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ABSTRACT.We present a complete axiomatisation of the operator of projection onto state in the
Duration Calculus (DC ) relative to validity inDC without extending constructs. Projection
onto state was introduced and studied extensively in our earlier works. We first establish the
completeness of a system of axioms and proof rules for the operator relative to validity in
the extension ofDC by neighbourhood formulas, which express the neighbourhood values of
booleanDC state expressions. By establishing a relatively complete axiomatisation for the
neighbourhood formulas inDC , we then achieve completeness of our system relative to basic
DC .

KEYWORDS:duration calculus, projection, relative completeness.

1. Introduction

The Duration Calculus (DC ) was introduced in [ZHO 91] as a first order temporal
logic for reasoning about real-time systems.DC can be viewed as an extension of
the real-time variant of Interval Temporal Logic (ITL, [HAL 83, MOS 85, CAU ]).
DC has been extended by various operators both in order to increase its expressiv-
ity and to make specification more convenient and concise. For example, the state-
variable-binding quantifier and the least-fixed-point operator, which were added to
DC in [PAN 95], enabled the straightforward specification of the behaviour of pro-
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grams with local variables and recursive calls. Validity inDC is undecidable. Deci-
sion procedures are known only for subsets ofDC . Validity in DC is not even recur-
sively enumerable, and therefore no finitary complete proofsystem forDC exists. A
finitary proof system forDC which is complete with respect to real time relative to the
ITL theory of real time was first presented in [HAN 92]. Anω-complete proof system
for DC with respect to abstract time was first presented in [GUE 98].However, that
system contains and infinitary rule.

Projection onto stateis regarded as an additional operator inDC , relative to the
basic system ofDC as known from [ZHO 91]. It can be viewed as a real-time coun-
terpart of the discrete-timeITL operatorΠ, which was introduced in [HAL 83]. A
family of different operators inITL andDC are known as projection operators too.
They have been studied in [MOS 86, MOS 95, HE 99a, BOW 03, GUE 04a]. In or-
der to distinguish the operator studied in this paper from those other ones, we call it
projectiononto state.

One application of projection onto state inDC is to facilitate the specification of
requirements on collections of interleaving real-time processes. Another one is to for-
malise the abstraction known as thetrue synchrony hypothesisabout real-time systems
with digital control. The true synchrony hypothesis is the assumption that digital com-
putation does not take time in this kind of real-time systems. In reality computation
does take time. Yet it is difficult to calculate accurately and of negligible size. Taking
this time in account is still reasonable in order to keep the causal ordering of com-
putation steps clear. By means of projection onto state requirements on concurrent
real-time programs’ behaviour which have been formulated without taking computa-
tion time into account, and specifications of this behaviourwhere computation time is
explicitly accounted of can be put together inDC formulas [DAN 99a, GUE 02]. Pro-
jection onto state has also been used to formulate a special form of logical interpola-
tion which describes the possibility of obtaining explicitdescriptions of the interaction
between the components of a real-time system in [GUE 03a]. The possibility to write
a requirement on a component of a system in a form which accounts of the behaviour
of the system only at the times when the component is active facilitates composition-
ality in specification of systems withfeaturesby DC [GUE 03c]. Projection can be
used to write requirements in such form, and this way to avoidapparent interactions
between features which do not account of really incorrect behaviour, but are detected
just because of inflexibly formulated requirements. Details on some uses of projection
can be found in our work [GUE 02]. In this paper we focus on the axiomatisation of
this modality.

In this paper we propose a finitary proof system for the extension of DC by the
operator of projection onto state andneighbourhood formulas, which is complete rel-
ative to validity inDC without extending operators. Neighbourhood formulas have
interesting uses inDC of their own (cf. e.g. [ZHO 94, HAN 96, ZHO 98]). They
appear in this paper just because they seem to facilitate ouraxiomatisation of pro-
jection. Projection onto state was introduced toDC in [DAN 99a] and later studied
extensively in [GUE 02]. Yet none of those previous works dealt with the issue of
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completeness that we address here. The result presented in this paper subsumes the
relative completeness result for a subset ofDC with projection onto state from our
earlier work [GUE 03b]. Furthermore, the system in this paper is much simpler and
more streamlined than that in [GUE 03b].

