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ABSTRACT.We present a complete axiomatisation of the operator ofgtan onto state in the
Duration Calculus OC) relative to validity in DC' without extending constructs. Projection
onto state was introduced and studied extensively in ouiezarorks. We first establish the
completeness of a system of axioms and proof rules for theatopeelative to validity in

the extension oD C' by neighbourhood formulas, which express the neighboutivadues of
boolean D(C' state expressions. By establishing a relatively complatenaatisation for the
neighbourhood formulas iV C, we then achieve completeness of our system relative to basi
DC.

KEYWORDSduration calculus, projection, relative completeness.

1. Introduction

The Duration CalculusfC) was introduced in [ZHO 91] as a first order temporal
logic for reasoning about real-time system3(C can be viewed as an extension of
the real-time variant of Interval Temporal Logi€Z(L, [HAL 83, MOS 85, CAU ]).
DC has been extended by various operators both in order toaiserigs expressiv-
ity and to make specification more convenient and concise.ekample, the state-
variable-binding quantifier and the least-fixed-point aper, which were added to
DC in [PAN 95], enabled the straightforward specification af thehaviour of pro-
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grams with local variables and recursive calls. Validity/id' is undecidable. Deci-
sion procedures are known only for subsetdf. Validity in DC' is not even recur-
sively enumerable, and therefore no finitary complete psysfem forDC exists. A
finitary proof system foiD C' which is complete with respect to real time relative to the
ITL theory of real time was first presented in [HAN 92]. Arcomplete proof system
for DC' with respect to abstract time was first presented in [GUE Bi@jwever, that
system contains and infinitary rule.

Projection onto statés regarded as an additional operatorid’, relative to the
basic system oDC as known from [ZHO 91]. It can be viewed as a real-time coun-
terpart of the discrete-timé&T'L operatorIl, which was introduced in [HAL 83]. A
family of different operators if7T'L and DC' are known as projection operators too.
They have been studied in [MOS 86, MOS 95, HE 99a, BOW 03, GU#. Okh or-
der to distinguish the operator studied in this paper froos¢hother ones, we call it
projectiononto state

One application of projection onto state fiC' is to facilitate the specification of
requirements on collections of interleaving real-timegaesses. Another one is to for-
malise the abstraction known as thee synchrony hypothesibout real-time systems
with digital control. The true synchrony hypothesis is tesiamption that digital com-
putation does not take time in this kind of real-time systeinsreality computation
does take time. Yet it is difficult to calculate accurately afi negligible size. Taking
this time in account is still reasonable in order to keep thesal ordering of com-
putation steps clear. By means of projection onto stateimeap@nts on concurrent
real-time programs’ behaviour which have been formulatédomt taking computa-
tion time into account, and specifications of this behavieliere computation time is
explicitly accounted of can be put togetherdd' formulas [DAN 99a, GUE 02]. Pro-
jection onto state has also been used to formulate a specmldf logical interpola-
tion which describes the possibility of obtaining explabscriptions of the interaction
between the components of a real-time system in [GUE 03a].pbissibility to write
a requirement on a component of a system in a form which a¢sadithe behaviour
of the system only at the times when the component is actiibtédes composition-
ality in specification of systems witfeaturesby DC [GUE 03c]. Projection can be
used to write requirements in such form, and this way to aapigarent interactions
between features which do not account of really incorrebabi®ur, but are detected
just because of inflexibly formulated requirements. Dstaiil some uses of projection
can be found in our work [GUE 02]. In this paper we focus on tkieraatisation of
this modality.

In this paper we propose a finitary proof system for the extensf DC' by the
operator of projection onto state andighbourhood formulasvhich is complete rel-
ative to validity in DC without extending operators. Neighbourhood formulas have
interesting uses iMC of their own (cf. e.g. [ZHO 94, HAN 96, ZHO 98]). They
appear in this paper just because they seem to facilitatexiomatisation of pro-
jection. Projection onto state was introduced1@' in [DAN 99a] and later studied
extensively in [GUE 02]. Yet none of those previous worksldedth the issue of
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completeness that we address here. The result presenteid paper subsumes the
relative completeness result for a subsetaf with projection onto state from our
earlier work [GUE 03b]. Furthermore, the system in this papenuch simpler and
more streamlined than that in [GUE 03b].

Structure of the paper.

We first give brief preliminaries o', neighbourhood formulas and projection
onto state. Then we present our proof system and demonita&dative complete-
ness. To do this, we first discuss the definition of projectiom present and motivate
the axioms about projections of atomic formulas. Then wedhice a special form for
formulas inDC with neighbourhood formulas and projection where only atofior-
mulas in a certain form can occur in the scope of projectiod,@esent axioms which
allow to demonstrate the equivalence of every formula toiotige special form. Next
we show that our axiomatic system is sufficient to derive evatid formula in the
special form using premises which are validid’ with neighbourhood formulas only.
Since neighbourhood formulas have an axiomatisation wisicdomplete relative to
validity in DC without extending constructs, this entails the completsrod our sys-
tem relative to basi®C too. Finally we show that our completeness result holds for
projection inDC with iteration and the general least-fixed-point operagbative to
validity in these extensions d?C' without projection.

2. Preliminarieson DC with projection and neighbourhood formulas
2.1. The definition of DC

DC' is a classical first order modal logic with one normal binarydaility called
chop We denote the chop modality ky;.). The possible worlds in the standard
semantics ofDC are closed and bounded intervals of real numbers. For thsore
DC is also aninterval-based real-timéemporal logic. A comprehensive introduction
to DC can be found in recent monograph [ZHO 04]. Here we only givaef ftormal
introduction for the sake of self-containedness.

2.1.1. Languages

Along with the customary first order logic symbol3(' vocabularies includstate
variablesP, @, . ... State variables are used to bigtdte expressionS, which have
the syntax:

S:=0|P|S=S

State expressionS occur in formulas as part afuration terms[ S. The syntax of
DC termst andformulasy extends that of first order logic by duration terms and
formulas built using the modalitf; .), respectively:

tu=cla| [S]flt,....t)
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pu=L|R(,....t) [ e=¢]|(pe) | e

Here and belowt, v, ...denote individual variables, d, ...denote constantg, g,
...denote function symbols, arfg, ... denote relation symbols. Constant, function
and relation symbols can be eithégid or flexiblein DC'. The interpretations of rigid
symbols are required not to depend on the reference intetudividual variables
are rigid. State variables are flexible. We denoteahty of non-logical symbols

by #s. Flexible relation symbols of aritg and flexible constant symbols are also
calledtemporal propositional letterandtemporal variablesrespectively. The rigid
constand, the temporal variablé the rigid binary function symbe}, the rigid binary
relation symbols= and<, and an infinite set of individual variables are mandatory in
DC vocabularies.

We denote the set of state variables occurring D@ state expression, term or
formulaE by SV (E).

2.1.2. Semantics

The model of time inDC is the linearly ordered group of the reals. We denote the
set{[r,72] : 71,2 ER, 71 <2} by L

DerINITION 1. — A functionf : R — {0, 1} has thefinite variability propertyif,
giventy, 2 € R, {7 : f(7) = 0andr; <7 < 12} is either empty, or a finite union
of intervals of the kind+’, ).

The finite variability property reflects the natural assuopthat {0, 1}-valued
signals, which appear in systems modelled/b§, change their values only finitely
many times in any given bounded interval of time.

DEFINITION 2. — An interpretation/ of a DC languageL is a function on the
vocabulary ofL.. The types of the values bffor symbols of the various kinds are as
follows:

I(z),I(c) e R for individual variablesr
and rigid constantg

I(c):I—-R for flexible constants

I(f) : R*/ — R, I(R) : R*F — {0,1} for rigid function symbolgf

and relation symbols
I(f) : IxR#* - R, I(R): I x R*E — {0,1} forflexiblef, R
I(P): R —{0,1} for state variables?

1(0), I(+), I(<), I(=) and I (¢) should be the corresponding components of the lin-

early ordered grougR, 0, +, <), equality onR and\o. max o — min o, respectively.
Interpretations of state variables are required to havefihie variability property.

The impossibility to axiomatis®C completely by finitary means can be ascribed
to the requirement on the interpretations of state vargtadave the finite variability
property. This can be seen by comparing dlstract timevariant of /7L [DUT 95],
where finite variability is not present, and the abstracetirariant of DC [GUE 98],
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where itis. The former system admits complete finitary axitsation while the latter
does not.

DEerINITION 3. — Given an interpretatior?, the valuel.(S) of state expressiof
attimer € R is defined by the clauses:
I.(0) = 0
1.(P) = I(P)()
L (S1=52) = max{l—I(51),1(5S2)}
The valuel,, (t) of a term¢ at intervalo € T is defined by the clauses:
15(x) = (=)
1,(c) = I(c) forrigid ¢
I,(c) = I(c)(o) for flexiblec
I,([9) = [ I.(9)dr
I (f(t1,....tgy)) = I(f)(]c,(tl),...,Ig(t#f))forrigidf_
I (f(t1,....tgr)) = I(f)(o,15(t1),...,I5(tyy)) for flexible f

The modelling relatior= is defined on interpretations of L, intervalso € I and
formulasy from L by the clauses:

ILolEL
I,o0 = R(t1,...,tyr) Iff I(R)(Is(t1),...,Is(tyr)) = 1 forrigid R
I,o0 = R(t1,...,tgg) Iff [(R)(0,1,(t1),...,1,(tyzr)) = 1forflexible R

LoEp=4¢ iffeitherI,oc =y orl,o - ¢

I,0 = (¢;v) iff I,01 = @andl,oy = for somesy, o €1
such thatr = o; U 05 andmin 09 = maxojy.

