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Abstract
This article provides the foundation for a new predictive theory
of animal learning that is based upon a simple logical model.
The knowledge of experimental subjects at a given time is
described using logical equations. These logical equations are
then used to predict a subject’s response when presented with a
known or a previously unknown situation. This new theory suc-
cessfully anticipates phenomena that existing theories predict,
as well as phenomena that they cannot. It provides a theoretical
account for phenomena that are beyond the domain of existing
models, such as extinction and the detection of novelty, from
which “external inhibition” can be explained. Examples of the
methods applied to make predictions are given using previ-
ously published results. The present theory proposes a new
way to envision the minimal functions of the nervous system,
and provides possible new insights into the way that brains
ultimately create and use knowledge about the world.
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Understanding the phenomena of how a brain acquires, orders,
and applies knowledge of the world, or learns, remains a chal-
lenge. The development of learning theories is regarded asAQ1

important for advancing these areas, as they provide a frame-
work within which new hypothesis can be formulated and
tested. Two main categories exist at present (Wagner 2003):
the associative theories of learning, consisting themselves of
the elemental theories of learning (e.g., Atkinson and Estes
1963; Rescorla and Wagner 1972) and the configural theories
of Pavlovian conditioning (e.g., Pearce 1987; for review see
Pearce and Bouton 2001), and the nonassociative theories of
learning (e.g., Gallistel 1990). However, despite their impres-
sive predictive abilities, problems still exist (e.g., Miller et al.
1995; Goddard 2003; Haselgrove et al. 2004), prompting for
their continued improvement and the proposal of new theo-
ries that can successfully predict phenomena such as over-
expectation (Lattal and Nakajima 1998), superconditioning
(Rescorla 2003a), and external inhibition, as well as currently
unpredicted phenomena such as extinction renewal (Pearce
and Bouton 2001) and novelty detection.

Here the foundation for a new theory of animal learning is
presented within the associative framework. This new theory
is based upon logical rather than mathematical formalism, is
not limited to Pavlovian conditioning, and excludes the use of
free parameters. The primary aim of this article is to provide an
introduction to this new theory of learning. While an in-depth
literature review is beyond the scope of this current work, key
experimental results have been used to measure its success
and to illustrate how this new theory expands the predictive
boundaries of existing learning theories.

The capacity for a species to predict environmental events
can be considered a tremendous evolutive advantage. Organ-
isms with a nervous system can construct a dynamic repre-
sentation of reality (“Umwelt”; Von Uexküll 1965) by way of
their sensory systems, which in turn enables them to predict
the world around them, rightfully or wrongfully. This capac-
ity to predict is dependent on learning and memory. It could
therefore be said that the function of learning and memory is
to generate predictive templates that enable an animal to pre-
dict future events based on its present and past experiences.
To predict is equivalent to using a conditional proposition: if
A then B. In consequence, if a minimalist approach is cho-
sen, learning must enable the creation of causality-like links
using conditional propositions that can be called “rules.” If
these rules are considered general by default, learning must
enable the alteration of the field of application of the rule in
order to restrict the domain of application of the causal link.
The two processes necessary for learning are therefore of an
associative type: The first associates a stimulus with a con-
sequence, and the second restricts the field of application of
the causal link by associating the exception to the rule with a
particular situation (i.e., habituation/extinction). Thus, within

the present framework, learning is always considered to be of
an associative nature.

Interestingly, there are analogues to the logical conditional
proposition existing within natural systems. One simple exam-
ple of this is two neurons connected together. If we call (A)
the presynaptic neuron and (B) the postsynaptic neuron, when
(A) is activated (i.e., when it produces an action potential) the
postsynaptic neuron will in turn be activated (assuming that
the synaptic strength is strong enough). However, the activa-
tion of (B) does not have a bearing on the activation of (A),
i.e., the activation of (B) will not trigger an action potential
in (A). Therefore, in a logical sense, it can be written that if
(A) then (B). However, when (B) is active at the same time as
(A), long-term potentiation of the synapses occurs (Bliss and
Gardner-Medwin 1973; Bliss and Lomo 1973). The repeated
occurrence of such an event strengthens the synapse between
(A) and (B) in a manner consistent with “Hebb’s law” (Hebb
1949). Such a phenomenon could be interpreted as the build-
ing (learning) of a new conditional proposition or “rule.” This
biological analogue to the logical conditional proposition sug-
gests the possibility of a learning theory that is based upon
logical representations of the world, and therefore can be suc-
cessfully translated into biological terms.

