

effects had stabilized. Reporting all results was not feasible due to the large number of conditions

and because not all factors influenced the performance of the pooling methods. The complete

results for M = 100 imputations are provided in the supplemental online material, intended as

a repository for interested readers. We focus on the “difference” pattern of group means, and

assume a level of α = 5% throughout this section. The results were similar for α = 1% and will

be discussed whenever necessary.

Type I error rate. In all conditions and for all pooling methods, the Type I error rates varied
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Figure 1: Type I error rates for different pooling methods and LD (α = 5%) depending on group size (n) and
number of groups (I), given MCAR data (λ = 0) with no auxiliary information (ρxy = 0). The grey boxes indicate
the Type I error rates obtained from complete datasets. D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

within a reasonable range, that is, below 6.1% (D2) and above 4.2% (D3). Thus, no violations

of Bradley’s criterion for robustness were observed at α = 5%. Some methods were found to

be liberal in some cases (D1 and D2), whereas others were slightly conservative (D∗1 and D3).

The extent to which the pooling methods were conservative or liberal was mostly influenced by

the group size (n) and the number of groups (I). Figure 1 illustrates the Type I error rates of

all procedures for different group sizes and different numbers of groups, when the correlation

between X and Y (ρxy = 0) and the effect of X on missingness (λ = 0) were held constant.

The D1 statistic was slightly liberal in small samples (i.e., small n or I) but otherwise

provided nearly optimal results. The error rates obtained with D∗1 were nearly optimal under

all conditions. D2 was the most liberal of all pooling methods, but even for D2, the Type I

error rates were not seriously inflated. Contrary to D1, however, D2 remained somewhat liberal

in larger samples, especially when the number of groups was large. Finally, D3 produced

reasonable Type I error rates but was somewhat conservative if the number of groups was large

and the groups were relatively small (e.g., I = 12 and n = 25). Results obtained with LD were

generally close to the ideal solutions and usually close to those obtained with D∗1.

With increasing group size, the Type I error rates of the four pooling methods became

more similar; that is, D1 and to a lesser extent D2 became less liberal, whereas D3 became

less conservative. Effects of the number of groups were more diverse because an increase in I

increased both the sample size and the number of parameters of the global null hypothesis test.

For D1, D∗1, and D3, an increase in I led to more conservative results. Type I error rates for D∗1
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Table 2: Power to Detect Nonzero Effects (α=5%) for all Pooling Methods and LD

λ = 0 λ = .70

LD D1 D∗1 D2 D3 LD D1 D∗1 D2 D3

n = 25, I = 12, fA = .25 (PE = .836)
ρxy = 0 .683 .687 .669 .692 .658 .675 .680 .664 .685 .649
ρxy = .35 .675 .697 .682 .702 .674 .662 .698 .679 .711 .668
ρxy = .70 .677 .761 .747 .756 .749 .630 .758 .744 .762 .745

n = 50, I = 3, fA = .25 (PE = .780)
ρxy = 0 .644 .646 .635 .649 .634 .645 .646 .635 .648 .631
ρxy = .35 .649 .671 .660 .668 .658 .631 .654 .644 .660 .640
ρxy = .70 .640 .704 .694 .704 .695 .611 .713 .704 .720 .703

Note. PE = power expected; n = group size; I = number of groups; fA = size of main effect A; ρxy = correlation
between X and Y ; λ = effect of X on missingness; D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

and D3 sometimes fell below those obtained from complete datasets and below the nominal α.

D2 on the other hand remained somewhat liberal for larger values of I unless the group size was

very large in comparison (e.g., I = 12 and n = 25).

A lower level of α = 1% did not change the picture as a whole; that is, all pooling methods

performed similarly when compared with one another. Bradley’s criterion demands that Type I

error rates vary within 0.5% and 1.5% in this case. Type I error rates could be as high as 1.5%

(D1) for smaller groups, thus violating Bradley’s criterion for robustness, but they were usually

close to the nominal value in larger samples (see the supplemental online material).

Statistical power. Assessing the power of the pooling methods entailed certain limitations

due to floor and ceiling effects, that is, when the power approached 5% and 100%, respectively.

Differences between methods were found to be consistent regardless of effect size, but naturally,

these became smaller when the power approached its upper or lower bounds. Especially for

large effects ( fA = .40), choosing a particular method became less important because the power

was effectively 100% for all methods unless the samples were very small. Therefore, we will

focus on small and moderate effect sizes ( fA = .10 and .25) in order to describe the results on a

scale that is informative and meaningful for applied researchers (power between 60% and 80%).

The more liberal methods (D1 for smaller samples, D2) also scored highest in statistical

power. Most importantly, the power obtained with MI was higher than with LD whenever the
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Figure 2: Power to detect nonzero main effect ( fA = .10) in larger samples (n = 100, I = 12) depending on the
missing data mechanism. The expected power is indicated by a dashed line. ρxy = correlation between X and Y ; λ
= effect of X on missingness; D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

covariate X was somewhat informative about themissing values onY , where a higher correlation

between X and Y (ρxy) led to higher power when MI was used. The effect of X on missingness

(λ) did not greatly influence the power by itself but moderated the aforementioned effects such

that higher values of λ intensified the differences between LD and MI (see Collins et al., 2001).

Figure 2 illustrates the interplay of the correlation between X and Y and the effect of X on

missingness in larger samples (n = 100, I = 12, fA = .10). All pooling methods and LD were

equally capable of detecting nonzero effects when the covariate carried no information about

the missing outcome (ρxy = 0). As soon as the covariate provided information (ρxy = .35 or

.70), higher statistical power was observed when MI was used. Similar results were obtained

for moderate samples with small and large groups, as presented in Table 2. For small groups

(n = 25, I = 12, fA = .25), the more liberal pooling methods (D1 and D2) provided higher

statistical power. With larger groups (n = 50, I = 3, fA = .25), the difference between the

pooling methods became smaller. Again, higher power was observed for MI when the covariate

provided information about the missing Y . The conservative methods had lower power in

general and thus relied more heavily on such information. Nonetheless, even the conservative

methods had higher power than LD, given sufficient auxiliary information.

Number of imputed datasets. The number of imputationswas variedwithin each simulation

condition in order to provide an insight into how the results would have changed if fewer than

M = 100 imputations had been used. The initial recommendation that M = 5 imputations

would suffice for most applications of MI (Rubin, 1987) has been modified in the past by several
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authors (e.g., Bodner, 2008; Graham et al., 2007; Harel, 2007).

Interpreting the effect of different values of M proved to be challenging because its effect

depended on the group size, the number of groups, the correlation between X and Y , and

also differed between pooling methods. Figure 3 shows the results for different M in selected

conditions. The results obtained with D1, D∗1, and D3 were relatively insensitive to the number

of imputations but were best when M was at least 20. For D2, however, the performance

changed substantially when more than 20 imputations were generated: Type I error rates from

D2 became slightly higher, and statistical power was much larger with M > 20, especially when

the number of groups was large and the covariate X did not provide information about the

missing Y (ρxy = 0). With fewer imputations (M ≤ 20), D2 tended to be conservative and

suffered from a substantial loss of power. With a sufficient number of imputations, the power

of the four methods was almost identical.

Discussion

The first simulation study compared different pooling methods for testing the global null hy-

pothesis of the ANOVAwith multiply imputed datasets. Differences emerged in terms of Type I

error rates: Some methods tended to be slightly liberal (D1 and D2) or conservative (D∗1 and

D3), but no procedure led to Type I error rates far above or below the nominal value. The

liberal methods also tended to detect nonzero effects more frequently. The biggest difference,
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however, emerged between MI and LD when a covariate that provided information about the

missing values was included in the imputation model. In such cases, using MI could be highly

beneficial whereas potential losses from using MI when the covariate carried no information

were not observed (see Collins et al., 2001).

Our study was able to replicate previous findings on the performances of D1 and D∗1, which

were found to be stable and reliable in most cases (Li, Raghunathan, & Rubin, 1991; Reiter,

2007). Although seldom recommended, D2 provided very reasonable results within the scope of

the first study. Moreover, our results suggest that D2 is equally powerful as D1 and D∗1 when the

number of imputations is sufficiently large. This is in stark contrast to current recommendations

regarding D2, which suggest that D2 should generally be avoided because it was optimized for

M = 3 imputations, less powerful than D1, and unlikely to improve with larger M (Schafer,

1997; van Buuren, 2012). Our findings suggest that, due to its ease of application, D2 might

be a viable alternative in many applications of multiparameter tests, such as in the ANOVA,

despite being theoretically less convincing than D1. The D3 procedure also provided good

results but was unnecessarily conservative in small samples. Given that D3 is rather difficult to

implement, we believe that D1 and D∗1 are better choices for ANOVAmodels unless researchers

intend to use likelihood-based statistical software that already offers D3 (see Enders, 2010).

Care should be taken when the pooling methods are applied under more extreme conditions.

The D2 procedure was slightly more liberal when the number of groups I (and hence the number

of parameters) was large. In such cases, D3 was quite conservative unless the groups were very

large in comparison.

