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What Is Fuzzy Probability Theory?
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The article begins with a discussion of sets and fuzzy sets. It is observed that iden-
tifying a set with its indicator function makes it clear that a fuzzy set is a direct
and natural generalization of a set. Making this identification also provides sim-
plified proofs of various relationships between sets. Connectives for fuzzy sets that
generalize those for sets are defined. The fundamentals of ordinary probability
theory are reviewed and these ideas are used to motivate fuzzy probability theory.
Observables (fuzzy random variables) and their distributions are defined. Some
applications of fuzzy probability theory to quantum mechanics and computer
science are briefly considered.

1. INTRODUCTION

What do we mean by fuzzy probability theory? Isn't probability theory
already fuzzy? That is, probability theory does not give precise answers but
only probabilities. The imprecision in probability theory comes from our
incomplete knowledge of the system but the random variables (measure-
ments) still have precise values. For example, when we flip a coin we have
only a partial knowledge about the physical structure of the coin and the
initial conditions of the flip. If our knowledge about the coin were com-
plete, we could predict exactly whether the coin lands heads or tails.
However, we still assume that after the coin lands, we can tell precisely
whether it is heads or tails. In fuzzy probability theory, we also have an
imprecision in our measurements, and random variables must be replaced
by fuzzy random variables and events by fuzzy events.

Since fuzzy events are essentially fuzzy sets, we begin with a comparison
of sets and fuzzy sets. This comparison is made evident by identifying a set
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with its indicator function. Making this identification also provides simplified
proofs of various relationships between sets. Connectives for fuzzy sets that
generalize those for sets are defined. In particular, we define complements,
intersections, unions, orthogonal sums, differences and symmetric differences
for fuzzy sets. We then study some of the properties of these fuzzy
connectives.

The fundamentals of ordinary probability theory are reviewed and
these ideas are used to motivate fuzzy probability theory. Effects (fuzzy
events), observables (fuzzy random variables) and their distributions are
defined. It is shown that a finite set of observables always possesses a joint
distribution.

Some applications of fuzzy probability theory to quantum mechanics
and computer science are briefly considered. It is noted that the set of
effects E for a fixed system forms a _-effect algebra and these algebras
have recently been important in studies of the foundations of quantum
mechanics. It is shown that there exists a natural bijection between the set
of states on E and the set of probability measures on the underlying sample
space. Moreover, there is a natural one-to-one correspondence between
_-morphisms of these effect algebras and observables. This correspondence
enables us to define a composition of observables. Some of these ideas are
then applied in a discussion of indeterministic automata.

It is the intention of this article to give a brief survey of the subject.
For more details and alternative approaches, we refer the reader to the
literature.(1, 2, 4�6, 10, 13�15, 17) We congratulate Marisa Dalla Chiara on this
special occasion and take great pleasure in acknowledging her contribu-
tions and influence. She is a guiding spirit, and we treasure her presence.

2. SETS AND FUZZY SETS

Let 0 be a nonempty set and let 20 be its power set. Corresponding
to any A # 20 we define its indicator function IA by

IA(|)={1
0

if | # A
if | � A

We can identify A with IA because A=B if and only if IA=IB and in the
sequel we shall frequently treat A and IA as the same object. Notice that
IA & B=IAIB , IA _ B=IA+IB&IAIB and that I<=0, I0=1 where 0 and 1
are the constant zero and one functions, respectively. It is also useful to
note that the idempotent law, I 2

A=IA , holds. Denoting the complement of
A by A$, we have IA$=1&IA . Observe that A & B=< if and only if
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IA�IB$ . This condition is equivalent to IA+IB�1 and in this case we have
IA _ B=IA+IB .

The identification A W IA is not only useful for discussing fuzzy sets,
it has advantages in ordinary set theory. For example, proving the dis-
tributive law

A & (B _ C )=(A & B) _ (A & C )

using sets is a bit of trouble. However, using indicator functions we have

IA & (B _ C )=IA IB _ C=IA(IB+IC&IBIC)=IAIB+IAIC&IAIBIC

=IA & B+IB & C&IA & BIA & C=I(A & B) _ (A & C )

As another example, we can prove De Morgan's law (A _ B)$=A$ & B$ as
follows

IA$ & B$=IA$IB$=(1&IA)(1&IB)=1&(IA+IB&IA IB)

=1&IA _ B=I(A _ B)$

The next result is the inclusion�exclusion law.