Logical Formalism

In the following discussion, the conventions of Boolean logic
(Boole 2003) are used. To avoid confusion “+” indicates arith-
metic addition, “+̇” indicates the logical operator inclusive
“or,” “→” indicates the logical operator “conditional proposi-
tion” (also called “conditional statement” or “material impli-
cation”), and “⇐⇒” indicates logical equivalence. Note the
importance of distinguishing the logical implication, which is
a tautology (a logical proposition that is always true) and a
rule of inference, from the conditional proposition, which is
not. For a list of the logical operators used herein and their
truth table, please see “Conventions” (Box 1).

Assume that a particular event is to be predicted based
upon the past experiences of a subject. A logical equation is
one way of representing this event. This equation would be
based upon the predictive stimuli that are already available to
a subject, known as predictive events. As this equation would
define what the subject knows of a particular event at a given
time, it can therefore be used to predict a subject’s response to
a new situation that involves some of this past knowledge.

In order for a subject to predict future outcomes, it is
necessary for it to assume that its knowledge at the time is true,
consciously or not. For example, if it was known by a subject
that the event A is conditional upon events B or C occurring
(B → A and C → A), in order to predict the occurrence of
event A in function of the events B and C, the subject would
need to postulate that (B → A and C → A) is true. It can
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Box 1. Conventions.

1. “+̇,” inclusive OR, A +̇ B is read as A OR B . The truth table for
A +̇ B (A OR B ) is given below, by convention true = 1 and false =
0.

A B A +̇ B

0 0 0
0 1 1
1 0 1
1 1 1

2. “×,” exclusive AND, A × B or AB is read as A AND B . The truth
table for AB (A AND B ) is given below.

A B AB

0 0 0
0 1 0
1 0 0
1 1 1

3. Ā is the negation of A, if A is true then Ā is false, if A is false then
Ā is true. Ā = 1 −A

4. “→” is the conditional proposition, A → B is read if A then B .
The truth table for A → B (if A then B ) is given below.

A B A → B Ā +̇ B

0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

Note that A → B is equivalent to Ā +̇ B

therefore be written that

(B → A)(C → A) = 1 ⇐⇒ (B̄ +̇ A)(C̄ +̇ A) = 1

⇐⇒ B̄C̄ +̇ A = 1. (1)

Equation (1) is valid if

B̄C̄ = 1 − A ⇐⇒ B̄C̄ = Ā ⇐⇒ B̄C̄ = A

⇐⇒ A = B +̇ C. (2)

It is therefore possible to write A as a function of B and C:

A = f (B,C) = B +̇ C. (3)

That is, A is true if B or C is true; f (B,C) is a representation
of A. The possible logical states of this equation, or logical
states of A in function of B and C, can be represented in a
Table of Karnaugh (Figure 1(a)) (Karnaugh 1953). This figure
represents the predictive universe for a given representation at
a given time. (The definitions of terms used throughout this
article are explained in Box 2).

Equation (3) is obtained using what is deemed to be the
objective knowledge of the subject and it is not the reflection
of an absolute knowledge of the world. In other words, this
equation depicts event A in function of the events B and C. In

Figure 1.
(a) Truth table for A = f(B, C) = B +̇ C (Karnaugh form); tables representing
the predictive universe of (b) Food = f(A, B) = A +̇ B; (c) Food = f(A, B) =
AB; (d) Food = f(A, B, L) = LB +̇A; (e) Food = f(A, B, C, D) = AB+̇CD.
The first line and the first column of these tables give the possible state of pre-
dictor events or stimuli (0 if false, 1 if true). The tables also give the status for
all combinations of predictor events for the predicted event (0 if false, 1 if true).

absolute terms it is possible that other events such as X or Y

may also predict event A, but if this is ignored by the subject
such events cannot be included in the equation.

When animals learn, they associate a stimulus (e.g., A)
with an event. The most commonly used event in experimental
situations is the distribution of food (F ). If A is presented
immediately before or at the same time as food, A will become
a predictor of food and so it can be written that A → F .
However, within the present theoretical framework these two
modes of presentation (simultaneous or sequential) are not
considered equivalent.

The Impact of Temporal Relationships Between
Events or Stimuli
Within the present theory, temporal relationships between
stimuli or events influence what is deemed to be learned by the
animal, and consequently, its logical transcription. Consider
two events A and B. If A and B occur sequentially with A pre-
ceding B without overlaps, then it can be written that A → B.
If A and B occur simultaneously or in succession but with an
overlap, then it can be written that A → B and B → A. Thus,
within this theory association is directional (A toward B or B

toward A) or bidirectional (A toward B and B toward A).
Within this theory, animals learn conditional propositions

(if A then B) and their relations. Therefore, A → B also means
that whenever A occurs, the neural representation of B will
become active regardless of the “real” occurrence of B (prior
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Box 2. Definitions and Premises.