Several limitations are noteworthy. First, due to the large simulation design, not all factors

could be varied in very great detail. The simulation suggested thatMI benefits when information

about the missing values is available, but, at this point, it is unclear how much information a

covariate must provide in order to be helpful. Thus, the purpose of Study 2a was to explore the

potential gains in statistical power. Second, we chose a fixed value for the probability of missing

data. The chosen value of 25% is quite large for many applications of the ANOVA, but the

number of missing values can sometimes be higher depending on how the data were collected

(e.g., Graham et al., 2006). Especially D2 has been shown to be sensitive to very small and
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Figure 4: Power to detect main effect for all pooling methods and LD depending on the correlation between X and
Y and the amount of missing data. The expected power is indicated by a dashed line. I = number of groups; n =
group size; fA = size of main effect A; ρxy = correlation between X and Y ; D1, D∗1, D2, D3 = pooling methods;
LD = listwise deletion.

large values of the FMI (Li, Meng, et al., 1991). In order to close the gap between our results

and the existing literature, it must be elaborated upon how the amount of missing data and the

presence of auxiliary variables influence the FMI and, as a result, the robustness of the pooling

methods. This was the purpose of Study 2b. Finally, Study 1 was limited to one-factorial

ANOVA designs. Therefore, Study 3 was conducted, which extended the paradigm of Study 1

to two-factorial ANOVA designs and the test of interaction effects.

Study 2a

To examine the effects of including a more or less useful covariate in the imputation model, we

varied the correlation between X and Y in steps of .05, ranging from ρxy = 0 to ρxy = .95.

Either 25% or 50%missing values were introduced into the dataset. The remaining factors were

held constant, as shown in Table 1. One hundred imputations were created. These values were

chosen to reflect practical research but also to avoid influences of sampling error and boundary

conditions. The results were cross-checked for different conditions, but the main pattern of

results was found to be comparable.

Figure 4 shows the statistical power to detect moderate effects ( fA = .25) for all pooling

methods and LD as a function of the strength of the relationship between the covariate and the

outcome (ρxy). The performance of the pooling methods differed only when the correlation
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was small and became increasingly similar as the correlation grew larger. This is not surprising

because the FMI was largest when X and Y were uncorrelated (see Study 2b). Listwise deletion

was comparably powerful as long as X was only weakly correlated with Y . For larger values

of the correlation (ρxy = .35 and above), the pooling methods consistently outperformed LD in

terms of statistical power. Whereas the advantages of usingMI remainedmodest for correlations

below .50, larger correlations greatly improved statistical power. When 50% of the data were

missing, the differences between the pooling methods grew larger, especially when X and Y

were only weakly correlated. In this case, D2 appeared to be more powerful than D1 and D∗1,

and D3 appeared to be less powerful, essentially reflecting differences in Type I error rates.

This illustrates that the conclusions of Study 1 cannot be generalized to arbitrarily harsh

conditions, and that more severe missing data problems must be met with more sophisticated

methods (e.g., D1 or D∗1). Previous research has expressed these conditions in terms of the

FMI. In Study 2b, we elaborate on how the FMI is related to the amount of missing data and

auxiliary information, and how one’s assessment of the missing data problem may guide one’s

choice among the pooling methods.

Study 2b

The FMI in our study was influenced by the amount of missing data and the correlation between

X and Y . Figure 5 illustrates the relationship between these measures in our study. If auxiliary
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Figure 6: Type I error rates of all pooling methods and LD in moderate and larger samples dependent on the
amount of missing data and the correlation between X and Y . The grey area indicates the Type I error obtained
from complete datasets. I = number of groups; n = group size; ρxy = correlation between X and Y ; FMI = fraction
of missing information; D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

information was not available (ρxy = 0), then the FMI was equal to the amount of missing data.

Therefore, the FMI could bemanipulated directly when ρxy = 0 by varying themissing data rate.

However, if the covariate is predictive of the missing values, then the FMI is lowered depending

on the strength of that relationship. In other words, the missing data problem becomes less

severe the more information can be included into the imputation model. In Study 1, the missing

data rate was fixed to 25%, which is already quite large for many applications of the ANOVA.

As can be seen from Figure 5, this corresponds to an FMI of only .25 if ρxy = 0, or less if

ρxy = .35 or .70. In earlier studies, values for the FMI up to .50 were often considered (see

Figure 4). In Study 2b, we investigated the effects of the FMI more thoroughly by including

different portions of missing data, ranging from 5% to 80% in increments of 5%, as well as

different values for the correlation of X and Y , effectively varying the FMI between .03 and .80

(see Table 1). Type I error rates were calculated for each condition.

Figure 6 shows the Type I error rates for all methods in smaller and larger samples, given

different amounts of missing data and a more or less useful covariate. D1 and D∗1 were
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robust even when large portions of data were missing and when the covariate did not provide

information about the missing data. In such extreme cases, as predicted by Li, Meng, et al.

(1991), D2 was less reliable, and increasingly liberal in larger samples. The results remained

acceptable for up to 50% missing data, at which point Bradley’s liberal criterion for robustness

was violated (FMI of .50). However, if the correlation between X and Y was large, then D2 was

more reliable, and the results remained acceptable for up to 65%missing data (also FMI of .50).

Notice that, in smaller samples, D2 became less liberal again when the amount of missing data

became very large (above 70%)2. Surprisingly, D3 was also affected by larger FMIs such that,

for large amounts of missing data (above 40%), D3 became more and more conservative. These

results occurred most strongly in smaller samples, where results remained acceptable for up to

65% missing data when X provided no information about Y . This effect too became smaller as

the correlation between X and Y grew larger.

Study 3

The third study was conducted in order to assess whether our results could be generalized to

two-factorial ANOVA designs and, in particular, to tests of the interaction effect. For this

purpose, we extended the procedure of Study 1 to two-factorial designs in which two factors

A and B, with I and J levels, respectively, could influence the outcome Y . The two main

effects and the interaction effect were each assigned an effect pattern, denoted pA, pB and pAB,

respectively, and an effect size, denoted fA, fB and fAB, respectively. The difference pattern was

employed for the two main effects. The interaction effect was defined in a similar fashion such

that groups on the main diagonal of the I × J design would have larger values in Y compared to

the off-diagonal groups. Scaling factors for each pattern were derived by the same logic as in

Study 1. We chose similar values for the remaining simulation factors, as can be seen in Table

1. We examined the interaction effect in a 3 × 3 and 5 × 5 design with a different number of

2 The behavior of D2 for large FMIs appeared to be a result of two compensatory mechanisms. Liberal behavior
of D2 was associated with F-values slightly larger than 1. The inflation of F values was associated with values of
the ARIV2 that were lower than the respective ARIV1 (see Equation 4), especially in larger samples. Conservative
behavior of D2, on the other hand, seemed to be induced by the denominator degrees of freedom, v2, which tended
to be smaller than v1, and noticeably so in smaller samples (see the first term in Equation 6; cf. Equations 3 and 9).
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Figure 7: Type I error rates for different pooling methods and LD (α = 5%) for the interaction effect in the
two-factorial design, depending on group size (n) and number of groups per factor (I = J). The grey boxes indicate
the Type I error rates obtained from complete datasets. D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.

persons per group. Since the total sample size increased rapidly with I and J, we simulated

smaller groups of size 10, 30 and 50, respectively, so that the range in total sample size was

similar to Study 1.

The results for the main effects were consistent with those of Study 1. Therefore, we only

report our findings concerning the interaction effect, that is, the Type I error rates if fAB = 0

(α = 5%) and the power to detect nonzero interaction effects, given that the main effects were

both zero. The test of the interaction effect involved 4 parameters in the 3 × 3 design and 16

parameters in the 5 × 5 design. Larger designs were not considered because they are rarely

found in practice.

Figure 7 shows the Type I error rates obtained from the different pooling methods and LD

when all effects are zero, and ρxy = 0 as well as λ = 0. For moderate (n = 30) and larger groups

(n = 50) all methods were found to be robust. As in Study 1, the Type I error rates of D1 and D2

were slightly above those of D∗1 and D3. For smaller groups (n = 10), D1 and D2 were found to

be somewhat liberal in the 3 × 3 design (5.7% and 5.8%) and slightly conservative in the 5 × 5

design (4.8% and 4.1%), whereas D∗1 and D3 performed conservatively in both cases (4.9% and

4.0% in the 3 × 3 design; 4.1% and 2.8% in the 5 × 5 design, respectively).

Similar differences were observed for the power to detect nonzero interaction effects, as is

shown in Table 3. For smaller groups (n = 10, I = J = 5), D1 and D2 had greater power to

detect nonzero interaction effects, whereas D∗1 and especially D3 were less powerful; a pattern

that was most pronounced if the covariate X did not provide information about the missing data
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Table 3: Power to Detect Nonzero Interaction Effect (α=5%) in a Two-Factorial Design for all Pooling
Methods and LD

λ = 0 λ = .70

LD D1 D∗1 D2 D3 LD D1 D∗1 D2 D3

n = 10, I = J = 5, fAB = .25 (PE = .653)
ρxy = 0 .489 .447 .415 .427 .355 .488 .438 .407 .435 .340
ρxy = .35 .488 .464 .430 .447 .394 .476 .448 .415 .458 .362
ρxy = .70 .474 .530 .500 .504 .508 .470 .543 .505 .546 .516

n = 30, I = J = 3, fAB = .25 (PE = .922)
ρxy = 0 .803 .805 .802 .808 .796 .817 .815 .809 .822 .800
ρxy = .35 .807 .818 .809 .814 .806 .800 .817 .810 .820 .806
ρxy = .70 .797 .870 .863 .871 .866 .791 .880 .877 .888 .878

Note. PE = power expected; n = group size; I = number of groups by factor A; J = number of groups by factor B;
fAB = size of interaction effect; ρxy = correlation between X and Y ; λ = effect of X on missingness; D1, D∗1, D2,
D3 = pooling methods; LD = listwise deletion.