Lemma 2.1. If Ai # 20, i=1,..., n, then

I _ Ai
=:

i

IAi
& :

i< j

IAi
IAj

+ :
i< j<k

IAi
IAj

IAk
& } } } +(&1)n&1 IA1

IA2
} } } IAn

Proof. The result clearly holds for n=1. Proceeding by induction,
suppose the result holds for the integer n�1. Letting B=�n

i=1 Ai , we have

IB _ An+1
=IB+IAn+1

&IBIAn+1

But the right side of this equation gives the result for n+1. g

It is well known that 20 is a Boolean ring under the operations A } B=
A & B, A+B=(A & B$) _ (B & A$). However, this result is very cumber-
some to prove using set theoretic operations! Using indicator functions, the
proof is simple and straightforward. First notice that

IA+B=IA & B$+IB & A$=IA(1&IB)+IB(1&IA)

=IA+IB&2IAIB=(IA&IB)2

Theorem 2.2. Under the previously defined operations, 20 is a com-
mutative, idempotent ring with identity and characteristic 2.
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Proof. It is clear that 0, 1 are the zero and identity for 20, that A$
is the additive inverse of A and that 20 is commutative. Moreover, it is
clear that A+B=B+A, A } A=A, A+A=0 and that multiplication is
associative. For associativity of addition, we have

I(A+B)+C =IA+B+IC&2IA+BIC

=IA+IB&2IA IB+IC&2(IA+IB&2IA IB) IC

=IA+IB+IC&2(IA IB+IA IC+IBIC)+4IAIBIC

=IA+(B+C )

For distributivity, we have

I(A } B+A } C )=IA } B+IA } C&2IA } BIA } C

=IAIB+IA IC&2IA IBIC

=IA(IB+IC&2IBIC)

=IAIB+C=IA } (B+C ) g

We also have the following result whose proof is similar to that of
Lemma 2.1.

Lemma 2.3. If Ai # 20, i=1,..., n, then

I7Ai
=:

i

IAi
&2 :

i< j

IAi
IAj

+22 :
i< j<k

IAi
IAj

IAk
& } } } +(&2)n&1 IA1

IA2
} } } IAn

Fuzzy set theory was introduced by Zadeh(16, 17) to describe situations
with unsharp boundaries, partial information or vagueness such as in
natural language. In fuzzy set theory, subsets of 0 are replaced by func-
tions f : 0 � [0, 1]. We thus replace the power set 20 by the function space
[0, 1]0. Elements of [0, 1]0 are called fuzzy sets and an f # [0, 1]0

corresponds to a degree of membership function. We say that f is crisp if
the values of f are contained in [0, 1]. Thus, f is crisp if and only if f is an
indicator function or equivalently a set in 20. We thus see that a fuzzy set
is a generalization of a set. For f, g # [0, 1]0, if f + g # [0, 1]0 (equiv-
alently, f + g�1), then we write f = g and define f � g= f+ g. This
orthogonal sum partial operation corresponds to a disjoint union for sets
because IA = IB if and only if A & B=< and then IA _ B=IA+IB . Just as
disjoint unions are important in probability theory, orthogonal sums will
be important in fuzzy probability theory.
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We now define connectives for fuzzy sets that generalize those for sets.
For f, g # [0, 1]0 we define f $=1& f, f & g= fg and f _ g= f+ g& fg.
These definitions correspond to the usual properties of indicator functions
and we have I$A=IA$ , IA & IB=IA & B , IA _ IB=IA _ B . It is clear that
f $, f & g # [0, 1]0 and also f _ g # [0, 1]0 because De Morgan's law

f _ g=1&(1& f )(1& g)=( f $ & g$)$

holds. We can write this as ( f _ g)$= f $ & g$ and we also have
( f & g)$= f $ _ g$. Notice that f & g=0 implies f = g but that f = g need
not imply f & g=0. For example, if f is the constant function f =1�2, then
f = f but f & f {0. This is different than in set theory where IA & IB=0
if and only if IA = IB . It is easy to show that f is crisp if and only if
f & f $=0 (equivalently, f _ f $=1). In fact, in set theory we always have
IA & I$A=IA & A$=0. The following inclusion�exclusion law has the same
proof as Lemma 2.1.