Definitions
• Rule: A purported causality link (true or false).
• World representation: An ensemble of rules that predict the world around an animal.
• Predictive universe: An ensemble of predictions that can be inferred by a given representation of the world.
• Habituation: The waning of a reflex following repeated monotonous nonpertinent stimulations.
• Parallel predictive universe: An ensemble of rules identical to that of the general case minus the restricted rule or rules in a particular context. It is

context-dependent and derived from a restricted world representation.
Premises
• Learning principle: Two events or objects will undergo association if and only if there is temporal contiguity between their two neural representations.
Total learning.
• Total learning is not considered equivalent to asymptotical learning, even if such an equivalence could be possible with regards to a single stimulus

training. This is especially not the case when considering the training of a compound stimulus. In addition, total learning assumes that all
relationship between events have been acquired.

• Rules are general by default.
• Restricting rules (using habituation/extinction) is equivalent to creating a parallel or conditional representation upon a context, and therefore a

parallel or conditional predictive universe. In this conditional predictive universe, the restricted rule is interdicted.
In relation to prediction.
• The occurrence of an event is predicted in relation to a given purported predictor for an animal’s given representation of the world, not the animal’s

absolute response to it, although in the right conditions they become correlated (e.g., the prediction of food, in the case of an animal in need of
food).

• If two or more representations apply to a particular test stimulus (i.e., if the test stimulus is ambiguous in terms of representations), the predictions
of all relevant representations are summed.

to extinction taking place), as B is a prediction made due to
the occurrence of A. In addition, B would be associated with
another event even in the absence of B when A is presented in
conjunction with this other event, as it is the presentation of A

that activates the representation of B (before extinction of A →
B takes place). In other words, the neuronal networks that learn
also support the memory and the structure of the memory
of what has been learned, with each predictor causing the
recall of what it predicts within a defined structure.1 This leads
on to what can be defined as the “Learning Principle”: Two
events will undergo association (i.e., linked by conditionals
propositions) if and only if there is temporal contiguity between
their two neural representations. (For a strong argument in
favor of this rule of learning, see Miller and Barnet 1993.)

Examples of Sequential Presentation (Total Learning)
Let us suppose that a subject learns to associate A with food
and then B with food (both in a sequential manner). It can be
written that A → F and B → F . Thus,

(A → F )(B → F ) ⇐⇒ (Ā +̇ F )(B̄ +̇ F ) (4)

⇐⇒ ĀB̄ +̇ ĀF +̇ B̄F +̇ F

⇐⇒ ĀB̄ +̇ F. (5)

Equation (5) is valid if

ĀB̄ +̇ F = 1 if F = ĀB̄ = A +̇ B. (6)

This logical equation, with regards to the prediction of food,
can again be represented in a table. If A, B, and the compound
stimulus AB are tested, it is possible to predict the level of
response to each stimulus by reading Figure 1(b). If A was

presented, it can be seen that A predicts food two out of two
times (red rectangle), B predicts food two out of two times
(green rectangle), and AB predicts food one out of one time
(purple rectangle). Thus, from the learning perspective of the
animal there is a certainty of food regardless of the test per-
formed, and therefore all three stimuli will induce the same
response. In other words, at total learning the system behaves
like a digital system for what it knows.

Let us now suppose that the subject learned using the ex-
act same stimuli (A and B) that the compound stimulus AB

predicts food by the presentation of AB just prior to food being
offered. The simultaneous presentation of A and B introduces
an uncertainty: Is it A alone, B alone, or both of A and B that
predict the deliverance of food? Without additional informa-
tion the subject cannot discriminate between these possibili-
ties. Therefore, it can be written in relation to the prediction
of food that the subject has learned (A → F ) +̇ (B → F ).
Therefore,

(A → F ) +̇ (B → F ) ⇐⇒ (Ā +̇ F ) +̇ (B̄ +̇ F )

⇐⇒ Ā +̇ B̄ +̇ F. (7)

For this equation to be true,

Ā +̇ B̄ +̇ F = 1 if F = Ā +̇ B̄ = AB. (8)

We can also represent this equation in a table (Figure 1(c)).
If we now test A, B, and the compound stimulus AB,

the level of response to each stimulus can be predicted using
Figure 1(c). For example, when A is presented the event “food”
is predicted one out of two times (red rectangle), B predicts
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Table 1. Experimental design for Lattal and Nakajima (1998).