(ρxy = 0). For moderate groups (n = 30, I = J = 3), the differences between the pooling

methods were much smaller. In comparison with LD, and in larger samples, the power of

the pooling methods was low if the covariate did not provide information about the missing

values (ρxy = 0), but higher than with LD if the covariate was predictive of the missing data

(ρxy = .70). In smaller samples, such low power was only observed for D3. The missing data

mechanism did not influence the power obtained with the pooling methods, but LD showed

lower power if Y was MAR (λ = .70).

General discussion

Bymeans ofMonteCarlo simulation, we examined the performance of different poolingmethods

for the global null hypothesis test of the ANOVAwith multiply imputed datasets. The goal of the

present article was to complement the existing literature with simulation results that argue from

the perspective of applied researchers. Similar to previous studies, we can conclude that D1

and D∗1 are the most reliable pooling methods available and that D3 behaves similarly in larger

samples. However, we found that the use of D2, at least for hypothesis tests in the ANOVA, is

perfectly supported by many conditions that commonly occur in research practice. All pooling

methods provided large potential gains over LD in terms of statistical power when a useful
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covariate could be included in the imputation model, provided that the number of imputations

was sufficiently large. Whereas the increase in statistical power depended on the presence of

useful covariate information, there was usually no harm in using MI when the covariate did not

provide any information at all. We hope that the simulation approach taken in this study will aid

researchers in judging the severity of the missing data problem and in choosing the procedure

which is the most fitting for their purpose.

In general, D1 and D∗1 provided the most reliable hypothesis tests for the ANOVA, which

replicates what previous studies concluded about D1. Their Type I error rates varied within

a small range around the optimal value, and reasonable gains in statistical power arose from

including auxiliary variables. The slightly liberal behavior of D1 was limited to small samples.

Both methods appeared to be reliable even when large portions of data were missing.

The D2 procedure performed well in Study 1 and Study 3. We observed similar gains in

statistical power for D1 and D2, but the power of D2 was much lower if the number of imputed

datasets was not large enough. However, unlike previous research suggested, the power of D2

improved drastically when the number of imputations was increased and was ultimately equal

to that of D1 (cf. Schafer, 1997; van Buuren, 2012). In line with previous research, we found

that when the FMI was large, the robustness of D2 was compromised (see Li, Meng, et al.,

1991). Our simulation study suggests that researchers should refrain from using D2 if large

portions of the data are missing and no auxiliary variables can be included to compensate for

the loss of information (e.g., 50% missing data, low correlation with other variables); the more

information is supplied by covariates, the more missing data may be tolerated by D2. All in

all, the D2 statistic appeared to be a reasonable choice for most applications of the ANOVA

in psychological research. This is an encouraging result for applied researchers because D2 is

very easy to calculate using the test statistics alone, without requiring specialized software or

programming experience.

The likelihood-based D3 procedure performed well in most conditions, but it was quite

conservative unless the samples were very large. This behavior was intensified if large portions

of the data were missing. In general, the D3 statistic can be recommended; however, at least for

hypothesis tests in the ANOVA, larger gains in statistical power can be obtained using D1, D∗1
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and D2, which are often easier to implement.

Our results also have important implications for applications of MI in which large portions

of the data are missing, for example, in “planned missing data” designs (Graham et al., 2006).

In such designs, both MI and LD provide approximately unbiased parameter estimates because

the data are MCAR. However, based on our results, it seems crucial that “planned missing data”

designs include auxiliary variables which are correlated with the variables of interested, thus

providing more informed imputations of missing values. Otherwise, analyses based on MI will

be no more efficient than those based on LD (see Rhemtulla, Savalei, & Little, 2016). In other

words, hypothesis tests based on MI can be much more powerful than those based on LD, but

only if useful covariates are available that can be included in the imputation model.

As is true for any computer simulation, our study was limited in a number of ways. First, the

complex simulation design limited the number of levels that could be studied for each factor in a

fully crossedmanner. In Study 1, we fixed the probability of missing data to 25%, andmost other

factors had a small number of levels. We addressed this problem by varying some simulation

factors in two additional studies to explore their effects in better detail. Nonetheless, not all

conditions were fully crossed, and therefore our results should not be generalized too readily to

the vast diversity of conditions that can occur in practical research. Second, likelihood-based

methods may be considered, which offer some advantages over LD, for example, to include

auxiliary variables or to condition on possible causes of missing data (see Enders, 2010; Little

& Rubin, 2002; von Hippel, 2007). Third, we assumed the covariate and the grouping variable

to be fully observed at all times. This is often unlikely in practice, in which case, more general

missing data methods must be considered (e.g., Enders, 2008; Little, 1992). Even though

imputation itself was of minor interest in our study, results may differ for multivariate missing

data problems. Finally, there are further alternatives to the four pooling methods considered

here and they should be subjects of future research. Raghunathan and Dong (2011) proposed a

pooling method which is solely based on the sum of squares. Variations and applications of D1

and D3 have been considered by Licht (2010), Kientoff (2011), and Consentino and Claeskens

(2010).

In future studies, researchers may wish to address ANOVA designs with multiple or nested
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factors, interaction effects, repeated measurements, or random effects (see van Ginkel & Kroo-

nenberg, 2014). Effect size measures should be considered to allow for a more exhaustive

treatment of missing data in ANOVA designs (Harel, 2009). However, the procedures featured

in our study are not limited to the ANOVA. In structural equation modeling, researchers may

utilize the same procedures that are featured in our study for various multiparameter tests with

multiply imputed data (see Enders, 2010, for an overview). We believe that all pooling methods

have good potential for reliable and efficient statistical inference when faced with missing data.

The computer code for these methods is provided in the supplemental online material. We

encourage researchers to use and extend these methods to thereby promote a wider application

of missing data methods in psychology and the social sciences.
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Article 5: Multiple imputation of multilevel missing data: An
introduction to the R package pan

Grund, S., Lüdtke, O., &Robitzsch, A. (2016a). Multiple imputation ofmultilevelmissing data: An introduction
to the R package pan. SAGE Open, 6(4), 1–17. doi:10.1177/2158244016668220

The treatment of missing data can be difficult in multilevel research because state-of-the-art
procedures such as multiple imputation (MI) may require advanced statistical knowledge or a
high degree of familiarity with certain statistical software. In the missing data literature, pan
has been recommended for MI of multilevel data. In this article, we provide an introduction
to MI of multilevel missing data using the R package pan, and we discuss its possibilities and
limitations in accommodating typical questions in multilevel research. In order to make pan

more accessible to applied researchers, we make use of the mitml package, which provides a
user-friendly interface to the pan package and several tools for managing and analyzing multiply
imputed data sets. We illustrate the use of pan and mitml with two empirical examples that
represent common applications of multilevel models, and we discuss how these procedures may
be used in conjunction with other software.

In recent years years, multilevel models have become one of the standard tools for analyzing

clustered empirical data. Such data often occur in organizational and educational psychology

and other fields of the social sciences, for example, when employees are nested within work

groups, students are nested within school classes, or in longitudinal studies when measurement

occasions are nested within persons. In addition, empirical data are often incomplete, for

example, when participants drop out of the study or do not answer all of the items on a

questionnaire. Several authors have advocated the use of modern missing data techniques such

as multiple imputation (MI) rather than traditional approaches such as listwise or pairwise

deletion (Allison, 2001; Enders, 2010; Newman, 2014; Schafer & Graham, 2002; van Buuren,

2012). One central requirement of MI is that the imputation model must be at least as general as

the model of interest in order to preserve relationships among variables (Enders, 2010). In the

case of incomplete multilevel data, it is important that the imputation model takes the multilevel

structure into account in order to ensure valid statistical inferences in subsequent multilevel

analyses (Black et al., 2011; Graham, 2012; van Buuren, 2011).

AlthoughMI is gaining popularity among applied researchers, multilevel imputation models

are rarely used in practice. One of the most commonly recommended software solutions for
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multilevel imputation is the pan package (Schafer & Yucel, 2002; Schafer & Zhao, 2014),

which is freely available in the statistical software R (R Core Team, 2015; see also Culpepper

& Aguinis, 2011). However, the application of pan can be challenging, and its documentation

is rather technical, especially for users who are not familiar with R. For instance, for multilevel

missing data, Graham (2012) recommended “that you obtain a copy of the PAN program (...),

and that you find an expert in R who can help you get started” (p. 137).

The present paper is intended as a gentle introduction to the pan package forMI of multilevel

missing data. We assume that readers have a working knowledge of multilevel models (see Hox,

2010; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012b). In order to make pan more

accessible to applied researchers, we make use of the R package mitml, which provides a user-

friendly interface to the pan package and some additional tools for organizing and analyzing

multiply imputed data (Grund, Robitzsch, & Lüdtke, 2016). The first section of this paper

introduces an empirical example that is used for illustrating the application of pan to multilevel

data. In the following section, we briefly describe the main ideas behind pan and MI, and we

discuss which features of multilevel models must be considered when conducting MI. Finally,

we use the mitml package to carry out MI for the empirical example. In that context, we will

discuss possibilities for model diagnostics and tests of nonstandard statistical hypotheses (e.g.,

model constraints, model comparisons).

Multilevel modeling: An empirical example

Multilevelmodels account for dependencies in the data and allow relationships between variables

to be estimated at different levels of analysis or effects that may vary across higher-level

observational units. For the purpose of this article, we assume that the multilevel structure

consists of persons (e.g., students, employees) nested within groups (e.g., classes, work groups).