Lemma 2.4. If f i # [0, 1]0, i=1,..., n, then

f1 _ } } } _ fn=:
i

fi& :
i< j

fi fj+ :
i< j<k

fi f j fk& } } } +(&1)n&1 f1 f2 } } } fn

It is interesting to examine which properties of the Boolean ring 20

carry over to [0, 1]0. For this purpose, we use the notation f } g=
fg= f & g and define

f g+ g= f + g&2 fg

Notice that f g+ g generalizes the definition of A+B for sets and we have
IA g+ IB=IA+B . We also have

f g+ g= f (1& g)+ g(1& f )= f & g$+ g & f $= f _ g& f & g

Note however, that f g+ g{( f & g$) _ (g & f $) in general. Now some of
the properties of the Boolean ring 20 hold for ([0, 1]0, } , g+ ). Clearly, 0, 1
are the zero and identity, the operations } , g+ are commutative, and } is
associative. Moreover, g+ is associative because

( f g+ g) g+ h= f + g+h&2 fg&2 fh&2gh+4fgh= f g+ (g g+ h)

and we have the following analog of Lemma 2.3.
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Lemma 2.5. If fi # [0, 1]0, i=1,..., n, then

g+ fi=:
i

fi&2 :
i< j

f i f j+22 :
i< j<k

f i fj fk& } } } +(&2)n&1 f1 f2 } } } fn

The next lemma shows that the other properties of 20 do not hold.
In particular, ([0, 1]0, } , g+) is not a ring because distributivity fails in
general.

Lemma 2.6. For f # [0, 1]0, the following statements are equivalent.
(i) f is crisp, (ii) f } f = f, (iii) f g+ f =0, (iv) there exists a g # [0, 1]0 such
that f g+ g=1, (v) f } ( g g+ h)= f } g g+ f } h for every g, h # [0, 1]0, (vi)
f g+ g=( f & g$) _ ( g & f $) for every g # [0, 1]0.

Proof. If f is crisp, then clearly (ii)�(vi) hold. Conversely, it is
obvious that (ii) and (iii) both imply that f is crisp. Now suppose that (iv)
holds. It follows that (1&g)(1& f )= &fg. Assume that f (w){0, 1 for
some | # 0. Then

[1&g(|)][1& f (|)]=& f (|) g(|)

and the left side is positive while the right side is negative. This is a con-
tradiction, so f (|) # [0, 1] and f is crisp. If (v) holds, then letting g=h=1
we have

f g+ f = f } 1 g+ f } 1= f } (1 g+ 1)= f } 0=0

so f is crisp. If (vi) holds, then letting g= f we have

2ff $=2f&2f 2= f g+ f =( f & f $) _ ( f & f $)=2ff $&2f 2( f $)2

Hence, f & f $=0 so f is crisp. g

Another interesting connective for fuzzy sets is the difference operation
f " g= fg$. This operation generalizes the difference A"B=A & B$ for sets.
In terms of indicator functions, we have

IA"IB=IA IB$=IA"B

Also, notice that f g+ g= f " g+g" f.

Theorem 2.7. If f1 ,..., fn # [0, 1]0, then

:
n&1

i=1

f i" f i+1� f1" fn
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Proof. We proceed by induction on n. For n=2, we have f1" f2�
f1" f2 which is certainly true. For n=3, we have

f1" f3= f1 f $3= f1( f2+ f $2) f $3= f1 f2 f $3+ f1 f $2 f $3

� f2 f $3+ f1 f $2= f1" f2+ f2" f3

so the result holds. Now suppose the result holds for an integer n�3. Then
applying the case n=3 we have

:
n

i=1

f i" fi+1= :
n&1

i=1

fi" fi+1+ fn" fn+1� f1" fn+ fn" fn+1� f1" fn+1

Hence, the result holds by induction. g

Corollary 2.8. If A1 ,..., An # 20, then

:
n&1

i=1

IAi "Ai+1
�IA1"An

We can apply Theorem 2.7 to obtain the following ``triangle
inequality.''