I,o=3zp iff J,o |= ¢ for someJ which is az-variant of I

2.1.3. Abbreviations and precedence of the operators

The symbolsT, —, v, A, &, V, #, >, < and > are used as abbreviations in
the usual way in formulas. Infix notation is used whereyer= and < occur. V¢
denotes theniversal closuref a formulay, that isvz; ...V, ¢, wherexy, ..., x,
are all the free individual variables gf. The connectives,, vV, A and< are used
as abbreviations in state expressions too. The followirayeatiations are specific to
DC:

Cop=((T;¢);T), Hp=-07p,
(P159025- - 50n) = (0153 (@n-1:0n) - -)
1=0=0, [S]=[S=tAL#0.

We assume the usual precedence conventions about the pimpisconnectives
andV. We always write parentheses when using the chop modality We assign
(.;.) the lowest precedence. For examplg, A B;C < D) is the same ag§(A A
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B);(C < D)),andA A B;C < D is not well-formed in our setting, because the
parentheses farare missing.

2.1.4. Completeness of finitary proof systems f¢' can only be relative

A finitary proof system forDC' and, consequently, for its extensions, can be no
more than relatively complete. The impossibility to haveomplete finitary axioma-
tisation for DC follows from the assumption that a finitary proof system igsased
to define a decidable notion of proof - whether a sequenceroidlas is a valid proof
can be checked mechanically. This entails that the correipg notion of provabil-
ity, that is, the existence of a valid proof for a given formutan be no worse than
semi-decidable. On the other hand, validity iiC' is not semi-decidable. This is
already so in the rather restricted subseD@f whose syntax is

pu=LI[STIR|e= 9] (p;¥)

where R stands for a temporal propositional letter [GUE 04b]. Tisaivhy relative
completeness results like the one in this work are the bastcdm be obtained with
respect to the scope of completeness in this setting.

2.2. Projection onto state

Given a state expressioH and a formulap, the projection of onto H is a
new formula denoted bfp/ H). Roughly speaking,p/H) holds at intervab under
interpretation/, if ¢ holds at the interval obtained frosmby cutting off its subintervals
where H evaluates t@ under an interpretation which preserves the (truth) vatfes
non-logical symbols in this remaining (shortened) inteasbest as possible. The
auxiliary notation below is to make this precise.

Leth : R — {0, 1} have the finite variability property. Le&¥,(7) = [ h(7")dr’.
0

Let 3, = {dn(7) : 7 € R}. Clearly X, is either a closed interval, or a semi-
closed unbounded interval, or the enfiRe and0 € X;,. The functiond,;, "glues" the
collection of intervals{7 € R : h(r) = 1} into the single intervak,. To transfer
arbitrary interpretations fromR to 3J;, as embedded iR, we need to inverd,. The
multiple-valuednverse ofd;, is defined by the equality

5;1(7'/) ={reR: &) =171}
We need a monotonic extension B of a single-valued branch aof *, that is, a
monotonic functiony;, of type R — R such that ifs, ' (7/) # 0, theny, () €

5}:1(7’). The extension with this property that we choose to employbeadefined as
follows:

7 —inf %, + max&;l(inf Yp) if 7 <inf Xy < sup Xp;
(") = { maxd; (1) if infY <7/ < sup3p;
7' —sup X, + min (5;1(sup ¥p) if inf 3, <supXy < 7.
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Note that the cases in the definitionpf depend on the kind of interval,, is and
not just onr’. The idea is thaty, (7') is the maximal value of, ' (') whend; * (') is
not empty, except for the casé = sup ;. Otherwise;y, (') is defined to preserve
the distance from’ to Xy, i.einf X, — 7" = v, (inf 3p,) — v, (7') in caser’ < inf Xy,
andr’ — sup Xj, = v, (7') — Y (sup Xp,) in caser’ > sup X,.

DEFINITION 4. — Given an interpretatiod of someD (' languageL, theprojection
of I onto (the support of}. is the DC interpretation/” of L. which is defined by the
equalities:

IM(s) = I(s) forrigid s, including individual variables;
1"(¢)(0) = I(e)([(mino), v, (maxo)])
for flexible constants # ¢;
I"(s)(o,dy,...,dgs) = I(s)([yn(mino), va(maxo)],dy,. .., dys)
for flexible function and relation symbals
I"(P)(t) = I(P)(yn(7)) for state variables”.

Giveno € 1, theprojections” of o onto (the support of) is [§, (min o), § (max o )].

With ~,, defined and used as abové, is obtained fromy by clipping off parts of
R which are surrounded by parts whérevaluates ta only. In words,I” interprets a
symbols at intervalo’ in the way in whichl interpretss at the corresponding interval
[vn(min o”), 5 (max ¢’)]. In casey;, is (semi)bounded, that is, ifif 3, > —oo, or
sup 3, < oo, or both, the values af on (—oo, v, (inf 5,)) and [y, (sup X5,), o) are
transferred td” with no loss.

DEFINITION 5. — Lety be a formula and? be a state expression I, respectively.
Leth = Ar.I.(H). Then

Lo (p/H)iff I" 0" = ¢
Just like(.; .), we always write projection with parentheses.

2.3. Neighbourhood formulas

Given a state expressidh the formulasS and S are calledeft neighbourhood
andright neighbourhooaf S, respectively. Neighbourhood formulas and neighbour-
hood terms have been studied in numerous workB61{ZHO 94, HAN 96, ZHO 98,
HE 99b, ZHO 00, ZHA 00]. The relatiop- is defined on neighbourhood formulas by
the clauses:

ff I,[r,mino] = [S] for somer < mino
iff I, [max o, 7] = [S] for somer > maxo
Consider the axioms
—
0= 1 1)
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Sl = 52 <~ (Sl = 52) (2)
S e (T:9) 3)
~(S:[-8) )

THEOREM 6. — The axioms (1)-(4) are complete for right-neighbourhoaunfiolas
in DC.

We formulate this result here and prove it in Appendix A foe thake of self-
containedness. The axiomatisations of neighbourhoodutasrand terms which are
available from the literature apply to slightly differerdgtings. Together with their
left-neighbourhood mirror images, the axioms (1)-(4) atatively complete for both
left- and right-neighbourhood formulas inC'.

3. Relative completeness of DC with projection and neighbour hood formulas

In this section we obtain the relative completeness of afgystem forDC' with
projection onto state with respect to real time, which isrfeen result of this paper.
The proof system we present is complete relative to validityasicDC. We obtain
completeness relative tbC' with neighbourhood formulas first. We explain how the
dependency on neighbourhood formulas can be eliminatedatida 4.

Originally, (./.) was defined on the subset B{C' where the only flexible symbols
are state variables arfgwhich can be regarded as an abbreviationffar Projection
was extended to the entil@C, because of the convenience of using other flexible
symbols to write abstract specifications. For instancepgsiional temporal letters
appear in the extension @iC' by a least-fixed-point operator [PAN 95]. As we men-
tion in the introduction, a subset dC with both (./.) and least fixed points was
studied in [GUE 02], but no completeness result was givereth€he relative com-
pleteness result from [GUE 03b] applies only to a subset efléimguage, and the
system involved is much more complex than the one in thispape

We first discuss the definition of projection fBfC' with arbitrary non-logical sym-
bols and motivate some of the new axioms which are neededlar tw cope with it
for the case of projections of atomic formulas. Then we prete rest of the proof
system and prove its relative completeness.