Phase 1 Phase 2 Test

L +, A+, B+ L B+ A, B

Note: All letters represent auditory or visual stimuli; “+” the delivery of
reinforcement.

food one out of two times (green rectangle), and AB predicts
food one out of one time (purple rectangle). Thus, it can be de-
duced that AB > A = B, as AB is, from what the subject has
learned, the certainty of the event “food,” while A or B predict
food with the same uncertainty (A = B = 1/2 and AB = 1). It
is important to notice that the absolute values of the responses
are not what is being predicted, but rather their relations. Thus,
as stated previously, at total learning the system behaves like
a digital system in relation to what it knows (AB), but it also
behaves like an analogue system for what it does not know (A
and B individually). This example also provides an interpre-
tation of the phenomenon that Pavlov called “overshadowing”
(Pavlov 1927). In this case, both stimuli are equally salient and
if A is trained in association with B in the compound stimulus
AB, then A = 1/2 (Figure 1(c), red rectangle). However, if A

is trained separately to the stimulus B, then A = 1 (Figure 1(b),
red rectangle). In order to test the above propositions, they were
applied to some previously published training designs and their
success determined. Some examples are given below.

Confronting the Data

Within the Scope of Actual Theories—Two
Simple Examples
The following example of overexpectation is from Lattal
and Nakajima (1998). The protocol was as follows (see also
Table 1):

1. Subjects learned to associate L, A, and B with food (F ).
2. Subjects then learned that the compound stimulus LB pre-
dicts food, not L or B alone (L or B alone were not presented
in this phase of training).

Therefore, a representation of F can be derived as a func-
tion of A, B, and L. This function can be defined by

F = f (A,B,L) = LB +̇ A. (9)

This follows from

(A → F ) (L → F +̇ B → F ). (10)

This proposition is equivalent to

(Ā +̇ F )(L̄ +̇ F +̇ B̄ +̇ F )

⇐⇒ ĀL̄ +̇ ĀB̄ +̇ ĀF +̇ L̄F +̇ B̄F +̇ F, (11)

Table 2. Experimental design for Rescorla (2003b).

Conditioning Test

AB+, C D+ AD , BC

Note: All letters represent auditory or visual stimuli; “+” the delivery of
reinforcement.

which in turn is equivalent to

ĀL̄ +̇ ĀB̄ +̇ F. (12)

Equation (11) is valid for

F = ĀL̄ +̇ ĀB̄ = A +̇ AB +̇ LB = A +̇ LB. (13)

From this, Figure 1(d) can be constructed. In addition, the
subjects have learned

L → B and B → L. (14)

Or, that L is conditional upon B and B is conditional upon L.
If the response to A (red rectangle), B (green rectangle),

and L (purple rectangle) were to be predicted, it is possible to
deduce from Figure 1(d) that the response would be A(4/4) >

B(3/4) = L(3/4). This prediction agrees with experimental
data from various authors (e.g., Lattal and Nakajima 1998;
Rescorla 2003a) and conforms to what elemental theories
call “overexpectation.” The second example is from Rescorla
(2003b). Here, the subjects learned (see Table 2) that the com-
pound stimuli AB and CD each predict the appearance of
food (F ).

It can therefore be written in relation to the prediction of
food that

F = f (A,B,C,D) = AB +̇ CD. (15)

From this a predictive table can be constructed (see
Figure 1(e)).

The subjects also learned that

(A → B and B → A) and (C → D and D → C). (16)

At test, subjects were confronted with the original compounds
(AB,CD), transfer compounds (AD,CB), and each individ-
ual stimulus A, B, C, and D. From Figure 1(e) it is possible
to predict that

1. AB = CD = 4/4 = 1 (red and green rectangles),
2. AD = CB = 3/4 = 0.75 (purple and yellow rectangles),
and AQ2

3. A = B = C = D = 5/8 = 0.625.
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Therefore, AB = CD > AD = CB > A = B = C =
D. This accurately supports the finding of Rescorla (2003b).
In contrast, elemental theories of learning predict

AB = CD = AD = CB > A = B = C = D,

and configural theories of learning predict

AB = CD > AD = CB = A = B = C = D

(see Rescorla 2003b).

In order to further test the predictive abilities of this new
theory, more challenging experimental situations involving ha-
bituation and/or extinction procedures were investigated.

The Treatment of Habituation or Extinction
It is proposed that the function of habituation or extinction is
to restrict the field of application for a given rule. Habituation
is referred to when this rule is preexisting (i.e., a rule that the
great majority of a given species share and can be considered
innate). Extinction is referred to when the rule has been ac-
quired previously (for example through an experiment), and
therefore is shared only by a limited number of individuals in a
given species. In this context, the distinction between habitua-
tion and extinction is no more than rhetorical. It can therefore
be postulated that the only discernable difference between ha-
bituation and extinction is the intrinsic pertinence of the rule
that is being acted upon in relation to the survival of the species
and their relative plasticity. However, in relation to learning,
their consequences are similar.