Corollary 2.9. (i) f g+ g� f g+ h+h g+ g. (ii) IA+B�IA+C+IC+B .

Proof. (i) By Theorem 2.7 we have

f " g� f "h+h" g

g" f � g"h+h" f

Adding these inequalities and using the fact that f g+ g= f " g+ g" f gives
the result. (ii) is a special case of (i). g

3. PROBABILITY THEORY

To better appreciate fuzzy probability theory, we first review the
fundamentals of ordinary probability theory. The basic structure is a
measurable space (0, A) where 0 is a sample space consisting of outcomes
andKA is a _-algebra of events in 0 corresponding to some probabilistic
experiment. It is useful to identify an event A with its indicator function
IA as we did in Sec. 2. If + is a probability measure on (0, A), then +(A)
is interpreted as the probability that the event A occurs. A measurable
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functions f : 0 � R is called a random variable. The expectation +( f ) of f is
defined by +( f )=� f d+. Denoting the Borel _-algebra on the real line R
by B(R), the distribution of f is the probability measure +f on (R, B(R))
given by +f (B)=+( f &1(B)). We interpret +f (B) as the probability that f
has a value in the set B. It can be shown that +( f )=� *+f (d*).

Notice that +(IA)=+(A) for any A # A so the identification of A with
IA carries directly over to probabilities. In particular, this identification
enables us to give simple proofs of basic properties of probabilities. For
example, we have

+(A _ B)=+(IA _ B)=+(IA+IB&IA & B)

=+(IA)++(IB)&+(IA & B)=+(A)++(B)&+(A & B)

More generally, applying Lemma 2.1 we obtain the inclusion�exclusion law

+( _ Ai)=:
i

+(Ai)& :
i< j

+(Ai & Aj)+ :
i< j<k

+(Ai & Aj & Ak)

& } } } +(&1)n&1 +(A1 & } } } & An)

For another example, define the distance between A, B # A by \(A, B)=
+(A+B). Following the usual practice of identifying events that coincide
except for a set of measure zero, we have \(A, B)=0 if and only if A=B.
Moreover, it follows from Corollary 2.9(ii) that the triangle inequality

\(A, B)�\(A, C)+\(C, B)

holds so \ is a metric.
We call Ec(0, A)=[IA : A # A] the set of crisp effects. Of course,

Ec(0, A) is a Boolean ring as in Theorem 2.2. Since we are describing
probability theory in terms of Ec(0, A), we would also like to describe
random variables in terms of Ec(0, A). If f : 0 � R is a random variable,
define Xf : B(R) � Ec(0, A) by Xf (B)=If&1(B) . Then Xf satisfies the con-
ditions

Xf (R)=If &1(R)=1

and if Ai # B(R) are mutually disjoint, then

Xf ( _ Ai)=If &1( _ Ai)
=I _ f &1(Ai)

=: If&1(Ai)
=: Xf (Ai)

Conversely, if X: B(R) � Ec(0, A) satisfies these two conditions, then it
can be shown that there exists a unique random variable f : 0 � R such
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that X=Xf . We call Xf the crisp observable corresponding to f. The dis-
tribution of f can be written

+f (B)=+( f&1(B))=+(If&1(B))=+(Xf (B))

and we call +Xf
(B)=+(Xf (B)) the distribution of Xf . The expectation of f

becomes

+( f )=| *+f (d*)=| *+(Xf (d*))

which we also call the expectation of Xf .
Some of the most important concerns in probability theory involve the

study of several random variables simultaneously. The joint distribution of
random variables f1 ,..., fn on (0, A) is the unique probability measure
+f1 ,..., fn

on (Rn, B(Rn)) that satisfies

+f1 ,..., fn
(B1_ } } } _Bn)=+( f&1

1 (B1) & } } } & f&1
n (Bn))

for all B1 ,..., Bn # B(R). The joint distribution can be described by the
n-dimensional random variable J( f1 ,..., fn): 0 � Rn given by