If only the regression intercept varies across groups, the model is referred to as a random-

intercept model. For example, G. Chen and Bliese (2002) examined the effects of individual

characteristics (e.g., psychological strain) and leadership climate on the self-efficacy of U.S.

soldiers. Kunter, Baumert, and Köller (2007) investigated the effects of student- and group-
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Table 1: Pairwise Observed-Data Correlations Among Variables and Amount of Miss-
ing Data

MA RA CA SES DPM DPR SC
MA 0.528 0.530 0.232 −0.234 −0.238 −0.217
RA 0.493 0.299 −0.291 −0.294 −0.327
CA 0.240 −0.265 −0.251 −0.221
SES −0.154 −0.155 −0.123
DPM 0.782 0.399
DPR 0.419
Missing Data 19.4% 0% 0% 35.0% 61.4% 21.5% 21.7%

Note. MA = math achievement; RA = reading achievement; CA = cognitive ability; SES = so-
cioeconomic status; DPM = disciplinary problems in math class; DPR = disciplinary problems
in reading class; SC = school climate.

level ratings of classroom management on students’ interest in mathematics. If the effects of

additional predictor variables vary across groups, the model is referred to as a random-slope or

random-coefficients model. For example, Hofmann et al. (2003) investigated varying effects of

leader-member exchange on safety behavior across work teams in the U.S. army.

The example data set used in this article is from the field of educational research and was

taken from the German sample of primary school students who participated in the Progress in

International Reading Literacy Study (PIRLS; Bos et al., 2005; Mullis, Martin, Gonzales, &

Kennedy, 2003). The data set includes test scores in bothmathematics and reading achievement,

a measure of cognitive ability, a measure of socioeconomic status (SES), students’ ratings of the

quality of teaching in their math and reading classes (the prevalence of disciplinary problems),

and ratings of the general learning environment (school climate). For the purpose of this article,

we considered only students for whom reading achievement and cognitive ability scores were

available, which was true for approximately 99.3% of the sample (8,767 students in 475 classes).

Ratings of disciplinary problems in math classes were missing for half of the sample due to a

planned missing data design (Graham et al., 2006). Table 1 provides an overview of the data set,

along with the observed correlations and the percentages of missing values among variables.

Some variables contain additional, unplannedmissing data. In such cases, it is useful to examine

the missing data patterns that occur in the data set. This is shown in Table 2. Approximately

50% of the sample adhered to the planned missing data design (Patterns 1 and 2). In another
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Table 2: Frequent Missing Data Patterns

Pattern MA RA CA SES DPM DPR SC Cases # Rel. % Cum. %
1 o o o o x o o 2306 26.3% 26.3%
2 o o o o o o o 2134 24.3% 50.6%
3 o o o x x o o 1173 13.4% 64.0%
4 o o o x o o o 1125 12.8% 76.9%
5 x o o o x x x 1027 11.7% 88.6%
6 x o o x x x x 622 7.1% 95.7%

Note. The patterns displayed here account for ≥ 95% of the sample. o = observed; x = missing; MA = math
achievement; RA = reading achievement; CA = cognitive ability; SES = socioeconomic status; DPM = disci-
plinary problems in math class; DPR = disciplinary problems in reading class; SC = school climate.

25% of the sample (Patterns 3 and 4), SES was additionally missing. The remaining patterns

were more diverse, and data were missing for math achievement scores, disciplinary problems

in reading classes, or school climate. Planned missing data designs are becoming increasingly

popular in large-scale observational studies because such designs can reduce the burden that

is placed on each individual participant (Graham et al., 2006). The missing data mechanism

is usually ignorable for variables recorded in this manner, thus enabling us to focus on more

specific aspects of MI in multilevel research.

Example 1: Random-intercept model

Our first model of interest examined the effect of teaching quality in math classes (disciplinary

problems; DPM) on students’ math achievement scores (MA). In addition, we included SES

in order to control for differences in socioeconomic background between students and classes.

The student-level variables were centered around the group mean, and the group means were

included as predictor variables in order to separate within-group from between-group effects

(see Enders & Tofighi, 2007; Raudenbush & Bryk, 2002). For student i in class j,

MAi j = β0 + β1(DPMi j − DPM j) + β2DPM j + β3(SESi j − SES j) + β4SES j + υ0 j + εi j . (1)

Here, the β coefficients denote fixed effects, and υ0 j and εi j denote the residuals at the class

and student level, respectively. We refer to the effects of the average DPM and SES of a class

as between-group effects, whereas within-group effects accounts for the students’ individual

deviations from that average. For example, β4 denotes the effect of a class’ average SES on class-
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levelmath achievement, whereas β3 denotes the effect of students’ individual deviations from the

class average on their individual math achievement scores. The student- and class-level residuals

are each assumed to follow a normal distribution with zero mean and variances Var(υ0 j),

independently and identically across classes, and Var(εi j), independently and identically across

students.

Example 2: Random-slope model

Our second model of interest examined the relationship between students’ cognitive ability

(CA) and their math achievement scores. We assumed that the relationship between the two

variables would vary across groups (random slope) because some teachers may nurture students’

individual strengths and weaknesses, whereas others may strive to “equalize” them. As before,

we included SES to control for differences in socioeconomic background. In line with recent

recommendations for analyzing random-slope variation, we centered the variables around the

group means (Aguinis, Gottfredson, & Culpepper, 2013; Hofmann & Gavin, 1998). The group

means were included as additional predictors in order to “reintroduce” the group-level construct

into the model. The model reads

MAi j = β0 + β1(CAi j − CA j) + β2CA j + β3(SESi j − SES j) + β4SES j

+ υ0 j + υ1 j(CAi j − CA j) + εi j ,
(2)

where υ1 j denotes the random effect of cognitive ability onmath achievement per class. The two

random effects (intercept and slope) are assumed to follow a multivariate normal distribution,

independently and identically across classes, and the remaining notation is the same as above.

Multiple imputation of incomplete multilevel data

Missing data could be addressed by restricting the analyses to completely observed cases

(listwise deletion). However, this approach is more likely to suffer from low power and to give

biased results (e.g., Little & Rubin, 2002; see also Newman, 2014). Multiple imputation has

become one of the preferred methods for overcoming these problems (Rubin, 1987; Schafer

& Graham, 2002). Using MI, a number of replacements for the missing data are drawn from
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the distribution of the missing values, given the observed data and an imputation model. The

completed data sets are then analyzed separately, and the results are combined across data sets

to form final parameter estimates and inferences (see Enders, 2010, for details about the general

MI procedure).

General aspects of MI

In most applications of MI, the data are assumed to be missing at random (MAR), a notion that

was introduced by Rubin (1976) in his well-known classification of missing data mechanisms.

Consider the hypothetical complete data matrix Y which is decomposed into observed and

unobserved portions Y = (Yobs,Ymis). An indicator matrix R denotes whether values are

observed or missing. If the missing data are simply a random sample of the hypothetical

complete data, that is, P(R|Y) = P(R), then the data aremissing completely at random (MCAR).

One such scenario occurs in planned missing data designs, where missing values are “assigned”

randomly to each participant. If the occurrence of missing data depends on the observed data

but missing data occur “at random” with these taken into account, that is, P(R|Y) = P(R|Yobs),

then the data are missing at random (MAR). The two missing data mechanisms MCAR and

MAR are often called “ignorable” because the exact missing data mechanism need not be

known in order to perform MI (for a more general discussion of the role of “ignorability”, see

Enders, 2010). If neither condition holds, that is, P(R|Y) = P(R|Yobs,Ymis), then the data are

missing not at random (MNAR). Most software implementations of MI rely on the assumption

that the data are MAR. Performing MI under MNAR is possible but requires making strong

assumptions about the missing data mechanism and is most often used for sensitivity analyses

(see Carpenter & Kenward, 2013). In order to enhance the plausibility of the MAR assumption,

it has been suggested that auxiliary variables be included in the imputation model. These

variables are related to either the propensity of missing data or the missing values themselves,

without necessarily being part of the model of interest (Collins et al., 2001). In our empirical

example, some data are missing by design and are thus MCAR. For the remaining data, we will

assume that the data are MAR, given the observed portions of the data that can be included as

auxiliary variables.
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Furthermore, the imputation model must be at least as complex as the analysis model. If

variables or parameters that are relevant for the analysis model are not included in the imputation

model, then the procedure could yield biased results (Meng, 1994; Schafer, 2003). For example,

assume that a researcher is interested in testing an interaction between two variables in amultiple

regression analysis with partially missing data. In this case, it would be important that the

interaction effect (i.e., product term) is incorporated in the imputation model (Enders et al.,

2014). Similarly, if one is interested in estimating the intraclass correlation (i.e., the variance

within and between groups) with incomplete data, it would be crucial to take into account

the clustered data structure (Taljaard et al., 2008). If the model of interest includes random

slopes, then the imputation model should allow for different slopes across groups. Choosing

an appropriate imputation model can be challenging, and it may be tempting to resort to ad

hoc methods for treating multilevel missing data (Graham, 2012). For example, it has been

suggested that the multilevel structure be represented by creating a set of dummy indicator

variables (Drechsler, 2015; Graham, 2009; White et al., 2011). In this approach, the dummy

indicators are included in the single-level imputation model, and a separate intercept (or fixed

effect) is estimated for each group. However, recent simulation research has indicated that such

methods can distort parameter estimates and standard errors in multilevel analyses (Andridge,

2011; Enders et al., 2016; Lüdtke et al., 2017).

Two broad approaches to performing MI can be distinguished. In the joint modeling

approach, a single statistical model is used for imputing all incomplete variables simultaneously

(e.g., Schafer & Yucel, 2002). In contrast, in the fully conditional specification of MI, each

variable is imputed in turn using a sequence of imputation models (van Buuren & Groothuis-

Oudshoorn, 2011). In the present article, we focus on the pan package, which follows the joint

modeling paradigm (for a discussion, see Carpenter & Kenward, 2013).