The relative completeness proof goes through establighatghe axioms allow to
derive the equivalence between an arbitrBi§/ formula and a corresponding formula
in an appropriate special form. Valid formulas in this spéfarm contain only certain
atomic formulas in the scope 6f/.). Using the new axioms, all valid formulas of the
special form can be derived IBC without (./.).
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3.1. On the definition of projection onto state

The role of the functiony, in the definition of(./.) for DC' interpretations of
languages with arbitrary flexible constant, function anktien symbols is partic-
ularly important. The main property ofy, is that it is an inverse to the function
on, which mapsR. onto the time domain where the projected interpretationeis d
fined. Intervals inR where the value of is 0 are mapped by, to single time
points. There is a variety of possibilities for inverting at such time points. The
exact choice is irrelevant in the case of state variablesaulse the finite variabil-
ity of h implies that a projected interval® can contain at most finitely many such
time points, and therefore the values of state expressiahese points do not affect
the values of duration terms under projected interpretatioret this is no longer so
as soon as other types of flexible non-logical symbols geatlved. One inevitable

min o | T max o | T2 = Y (6 (max o))

\\\\\\\\\\\ e

&p, (min o) | ot | 0n(71) = dp(max o) = 5p(72)

Figure 1. Projection ontoH at o depends on the interpretation of symbols outside

consequence of any possible choice of an inversg, tig that the evaluation of pro-
jection at some intervals can depend on the interpretations of symbols outside
Let I be aDC interpretation,R be a propositional temporal lette] be a state ex-
pression andh = 7.1 (H). Leto € I, 1,72 € R, mino < 71 < maxo < 7Ty
andh(r) = 1iff 7 € [mino, ) U [r2,00). Then~,(d,(minc)) = mino and
Yr(0p(max o)) = sup (5;1(5h(maxa)) = sup[r, 2] = 72 (See Figure 1). Hence
I" 0" = (R/H)if and only if I, [min o, 72] |= R. In this case the restriction df R)
to the subintervals of is not sufficient to determine whethéro = (R/H) holds,
becausey, (65 (max o)) > maxo. Changing the definition of;, to mapdy, (max o)
to min &, * (6, (max o)) = 7, would bring a similar inadequacy for intervaitarting
at pointsr € (11, 72).
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3.2. Bringing arbitrary formulas to special forms inDC with projection onto state

The axioms involving(./.) that we present next make it possible to derive the
equivalence between an arbitrary formula in the extensiabi@ by (./.) and neigh-
bourhood formulas and a corresponding formula in which atymic formulas ap-
pear in the scope df/.):

v < (p/H) forrigid ¢ (5)
(p=9/H) < (p/H) = (¥/H) (6)
((p39)/H) < ((¢/H); (¥/H)) (7
(Szp/H) < 3x(p/H) (8)
((¢/S)/H) < (¢/SNH) ©)

The correctness of the axioms (5)-(9) can be establisheddiget check.

PROPOSITION7. — Let ¢ be a formula in some language f@C with (./.) and
neighbourhood formulas. Then there exists a formula the same language which
contains only atomic formulas in the scope(of.) and is such that the equivalence
v < 1 can be derived inDC using the axioms (5)-(9). Furthermore, using the
axioms (1)-(3), (5) and (6), it can be achieved that onlyestariables occur as the
state expressions in the neighbourhood subformulas of

PrROOF. — Induction on the construction af. ]

The axioms (5)-(9) were first introduced in [DAN 99a]. Proitios 7 entails the
expressibility of(./.) in DC languages where state variables are the only flexible
non-logical symbols:

COROLLARY 8 ([DAN 99A]). — Lety be aformulain some language forC with
(./.). Then there exists a projection-free formylan the same language such that the
equivalencep < 1 can be derived ilDC' using the axioms (5)-(9) and (13).

PROOF. — Induction on the construction gf, using the equivalences (14) and (15).
|

The special form established in Proposition 7 is basicalffigent for us to carry
out our relative completeness argument. However someeiugpecialisations are
possible with respect to the occurrences of neighbourhowdiflas and their projec-
tions:

PROPOSITION9 ([GUE 03b]). — Let ¢ be a formula in some language fa@?C
with (./.) and neighbourhood formulas. Let only atomic subformulasupén the
scope of(./.) in ¢. Then there exists a boolean combinativrof neighbourhood
formulas, formulas of the forn(g/H) and(?/H), and formulas which contain no
neighbourhood subformulas in the same language, suctithatss .

The proof of this proposition can be found in [GUE 03b], whérere are also
axioms which make the considered equivalence derivable.
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3.3. Axioms about projection onto state of atomic formulas

Let I, H andh be like above. Let there exist at least one R such that.(7) = 1.
Then the time points which participate in the definition afjpcted interpretations?
at projected intervals” are the ones at which evaluates td, and the time point
sup{7 € R : h(7) = 1}, in casesup ¥}, is finite. In the sequel, we call these time
pointsdefinitive Other time points are involved in the definition Bf too, but never
affect the values of " within projectionss” of intervalsc € I. We callo € I
definitive, if bothmin 0 andmax o are definitive.

Inaxo(H) =1lifandonlyifl,o = ﬁ, because of the form of the finite variability
property we have adopted (see Definition 1). A direct cheakwshthatmaxo =

sup{r € R : h(r) = 1} is equivalenttd, o = (=H /H) A (T;¢ =0 A H). Let
Hl=HV((~H/H)A(T;0=0AH))

Thenmax o is definitive for projection ontd{ if and only if I, o = H!. To determine
whether the beginning point of an interval is definitive foojection ontoH, we can
use formulas likg¢ = 0 A H!; T). A direct check shows thdi(7) = 0 forall 7 € R
if and only if

Iok= [H=0A(SH/H)A(-H/H)

at some, and, consequently, atalie 1. In this cases” is the interval0, 0] for all
o € TandI" is defined ons" using only the restriction of to [0, 0].

Here follow some axioms which, according to the above olzEmns, can be used
to determine the truth values of projection formulas:

(p/H) < ([ H=0;(p/H); [H=0) (10)

Axiom (10) states that changing the end points of a referameeval does not affect
the truth value of projection formulas as long as there ar@afimitive points between
the pairs of corresponding end points. lcetlenote either- or nothing. Then the
axioms

(=0NH)(eR(z1,...,zn)/H)NH!) = eR(z1,...,2,) (11)
and
(=0AH! (y = f(21,...,z0)/H)NHY) = y = f(21,...,25) (12)

state that if both the beginning point and the end point ofré@rval are definitive,
then the projection of a flexible atomic formula at this intdris equivalent to that
atomic formula itself. The corresponding axiom about atofaimulas with duration
terms, on the other hand, does not involve definitivenesadpaints:

(y=[S/H)<y=[(SANH) (13)
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Note the special form of the atomic formulas which appeat i) &nd (12). Every for-
mula has an equivalent one where all the atomic formulas bsiihg relation symbols
have this form, because of the predicate logic equivalences

R(tl, e ,tn) < 31'1 Ce HICn (R(xl, A ,iL'n) A\ /\ T; = t1> (14)
/'—1

1=

and
y=flt,...,tp) < Jz1... 32, (y: flxe,...,zn) A /\ x; =ti> , (15)
=1
wherexy,...,z, € FV(t1),...,FV(t,). The corresponding axioms about projec-
tions of neighbourhood formulas are as follows:
A — —
SANH= (S/H) (16)
— —
H'= (S < (S/H)) a7

Note that the axiom (16) about projections of left neighthmad formulas does not
explicitly refer to the definitiveness of the beginning gaafi the reference interval.
Projections of neighbourhood formulas satisfy the follogvexioms and their mirror
images too:

- Hy = H, implies(H, /H,) = (H, /H,) (18)
- H, = H, implies(H, /H,) = (H/H>) (19)
(S/Hy v Hy) = (S /Hy) v (S /Hy) (20)
(Hy/H, V Hy) A (Ha/Hy N Hs) = (H, /Hy V Hz) (1)

— _ —
! = 0/\(H1 A —Hy /\HQ/HQ) = (Hl A—|H2/H1 \/HQ)\/HQ (22)

Now let us return to the case in which the beginning and thepaimts of a reference
interval o are not known to be definitive. Ifin o is not definitive, butmax o is,
then there exists a subinterval of ¢ such thatmax ¢’ = maxo andmin ¢’ is the
closest definitive time point on the right @fino. In this case the truth value of a
projection formula can be determined usirigand axiom (10). The case whemx o

is not definitive is more subtle. Then the truth value of prt@n formulas(a/H) at

o depends on the truth value afat some intervat’ whose endpoint is on the right
of maxo. All that can be said here is that the endpaintx o’ of this intervalo’ is
the samédor all projection formulaga,/ H') onto stated?’ which are related tdf in

a certain way. Here follows a detailed explanation.

Let the state variables occurring in all the considered tdas bepP,, ..., P,.
Then, given the interpretatioh and the reference interval, because of the finite
variability, we can define a (possibly infinite) ascendingusnce of time points, =
maxo, Ty, T2, ... such that the interpretations of all the state variabites.. ., P,
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are constant in the intervals of the foifm, ;1) and at least one of these variables

changes its value at; for everyi = 1,2,.... Let7} < mino, 77, 74, ..., be a
descending sequence of time points on the le#t afith the same property. Note that
H is an expression built fron®, ..., P,. Let there exist an such thatl,, (H) = 1.

A direct check shows that this is equivalentlter = (ﬁ/H). In this case the truth
value of the projectioric/ H) of an atomic formulax onto state expressioH at o
depends on the truth value efat an interval which ends at some of the time points

i =0,1,.... In casemax ¢ is definitive for projections ontd, this interval ends at
7o, Which ismax o itself. In general, the interval in question ends-aivherei is the
smallest number such that[r;, ;1] = [H]. In casel.(H) = 0 for all 7 > max o,
we havel, o | ﬁ(ﬁ/H) and eitherl.(H) = 0 for all 7 € R, or the truth value of
(a/ H) ato is equal to the truth value of at an interval which ends (and possibly also
begins) atr’ = ~;,(sup Xp,). Furthermore, in this case either € [min o, max o) or

o = 7] for somei.