It is generally accepted that after habituation or extinc-
tion, a rule (the causality-like link) does not disappear (Pavlov
1927; Brimer 1972; Rescorla 1996, 2003c). Instead the rule is
not displayed in a particular context. Following on from this, it
could be postulated that during extinction or habituation a par-
allel predictive universe is created. The predicted event would
then be dependent upon two logical equations. For example,
if the subjects first learn to associate A with food and B with
food, the following equation can be written

Food = f (A,B) = A +̇ B. (17)

Subsequently, if the subjects later learn that the stimulus N in
association with A does not predict food, but rather B presented
alone predicts food, the stimulus N becomes an indicator of
the predictive universe in association with the experimental
context. As rules are general by default, in the universe defined
by the occurrence of N the logical equation becomes

Food = f (B) = B. (18)

Table 3. Experimental design for Rescorla (2004).

Phase 1 Phase 2 Test

A+, B+, N A−, N B− N A+, B+ A, B

Note: All letters represent auditory or visual stimuli; “+” the delivery of
reinforcement and “−” the absence of reinforcement.

In the general case the equation is still

Food = f (A,B) = A +̇ B. (19)

In addition, the subjects have learned the relationship between
A and N after being exposed to NA learning

(N → A and A → N ). (20)

In the present theory, it is postulated that if a question (a test
stimulus) is ambiguous in terms of a valid predictive represen-
tation, the predictions from each relevant representation are
summed. This is because it is not possible for the subject to
be certain which representation is solely valid while making
the prediction. However, if a question (e.g., a test stimulus) is
not ambiguous, only the stipulated representation is used. The
following examples demonstrate how to predict the outcome
of training sessions that include extinction in their design. The
first is a “superconditioning” experiment reported by Rescorla
(2004). The second is also from Rescorla (2000) and illus-
trates the particular predictive value of the present theory by
comparison with current elemental theories.

Example 1. The design of this “superconditioning” experi-
ment was as follows. First, the experimental subjects learned
to associate A, B with the delivery of food (F) and N A and N B
with its absence (see Table 3). In this condition, in the general
case the subjects learned that A and B predicted the delivery
of food (A → F and B → F ), whereas in the “experimental
context” (plus N) the delivery of food did not have a predictor
A → F̄ and B → F̄ .

In addition, they also learned that N → (A ⊕ B) (⊕ is
the sign for exclusive “or”). That is, N is conditional upon
the event A or the event B, but not both at the same time (A
and B are mutually exclusive in relation to N ). Following this
conditioning, the subjects learned that NA was followed by
the delivery of food, and B was followed by the delivery of
food. The individual stimuli A and B were then tested.

Based on the present theory, after this first conditioning,
the subjects built the two following representations:

(i) Representation 1 (the general case)

F = f (A,B) = A +̇ B. (21)
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Figure 2.
(a) Predictive universe of Food = f(A, B) = NA +̇ B; (b, c, d). Predictive
universes given respectively by the general case, the representation defined by
D (+ context) and the representation defined by B (+ context).

(ii) Representation 2 (the “experimental context” and N ): F ,
the delivery of food is not predicted. After the second condi-
tioning, Representation 1 (the general case) is changed to

F = f (A,B) = NA +̇ B. (22)

As seen here a stimulus can simultaneously be an indicator of
a predictive universe that restricts a rule and a predictor of F .
Finally in Representation 2, F is now predicted as

F = f (A) = A. (23)

Note that the relationship between the elements has now
changed to N → (A ⊕ B) and (A → N ). Figure 2(a) rep-
resents the predictive universe given by Representation 1. The
predictive universe for Representation 2 is quite simple: if A

then F .
In Representation 1, A predicts that F is true in three out

of four cases (Figure 2(a), red rectangle) and B predicts that
F is true in four out of four cases (Figure 2(a), green rectan-
gle). However, as A → N , when A is tested, Representation 2
is evoked. (“Experimental context” is also a factor, but since
in this case it is stable it can be ignored.) In this representa-
tion, F is true if A is true, therefore A predicts that in this
representation F is true one out of one time. The relationship
existing between B and N is not B → N but N → B since
in the second phase of conditioning B was presented alone
and not in conjunction with N . This indicates that within the
experimental context B did not predict N whereas the predic-
tion of B by N was unaffected by the second phase of training
(see Table 3). In other words, the predictive universe defined
by N is not active when B is presented alone. Thus, it can
be written that in relation to the prediction of food, A = 3/4
+ 1/1 = 7/4 = 1.75, whereas in relation to the prediction of
food, B = 4/4 = 1. Therefore, A > B as was demonstrated

Table 4. Experimental design for Rescorla (2000).