The multivariate linear mixed-effects model

The statistical model underlying the pan package is a multivariate extension of regular (uni-

variate) multilevel models; that is, it represents multiple dependent variables simultaneously.

In addition, the model may feature a number of predictor variables with associated fixed and
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random effects. Formally, we refer to this model as the multivariate linear mixed-effects model

(MLMM; see Schafer & Yucel, 2002). The model reads

yi j = xi jβ + zi jb j + ei j , (3)

where yi j is the (1×r) vector of responses for person i in group j, xi j and zi j are (1×p) and (1×q)

vectors of covariate values, β is a (p× r)matrix of fixed effects, b j is a (q× r)matrix of random

effects, and ei j is a (1 × r) vector of residuals. In most cases, the matrix zi j contains a subset of

the values in xi j , and both will contain at least a “one” for the regression intercept. The random

effects matrix b j , with columns stacked upon another, is assumed to follow a normal distribution

with mean zero and covariance matrix Ψ, independently and identically for all groups. The

vector of residuals ei j is assumed to follow a normal distribution with mean zero and covariance

matrix Σ, independently and identically for all individuals. The MLMM imputes all variables

on the left-hand side of the model equation given the variables on the right-hand side (with

fixed and random effects). Only the variables on the left-hand side (i.e., in yi j) may contain

missing values, whereas the variables on the right-hand side must be completely observed (i.e.,

in xi j and zi j). In the following, we will distinguish between two broad approaches to MI of

incomplete multilevel data using pan’s MLMM (see Table 3 for an illustration).

Multivariate emptymodel. In the first approach, the emphasis is placed on the left-hand side

of themodel (i.e., the yi j), whereas the right-hand side includes only the intercept (xi j = zi j = 1).

For all variables included on the left-hand side, the MLMM decomposes their variances and

covariances into separate between- (Ψ) and within-group portions (Σ). We refer to this approach

as the multivariate empty model. This model can be understood as a multivariate variant of the

regular emptymultilevel model—also known as the null model or the intercept-onlymodel—, in

which the dependent variable is also decomposed into between- and within-group components,

but the predictor side of the model remains empty. The upper half of Table 3 contains an

example with three variables, each of which may or may not contain missing data. As can be

seen in Table 3, the three variables decompose into a fixed term common to all persons and

groups, a random intercept unique to each group, and an error term unique to each person.

The covariance matrices of random effects and errors, Ψ and Σ, contain the variances of the
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Table 3: Two Multivariate Linear Mixed-Effects Models for Missing Data

General notation
yi j = xi jβ + zi jbj + ei j

Multivariate empty model[
y1 y2 y3

]
i j

target variables

=

[
β1 β2 β3

]
fixed effects (intercepts)

+

[
b1 b2 b3

]
j

random effects (intercepts)

+

[
e1 e2 e3

]
i j

residuals[
b1 b2 b3

]
j
∼ N(0,Ψ) and

[
e1 e2 e3

]
i j
∼ N(0,Σ)

Full mixed-effects model[
y1 y2

]
i j

target variables

=

[
1 x1

]
i j

[
β01 β02

β11 β12

]
fixed effects (intercepts, slopes)

+

[
1 x1

]
i j

[
b01 b02

b11 b12

]
j

random effects (intercepts, slopes)

+

[
e1 e2

]
i j

residuals[
b01 b11 b02 b12

]
j
∼ N(0,Ψ) and

[
e1 e2

]
i j
∼ N(0,Σ)

Note. The predictor x1 is assumed to be completely observed. Vectorization of the random-effects matrix
bj is achieved by stacking its columns.

yi j and allow for relations between the dependent variables at the group and the person level,

respectively. For that reason, the empty model is especially useful if researchers are interested

in estimating relationships at the individual and the group level as in random-intercept models

with group-level predictors (see Example 1).

Full mixed-effects model. The second approach utilizes both sides of the model. For all

variables included on the right-hand side (i.e., in xi j and zi j), the MLMM estimates fixed and/or

random effects, respectively. The lower half of Table 3 contains an example with two dependent

variables with missing data and one fully observed predictor variable x1 in xi j and zi j . As can

be seen, the model includes both fixed and random effects for the intercept and x1. We refer

to this model as the full mixed-effects model because it includes both random intercepts and

slopes where possible. Note that x1 is not decomposed in this model, and the fixed and random

effects represent the overall effects of that variable on the dependent variables. In order to

include separate within- and between-group effects of x1, the variable must be decomposed into

between- and within-group portions prior to performing MI (e.g., by including the group mean

as an additional predictor). The full mixed-effects model is particularly useful if the model
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of interest includes random slopes because the slope variance is represented in the imputation

model (see Example 2).

Software alternatives

A number of software packages have introduced procedures for MI of multilevel data. The

software Mplus (L. K. Muthén & Muthén, 2012) implements a two-level model similar to the

empty model in pan (denoted H1) as well as a second procedure (denoted H0) for more complex

models (e.g., random-slope models; see Asparouhov & Muthén, 2010b). Joint modeling

approaches are also available in SAS (Mistler, 2013a), REALCOM (Carpenter et al., 2011), and

the R package jomo (Quartagno & Carpenter, 2016a). A fully conditional specification of MI

is available in the R package mice (van Buuren & Groothuis-Oudshoorn, 2011). For some of

these packages, it is possible to follow similar analysis steps as outlined in this article for the

pan package. We return to this possibility in a later section.

Example applications with multilevel missing data

In order to demonstrate the application of pan for imputing incomplete multilevel data, we

made use of the mitml package. This package provides a more convenient interface for the pan

algorithm and some additional tools for handlingmultiply imputed data sets and combining their

results (Grund, Robitzsch, & Lüdtke, 2016). Following the imputation, we used the package

lme4 for estimating the two models of interest (Bates, Maechler, Bolker, & Walker, 2014). We

repeated the imputation and estimation in both examples using the popular software Mplus1.

The results were mostly consistent with those of pan and will not be discussed in detail. Input

files for Mplus are provided in Supplement A in the supplemental online materials.

The example data set is structured as follows. The first variable (ID) denotes the class

membership of each student. The remaining variables are as described above and may contain

different amounts of missing data, which are denoted as NA.

1 For Example 1, we used H1 imputation, which is equivalent to the multivariate empty model. For Example 2,
we used H0 imputation because a model that was equivalent to the full mixed-effects model could not be specified
using H1 imputation.
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ID MathAchiev ReadAchiev CognAbility SES MathDis ReadDis SchClimate
1 517.92 547.65 52 70 1.6 1.8 1.25
1 524.78 633.82 46 40 3.0 2.4 2.50
1 544.50 474.04 59 34 NA 2.4 1.00

Treating and analyzing multilevel missing data usually involves the following steps. First, an

appropriate imputation model must be specified. As outlined above, the analysis model must

be considered at that point so that the relevant variables, parameters, and auxiliary variables

are included in the imputation model. Second, the imputation procedure must be carried out,

resulting in a number of imputed data sets. Third, the data sets must be analyzed separately,

and the resulting parameter estimates are combined according to the rules described in Rubin

(1987; for alternatives, see Carpenter & Kenward, 2013; Reiter & Raghunathan, 2007). These

steps can be carried out using the mitml package. In order to illustrate the impact of different

approaches for handling incomplete multilevel data, we also provide the results obtained from

single-level MI, which ignores the multilevel structure, and from listwise deletion (LD; i.e.,

complete case analysis). The computer code and output files are provided in Supplement B in

the supplemental online materials.

Example 1: Random-intercept model

In the first example, the model of interest examined the between- and within-group effects of

disciplinary problems in math classes (DPM) on math achievement (MA), while controlling for

SES at the individual and class level.

MAi j = β0+β1(DPMi j−DPM j)+β2(SESi j−SES j)+β3DPM j+β4SES j+υ0 j+εi j (1, revisited)

Choosing an appropriate imputation model is straightforward in this case because the multi-

variate empty model is suitable for random-intercept models in general. In addition, the empty

model includes between- as well as within-group relations as required by the model of interest

(in Ψ and Σ; see Table 3). Recall that the empty model is specified by writing all variables on

the left-hand side of the model equation. In R, the imputation model for this example is set up

as follows.
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# SETUP: imputation model (variance decomposition model)
fml <- MathAchiev + MathDis + SES + ReadAchiev + CognAbility + ReadDis +

SchClimate ~ 1 + (1|ID)

The mitml package uses formula objects to represent the imputation model. The “∼” symbol

separates the left- and right-hand side of the model. The left-hand side contains the three

variables of interest and the auxiliary variables (i.e., reading achievement, cognitive ability,

ratings of disciplinary problems in reading classes and school climate). On the right-hand side,

the intercept is specified both as a fixed (1) and a random effect (1|ID), where the “|” symbol

denotes clustering.

For running the pan algorithm, the mitml package offers the function panImpute as its main

interface. The pan algorithm uses Markov chain Monte Carlo (MCMC) techniques to draw

replacements for the missing values. At each iteration of the procedure, a new set of parameters

and replacements is simulated. The distribution from which the replacements are drawn is

called the posterior predictive distribution of the missing data (Gelman et al., 2014). The full

procedure is divided into a burn-in phase and an imputation phase (see Enders, 2010). During

burn-in, the algorithm performs a number of iterations without saving any imputations, thus

ensuring that the parameters of the imputation model have converged to stationary distributions.