Now consider the projectiong/H;) and(«/H,) of the same atomic formula
onto two state expressiod$, and H,. Leth; = Ar.1.(H;), j = 1,2. In case the
definitive intervals

h’h1 (6’11 (min U))7 Yhy (6h1 (maX U))]

and

h/hz (5h2 (Hlll’l U))7 Yho (6h2 (max U))] (23)

for these projections are the same, we need to be able tdisisteiat
Io = (o/ Hy) & (af Hy). (24)

For this purpose we introduce a formula which holds dtand only if eitherh, , hy #
A7.0 and vy, (0, (max o)) = Yp,(dn,(maxo)), or hy = he = A7.0. We denote
this formula byH; = H,. To define=, we first introduce one more auxiliary bi-
nary connective, which we denote by, H; < H, holds ato if and only if either
hl = h2 = AT.0, or Vha (6h1 (maxa)) = Vmax(hl,hz)(émax(hl,hz)(maxa)) (Where
max(hy, h2)(t) = max(hi(t), h2(t))). H1 < H, is defined as the formula

— ey «—
(Hl/Hl V HQ) \Y (_\(Hl \/HQ/Hl \/HQ) A\ (T,£ = 0/\ (Hl/Hl \/HQ)))\/
(=(Hy V Hy/Hy vV Ha) N=(Hy V Hy/Hy V Ho) A [(Hy V Hy) = 0))
The definition of= is
HlEHQ:‘Hl SHQ/\HQSHl.

A direct check shows that!; = H, and H; < H- really express the conditions on
hy andh, formulated above. Defining: in terms of< is technically convenient for
the proof of Lemma 14. Two more derived operators are invblaghe proof of that
lemma. They are defined by the clauses

— —
H, = Hy = (Hl/Hl \/HQ) andH1 =, Hy = (Hl/Hl \/HQ).
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These operators can be defined semantically too:

I,ol=Hy <, Hyiff I,[7',7"] = [Hy] and!, [7",mino] = [(Hy V Hy) =0
for somer’, 7"/ such that’ < 7/ < min o, and

I,0 = Hy =, Hoiff I, [7',7"] = [H1] andl, [max o, 7’| = [(H1 V Hz) =0

for somer’, 7" such thatmaxo < 7/ < 7/ < mino.

Using=; and=,., H; < H, can be written as

H1 jr H2 vV (_‘(Hl vH2/H1 \/HQ) A\ (T,g = 0 /\H1 jl HQ))\/
_— 3 —
(~(Hy V Ha/Hy V Ho) A=(Hy V Ho/Hy V Ho) A [(Hy V Ha) = 0))

The properties of;, <,. and< to be used in the proof of Lemma 14 are listed in the
two lemmata below. Their proofs are given in Appendix B.

LEMMA 10. — The following formulas are provable using our axioms andesul
about(./.):
(H/H)=H =<, H, (H/H) =H=, H (25)
Hy =y Hy N Hy =%y Hy = Hy < Hy for < {=,,=,} (26)

b —=(Hy A Hy) implies—(Hy < Ho A Hy < Hy) for <€ {=;,<,.}  (27)
(E/Hl) = Hy; = HyV Hy =) Hy,

(fT{/H1)2>H1 =r HyV Hy X, Hy (28)
Hy =, Hy = Hy, < H, (29)
J(HyV Ho) = 0A~(H, V Ha/Hy V Hy) = (Hy =, Hy = Hy < Hy) (30)

LEMMA 11. — The following formulas are provable using our axioms andesul

about(./.):
F Hy = H impliESHl < H, (31)
H=H (32)
Hy <HyNH; <H3z= H, <Hj (33)
S=(HVH)=S=H VS=H (34)
H1§H2:>(H1 \/HQ)EHl (35)
Hy < HyV Hy < Hy (36)

Hy < Hy A —~(H, /Hy) = —(Ho/H>) (37)
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Hy < Hy A~(Hy /Hy) = —(T;[Hy A=Hy; [(Hy, V Hy) = 0) (38)
Hy < Hy A~(H, /Hy) = ([ Hi = 0= [ Hy=0) (39)
Hy, < Hy AN=(Hi/H\) A [ Hy = 0= ((Hy/Hz) = (H,/Hy)) (40)

H, = H» holds ato iff the endpoints of the intervals in (23) are the same. The
equality of thebeginningpoints of these intervals is equivalent to the satisfactibn
H, = H, at[min o, min o). This means that we can formulate the following axiom

about equivalences between projections of formul@g the formsR(x1, ..., z4r),
y = f(z1,...,z4s) andy = ¢, wherec is not¢:
(H1EHg/\KzO;leHg):>((a/H1)<:>(a/H2)) (41)

The axioms below and their mirror images apply to projeciofi neighbourhood
formulas:

(S/H) & (T; (S /m)) (42)

Hy=H, = ((S/H) < (S /H)) (43)
To enable the replacement of equivalents in the scofe’ 9f we introduce the rule

Feo=dvandt+ Hy < Hyimply + (¢/H1) = (¢¥/H>) (44)
Using (41)-(43) and (44), one can easily derive

JH=0ACH/H) A (SH/H) = (o/H) & (/0)) (45)
for all atomica.

Y1, (0) IS the singleton intervaD, 0] andy 1, (o) maps it ontdo, 0]. 1A~ (©)
is equal tol, the only difference is that only a restriction b¥"-/~(©) to a neighbour-
hood of0, 0] is ever referred to in determining the semantics of a forpradd it is in-
volved only in determining the truth values of projectiom$a0. Hencel, o |= (¢/0)
iff 1,]0,0] |= ¢ for all . This makes formulas of the forif/0) behave like rigid
formulas. The following axioms reflect this:

((#/0);9) = (¢/0), (¥; (¢/0)) = (¢/0) (46)

The axiom below describes the effects@f0] being located either on the left, or on
the right, or inside the reference interval:

((51/50) A (5,/5,:)) V ((S1/S0) A (S7/S))V

& (ﬁ =0A /e\q)\f(so < (¢/0))

— =

(S1AS/0) = (47)

where® stands for a finite set of arbitrary formulas. Note that axsqd0), (44) and
(46) apply to arbitrary formulag and«, and not only to atomic ones too.
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3.4. The proof of relative completeness

Now we are ready to prove that the axioms (10)-(13), (16);(221)-(43), (46)-
(9), their mirror images and the rule (44) are complete fer ¢ltension ofDC by
projection onto state and neighbourhood formulas relatiwalidity in the extension
of DC by neighbourhood formulas only.

In order to use validity inDC' with neighbourhood formulas, relative to which the
completeness of our set of axioms is being established, ea@xhe consideredC
vocabularies by flexible constant, function and relatiomisgls to denote the flexible
constants, functions and relations which are defined by tbiegtions of atomic for-
mulas. Then we translate the axiomatic systenTf6rwith projection into a theory in
the language foD C with neighbourhood formulas only based on the extendedbroca
ulary. We demonstrate that the consistency of a formula thightheory is equivalent
to the satisfiability of the result of substituting the exd&ry non-logical symbols in
the formula by their corresponding projection formulas. dfdethis by showing that
the appropriate instances of our axioms imply that the pmegations of the extending
non-logical symbols are the same as the interpretationiseo€drresponding projec-
tion formulas themselves. Hence, the validity of a formaul#his theory is equivalent
to the derivability of its counterpart formula using our@xiatic system and formulas
which are valid inDC' with neighbourhood formulas only.

For the rest of the sectiah is some language fabC' with (./.) and neighbour-
hood formulas.

DEFINITION 12. — Let H be a state expression In. Letcy, fu, Ru, Py, Pi; be
fresh flexible relation symbols for every flexible constasother than?¢, every flexible
function symbolf, flexible relation symbak and state variable” in L, respectively.
Let#P;; = #P; =0,#cy =1, #fu = #f +1and#Ry = #R. LetL’ be the
language forDC with neighbourhood formulas (without the operatof.)) based on
the extension of the vocabularybfy these fresh symbols for di.

DEFINITION 13. — We define the translationof the formulas fronL’ into formulas
fromL as follows. If the termg,, ¢4, ..., are rigid, then

cu(to)) = (c=to/H)

t(fu(to,tr, ..., tup)) = (to = f(t1, ..., tyy)/H)
t(Ru(t1,...,tyr)) = (R(t1,...,txr)/H)

If «is an atomic formula built using a relation symbol from theabulary ofL, then

tla) =«

The clauses for compound formulas are
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tlp = ¢) = t(p) = t(¥)
t((p3 1)) = (t(p); t(¢))
t(3rp) = 3u(t(v))

The translationt is defined on atomic formulas built using the relation symabol
introduced in Definition 12 and flexible terms as the trariskabf their flexible-term-
free equivalents which can be obtained using (14) and (15).