J( f1 ,..., fn)(|)=( f1(|),..., fn(|))

We call J( f1 ,..., fn) the joint random variable for f1 ,..., fn . Since

f&1
1 (B1) & } } } & f&1

n (Bn)=J( f1 ,..., fn)&1 (B1_ } } } _Bn)

we have

+f1 ,..., fn
(B1_ } } } _Bn)=+(J( f1 ,..., fn)&1 (B1_ } } } _Bn))

It follows that

+f1 ,..., fn
(B)=+(J( f1 ,..., fn)&1 (B))

for every B # B(Rn).
Letting Xf1

,..., Xfn
be the corresponding crisp observables, we define

their joint crisp observable J(Xf1
,..., Xfn

): B(Rn) � Ec(0, A) to be the unique
map that satisfies

J(Xf1
,..., Xfn

)(B1_ } } } _Bn)=Xf1
(B1) } } } Xfn

(Bn)
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for every B1 ,..., Bn # B(R). We then have

J(Xf1
,..., Xfn

)(B1 _ } } } _Bn)=If 1
&1(B1) } } } Ifn

&1(Bn)

=If1
&1(B1) & } } } & f n

&1(Bn)

=IJ( f1 ,..., fn)&1 (B1_ } } } _Bn)

We conclude that

J(Xf1
,..., Xfn

)(B)=IJ( f1 ,..., fn)&1 (B)

for every B # B(Rn). Thus, J(Xf1
,..., Xfn

) is the n-dimensional crisp observ-
able corresponding to J( f1 ,..., fn) and we write

J(Xf1
,..., Xfn

)=XJ( f1 ,..., fn)

It follows that the distribution of J(Xf1
,..., Xfn

) coincides with the joint
distribution of f1 ,..., fn .

To summarize, we can describe probability theory in an equivalent
way by replacing events by crisp effects (A � IA), probabilities by expecta-
tions (+(A)=+(IA)), random variables by crisp observables ( f W Xf ) and
Boolean operations by arithmetic operations on crisp effects

(I$A=1&IA , IA & IB=IAIB , IA _ B=IA+IB&IAIB)

4. FUZZY PROBABILITY THEORY

We now use the ideas of Secs. 2 and 3 to describe fuzzy probability
theory. As before, the basic structure is a measurable space (0, A). A ran-
dom variable f : 0 � [0, 1] is called an effect or fuzzy event. Thus, an effect
is just a measurable fuzzy subset of 0. An effect is crisp if it is an indicator
function (ordinary probability theory). The set of effects is denoted by
E=E(0, A). If + is a probability measure on (0, A) and f # E, we define
the probability of f to be its expectation +( f )=� f d+. Notice that +: E � R
is a probability measure on E in the following sense. We have +( f ) # [0, 1],
+(1)=1 and if f = g, then +( f � g)=+( f )++(g). Also, if fi # E is an
increasing sequence, then by the monotone convergence theorem, +(lim f i)
=lim +( fi) so + is countably additive. Stated in another way, if a sequence
fi # E satisfies � f i # E, then +(� fi)=� +( f i).
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As in Sec. 2, for f, g # E, we define f $=1& f, f & g= fg and f _ g=
f+ g& fg. Notice that f $, f & g and f _ g are still elements of E. Applying
Lemma 2.4, we obtain the inclusion�exclusion law

+( f1 _ } } } _ fn)=:
i

+( fi)& :
i< j

+( fi & f j)+ :
i< j<k

+( fi & fj & fk)

& } } } +(&1)n&1 +( f1 & } } } & fn)

As before, we can define a distance \( f, g)=+( f g+ g) and by Corol-
lary 2.9(i), \ satisfies the triangle inequality \( f, g)�\( f, h)+\(h, g).
However, \ is not a metric because \( f, g)=0 does not imply f =g almost
everywhere and if f is not crisp, then \( f, f ){0.