Pretraining Phase 1 Test

A+, C+, X+, X B−, X D− AB+ AD , BC

Note: All letters represent auditory or visual stimuli; “+” the delivery of
reinforcement and “−” the absence of reinforcement.

experimentally and in accordance with both the present theory
and the elemental theories of associative learning.

Example 2. The experimental design was as follows. In pre-
training sessions the subjects learned that A, C, and X pre-
dicted the delivery of food (F ). Compound stimulus XB and
XD ended with no delivery of food. Pretraining was followed
by conditioning sessions of AB stimulus followed by the de-
livery of food. Subjects were then tested with the compound
stimuli AD and BC (see also Table 4).

Based on the present framework, after pretraining the sub-
jects know
(i) in the general case,

F = f (A,C,X) = A +̇ C +̇ X; (24)

(ii) in the representation defined by B or by D (and context),

F = f (A,C) = A +̇ C. (25)

In addition, due to the alternated exposure to XD and XB, D

and B are mutually exclusive (if D then B̄ and if B then D̄).
After conditioning the subjects know

(i) in the general case,

F = f (A,B,C,X) = AB +̇ C +̇ X; (26)

(ii) in the representation defined by B (and context),

F = f (A,C) = A +̇ C; (27)

(iii) in the representation defined by D (and context),

F = f (A,B,C) = AB +̇ C. (28)

These representations can be translated into Figures 2(b), (c),
and (d).

After training, the subjects were presented with the test
stimuli AD and BC. Each test stimulus unambiguously calls
for at least a particular restricted representation (due to the
presence in each test stimulus of an indicator of restricted rep-
resentation, viz. B and D). Thus, the general representation is
of no use; only the representations governed by D or B are used
to make predictions. Furthermore, as no ambiguities exist for
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each test stimulus in relation with the pertinent representation,
no interrepresentation summation is expected (see Box 2).

In the representation defined by D (+ context), BC is
not relevant as stimulus D is absent. Note that in this case
the context has not changed throughout the experiment and so
it becomes irrelevant. In contrast, AD is relevant as it con-
tains stimulus D. In the representation governed by D, the
test stimulus AD is equivalent to A. Therefore, in this repre-
sentation, AD = A = 3/4 (see Figure 2(d), red rectangle). In
the representation that is governed by B, AD is also not rele-
vant since B is absent. In this representation, the test stimulus
BC is equivalent to C, as B is an indicator of this represen-
tation; thus BC = C = 2/2 (see Figure 2(c), red rectangle).
It follows that AD = 3/4 = 0.75, whereas BC = 2/2 = 1.
Thus it is predicted that BC > AC, which is in accordance
with the experimental results. In contrast, elemental theories of
learning predict AD = BC for the Rescorla-Wagner (Rescorla
and Wagner 1972) model, and AD > BC for the Mackintosh
model (Mackintosh 1975; see Rescorla 2000).

Outside the Scope of Current Theories–Two Examples
Learning and re-learning Higgins and Rescorla (2004) have
reported an interesting phenomenon that is beyond the inter-
pretive power of current predictive learning theories. The au-
thors have reproduced and completed earlier results obtained
by Freberg (reported by Rescorla 1981). The experimental
details were as follows (see Higgins and Rescorla 2004):

The first experimental group received the following train-
ing (Experiment 1):

1. Simultaneous presentation of an almond flavor (A) with the
appetitive compound polycose (P ). The two compounds were
mixed together in water.
2. Extinction of the association of A with P by the presentation
of A alone.

The second experimental group received the following training
(Experiment 2):

1. Sequential presentation of the almond flavor (A) followed by
presentation of polycose (P ). A solution of water containing
the almond flavor was provided before a second solution of
water containing polycose.
2. Extinction of the association of A with P by the presentation
of A alone (not followed by P ).

In both cases, the authors attempted retraining using the
same initial protocol and compared the efficiency of this re-
training between the two groups. Surprisingly, retraining failed
for Group 1 (the group receiving simultaneous training), while
it was successful for Group 2 (the group receiving sequential
training). Thus, A did not reacquire its predictive value us-
ing simultaneous training (Group 1), whereas when sequential
training was used (Group 2), re-acquisition did occur.