Proposition 7 implies that every formula Inis equivalent to the-translation of
some formula if,’. The translation is invertible for formulas of the form mentioned
in Proposition 7. We extend the subsefloin whicht is invertible as follows:

If Sis a state expression, the‘nl(g/H) denotes the boolean combination built
of propositional temporal letters of the forfy” in the way the corresponding state
variablesP are used to builds. We extendt—! in the same way to projections of left
neighbourhood formulas. Similarly, i is a formula built using atomic formulas and
their projections, them=!(y) stands for the result of eliminating the occurrence of
compound terms irp by means of (14) and (15), distributing the projections dtier
newly introduced connectives and quantifier prefixes and tkelacing the projec-
tions of atomic formulas in the obtained formula by atomimalas built using the
corresponding symbols from the vocabulary.éf For example, our convention about
extended~! means that

(P A=Q/H)V (R(x) = (R(f(x))/~H)))

(P A=Qp) V (R(z) = Fy(f-u(y, ) A R-u(y)))-

Note that parts of the formula which are not in the scopé 4 are not affected by
tL.

Let D(Ji/') be the set of the formulas &f which can be derived using validC'
formulas and thé./.)-specific axioms enumerated in the beginning of this section

Let DCY, be the set of those formulas frabi whoset-translations are irDCi‘/ ),

The key step in our proof is Lemma 14 which provides the pdggilof using
the extending non-logical symbols and the translatidrom Definitions 12 and 13
in the intended way by showing that these symbols have the saeaning as the
corresponding projections of atomic formulas under imegtions which satisfy the
formulas fromD(C7},. To prove Lemma 14, we use some properties of the derived op-
erators<, <; and=,. defined in Subsection 3.3 These properties are listed in Laenm
10 and 11 from Subsection 3.3.

LEMMA 14 (TRUTH LEMMA). — Let the vocabulary ol. contain finitely many
flexible symbols. Lefy be an interpretation oL’ andog € 1. Letly, 09 = ¢ for all

¢ € DCY,. Then there exist two interpretatiodsand I’ of L’ and an intervalr € I
such thatl, o = ¢ iff Iy, 00 = ¢ for all ¢ fromL’, andI’ has the same restriction to
subintervals of asI and satisfies
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I'.o' = Py < (P/H)

I'.o' = Py < (P/H)

I' o' =Vz(cy(x) & (c=z/H))

I' o' = ay . Vo (fa (a1, .. wup) < (y = f(@1, ... 205)/H))
I' o' =Voy .. Vour(Ry(zy,. .. zen) < (R, .. 2ur)/H))

for all subintervalse’ of o and all the non-logical symbol®, ¢, f and R of their
respective types from.

We need to use and! in the lemma instead ef, andI, themselves, because pro-
jection onto0 makes the location of reference intervals relativé televant, and the
location ofaq may happen to be different from the one described by-tinenslations
of theL’ formulas which it satisfies undé.

PROOF. — Throughout this proof we refer to our axioms directly, pits the fact
that they are written using/.) and we are actually working with formulas frobd.
When referring to an axiom, we mean a formula whiahaps to an instance of this
axiom, or to some formula which is straightforwardly debilefrom such an instance,
in order to achieve brevity.

Let Py, ..., P, be all the state variables frofn. Let E be the set of the con-
junctions A ¢; P; whereg; is either— or nothing,i = 1,...,n. There are™ such
i=1
conjunctions. Every state expression frénhas a propositionally equivalent one of

the form\/ E’ where E’ C E. Rule (44) implies that we can assume that all the
involved state expressiori$ are of this form.

We first defines andI. Let S}, S, € E satisfyly, 00 = t‘l((E A §;/O)). The
existence of a unique pair of such state expressions folfows the facts- \/ £
and- —(S A S') for different S, S’ € E, and axioms (1)-(3), (5) and (6). L&t
consist of the formulagl, § and all the formulas of the form&(z1,...,zxr),

y = f(z1,...,z4s) andy = ¢, whereR, f andc are some of the finitely many
flexible symbols inL andy, x1, =2, ... is some fixed sequence of distinct individual
variables. Then axiom (47) implies that at least one of theafiormulas

t1((S1/50) A (5,/50)), € H((S1/S) A (5,/5,)

and

7 [ot=0A /\ V(e (9/0)
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holds atoy underly. Letd = minog — 1 oré = maxog + 1 in case it is the first one
or the second one, respectively. In case it is the third féenety € o be such that

I, [5,6] =t | N\ V(e & (9/0) ] - (48)
ped
We chooser to be[min oy — §, max o9 — J§]. We definel by the equalities
I(s) = Io(s) for all rigid s;
I(P)(1) = 1y(P)(t+)9) for state variable$;
I(c)(d") = Ip(c)([mino’ + &, max o’ + 4]) for flexible ¢ # ¢;
I(s)(0',dy,...,dgs) = Io(s)(mino’ + 6, maxo’ +9],d,...,dgs)

for all other flexibles, except?.

The correspondence betweéno, I, ando, described in the lemma can be estab-
lished by a direct check. Furthermore, in case o, we have) € o and (48) implies

L[0,0]E P Py, P e Py, cole)
Vay .. Vegrfol(f(T1, .. Tuf), 21, ..., Tpr), (49)
V.. .Vl‘#RR(Il,. .. ,.Z‘#R) = Ro(ﬁcl,. .. ,l‘#R)

for all the flexible symbols, ¢, f and R of their respective types from.

We definel’ only as much as necessary to prove the lemma. The valuEsoof
symbols and at intervals not mentioned here are irrelevethietrequired properties of
I’ and can be arbitrary. As required by the lemrfas the same a$ at subintervals
of 0.

Let¢y,¢2 € R be suchthab € (¢1,¢) and[(1, ] No =0, incase) € o.

Let £ = 2" and the sequenc#, . .., .S, contain all the conjunctions fror and
satisfyl,o = t71(S; < Siy1),i = 1,...,k — 1. The existence of such a sequence
follows from (33) and (36) of Lemma 11. Lét, be the smallest number such that
I,o = t—l(ﬁ(sﬁ/Sko)). Letky = k + 1, in casel,o |= t~1((S;/S;)) for all
1=1,...,k. Then

I,o ): t_l(Si =r Si+1),i =1,...,ko— 1, andI,o ': t_l(ﬁ(i/&-))

fori = ko,...,k, because ofA(ES)-(29) from Lemma 10 and (37) from Lemma 11,
respectively. Obviously, ¢ |= S;, forsomeiy € {1,...,k}. Thenl,o = (S;,V.S;)!
forall j = 1,...,k, whence axiom (17) implies thdt o |= t*l((S_Z-O)/SiO vV S;)).
Hencel,o = t71(S;, < S;),j = 1,...,k by the definition of<, which means that
—

ip = 1. Furthermore, axiom (18) implies thato = t=1((S1/S1)), which means
thatky > 1. Lety = maxo andrs,...,7g,—1,&1,--.,&k—2 € R be such that

T <& <7< . < g2 < Tk,—1 (See Figure 2). Let there be no sugh in
caseky = 2. Letry,—1 < (1, in casemaxo < 0. We putl’(P)(7) = 1 if and
only if P occurs positively inS; for 7 € [r;,&), ¢ = 1,...,ko — 2, or P occurs
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&1 712 &2 ... Egg—2 Thg—1 C1 0 Q2
max o = T1

Figure 2. Definitive time points for projections undét, assuming thainax o < 0.

positively in Si,_1 for 7 > 73,,_1, in cased < maxo, and forr € [74,-1,(1), iN
casemax o < 0. If I, [max o, max o] = t—l((;_Si/Si)), then we putl’(P)(7) = 11if
and only if7, [max o, max o] = Pg for v € [§;_1, 7;); otherwise we pul’(P)(r) =
I'(P)(ri—1) forT € [§—1,7),i=2,...,ko — 1. According to this definition]’(P)
agrees with/ (P) atmax o, and indeed gtnax o, 7) for somer > maxo.

Let k; be the smallest number such that < k; andI,o = [ Sk, = 0. Let
ki=k+1,if[,o = [S;>0foralli =kg,...,k Then

I7U'Zf5i:0, i:kl,...,k,

because of (39) fr@ Lemma 11. Lef be the smallest number s(u_ch that < ko
andl,o = t71(=(Sk,/Sk,)). Letks = k + 1, in casel,o = t1((S;/S,)) for all
t=ki,...,k. Then

Lot (=(5:/80), i = ka,..., k. (50)
because of (40) from Lemma 11.

Let E= = {S € E : I,o = t'((5/S:))}. (50) implies E= C
{S1,...,Sk,—1}. There exists a uniqué € E such thatl,c = 'S. Then axiom
(16) implies thatl, o |= t—l((g/S)) andl,o =t=(S =<; ') for all otherS’ € E.
HenceE~ # (). Let E~ containm conjunctions and the sequengg, . .., S/, con-
tain all the conjunctions front’~ and satisfy/,o = 5] =<; S/, ,,i=1,...,m — 1.
Lemma 10 implies that there is a unique such sequence andwegus shown that
Io tg_i Furthermore, together with axiom (10), (30) from Lemmarblies that

Skys---»Sk,—1 IS @asubsequence 6F,..., 5.