Structure of the paper.

We first give brief preliminaries onDC , neighbourhood formulas and projection
onto state. Then we present our proof system and demonstrateits relative complete-
ness. To do this, we first discuss the definition of projection, and present and motivate
the axioms about projections of atomic formulas. Then we introduce a special form for
formulas inDC with neighbourhood formulas and projection where only atomic for-
mulas in a certain form can occur in the scope of projection, and present axioms which
allow to demonstrate the equivalence of every formula to onein the special form. Next
we show that our axiomatic system is sufficient to derive every valid formula in the
special form using premises which are valid inDC with neighbourhood formulas only.
Since neighbourhood formulas have an axiomatisation whichis complete relative to
validity in DC without extending constructs, this entails the completeness of our sys-
tem relative to basicDC too. Finally we show that our completeness result holds for
projection inDC with iteration and the general least-fixed-point operator relative to
validity in these extensions ofDC without projection.

2. Preliminaries on DC with projection and neighbourhood formulas

2.1. The definition ofDC

DC is a classical first order modal logic with one normal binary modality called
chop. We denote the chop modality by(.; .). The possible worlds in the standard
semantics ofDC are closed and bounded intervals of real numbers. For this reason
DC is also aninterval-based real-timetemporal logic. A comprehensive introduction
to DC can be found in recent monograph [ZHO 04]. Here we only give a brief formal
introduction for the sake of self-containedness.

2.1.1. Languages

Along with the customary first order logic symbols,DC vocabularies includestate
variablesP , Q, . . . . State variables are used to buildstate expressionsS, which have
the syntax:

S ::= 0 | P | S ⇒ S

State expressionsS occur in formulas as part ofduration terms
∫

S. The syntax of
DC termst and formulasϕ extends that of first order logic by duration terms and
formulas built using the modality(.; .), respectively:

t ::= c | x |
∫

S | f(t, . . . , t)
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ϕ ::= ⊥ | R(t, . . . , t) | ϕ⇒ ϕ | (ϕ;ϕ) | ∃xϕ

Here and belowx, y, . . . denote individual variables,c, d, . . . denote constants,f , g,
. . . denote function symbols, andR, . . . denote relation symbols. Constant, function
and relation symbols can be eitherrigid or flexiblein DC . The interpretations of rigid
symbols are required not to depend on the reference interval. Individual variables
are rigid. State variables are flexible. We denote thearity of non-logical symbols
by #s. Flexible relation symbols of arity0 and flexible constant symbols are also
calledtemporal propositional lettersandtemporal variables, respectively. The rigid
constant0, the temporal variableℓ, the rigid binary function symbol+, the rigid binary
relation symbols= and≤, and an infinite set of individual variables are mandatory in
DC vocabularies.

We denote the set of state variables occurring in aDC state expression, term or
formulaE by SV (E).

2.1.2. Semantics

The model of time inDC is the linearly ordered group of the reals. We denote the
set{[τ1, τ2] : τ1, τ2 ∈ R, τ1 ≤ τ2} by I.

DEFINITION 1. — A functionf : R → {0, 1} has thefinite variability propertyif,
givenτ1, τ2 ∈ R, {τ : f(τ) = 0 andτ1 ≤ τ < τ2} is either empty, or a finite union
of intervals of the kind[τ ′, τ ′′).

The finite variability property reflects the natural assumption that{0, 1}-valued
signals, which appear in systems modelled byDC , change their values only finitely
many times in any given bounded interval of time.

DEFINITION 2. — An interpretationI of a DC languageL is a function on the
vocabulary ofL. The types of the values ofI for symbols of the various kinds are as
follows:

I(x), I(c) ∈ R for individual variablesx
and rigid constantsc

I(c) : I→ R for flexible constantsc
I(f) : R#f → R, I(R) : R#R → {0, 1} for rigid function symbolsf

and relation symbolsR
I(f) : I×R

#f → R, I(R) : I×R
#R → {0, 1} for flexiblef ,R

I(P ) : R→ {0, 1} for state variablesP

I(0), I(+), I(≤), I(=) andI(ℓ) should be the corresponding components of the lin-
early ordered group〈R, 0,+,≤〉, equality onR andλσ.maxσ−minσ, respectively.
Interpretations of state variables are required to have thefinite variability property.