This surprising result can be easily explained using the
framework of the present theory. Group 1 (simultaneous pre-
sentation) learned that A → P and P → A, but Group 2 (se-
quential presentation) learned that A → P only. In terms of the
prediction of P, both groups learned the same thing: A → P .
However, for Group 1, there is some uncertainty as to what
this simultaneous presentation means, while for Group 2 no
such problem exists. When extinction was performed, A was
presented alone in both groups. This effectively reduced the
uncertainty for Group 1. Group 1 therefore was aware that
P → A and that the proposition A → P was false. In relation
to Group 2, the results were quite different, as Group 2 did not
have a predictor for P at this time. Thus, when retraining was
attempted, it did not challenge the representation that Group
1 had constructed because A was presented simultaneously
with P (meaning P → A), and therefore no new association
of A and P was needed. However, the existing representa-
tion of Group 2 was challenged through retraining because the
events that occurred were not predicted and therefore, a new
re-association of A and P was necessary. In the context of the
present theory, it is possible to predict that if sequential train-
ing is performed as “retraining” for Group 1, a re-association
would be made between A and P in the form of A → P to
the cost of P → A. Moreover, the presentation of P alone in
addition to A alone, during the extinction process for Group
1, should enable successful retraining using the simultaneous
protocol utilized in this experiment.

Novelty detection: The known, the unknown, and the not
known This theory also offers a theoretical account of the
phenomenon known as “novelty detection.” If the notion of
“known, unknown, and not known” (Guez 2000) were con-
sidered in the framework of the present theory, “the known”
would be contained in a representation of reality structured as
multiple chains of conditional propositions. “The unknown”
would be represented as a structure that is partially predicted
by the available representation of reality, and therefore could
be integrated into it provided that some changes were made.
“The not known” is all that is beyond the predictive universe
as defined by the representation of reality, which is in use at
that given time.

If the environment known to an animal is represented by
multiple chains of conditional propositions, the detection of
novelty will take place when predictions based on this repre-
sentation fail. The extent of the response will be determined
by the extent to which this representation fails to predict a par-
ticular event. The greater the failure, the closer the unknown is
to the not known, and so the greater the response. Obviously
however, some not known will never induce a response if the
perceptual world of a given animal (“Umwelt”; Von Uexküll
1965) cannot describe them, and therefore cannot be integrated
into its representation of reality.
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Consequence: External inhibition The detection of novelty
implies that a representation of reality has failed. Therefore,
it is imperative for the animal to evaluate to which extent this
failure must change its representation of the world before us-
ing the rules that are part of this representation. This simple
observation explains the phenomenon that Pavlov called “ex-
ternal inhibition” (Pavlov 1927). Pavlov observed that tests
would fail if they were performed in a room other than the one
where training was performed, and/or if a loud noise (e.g., a
truck passing in the street) occurred during testing. It is likely
that such a loud noise is not predicted by the representation of
reality of a laboratory animal. If it is the case, the noise is de-
tected as novelty, and consequentially disrupts the acquisition
or the display of a known rule until the animal can evaluate its
impact upon itself.

Furthermore, in the case of a laboratory animal with a rel-
atively poor representation of reality (i.e., with no experience
of the natural world), such an effect could be quite dramatic.

Conclusion

The present theory demonstrates a large predictive and ex-
planatory scope, and proposes a representational structure used
by the brain to order knowledge extracted from the world in
a logical framework. It has predictive power with respect to a
variety of experimental designs, both inside (Lattal and Naka-
jima 1998; Rescorla 2000, 2003b) and outside the framework
of current theories (Higgins and Rescorla 2004), and is able
to theoretically explain phenomena such as the detection of
novelty. A highlight of this model is probably its capacity to
deal successfully with extinction without using the concept
of unlearning. Instead, the emphasis is on the way the brain
structures and uses information gathered from the surround-
ing environment. In the present framework, extinction only
restricts a rule within a particular context; it does not erase the
rule. This explains why a rule is masked rather than erased
by extinction, and also allows for the prediction of phenom-
ena such as renewal and spontaneous recovery from extinction
(Pearce and Bouton 2001). A second highlight of the present
theory is that it does not postulate major differences between
events; in other words, it does not postulate that learning oc-
curs only with reinforcement. A third highlight is the rejection
of the notion of a nonassociative form of learning, which is a
step toward a more generalized approach of learning. Finally,
the theory is sensitive to the order in which the different events
are learned: It is theoretically different to learn NA− in the
first phase then A+ in the second experimental phase, than
A+ in the first phase then NA− in the second (“+” indicating
the delivery of the reinforcer, “−” its absence).

The extension of the concept of “association” to the con-
cept of “rules” of the form “if A then B” enables this theory
to deal with problem solving and causal reasoning, as recently

evidenced in rats (Blaisdell et al. 2006). It also allows the
use of meta-rules (“rules about rules”). This new feature ap-
pears necessary in order to deal with the pretraining effects
of unrelated stimuli on subsequent training that uses different
stimuli (e.g., Beckers et al. 2006). Within the present frame-
work, meta-rules are expected to be context-dependent, since
they are the expression of a change in the default behavior of
the learning system, and therefore can be said to result from a
restriction of the default learning rules.