In other words, the burn-in phase must be long enough for the algorithm to “stabilize” before

any replacements are drawn. Then, during the imputation phase, a number (m) of imputed data

sets are drawn, each spread a number of iterations apart. The fact that imputations are not drawn

directly from consecutive iterations ensures that the imputed data sets constitute independent

random draws from the posterior predictive distribution. Specifically, consecutive iterations

in MCMC are often correlated to some degree (autocorrelation), whereas multiply imputed

data sets must be drawn independently of one another. Thus, the number of iterations chosen

between imputations must be large enough for autocorrelation to vanish.

In the first example, we ran pan for 50,000 burn-in iterations, after which m = 100 imputed

data sets were drawn, each spread 5,000 iterations apart. While these numbers may seem

large, recent studies have advocated generating such large numbers of imputations, particularly

when large portions of the data are missing (Bodner, 2008; Graham et al., 2007). The number
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of iterations for burn-in and between imputations was chosen such that convergence could be

ensured, as described below. The respective command using mitml was as follows.

# IMPUTATION:
imp <- panImpute(dat, formula=fml, n.burn=50000, n.iter=5000, m=100, seed=1234)

The mitml package saves the imputation in a special format that is designed to handle large data

sets. In order to obtain a list containing all the imputed data sets, the function mitmlComplete

is used. The necessary command is printed below.

# list of imputed data sets
impList <- mitmlComplete(imp, print="all")

Convergence diagnostics. For the analysis to yield reliable results, it must be ensured that

the pan algorithm has converged and that the imputed data sets are approximately independent

draws from the posterior predictive distribution (for a detailed discussion of convergence assess-

ment in MCMC, see Cowles & Carlin, 1996; Gill, 2014; Jackman, 2009). The mitml package

offers two ways of doing so. The first option is to examine the potential scale reduction factor

(also called R̂; Gelman & Rubin, 1992) for the parameters of the imputation model. Originally

intended for analyzing multiple MCMC chains, R̂ is calculated here by discarding the burn-in

iterations and dividing the single MCMC chain for each parameter into multiple segments (see

Asparouhov &Muthén, 2010a). The R̂ statistic then compares the variance within and between

segments in order to detect a potential “drifting” of the chain, that is, chains that are more

variable overall than one would expect, based on the variability within segments. In the mitml

package, R̂ is included in the summary of an imputed data object.

# DIAGNOSTIC: summary and potential scale reduction
summary(imp)

In addition to the potential scale reduction, the output of summary includes details about the

imputation procedure and the missing data rate per variable. In this example, the output was as

follows (truncated for better readability).

Call:

panImpute(data = dat, formula = fml, n.burn = 50000, n.iter = 5000,
m = 100, seed = 1234)
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Cluster variable: ID
Target variables: MathAchiev MathDis SES ReadAchiev CognAbility ReadDis SchClimate
Fixed effect predictors: (Intercept)
Random effect predictors: (Intercept)

Performed 50000 burn-in iterations, and generated 100 imputed data sets,
each 5000 iterations apart.

Potential scale reduction (Rhat, imputation phase):

Min 25% Mean Median 75% Max
Beta: 1.000 1.000 1.000 1.000 1.000 1.000
Psi: 1.000 1.000 1.001 1.000 1.001 1.011
Sigma: 1.000 1.000 1.000 1.000 1.000 1.001

Largest potential scale reduction:
Beta: [1,6], Psi: [1,1], Sigma: [1,1]

Missing data per variable:
ID MathAchiev MathDis SES ReadAchiev CognAbility ReadDis SchClimate

MD% 0 19.4 61.4 35.0 0 0 21.5 21.7

Ideally, R̂ should be close to one for all parameters (Gelman & Rubin, 1992). If larger values

occur (say, above 1.050), a longer burn-in period may be required. Due to the potentially large

number of statistical parameters, the mitml package displays only summary statistics for these

values while emphasizing the parameters with the largest R̂. As shown in the output, the R̂ was

well below 1.050 for all parameters. The parameter with the largest R̂was the first diagonal entry

of the random-effects covariance matrix Ψ, that is, the intercept variance for math achievement

scores (R̂ = 1.011). However, R̂ has been criticized, and large values of R̂ need not always

indicate poor convergence (e.g., Geyer, 1992). Therefore, as a second option, diagnostic plots

should be considered. For each parameter in the imputation model, the plot function may

produce a trace plot for all iterations during and/or after burn-in, an autocorrelation plot for

all iterations after burn-in, and a summary of the parameter’s posterior distribution. The trace

plot is a graphical representation of the MCMC chain for each parameter, and it shows the

values of that parameter at each iteration. The autocorrelation plot shows the degree to which

consecutive elements of the MCMC chain are correlated (when spread a number of iterations

apart). The posterior summary includes a density plot of the MCMC chain and a number of

summary statistics relating to both the MCMC chain and its autocorrelation. The diagnostic

plots can be requested as follows.

plot(imp, trace="all")
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Figure 1: Diagnostic plots for the fixed intercept (top) and the intercept variance (bottom) of math achievement
in the imputation model. The trace plot includes all iterations from the burn-in and the imputation phase. The
autocorrelation plot and the posterior summaries are calculated only from the imputation phase.

Here, we discuss the diagnostic plots only for the fixed intercept and the intercept variance

for math achievement, which exhibited the worst convergence behavior of all parameters (see

Figure 1). The trace plots showed no sign of “drifting” or substantial change after the burn-

in phase, indicating that 50,000 iterations were sufficient for the parameters to reach their

respective target distributions. Autocorrelation was quite persistent for the intercept variance

but had essentially died out by lag 5,000. Therefore, imputations spread 5,000 iterations apart

could be considered independent. We concluded that the parameters had converged and that
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Table 4: Estimates of the Intraclass Correlation for theVariables of Interest
in Example 1

Multilevel MI Single-level MI Listwise Deletion
ICCMA 0.121 0.111 0.115
ICCSES 0.122 0.072 0.134
ICCDPM 0.179 0.100 0.169

Note. MA=math achievement; SES = socioeconomic status; DPM= disciplinary
problems in math classes; ICC = intraclass correlation.

the imputed data sets constituted independent draws from the posterior predictive distribution

of the missing data.

Intraclass correlations. Usually the first step in analyzing multilevel data is to estimate

the intraclass correlation (ICC) of the variables of interest. Therefore, before proceeding with

the model of interest, we will illustrate the analysis of multiply imputed data sets by fitting

intercept-only models for math achievement, SES, and DPM to estimate their ICCs. In order

to obtain final parameter estimates from multiply imputed data sets, the analysis model must

be fit separately to each data set, and the resulting estimates must be combined. In the mitml

package, the list of imputed data sets (here impList) can be analyzed by using the functions

with and within. The within function is used to transform the imputed data sets and carry

out smaller computations prior to fitting the analysis model. The with function returns the

model fit itself. The intercept-only model for math achievement can be fit as shown below (for

DPM and SES, see Supplement B). We used the lmer function from the lme4 package to fit the

analysis models.

# FIT: null model for math achievement
fit <- with( impList, lmer(MathAchiev ~ 1 + (1|ID)) )

This results in a list of 100 fitted analysis models, one for each imputed data set. The parameter

estimates of the fitted models can be combined by using the rules described in Rubin (1987).

The mitml package implements Rubin’s rules in the testEstimates function, which returns

the combined estimates for all fixed effects and, when used with lme4, the variance components

and the residual ICC (see Supplement B). The final estimates can be requested as given below.

# final parameter estimates (Rubin's rules)
testEstimates(fit, var.comp=TRUE)
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The resulting estimates of the ICCs are presented in Table 4 along with the estimates from

single-level MI and LD. Most notably, multilevel MI (using pan) led to much larger estimates

of the ICCs than single-level MI, especially for variables with large amounts of missing data

(DPM and SES). This illustrates the importance of accounting for the multilevel structure when

conducting MI for multilevel data. The estimates obtained from LD were closer to those of

multilevel MI without any obvious pattern emerging. These results are consistent with previous

research that was based on simulation studies (e.g., Taljaard et al., 2008; van Buuren, 2011).

Model of interest. The procedures outlined above can also be used for fitting the model

of interest (Equation 1). Prior to fitting the model, the group means for DPM and SES must

be calculated in each imputed data set, and the student-level variables must be centered around

their respective group means. Such computations can be carried out using within as shown

below.

# TRANSFORM: class means for MathDis and SES
impList <- within( impList, { MathDis.CLS <- clusterMeans(MathDis,ID)

SES.CLS <- clusterMeans(SES,ID) } )

# TRANSFORM: center student-level predictors
impList <- within( impList, { MathDis.STU <- MathDis - MathDis.CLS

SES.STU <- SES - SES.CLS } )

This results in a list of 100 imputed data sets, similar to the original list, but with the group

means and the group-mean-centered variables added to each data set. Finally, the model of

interest was fit as shown below using the lme4 package (using with).

# FIT: model of interest
fit <- with( impList, lmer(MathAchiev ~ 1 + SES.STU + SES.CLS + MathDis.STU +

MathDis.CLS + (1|ID)) )

As before, testEstimates returned the final parameter estimates and inferences.