In Sec. 3 we discussed crisp observables Xf : B(R) � Ec(0, A) and
n-dimensional crisp observables J(Xf1

,..., Xfn
): B(Rn) � E(0, A). It is fre-

quently useful to consider more general random variables and crisp observ-
ables. Let (4, B) be another measurable space and let f : 0 � 4 be a
measurable function. We call f a random variable with value space 4 and
the map Xf : B � Ec(0, A) given by Xf (B)=If &1(B) is the corresponding
crisp observable with value space 4. We now give the general definition of
an observable.

An observable or fuzzy random variable with value space 4 is a map
X: B � E(0, A) such that X(4)=1 and if Bi # B are mutually disjoint,
then X( _ Bi )=� X(Bi ) where the convergence of the summation is
pointwise. If X(B) is crisp for every B # B, then X is crisp. If + is a prob-
ability measure on (0, A), then the distribution of X is the probability
measure +X on (4, B) given by +X (B)=+(X(B)). Notice that +X is indeed
a probability measure because +X (1)=1 and if Bi # B are mutually dis-
joint, then by the monotone convergence theorem

+X ( _ Bi )=+(X( _ Bi ))=+ \: X(Bi )+=: +(X(Bi ))=: +X (Bi )

For n # N we can form the product space (4n, Bn) where 4n=4_ } } } _4
and Bn is the _-algebra on 4n generated by the product sets B1_ } } } _Bn .
If Xi : B � E(0, A), i=1,..., n, are observables, their joint observable is the
unique observable

J(X1 ,..., Xn): Bn � E(0, A)

with value space 4n that satisfies

J(X1 ,..., Xn)(B1_ } } } _Bn)=X1(B1) } } } Xn(Bn)
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for every B1 ,..., Bn # B. Notice that this generalizes our previous definition
for crisp observables. The joint distribution of X1 ,..., Xn is the probability
measure +X1 ,..., Xn

on (4n, Bn) given by

+X1 ,..., Xn
(B)=+J(X1 ,..., Xn)(B)=+(J(X1 ,..., Xn)(B))

One can generalize various probabilistic concepts and results concerning ran-
dom variables to observables. These include independence, conditional expec-
tation, limit laws, convergence theorems and stochastic processes.(4, 6, 10, 13)

There are interesting applications of fuzzy probability theory to quan-
tum mechanics and computer science that we now briefly touch upon
Refs. 1, 2, 4, 5, 10, 14. The set of effects E(0, A) is an example of a _-effect
algebra and these algebras have recently been important in studies of the
foundations of quantum mechanics.(3, 7�9, 11) In fact, the term effect was
introduced by Ludwig in his work on quantum measurements.(12) We do
not need to give the definition of a general _-effect algebra here because we
shall only be concerned with the particular case E(0, A). An important
concept in quantum mechanics is that of a state. In our case, a state on
E(0, A) is a map s: E(0, A) � [0, 1] that satisfies s(1)=1 and if
fi # E(0, A) is a sequence such that � fi # E(0, A), then s(� f i )=� s( fi ).
A state s corresponds to a condition or preparation of a system and s( f )
is interpreted as the probability that the effect f occurs when the system
is in the condition corresponding to s. If + is a probability measure on
(0, A), then it follows from the monotone convergence theorem that
+: E(0, A) � [0, 1] is a state. In our next result we shall show that every
state has this form. Another important concept for _-effect algebras is that
of a _-morphism. Let (4, B) be another measurable space. A map
,: E(0, A) � E(4, B) is a _-morphism of ,(1)=1 and if fi # E(0, A) is a
sequence such that � fi # E(0, A), then ,(� fi )=� ,( fi ).

Theorem 4.1. (i) If ,: E(0, A) � E(4, B) is a _-morphism, then
,(*f )=*,( f ) for every * # [0, 1], f # E(0, A). (ii) If s: E(0, A) � [0, 1]
is a state, then there exists a unique probability measure + on (0, A) such
that s( f )=+( f ) for every f # E(0, A).