Let 71 = mino and7j,...,75,,&,...,&, € R be such that], < &, <
Th_ 1. <Th <& < 7{ Letr, > (o, incased < mino. We putl’(P)(r) = 1
if and only if P occurs positively inS; for 7 € [& ,,7), i = 1,...,m — 1,

or P occurs positively inS;, for 7 € [(s,7/,), in case0 < mino, and for all
T < 71/, in caseming < 0. If I,[mino, mino] | t=1((—S5//S))), then we put
I'(P)(t) = 1ifand only if I, [mino,min o] |= Pg/ for 7 € [r;,§;); otherwise we
putI'(P)(r) = I'(P)(&) for 7 € [1,&), 1 = 2,.?.,m. Axiom (16) implies that
I' .o ?{ This implies thatl andI’ agree afr, min o) for somer < mino.

In case0 ¢ o, we putl’(P)(7) = 1 if and only if P occurs positively inS; for
T € [¢1,0), and we putl’(P)(r) = 1 if and only if P occurs positively inS, for
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T € [0,(2). If 0 < mino, we putl’(P)(r) = I'(P)(¢y) forall 7 < ¢;. If maxo < 0,
we putl’(P)(r) = I'(P)(0) forall 7 > (.

Axioms (5), (6) and the choice d@f, guarantee that'(P)(r) = 0 for all 7 and all
P which occur positively in some of the conjunctiofis,, .. ., Sk.

Now let us prove thal’ satisfies the equivalence abd®y” from the lemma. Let
o' €¢lando’ C o.

Let I,[maxo’,maxo] = [H > 0. Let 7 be the least time point in

[max o', max o) such thatl, (H) = 1. ThenI,o’ = Py iff I,[mino’, 7] = Py by
—

axiom (10) and/, [mino’, 7] = P;; iff I,[mino’, 7] = P by axiom (17). Hence in
this casel’, o’ = Py < (1_3/H).

If I,[max o’ ,maxo] = [ H = 0,thenl,o’ |= Py iff I,0 = Py andl’,o’ =
(P/H)iff I',o = (P/H) by axioms (10) and (42). Ll be\/ E’ whereE' C E.

Let E’ # () and: be the least number such thgt € E’. Then we havd,o =
t~Y(H = S;) by (31), (34) and (35) from Lemma 11. A lengthy but simple ¢hec
shows thatl’,oc = H = S;. Now axiom (43) implies thal’,o = Py <« Pg’
and/,o = (1—3>/H) & (1—5/51«). Hence it is sufficient to prove thdt, o = Pg’ <
(?/Si). We have the following four cases:

Case 1.1 < i < kg. ThenI,o = t*l((i/si)), which means that, o = Pg’
iff P occurs inS; positively. By the definition of’, this is equivalent td’, [;, &) =
[S; A P],incasei < kg — 1, andl’,[r;,7) = [S; A P] for somer > 7, in case
i = ko — 1. Axiom (22) and the position of; in the sequenc#y, ..., S imply that
I' maxo, ;) = [ S; =0. Hencel’, o |= (3/5}) iff P occurs inS; positively too.

Case 2.kg < i < ky. Thenl,o = t—l(ﬂ(gz/si)) A [S; > 0. LetT be the
least time point such that, [7,max o] = [S; = 0. Then axiom (10) implies that
I'.o = (P/S)) iff I',[mino,7] & (P/S,), andl’,0 = Pg’ iff I',[mino, 7] =
Pg’. It can be shown that’, (S;) = 0 for all 7 > max o, and, consequently, for
all 7/ > . This impliesI, [mino,7] £ ~(S;/S:). I';o = [S; > 0 and the
choice ofr imply I’, [mino, 7] E (T;¢ = 0 A iST,»). Hence!l’,[mino, 7] | S;l

—
Furthermore/, [min o, 7] = t=1(—(.9;/S;)) by axiom (10), becausg, [r, max o] |=
JSi = 0. This impliesI’, [mino, 7] = t~'(S;!). Hence both’, [mino, 7] = Pg’
and!’, [mino, 7] = (1—3>/Si) are equivalent td’, [min o, 7] |= P by axiom (17).

Case 3k; <i < ky. ThenI,o = t=1(=(S,/S;) A [ Si = 0 A (S;/S;)). In this
casel’ o |= (}_5/&-) andl’,o = Pg’ are equivalent td’, [min o, min o} = (]_3)/51-)
andI’,[mino, mino] = Pg’ by axiom (10), respectively. Another lengthy simple
check shows that’(S;) = 0 for all 7 > mino. I,0 |= t*l((E/S,»)) implies that
S; € E—. Now recall the sequencg/, ..., S/, of the conjunctions fronE. Let
S; be S} from this sequence. Thefl, [mino, mino] = E SinceI (S;) = 0
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for all 7 > mino, I’,[mino, mino] = ﬂ(g:/SZ) I.o = [Si=0andl,oc =
t=1(=(S;/S;)) imply I, [mine, mino] = t=1(~(S;/S:)) by axiom (10). Hence
I',[min o, min o] = S;! andI’, [min o, min o] = t~1(S;!). Then axiom (17) implies
—

that both/’, [min o, min o] |= (P /S;) and!’, [min o, min o] |= Pg’ are equivalent to
I’ [mino, mino] = P.IfS;is S’ for somej > 1, then the definition of and axiom
(22) imply that/7(S;) = 0 for all 7 > 7}, there exists &’ < 7; such that/7.(S;) = 0
forall 7 € [/, 7)) and I (P) = 1for 7 € [}, &) iff I, [mino, mino] = Pg . Fur-
thermore, thed’, [min o, min o] = (1_3>/Si) is equivalent to the existence of > 7/
such that/;(P) = 1 for 7 € [r},7') too. Hencel’,[mino,mino] = Pg and
I’ [mino, mino] = (]_3)/5‘]-) are equivalent again.

Case 4.k, < i < k. ThenI,o = t~1(=(S;/S;) A [ S; = 0 A ~(5;/S;)) and
I7(S;) = 0forall 7 € R. Axiom (45) implies thatl’,o = P5’ < Py~ andl’,o |=
(?/Si) & (?/O). If 0 ¢ o, then the definition of ' (P)(7) for 7 € [0, (2) implies
I''o = Py < (P/0). Otherwise we havé’, o = Py iff I',[0,0] = Py and
I'.o = (P/0)iff I',[0,0] = (P /0) by axiom (10). Therl’,o = Py~ < (P /0)
follows from (49), becausf andI agree on state variables at a proper neighbourhood
of 0.

If £ = (, which is equivalent to- H < 0, then the rule (44) implies that
—
I')o' =Py < Py ,andl’,o = Py < (P/0) is established as in Case 4 above.

The equivalence about;; is established similarly. To establish the equivalences
about formulas built using relation symbols, we use the nstaldished equivalences
about the projections of neighbourhood formulas involvedhe definition of the
formulas abbreviated using)!, which appear in the axioms (11), (12) and (41).
The truth values of projections of atomic formulas builtngsirelation symbols at
subintervalss’ of o can be defined using the interpretations of the involvedHlexi
constant, function and relation symbols at intervals wherse points are in the set
{r},,...,H}UcU{m,...,Tk—1} U {0}. We only need to defin& on such inter-
vals.

It can be easily shown th@C?}, contains the formulas
Hny(y7$1, e 7:U#f)7

fH(y1,1717~--7$#f> /\fH(y27$17---a33#f) = Y1 = Y2

and

Jyeu(y), ca(yr) ANea(y2) = y1 = 2

for all flexible function symbolg and constants from L. This means that for every
interval ¢’ C o and alld,,...,dxy € R there exists a uniqgue € R such that
I(fu)(o' e dy,...,dus)andI(cy)(o’, €).
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Let H be a state expression. tfS; = H foralli = 1,...,k, then- H < 0.
Then, to establish the equivalences abaut fy and Ry from the lemma, we use
that (49) holds together with the equalities

I'(cr)(0',e) = I'(cu)([0,0],¢)

Il(fH)(U/aeadlv' .. >d#f) = II(fH)([O,O],G,dh. .. ad#f)
and

I/(RH)(O'/,dl, .. .,d#R) = I/(RH)([0,0},dl, .. .,d#R),

respectively, which follow from axiom (10), for the cade . We use (49) to define
I’ at]0, 0], in case) ¢ o. For the rest of the proof we assume thitthe least number
such that- S; = H andh = A7.I_(H).

Leti < ko. If 7 € o, theny, (8,(7)) € {7 € o : h(7) = 1} U {~r;}, where~,, and
oy, are as in the definition af/.). We need to defin& on flexible non-logical symbols
at intervals whose endpoints are in this gétand coincide at intervals whose both
endpoints are ir. Givent € o such that(r) = 1, we putl’(c)([r, s]) = e where
e is the unique element @ such that/ (cy ) ([, max o], e) for all flexible constants
¢, and we putl’(f)([r, 7:],d1,...,dxs) = e wheree is the unique element dR
such that! (fx)([r,max o], e, d1,...,dxs) for all flexible function symbolsf and
dy,...,dyr € R. We put

I'(R)([r,7i],dy, ... .dugr) = I(Rg)([r,maxo],dy,...,dur)
for all flexible relation symbolg? andd;, . ..,dxr € R. We put
I'(¢)([ri, 7)) = e iff I(cxr)([maxo, maxo],e),
I'(f)([m,7il,di, - .. dyy) = eliff I(fg)(maxo, max o], e,dy, ..., dgy),
and
I'(R)([1i, 7). d1,y - - . ydgr) = I(Rg)([max o, max o], dy, ..., dgg).