# final parameter estimates (Rubin's rules)
testEstimates(fit, var.comp=TRUE)

The output of testEstimates includes the final parameter estimates, theMI standard errors, the

degrees of freedom and value of the reference t distribution2, the fraction of missing information

2 By default, testEstimates uses the standard t distribution proposed by Rubin (1987), which provides a test
statistic that is appropriate in larger samples. Alternatively, the degrees of freedom may be adjusted for smaller
samples as described in the package documentation (see also Barnard & Rubin, 1999; Reiter, 2007).
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(FMI), and the relative increase in variance due to nonresponse (RIV). Even though the FMI

is not frequently reported in empirical studies, it holds great value for the interpretation of

results and has been recommended as a diagnostic tool for analyzing multiply imputed data

sets (Bodner, 2008). The FMI represents the amount of information about an estimand that

is lost due to missing data (Allison, 2001; Enders, 2010). In other words, the FMI shows the

loss of “efficiency” when estimating parameters from multiply imputed data sets (Savalei &

Rhemtulla, 2012). Similar to the FMI, the RIV denotes the increase in sampling variability in

each estimand that can be attributed to missing data (see Enders, 2010). The output for the

model of interest is given below.

Call:

testEstimates(model = fit, var.comp = TRUE)

Final parameter estimates and inferences obtained from 100 imputed data sets.

Estimate Std.Error t.value df p.value RIV FMI
(Intercept) 502.498 19.254 26.098 1210.447 0.000 0.401 0.287
SES.STU 1.065 0.084 12.614 526.055 0.000 0.766 0.436
SES.CLS 2.150 0.267 8.065 1429.302 0.000 0.357 0.264
MathDis.STU -20.736 2.032 -10.203 372.305 0.000 1.065 0.518
MathDis.CLS -41.131 5.035 -8.169 1358.967 0.000 0.370 0.271

Estimate
Intercept~~Intercept|ID 655.957
Residual~~Residual 8318.936
ICC|ID 0.073

Unadjusted hypothesis test as appropriate in larger samples.

The results for multilevel MI, single-level MI, and LD are presented in Table 5. In general, a

higher SES was associated with higher math achievement scores, whereas test scores tended to

be lower if students reported disciplinary problems in class. The estimates at the class level were

roughly twice as large as those at the student level. Single-level MI led to similar estimates of

within-group effects, but the estimates of the between-group effects were consistently larger than

those obtained frommultilevel MI. Listwise deletion produced larger standard errors (especially

at the student level) and smaller estimates of class-level effects.

Researchers are often interested in estimating contextual effects, that is, group-level effects

when controlling for effects at the student level. For example, the contextual effect of SES

can be calculated simply by subtracting its within-group coefficient from its between-group
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Table 5: Results from Multilevel MI, Single-Level MI, and Listwise Deletion for Example 1 (Random-
Intercept Model)

Multilevel MI Single-level MI Listwise deletion
Estimate SE FMI Estimate SE FMI Estimate SE

Intercept 502.498 19.254 0.287 502.268 22.326 0.231 505.911 20.063
SESi j 1.065 0.084 0.436 1.054 0.080 0.401 0.849 0.138
SES j 2.150 0.264 0.316 2.474 0.303 0.237 1.753 0.275
DPMi j −20.736 2.032 0.518 −21.609 1.816 0.440 −21.874 3.054
DPM j −41.131 5.035 0.271 −47.165 5.764 0.187 −31.552 5.689
Var(υ0j) 655.957 592.132 731.860
Var(εi j) 8318.936 8387.913 8299.000

Note. Estimates were significant at p < .001; SE = standard error; MA = math achievement; SES = socioeconomic
status; DPM = disciplinary problems in math classes; υ0j = random intercepts; εi j = residuals at Level 1.

coefficient (Kreft et al., 1995). Effects constrained in such a way can be tested against zero

using the testConstraints function as shown below.

# contextual effect via model constraints
testConstraints(fit, "SES.CLS - SES.STU")

Testing constrained parameters is based on the delta method (e.g., Casella & Berger, 2002;

Raykov & Marcoulides, 2004), and the pooled test for multiply imputed data sets is based on

the method by Li, Raghunathan, and Rubin (1991)3. For further details, we refer to the package

documentation. The output for testing the contextual effect of SES is printed below.

Call:

testConstraints(model = fit, constraints = "SES.CLS - SES.STU")

Hypothesis test calculated from 100 imputed data sets. The following
constraints were specified:

SES.CLS - SES.STU

Combination method: D1

F.value df1 df2 p.value RIV
15.297 1 1292.993 0.000 0.365

Unadjusted hypothesis test as appropriate in larger samples.

3 The method by Li, Raghunathan, and Rubin (1991) requires that the FMIs are approximately equal across the
parameters being tested (see also Licht, 2010). In the present case, the linear constraint being tested has only one
component and fulfills this requirement automatically.
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In this example, the contextual effect of SESwas statistically significant at p < .001 (F = 15.297,

df 1 = 1, df 2 = 1293.0). Thus, it appeared that classes with a higher SES tended to have higher

math achievement scores, even after controlling for SES at the student-level.

Notice that, throughout this example, we used manifest group means as predictor variables

in the multilevel analyses. This is different from the imputation model, where the group-level

portions of variables are represented as latent variables (i.e., random effects). In general, an

imputation model based on latent group means (i.e., random effects) yields similar results as

one that is based on manifest means, and both can be considered correct imputation models

for multilevel data (Carpenter & Kenward, 2013; Lüdtke et al., 2017; Mistler, 2015). However,

when estimating the model of interest, the predictors’ group means may again be considered

as latent, and slightly different results are expected for such an analysis model (Asparouhov &

Muthén, 2006; Lüdtke et al., 2008). A further discussion can be found in Supplement C in the

supplemental online materials along with the Mplus syntax files for fitting the latent analysis

model. In this example, the two analysis models led to essentially the same conclusions.

Example 2: Random-slope model

In the second example, the model of interest examined the effect of student’s cognitive ability

(CA) and socioeconomic status (SES) on students’ math achievement scores (MA). The effect

of SES is assumed to be fixed, whereas the effect of cognitive ability is allowed to vary across

groups.

MAi j = β0 + β1(CAi j − CA j) + β2CA j + β3(SESi j − SES j) + β4SES j

+ υ0 j + υ1 j(CAi j − CA j) + εi j

(2, revisited)

As discussed before, the imputation model must consider the model of interest. In this example,

the effect of cognitive ability is assumed to vary across groups, which must be reflected in

the imputation model. The full mixed-effects model was used for this task (see Table 3).

Furthermore, we calculated the group means and the group-mean-centered cognitive ability

scores so that we could use them in the imputation model. This was achieved using within as

shown below.
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# TRANSFORM: group mean centering (prior to performing MI)
dat <- within(dat, { CognAbility.CLS <- clusterMeans(CognAbility,ID)

CognAbility.STU <- CognAbility - CognAbility.CLS } )

Because cognitive ability scores are available for all students, it can be included on the right-

hand side of the imputation model, which also allows the slope variance to be specified. The

imputation model was set up as follows.

# SETUP: imputation model (random effects model)
fml <- MathAchiev + SES + ReadAchiev + MathDis + ReadDis + SchClimate ~ 1 +

CognAbility.STU + CognAbility.CLS + (1+CognAbility.STU|ID)

The model includes math achievement, SES, and the auxiliary variables on the left-hand side

of the equation. In order to include the slope variance, cognitive ability is featured on the

right-hand side, where (1+CognAbility.STU|ID) allows the intercept and the effect of the

group-mean-centered cognitive ability scores to vary across groups.

It is worth noting that the MLMM assumes the same random effects structure for all

dependent variables in the model. In other words, the full mixed-effects model includes not

only the intercepts and slopes for the regressions of math achievement and SES on cognitive

ability but also for the four remaining variables. Thus, users of pan should be wary of including

too many variables if the model contains multiple random effects. The number of parameters

can increase rapidly by adding dependent variables or predictors with random effects to the

model, possibly requiring a large number of iterations for the model to converge.

As in the first example, the imputation procedure is started by using panImpute while

referring to the data set and the model equation. In this example, we let pan perform 100,000

burn-in iterations, after which we generated m = 100 imputed data sets, each spread 20,000

iterations apart. The respective command was as follows.

# IMPUTATION:
imp <- panImpute(dat, formula=fml, n.burn=100000, n.iter=20000, m=100, seed=1234)

As before, a list of imputed data sets was extracted using mitmlComplete. The code is not

displayed here because it is identical to the previous example (see Supplement B).

Convergence diagnostics. Before proceeding with the analysis, it must be ensured that

the pan algorithm has converged during burn-in and that the interval between imputations was
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Figure 2: Diagnostic plots for the fixed effect (top) and the slope variance (bottom) for the regression of math
achievement on cognitive ability in the full mixed-effects model. The trace plot includes all iterations from the
burn-in and the imputation phase. The autocorrelation plot and the posterior summaries are calculated from the
imputation phase.

sufficiently large. Again, R̂ gives an idea of possible problems with convergence and is accessed

through the summary. The largest value of R̂ was 1.001 in this case, indicating that the MCMC

chain had become stationary for all parameters. Examining the diagnostic plots supported this

impression but also indicated that some parameters were affected by autocorrelation. As shown

in Figure 2, the parameters related to the variables of interest converged quickly and did not

suffer greatly from autocorrelation. For some parameters, especially the group-level variance
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Table 6: Results from Multilevel MI, Single-Level MI, and Listwise Deletion for Example 2 (Random-
Slope Model)

Multilevel MI Single-level MI Listwise deletion
Estimate SE FMI Estimate SE FMI Estimate SE

Intercept 84.573 21.364 0.108 79.514 20.562 0.113 96.792 25.956
CAi j 6.114 0.150 0.185 6.138 0.154 0.232 6.250 0.185
CAj 7.608 0.521 0.164 7.549 0.501 0.160 7.714 0.584
SESi j 0.605 0.077 0.463 0.599 0.075 0.445 0.578 0.079
SES j 1.081 0.261 0.289 1.254 0.291 0.277 0.749 0.253
Var(υ0j) 485.050 417.802 540.924
Var(υ1j) 1.528 1.381 1.572
Cov(υ0j, υ1j) 0.333 1.470 5.535
Var(εi j) 6452.506 6547.366 6287.600

Note. Estimates for the fixed effects were significant at p < .001; SE = standard error; CA = cognitive ability; SES
= socioeconomic status; υ0j = random intercepts; υ1j = random slopes; εi j = residuals at Level 1.

components, the autocorrelation was quite persistent but vanished for all parameters with a lag

of 15,000 to 20,000 iterations.