Proof. (i) If n # N, f # E(0, A), then

,( f )=, \1
n

f+ } } } +
1
n

f +=n, \1
n

f + (n summands)

so ,((1�n) f )=(1�n) ,( f ). If m, n # N with m�n, we have

, \m
n

f +=, \1
n

f+ } } } +
1
n

f +=m, \1
n

f +=
m
n

,( f ) (m summands)
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Hence, ,(rf )=r,( f ) for every rational r with 0�r�1. Let * # [0, 1] be
irrational. Then there exists a sequence of rationals ri # [0, 1] such that
*=� ri . Since � ri f =*f # E(0, A), we have

,(*f )=, \: ri f +=: ,(ri f )=: ri,( f )=*,( f )

(ii) Using the same proof as in (i), we have that s(*f )=*s( f ) for
every * # [0, 1], f # E(0, A). Define +: A � [0, 1] by +(A)=s(IA). It
easily follows that + is a probability measure. If f =� ciIAi

is a simple func-
tion in E(0, A), we have

s( f )=: cis(IAi
)=: ci +(Ai )=+( f )

Since any f # E(0, A) is the limit of an increasing sequence of simple func-
tions in E(0, A), it follows from the countable additivity of s and the
monotone convergence theorem that s( f )=+( f ). For uniqueness, if +1 is a
probability measure on (0, A) that satisfies s( f )=+1( f ) for every
f # E(0, A), then for every A # A we have

+1(A)=+1(IA)=s(IA)=+(IA)=+(A)

Hence, +1=+. g

The next result shows that there exists a natural one-to-one corre-
spondence between observables and _-morphisms.

Theorem 4.2. If X: B � E(0, A) is an observable, then X has a
unique extension to a _-morphism X� : E(4, B) � E(0, A). If Y: E(4, B) �
E(0, A) is a _-morphism, then Y | B is an observable.

Proof. Note that B [ X(B)(|) is a probability measure on (4, B) for
any | # 0. For g # E(4, B), define the function X� g on 0 by

(X� g)(|)=| g(*) X(d*)(|)

It is clear that X� extends X and that 0�X� g�1. We now show that X� g is
measurable so that X� : E(4, B) � E(0, A). If g=� ci IBi

is a simple func-
tion in E(4, B), then

(X� g)(|)=: ciX(Bi )(|)
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so X� g is measurable. Now for an arbitrary g # E(4, B) there exists an
increasing sequence of simple functions gi # E(4, B) such that lim gi= g.
Then X� gi are measurable, i=1, 2,..., and by the monotone convergence
theorem we have

(X� g)(|)=| lim gi (*) X(d*)(|)=lim | gi (*) X(d*)(|)=lim(X� gi )(|)

Hence, X� g is measurable so X� g # E(0, A). Similar reasoning shows that X�
is a _-morphism. For uniqueness, suppose ,: E(4, B) � E(0, A) is a
_-morphism that extends X. By Theorem 4.1(i), , and X� agree on simple
functions and it follows that they coincide on E(4, B). The proof of the last
statement is straightforward. g

If f : 0 � 4 is a measurable function, the corresponding sharp observ-
able Xf : B � E(0, A) is given by Xf (B)=If &1(B) . The next result shows
that Xf : E(4, B) � E(0, A) has a very simple form.

Corollary 4.3. If f : 0 � 4 is a measurable function, then X� f g= g b f
for every g # E(4, B).

Proof. For * # 4, we denote the Dirac measure concentrated at *
by $* . We then have

Xf (B)(|)=If &1(B)(|)=$f (|)(B)

Hence, by the proof of Theorem 4.2, for every g # E(4, B) we have

(X� f g)(|)=| g(*) Xf (d*)(|)=| g(*) $f (|)(d*)= g( f (|))= g b f (|)