In caseky < i < ky, projections ontad at subintervals ot depend only on the
interpretation/ of flexible non-logical symbols at subintervalsofind cause no need
to provide values foi’, becausd’ is the same as at such intervals.

Let ky < i < ko. Then there exists a uniqyec {1,...,m} such thatS; = S}.
SinceSy,, ..., Sk, —lisasubsequence 8f, ..., S, . (dn(7)) = 7 forall T € o.
We put

I'(c)([rj,75]) = elff I(cw)(o,e),

I/(f)([Tj,Tj],dl,...,d#f) = e iff I(fH)(a,e,dl,...,d#f)
and

I'(R)([ry, 7)), s .. dyr) = I(Rer)(o, s, .., dyr)
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for all flexible constants, function symbolsf and relation symbol®, respectively.
The case > k- is similar to the case H < 0

The correctness of the above clauses follows from axiom &4il) (34) and (35)
from Lemma 11. A direct check using these theorems and axagether with axiom
(10) shows thaf’ now satisfies the equivalences about the symbglsfy and Ry
from the lemma. ]

THEOREM 15 (RELATIVE COMPLETENESS OFDC WITH (./.) AND NEIGHBOUR-
HOOD FORMULAS). — Letp be a valid formula inL.. Theny can be derived from
formulas valid inDC with neighbourhood formulas by means of the axioms (10)-(13
(16)-(22), (41)-(43), (46)-(47) and the rule (44).

PrROOF. — We may assume thathas only the flexible symbols occurringgnin its
vocabulary. Then Proposition 7 implies that there existsmtilay such thatp <

is derivable using the axioms and rule mentioned above angdoccurs iy only in
subformulas of the forms occurring on the right sides of ti@alences from Lemma
14. Assume thap is not derivable in the above way for the sake of contradictithen
neither isy). Hence— is consistent with the set of formule&(]ﬁ/‘), and therefore
t~1(—) is consistent with the sé2C’; . SinceD(}, contains all the valid formulas in
L/, then there exists an interpretatifyof L’ and an intervad, € Isuch thatly, oo
t~1(—) and Iy, 00 |= x for all x € DC},. Now Lemma 14 implies that there exist
interpretationd andI’ of L’ and an intervab € I such thatl/, o |= x iff Io,00 = x
for all x € L/, I coincides withI at subintervals o and thel’-interpretations of
the extending non-logical symbols bf are the same as those of their corresponding
projection formulas at subintervals of In particular,l’, o =t~ (). Aninduction
on the construction of shows thatl’, s = t=*(¢)) < 4. Hence,I’,;oc = — and,
consequently]’, o |= —p, which is a contradiction. This means thatan be derived
from formulas valid in the extension dPC' by neighbourhood formulas using only
our axioms and rule. |

4. The scope of relative completeness

In this section we discuss the part neighbourhood formuéa lin our relative
completeness result and how it applies to extensior3@ty other operators.

As pointed out in Subsection 2.3 and proved in Appendix A,akiems (1)-(4)
and their left-neighbourhood mirror images are completenfaghbourhood formu-
las relative toDC with no extending construct whatsoever. It is important aben
that, given a finite set of neighbourhood formulas, it take&diy many instances of
(1)-(4) to achieve this axiomatisation. The detailed priooAppendix A shows how
the relevant instances can be determined from the giveinbeighood formulas. Let
N, be the conjunction of the instances of (1)-(4) which arevaeié to neighbour-
hood subformulas of some formula Then the deduction theorem fé&rC (cf. e.g.
[HAN 92, HAN 97, ZHO 04]) implies that the validity op in DC with neighbour-
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hood formulas is equivalent to the validity of\V, = ¢ in DC without extending
constructs, if the neighbourhood formulas in this implizatbe regarded as proposi-
tional temporal letters. Hence our completeness resulbeastated relative t&C
with no extending constructs and we can assume that our aigetion applies to
projection onto state as the only extending operatdpdnas well.

Finally, let us note that the relative completeness prosgstraightforwardly to
the extensiolDC™* of DC' by the unary modality known dgeration and denoted by
(.)* [DAN 96, DAN 99b]. Iteration is defined i C' and, more generally, iATL as
follows

I,0 = ¢*iff eithermino = maxo, or there existam < w andoy,...,0, €1
suchthaty;...;o, =candl,o; Ep,i=1,...,n.

To extend our relative completeness resultx6'™, it is sufficient to extend the
list of axioms (5)-(9) used to drive/.) down to atomic formulas by one for formulas
built using(.)*:

(¢*/H) & (p/H)*V [ H =0. (51)

Proposition 9 can be extended foC™* too. An axiom which generalises (51) was
shown in [GUE 02] to apply to a subset of the extensiorDal by least-fixed-point
operatory [PAN 95]. In the general it is more straightforward to takejpction for-
mulas out of the scope ¢f by using a definitional extension for projection formulas.
This means to prove, e.g.,

Oz ... Vegr(Ru(z1,...,24r) © (R(z1,...,24r)/H))) = ¢,

whereR is some fresh flexible relation symbol, if the original foriamto prove is

Az1,... @0 (R(x1,...,2n)/H)/Rule.

5. Concluding remarks

Obviously the definition of projection can have differentigats for DC' with
more than state expressions only. In this article we sti¢keosariant from our earlier
work [GUE 02]. We believe that some alternative variantslid@dae handled with
the use of neighbourhood formulas in similar ways. The paldr variant of the
operator needed should be determined by the needs of thalewstd applications.
It is worth noting that our technique involves axioms whidlowa detailed treatment
of projection at the level of atomic formulas. This meang thae can axiomatise
different variants for the different flexible non-logicgisbols in the same vocabulary,
if an application requires that. An important element ofickan the definition is to
considerDC interpretations which are defined on the enlteonly. Alternatively,
one can defindC on time domains of the forms of all the possible kinds of ivdg¢s
Yxr.1. (e, Which includesR itself, and semibounded and bounded intervals. Then one
can refer to an appropriate model with,; ;_ () as the time domain when defining
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projection onto staté/. This may cause the use ()F/H) and(?/H) in a possible
axiomatisation to change or vanish.
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A. Appendix: Proof of Theorem 6
PROOF. — Let S be a state expression. Let
a(S) = [L/0][P/P: P € SV(S)]S.

The formulaa(S) is isomorphic toS. A simple induction on the construction 6f
shows that
—

S < a(s) (52)

is derivable using axioms (1) and (2). Hence every formula DC with right-
neighbourhood formulas has an equivalent gnghich contains only state variables
in its right-neighbourhood subformulas. The equivalerae loe derived using (52).
Given ay of this form we put

t(¢) = [Rp/P : P € SV ()],

where Rp is a fresh propositional temporal letter for eafhe SV (¢). Let N,
denote the conjunction

—

A (P = (TiP) A (=P = (T;=P)) A~(P;[~P]) A—~(=P; [P])
pESV (¢)

of the instances of axioms (3) and (4) Bre SV (¢). Let us prove that if) is valid,
thent(ON,, = ), which contains no right-neighboudhood formulas, is védid.
Assume it is not, for the sake of contradiction. Then theranisnterpretation’ and
an intervalo € I such that

I,0 = Ot(Ny) A —t(v).

Let the interpretatiory coincide with/ on all non-logical symbols i, except pos-
sibly the state variableB € SV (P). Let

I(P)(r), if 7 <maxo,
1, if 7 > maxo andl,o = Rp
0, if 7 > maxo andl,o - Rp

ThenJ,o = Ot(Ny) A —t(y) andJ, o’ = Rp < P forintervalse’ C o. To realise
that, consider the cases:
Case 1.maxo’ = maxo. ThenJ, o' | Rp iff J,o E Rp, because the-

translations of the instancé@ = (T; P) and—P = (T;—P) of axiom (4) for P
and—P are conjunctive members @f,;,, which I satisfies, and coincides withJ at

o. Hence, by the definition of (P)(7) for 7 > max o, we haveJ,0’ = Rp & P.

Case 2. maxo’ < maxo. ThenJ,o’ = Rp iff I, maxo’,maxo] = [P],
— —
because thetranslations of the instanceg P; [-P]) and—(—P; [ P]) of axiom (3)
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for P and—P are conjunctive members &f,,, which I satisfies, and coincides with
—
J at subintervals of. HenceJ, o’ = Rp < P again.