Model of interest. In order to estimate the model of interest, the student-level variables

were centered around their group means (using within), and the model was fit using the

lme4 package (using with). We changed the method for estimating the multilevel model

from restricted maximum likelihood (REML) to full information maximum likelihood (FIML)

because the model comparison that was conducted as a later step in this analysis required that

the analysis models were estimated using FIML. The code for fitting the model of interest is

given below.

# FIT: model of interest
fit <- with( impList, lmer(MathAchiev ~ 1 + CognAbility.STU + CognAbility.CLS +

SES.STU + SES.CLS + (1+CognAbility.STU|ID), REML=FALSE) )

The final parameter estimates and inferences were obtained using testEstimates. These are

presented in Table 6, along with the estimates from single-level MI and LD. Students with

higher cognitive ability (as compared with their class average) tended to score higher on the

math achievement test after controlling for SES. This relation appeared to vary substantially

across groups. In comparison, single-level MI produced lower estimates of the intercept and

slope variance and a slightly larger estimate of the class-level effect of cognitive ability. For
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LD, the estimates of the fixed effects and variance components were slightly different from

those obtained with MI but comparable altogether. Results obtained using the H0 imputation

in Mplus yielded results similar to those produced by pan4.

When estimating multilevel models with random slopes, researcher are often interested in

whether or not the regression coefficients vary substantially across groups. For this purpose,

likelihood-ratio tests (LRTs), which compare the model of interest with an alternative model

that constrains the slope variance to zero, are often conducted (see Snijders & Bosker, 2012b).

A method for pooling the LRT across multiply imputed data sets was suggested by Meng and

Rubin (1992). This procedure is accessible in mitml through the testModels function. The

alternative model is similar to the model of interest, but only the intercept is allowed to vary

across groups. The code for fitting the alternative model is given below.

# FIT: null model without random slopes
fit.null <- with( impList, lmer(MathAchiev ~ 1 + CognAbility.STU + CognAbility.CLS +

SES.STU + SES.CLS + (1|ID), REML=FALSE) )

The two models can be compared using testModels, where method="D3" calls the procedure

by Meng and Rubin (1992). The respective command was as follows.

# LRT for nonzero slope variance
testModels(fit, fit.null, method="D3")

The output of testModels for testing the slope variance is printed below.

Call:

testModels(model = fit, null.model = fit.null, method = "D3")

Model comparison calculated from 100 imputed data sets.
Combination method: D3

F.value df1 df2 p.value RIV
5.119 2 10386.237 0.006 0.157

4 These differences were negligible for most parameters, but Mplus produced a large estimate of the slope
variance, Var(υ1j) = 2.277. Despite the large similarities, there are some subtle differences between pan and the
H0 imputation in Mplus. For example, Mplus uses “least informative” priors for H1 but improper priors for H0,
which cannot be specified using pan. However, preliminary simulations could not replicate any difference between
pan and Mplus. A more in-depth exploration of these (relatively minor) differences was beyond the scope of this
article and will be left for future research.
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The pooled LRT was statistically significant at p = .006 (F = 5.119, df 1 = 2, df 2 = 10386.2)

indicating that the slope variance was statistically different from zero. Thus, it appeared

that students with different cognitive ability may differ more or less strongly in their math

achievement scores, depending on the class to which they belong. It may be interesting to

examine the determinants of this variation, for example, teachers’ attributes or aspects of the

learning environment. However, for the purpose of this article, we will not discuss these

questions in detail. Research has shown that the LRT for variance components may suffer from

low statistical power (see LaHuis & Ferguson, 2009; Stram & Lee, 1994). However, there

are currently very few options for performing hypothesis tests for variance components with

multiply imputed data sets other than Meng and Rubin’s (1992) method.

Analyzing imputations generated by alternative software

As outlined above, there are a number of software alternatives for generating imputations

for multilevel missing data, some of which are similar in scope to pan, and some of which

provide further support for categorical, ordinal or group-level variables. For example, if the

model of interest also includes categorical variables with missing data, researchers may prefer

using the R packages jomo or mice, or standalone software such as Mplus. In general, the

analysis steps presented here can be carried out on multiply imputed data sets irrespective

of their origin. The requirement for using mitml’s analysis functions is that the multiply

imputed data sets are represented as a “list” of data sets in R. This can be achieved by either

generating imputations using its wrapper functions, or by converting the imputed data into a

list of data sets. The mitml package currently includes wrapper functions for pan (panImpute)

and jomo (jomoImpute) as well as functions to convert imputed data sets generated by mice

(mids2mitml.list). For other software packages, however, the conversion must be performed

manually (e.g., using long2mitml.list, or as.mitml.list). The use of these functions

is illustrated in the documentation of the package. In most applications, using the wrapper

functions is recommended because it allows for using the tools for convergence diagnostics

provided by mitml.
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Discussion

Even though multilevel models are frequently used in psychology and the social sciences, MI

of multilevel missing data is seldom discussed in the applied literature. As a result, listwise

deletion, single-levelMI, and ad hocmethods for representing the clustered data structure prevail

in research practice (e.g., the dummy-indicator approach) even though research has shown that

these methods can result in distorted parameter estimates in subsequent multilevel analyses. In

the present article, two empirical examples were used to illustrate the application of the two

R packages pan and mitml to multilevel data. In Example 1, we discussed the application

of pan to random-intercept models and for estimating between- and within-group effects. In

Example 2, we focused on MI for multilevel models with random slopes and on estimating and

testing the slope variance. We believe that researchers can benefit greatly from incorporating

pan in their statistical analyses. Specifically, pan allows the special features of multilevel data

to be preserved, a practice that is essential for obtaining reliable estimates from multilevel

analyses and for understanding their results. Moreover, pan allows researchers to use all of

the available information in the data and to include auxiliary information without altering the

model of interest. By contrast, many interesting features of multilevel models may be distorted

or even lost when using simpler methods for handling multilevel missing data. For example,

the results from Example 1 showed that parameter estimates can be distorted if the imputation

model ignores the multilevel structure of the data.

The field of statistical software is always in motion, and there continue to be a number

of promising developments regarding multilevel MI. However, some problems still provide

challenges for the future. For example, using multilevel MI can be difficult if missing data occur

on predictor variables in models with random slopes or interaction effects. Graham (2012)

recommended that MI for models with random slopes should be conducted separately for each

group using single-level MI. Schafer (2001) proposed that incomplete predictor variables be

treated as outcome variables in the imputation model, thus accepting a (possibly small) bias for

the slope variance (see also Grund, Lüdtke, & Robitzsch, 2016a). To mitigate this problem, it

has been suggested to generate imputations for predictor variables in such a way that they are
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consistent with the model of interest (e.g., Goldstein et al., 2014; L. Wu, 2010; see also Bartlett

et al., 2015). These methods may provide an improvement over current implementations of

multilevel MI in complex multilevel models with random slopes and missing values in predictor

variables (Erler et al., 2016). Unfortunately, they are currently not available in standard software.

Even though many algorithms exist for MI of multilevel data, the analysis often remains

a challenge when software does not provide the tools for combining the results from multiply

imputed data sets. Using the mitml package, we provided examples for combining simple

parameter estimates, model comparisons, and model constraints with multiply imputed data

sets. In addition to Rubin’s rules (1987), the package implements the procedures commonly

referred to as D1 (Li, Raghunathan,&Rubin, 1991;Reiter, 2007), D2 (Li,Meng, et al., 1991), and

D3 (Meng & Rubin, 1992), which can be used for testing a variety of statistical hypotheses that

potentially involvemultiple parameters simultaneously (e.g., model comparisons). Nonetheless,

open questions remain about how some statistical quantities can be estimated from multiply

imputed data sets. For example, it is not yet clear how researchers can obtain measures of

the goodness-of-fit of multilevel models, which are often used for model selection (e.g., the

model deviance, AIC or BIC). Such procedures might be based on the methods by Li, Meng,

et al. (1991) and Meng and Rubin (1992), or on variations thereof (Licht, 2010), but clear

recommendations have not yet been made in the literature (see also Consentino & Claeskens,

2010; Grund, Lüdtke, & Robitzsch, 2016c).

The treatment of multilevel missing data offers many challenges, and state-of-the-art proce-

dures are often not very accessible unless researchers are deeply familiar with missing data and

MI. We hope that the present article will provide guidance for applied researchers and promote

the use of modern missing data techniques such as MI. In general, we believe that pan is a

powerful tool for treating multilevel missing data because many features of typical research

questions can easily be represented in pan’s MLMM. Future research should devote attention

to increasing the accessibility of modern methods for handling and analyzing missing data.

Currently, the use of MI in multilevel research, while largely desirable, is often hindered by

the lack of accessible software and appropriate tools for analyzing multiply imputed data sets

in real-world research scenarios. For future studies, the topic of multilevel missing data yields
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many interesting research questions that have yet to be explored.
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