It follows that X� f g= g b f. g

In the sequel, we shall omit the t on X� and shall frequently identify
an observable with its corresponding unique _-morphism. Let (0, A),
(41 , B1), (42 , B2) be measurable spaces and let Y: B2 � E(41 , B1) and
X: B1 � E(0, A) be observables. Although we cannot directly compose X
and Y, we can compose them if they are thought of as _-morphisms. Doing
this, we have the _-morphism X b Y: E(42 , B2) � E(0, A) which we iden-
tify with the observable X b Y: B2 � E(0, A). We call X b Y the composition
of X and Y. We then have

(X b Y )(B)(|)=[X(Y(B))](|)=| Y(B)(*1) X(d*1)(|)
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We close with a discussion of indeterministic automata. In this situation
we have an input alphabet 4in , an output alphabet 4out and a set of internal
states (configurations) 0 of an automaton (computer) M. For simplicity,
we assume that 4in , 4out and 0=[|1 ,..., |n] are finite sets. For a deter-
ministic automaton, we have an output function fout : 0 � 4out that prints
a symbol in 4out for every state | # 0 and a set of functions [ f* : * # 4in]
where f* : 0 � 0. If * # 4in is input into M and M is in state |, then M
changes to state f*(|). Then fout b f* : 0 � 4out gives the output symbol
fout b f*(|) where * is input and M is in state |. If we input a program
(*1 ,..., *m), then the output symbol becomes fout b f*m

b } } } b f*1
(|).

Suppose now that M is indeterministic. Then with each * # 4in , |j

moves to |i with probability g*, i (|j) # [0, 1], i, j=1,..., n. Thus, for every
* # 4in , g*, i # E(0) and �n

i=1 g*, i=1. Define the observables X* : 20 �
E(0), * # 4in , by

X*(A)=: [g*, i : | i # A]

Then X*(A) is the effect that a state moves into A when the input symbol
is * and X*(A)(|j ) is the probability that state |j moves into A when the
input symbol is *. Now f &1

out : 24out � 20 and X* b f &1
out : 24out � E(0) is the

observable given by

X* b f &1
out(B)=: [g*, i : |i # f &1

out(B)]=: [g*, i : fout(| i ) # B]

Thus, X* b f &1
out(B) is the effect that the output is in B # 24out when the input

symbol is * and [X* b f &1
out(B)](|j ) is the probability that a symbol in B is

output when * is input and M is in state |j . In particular, for : # 4out , the
probability that : is output when * is input and M is in state |j becomes

[X* b f &1
out([:])](|j )=: [g*, i (|j ): fout(| i )=:]

In order to obtain the action of a program (*1 ,..., *m) we need the observ-
able X*1

b } } } b X*m
: 20 � E(0). Then

X*1
b } } } b X*m

b f &1
out : 24out � E(0)

is an observable and X*1
b } } } b X*m

b f &1
out(B) is the effect that the output is

in B when the program (*1 ,..., *m) is input. The probabilities can be com-
puted as before. We refer the reader to Refs. 1, 4 for an alternative formula-
tion of these ideas.

We can also consider fuzzy indeterministic automata which do not
seem to have been previously discussed. In this case we have a fuzzy output
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function so we replace fout with an observable Xout : 24out � E(0). Then
corresponding to a program (*1 ,..., *m) we have an observable

X*1
b } } } b X*m

b Xout : 24out � E(0)

and the theory proceeds as before.
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11. F. Kôpka and F. Chovanec, ``D-posets,'' Math. Slovaca 44, 21�34 (1994).
12. G. Ludwig, Foundations of Quantum Mechanics, Vols. I and II (Springer, Berlin,

1983�1985).
13. R. Mesiar, ``Fuzzy observables,'' J. Math. Anal. Appl. 48, 178�193 (1993).
14. R. Mesiar and K. Piasecki, ``Fuzzy observables and fuzzy random variables,'' Busefal 42,

62�76 (1990).
15. R. Yager, ``A note on probabilities of fuzzy events,'' Information Sci. 128, 113�129 (1979).
16. L. A. Zadeh, ``Fuzzy sets,'' Information Cont. 8, 338�353 (1965).
17. L. A. Zadeh, ``Probability measures and fuzzy events,'' J. Math. Anal. Appl. 23, 421�427

(1968).

1678 Gudder