Now J, o = — follows from J, o = O(Rp < 1—5) for P € SV(P)andJ,o
—t(¢)) by substitution of equivalents, which contradicts thedisi of «b. Hence, ifyy
is valid, thenON,, = ¢ is valid in DC, provided that right-neighbourhood formulas
are treated as propositional temporal letters and to déritgelf from this implication
only the instances of (3) and (4) which appeaiip are needed. [ ]

B. Appendix: Proofsof Lemmata 10 and 11

PrROOF(LEMMA 10). — (25) follows from the definitions of; and=,. by rule (44).
(29) follows from the definitions oK, and< immediately. (26) is simply axiom (21).
The first two deductions below and their mirror images pr&#® and (28). The last
deduction proves (30). Let; » = H; Vv H, for the sake of brevity.

27):
1 _‘(Hl /\HQ/HLQ) l__\(Hl /\Hg), rule (44)

2 —(Hi AHy/Hi2) = —~(Hi/Hy )V ~(Hz/Hy)  axioms (1)-(3), (5)
and (6) and rule (44)

3 —(Hy = Hy AN Ha =i Hy) 1, 2, def. of<;
(28):
1 (H/H)= (E/HLQ) axiom (19)

— — — )
2 (Hy2/Hi2) < (Hy/Hy2)V (Hy/H,5) axioms (1)-(3), (5) and (6)
and rule (44)
3 (Hi/H\) = Hy < HyV Hy = Hy 1, 2, def. of=;
(30):

1 [Hiz=0= ((Hi/H) = (T:0=0A (Hi/H.,)))  axiom (10),DC
2 le’QZO/\“(HLQ/H]’Q):

((T:¢=0A (Hy/Hy,)) = H, < Hy def. of <
—
3 fHLQ:O/\ﬁ(HLQ/HLQ)é (H1 =<1 Hy = H; SHQ) 1, 2, def. ofx;

PrROOF(LEMMA 11). — Using axiom (10), one can easily derive (31). (31) iegl
(32) and (38) implies (39) in basibC'. Let H; ; = H; v H; for the sake of brevity
in the deductions for (33)-(38) and (40) below. In these d&das we frequently use
that

(Hiy/H,,) < (H,/H, ;) v (H;/H;) (53)

and its mirror image can be derived from axioms (1)-(3), (&) €6) by rule (44).
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(33):
1 (Hi/Hio) A (Hy/Hz) = (Hi/Hig) axiom (21)
2 (Hl/Hl) (H13_/>H173) . axiom (19)
3 (H1 3/Hi3) = (Hi/Hy3)V (Hs/Hy3) (53)
4 ﬁ(]i]_Q)ﬁg/Hng) :>:£H3/H3) axiom (19)
5 =(H3/Hs)= —(Hs/H13) axiom (18)
6 (Hi/Hi2) A @/fb 3) = (@/Hl,?)) 2-5
7 Hy < HyAN—(Hi, 2/H1 2) = ~(H /H2 3 (37), axioms (18), (19)
8 —(Hy/H2) A ~(Ha/Hi2) = ~(Hia/Hi2)  (53)
9 —(Hy/Hi2)NHi < Hy;= _\(HQ/H]_ 2) (53) and def. oK
10 —(Hy/Hyo) A Hy < Hy = —\(Iig/Hl 2) 8,9
11 H{ < H3; A (Hl/ng):>ﬁ( 2/Ha3) 7,10
12 (Hi/Hio) A (Ha/Hys) = (Hy/Hy) axiom (21)
13 (T;4=0A(H1/Hi2))A
(T:0 = 0N (Ha/Hz0)) =
(T;£=0A(H1/H13)) 12,DC
14 (Hi;/Hiy) < (Hi/H) v (H;/H;) i,j=1,2,3,(53)
and axioms (18) and (19)
15 [Hi;=0& [Hi=0A[H;=0 i,j=1,2,3,DC

i, P
16 —(Hi2/Hi2) N—(Hi2/Hi2)A
fHLQ =0A —‘(H273/H273)/\
—\(H2)3/H273) A fH2)3 =0 =
— —
—(Hi3/H13) AN—(H13/H13) A [Hi3=0 14,15
17 Hy < HyNHy < H3= H; < Hjs 1,6, 11, 13, 16, def. of

(34): _ .
1 (S/SVHis)A(Hi2/SVHi) =

\2/ (SANH;/SV Hy) axioms (1)-(3),

= (5) and (6)
2 (S/\Hi/S\/Hl 2) (S/\H/S\/Hi) 1=1,2, axiom (18)
3 (SAH,/SVH)=(S/SVH)AH/SVH) i=12

axioms (1)-(3), (5), (6)
A (ﬁs VHi)A
(Hi2/SV Hip)

2 —>

V(88 H) A A(H,/SVH) 13

5 (S/SVHis)V (H1 2/SV Hips) =
(SV Hy/SV Hyo)  axioms (1)-(3),(5), (6)



6 (S/SV Hyo)A

; ( (T;0=0A(S

(T;6=0A
2

V

i=1
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(Hy2/SV His) =

V (5 /5 v H) A (/S V)

i=1

/SV Hyg2))A N
(Hi2/SV Hi2))

< (T:6=0A(S/SV H))A )
)

(T;¢=0A (H;/SV H)

B —
_‘(S V H172/S vV H172)/\
8 ~(SV Hy5/SV Hi )N | =

f(S Vv HLQ) =0
9 -(SV H;/SV H;)A
i\ ~(8V H;/SV H)A

i

! [(SVH)=0

9 SEH1’2:>SEH1\/SEH2

(35):

1 (Hy/His) =
Hy < Hy; A
«—
(H]_/HLQ) =

ab~ wWwN

(36):

|

Hiy2/H52)
2 (=Hyi/Hi2) A
(T

(T:0=0A
4 (» 125
5 ( ) —|fH12_0)
(T5[Hi2l;
6 (T; 15

—
(H12/Hi2)
N —
—'(Hl/Hl,z) = —'(Hl,z/HLz)
i
(_(H1,2/H1,2)
(T;€ =0A (Hl/HLQ)) =
Hy < Hsy= Hyp=H;

(T;£=0A (Hiz/Hys))

(~H, / Hy 2)A
((Hig/Hi2) V(T30
(( \/(HLQ/HLQ)\/IHLQ >0))

A (~Ha/Hy2) = —~(Hy 2/ Hy )
T;4=0A (ﬁH J[Hi2)) =

(‘n[ =0A (ﬁE/HIQ)))/\

~(Hy2/H, 2))

leg—O \/le2—0

leg—O/\ng)

[Hi fH12—0/\H12)

(T,le,g = 0/\ (HI’Q/H172))
7 (Ty[His=0A(Hyo/Ho)) =
(T:¢=0A (Ho/Hi2))

181

like 4

axiom (19),DC

4-6, 8, def. of<

rule (44)
def. of <
rule (44)

3,DC
1, 2, 4, def. of<

i=1,2,j=3—1
def. of <, rule (44)
axioms (5) and (6),
DC

(53) and rule (44)

(53) and rule (44)DC
DC

axiom (4),DC
axiom (16),DC

axiom (10),DC
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2 <«
8 A(T;4=0A(=H;/Hy12))= [Hi2=0 3-7,DC
=1
9 fHLQ:O/\(T;E:O/\(—' i/H172)):>
—

—(H;/H2) axioms (5), (6),

(10), DC

10 Hy < Hy,V Hy < H; 1,2,8,9and (53)
(37):

— —
1 H1 < H2 = (Hl/HLQ) V _‘(HLQ/HLQ) def. OfS
2 _‘(Hl/Hl) = _|(H1/H172) axiom (18)
— — .

3 —(Hia/Hi2) = —(Hs/H2) (53) and axiom (19)

4 H, §H2/\_|(H1/H1):>_\(H2/H2) 1-3
(38):

1 ~(H/H)) = —~(H/H 2) axiom (18)

2 Hy < HyA—(Hi/Hy) =

(T:6=0A (Hy/Hi2))V [Hia=0 1,def. of<
3 IH1,2:0:>_|(T; [HQ/\_‘Hl—I;lei()) DC
4 (T; |—H2/\—|H1~|;fH172:0):>

(T; Hy A—~Hy A [ Hyp = 0) axiom (4),DC
5 (T;=HiAHi2A [Hi2=0)=

(T; (SHy/Hy) A [ Hyo = 0) axiom (16),DC
6 (T; (_E(@Q) A [Hiz=0)=

(T; (mHy1/H12) NL=0) axiom (10),DC
7 Hy < Hy A—(Hi/Hy) =

~(T;[Hy A—Hy|; [ Hi 2 =0) 2,3, 6and (53)

(40):
1 Hy<HyA~(H/H)A[H =0= [H,=0 (39),DC
2 [Hiz=0A(T;£=0A (H;/Hy.)) = (Hi/Hy,) axiom (10),DC
3 (Hi/Hiz) = (Hi/H) axiom (18)
4 —(H/Hy) = ~(H/H») axiom (18)
«— «—

5 —(Hi2/Hi32) :_>)—‘(H2/H2) axiom (19)
6 Hy, < HyA—(H/H))A[H =0=

((Hy/Hy) = (Hy/Hy)) 1-5, def. of<