The impossibility to axiomatiseDC completely by finitary means can be ascribed
to the requirement on the interpretations of state variables to have the finite variability
property. This can be seen by comparing theabstract timevariant ofITL [DUT 95],
where finite variability is not present, and the abstract time variant ofDC [GUE 98],
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where it is. The former system admits complete finitary axiomatisation while the latter
does not.

DEFINITION 3. — Given an interpretationI, the valueIτ (S) of state expressionS
at timeτ ∈ R is defined by the clauses:

Iτ (0) = 0
Iτ (P ) = I(P )(τ)
Iτ (S1 ⇒ S2) = max{1− Iτ (S1), Iτ (S2)}

The valueIσ(t) of a termt at intervalσ ∈ I is defined by the clauses:

Iσ(x) = I(x)
Iσ(c) = I(c) for rigid c
Iσ(c) = I(c)(σ) for flexiblec

Iσ(
∫

S) =
max σ
∫

minσ

Iτ (S)dτ

Iσ(f(t1, . . . , t#f )) = I(f)(Iσ(t1), . . . , Iσ(t#f )) for rigid f
Iσ(f(t1, . . . , t#f )) = I(f)(σ, Iσ(t1), . . . , Iσ(t#f )) for flexiblef

The modelling relation|= is defined on interpretationsI of L, intervalsσ ∈ I and
formulasϕ fromL by the clauses:

I, σ 6|= ⊥
I, σ |= R(t1, . . . , t#R) iff I(R)(Iσ(t1), . . . , Iσ(t#R)) = 1 for rigid R
I, σ |= R(t1, . . . , t#R) iff I(R)(σ, Iσ(t1), . . . , Iσ(t#R)) = 1 for flexibleR
I, σ |= ϕ⇒ ψ iff either I, σ |= ψ or I, σ 6|= ϕ
I, σ |= (ϕ;ψ) iff I, σ1 |= ϕ andI, σ2 |= ψ for someσ1, σ2 ∈ I

such thatσ = σ1 ∪ σ2 andminσ2 = maxσ1.
I, σ |= ∃xϕ iff J, σ |= ϕ for someJ which is ax-variant ofI

2.1.3. Abbreviations and precedence of the operators

The symbols⊤, ¬, ∨, ∧, ⇔, ∀, 6=, ≥, < and> are used as abbreviations in
the usual way in formulas. Infix notation is used wherever+, = and≤ occur. ∀ϕ
denotes theuniversal closureof a formulaϕ, that is∀x1 . . . ∀xnϕ, wherex1, . . . , xn
are all the free individual variables ofϕ. The connectives¬, ∨, ∧ and⇔ are used
as abbreviations in state expressions too. The following abbreviations are specific to
DC :

3ϕ ⇋ ((⊤;ϕ);⊤) , 2ϕ ⇋ ¬3¬ϕ ,

(ϕ1;ϕ2; . . . ;ϕn) ⇋ (ϕ1; . . . ; (ϕn−1;ϕn) . . .) ,

1 ⇋ 0⇒ 0 , ⌈S⌉⇋

∫

S = ℓ ∧ ℓ 6= 0 .

We assume the usual precedence conventions about the propositional connectives,∃
and∀. We always write parentheses when using the chop modality(.; .). We assign
(.; .) the lowest precedence. For example,(A ∧ B;C ⇔ D) is the same as((A ∧
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B); (C ⇔ D)), andA ∧ B;C ⇔ D is not well-formed in our setting, because the
parentheses for; are missing.