Extending the concept of “association” to the concept of
“rule” offered here in the form of an “if-then relationship”
should not be viewed as a large departure from the basic con-
cept of association. Instead, it merely adds to it and formalizes
a notion of direction. If in more traditional associative the-
ory we say that A is associated with B, it could mean in the
present theory that if A then B, or if B then A, or both. The
introduction of this limited notion of “rule” introduces more
precision as to what is actually going on. For some, the in-
ability of this theory to fully describe a learning/performance
curve as a mathematical model could be seen as a weakness.
But no doubt one could argue that describing mathematically
a curve of any sort should not be confused with an explana-
tion of the underlying mechanism that underpins this curve.
A mathematical description is not an explanation per se of a
phenomenon; it is just one possible way to describe it.

A distinct advantage of using a logical representation is
that it allows the deduction of the minimum neuronal network
necessary for solving a given problem. The construction of
such a network is dependent on regarding the actions of in-
dividual neurons or a pair of neurons as equivalent to logical
operators. When neuronal inputs are synchronized the neuron
acts as an “and-gate” (×), whereas when the same inputs are
desynchronized the neuron acts as an “inclusive-or-gate” (+̇).
The construction of a conditional proposition (→) requires the
use of a minimum of two neurons, with a strong connecting
synapse that allows the activation of the postsynaptic neuron
following the activation of the presynaptic neuron. Since the
logical operators “inclusive or” (+̇), “and” (×), and “the con-
ditional proposition” (→) can all be described using only one
of them and the logical operator “no,” these logical operators
allow the reconstruction of the minimum biological network
that is equivalent to the learned logical equation. In actuality,
real networks may be more complex, but logically they can
be regarded as perfectly equivalent to the minimum network.
Obviously this is not to say that this kind of limited network is
“the network” that could solve all problems. Such a network
should be seen as part of a bigger network in a similar way
that the limbic system is part of the brain in vertebrates.

Throughout this work I have assumed total learning, and
limited my analysis to it. It is likely that the scope of this
theory could be extended to incorporate partial learning sit-
uations by introducing at least some new premises, one of
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which would be to consider that each partial rule defines a
separate representation, and therefore its own predictive uni-
verse. The consequence of this would be that if an animal
partially learned that A → F and B → F to the same perfor-
mance level, the test response to the presentation of A or B

alone or the compound AB would be of the form A = B < AB

because the test stimulus AB would call on two representa-
tions and therefore the prediction of each separate predictive
universe would be summated (see Box 2). The second would
be that the integration of knowledge occurs secondarily when
dealing with partial learning; an illustration of such a mecha-
nism is the blocking phenomenon (Kamin 1969). An example
of blocking training is as follows: In phase 1 of training a
stimulus A is paired with a US (e.g., food, F ), so that the
subjects learn that A → F . In phase 2, a compound stimu-
lus AX is paired with the same US (typically the number of
trials in phase 1 is far larger than the number of trials dur-
ing phase 2). After phase 2 training the subjects have learned
that A → F (first predictive universe) and A → F or X → F

(second predictive universe). At test stimulus X will activate
the representation of A and in consequence the two predictive
universes for the prediction of F are activated. So A and AX

are predictors of F (A → F and A → F or X → F ); this is
equivalent to

(Ā +̇ F )(Ā +̇ F +̇ X̄ +̇ F )

⇐⇒ Ā +̇ ĀF +̇ ĀX̄+̇ ĀF +̇ F +̇ X̄F

⇐⇒ Ā +̇ F. (29)

Equation (29) is said to be valid for

Ā +̇ F = 1 ⇐⇒ F = A. (30)

Stimulus X will fail to elicit a response as it is not part of
the equation predicting F (F = A). Nevertheless, X has been
“associated” with F (the subjects have learned that A → F

and A → F or X → F ), but this “association” will not be
expressed until A and X fully predict each other due to their
compound presentation in the form of AX, creating the rules
A → X and X → A. However, the rule X → A must at least
partially exist after compound training, and therefore some
weak response to X should be observed because X predicts A

and A predicts F in full.
This theory already shows great promise and offers a new

way of thinking about learning. It expands the field of ap-
plication of learning theories to a wider range of situations,
proposing a new way to deal successfully with extinction. It
can be extended by adding a more elaborate decision-making
process by, for example, using a hierarchy of threshold-driven
rules, or even be mathematically modeled in order to regain
the capacity of describing learning curves. I believe that for
all these objective reasons the present theory is well worth
considering.
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Note
1. This is not to say that the mediated activation of the neural representation
of B is of the same amplitude of the activation of the neural representation
of B when B is physically present. If such was the case it will be probably
equivalent to a hallucination.
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