2.1.4. Completeness of finitary proof systems forDC can only be relative

A finitary proof system forDC and, consequently, for its extensions, can be no
more than relatively complete. The impossibility to have a complete finitary axioma-
tisation forDC follows from the assumption that a finitary proof system is supposed
to define a decidable notion of proof - whether a sequence of formulas is a valid proof
can be checked mechanically. This entails that the corresponding notion of provabil-
ity, that is, the existence of a valid proof for a given formula, can be no worse than
semi-decidable. On the other hand, validity inDC is not semi-decidable. This is
already so in the rather restricted subset ofDC whose syntax is

ϕ ::= ⊥ | ⌈S⌉ | R | ϕ⇒ ϕ | (ϕ;ϕ)

whereR stands for a temporal propositional letter [GUE 04b]. That is why relative
completeness results like the one in this work are the best that can be obtained with
respect to the scope of completeness in this setting.

2.2. Projection onto state

Given a state expressionH and a formulaϕ, the projection ofϕ ontoH is a
new formula denoted by(ϕ/H). Roughly speaking,(ϕ/H) holds at intervalσ under
interpretationI, if ϕ holds at the interval obtained fromσ by cutting off its subintervals
whereH evaluates to0 under an interpretation which preserves the (truth) valuesof
non-logical symbols in this remaining (shortened) interval as best as possible. The
auxiliary notation below is to make this precise.

Let h : R → {0, 1} have the finite variability property. Letδh(τ) =
τ
∫

0

h(τ ′)dτ ′.

Let Σh = {δh(τ) : τ ∈ R}. Clearly Σh is either a closed interval, or a semi-
closed unbounded interval, or the entireR, and0 ∈ Σh. The functionδh "glues" the
collection of intervals{τ ∈ R : h(τ) = 1} into the single intervalΣh. To transfer
arbitrary interpretations fromR to Σh as embedded inR, we need to invertδh. The
multiple-valuedinverse ofδh is defined by the equality

δ−1
h (τ ′) = {τ ∈ R : δh(τ) = τ ′}.

We need a monotonic extension toR of a single-valued branch ofδ−1
h , that is, a

monotonic functionγh of type R → R such that ifδ−1
h (τ ′) 6= ∅, thenγh(τ ′) ∈

δ−1
h (τ ′). The extension with this property that we choose to employ can be defined as

follows:

γh(τ
′) =







τ ′ − inf Σh + max δ−1
h (inf Σh) if τ ′ < inf Σh ≤ sup Σh;

max δ−1
h (τ ′) if inf Σ ≤ τ ′ < sup Σh;

τ ′ − sup Σh + min δ−1
h (sup Σh) if inf Σh ≤ sup Σh ≤ τ ′.
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Note that the cases in the definition ofγh depend on the kind of intervalΣh is and
not just onτ ′. The idea is thatγh(τ ′) is the maximal value ofδ−1

h (τ ′) whenδ−1
h (τ ′) is

not empty, except for the caseτ ′ = sup Σh. Otherwise,γh(τ ′) is defined to preserve
the distance fromτ ′ to Σh, i.e inf Σh−τ

′ = γh(inf Σh)−γh(τ
′) in caseτ ′ < inf Σh,

andτ ′ − sup Σh = γh(τ
′)− γh(sup Σh) in caseτ ′ ≥ sup Σh.

DEFINITION 4. — Given an interpretationI of someDC languageL, theprojection
of I onto (the support of)h is theDC interpretationIh of L which is defined by the
equalities:

Ih(s) = I(s) for rigid s, including individual variables;
Ih(c)(σ) = I(c)([γh(minσ), γh(maxσ)])

for flexible constantsc 6
.
= ℓ;

Ih(s)(σ, d1, . . . , d#s) = I(s)([γh(minσ), γh(maxσ)], d1, . . . , d#s)
for flexible function and relation symbolss;

Ih(P )(τ) = I(P )(γh(τ)) for state variablesP .

Givenσ ∈ I, theprojectionσh of σ onto (the support of)h is [δh(minσ), δh(maxσ)].

With γh defined and used as above,Ih is obtained fromI by clipping off parts of
R which are surrounded by parts whereh evaluates to1 only. In words,Ih interprets a
symbols at intervalσ′ in the way in whichI interpretss at the corresponding interval
[γh(minσ′), γh(maxσ′)]. In caseΣh is (semi)bounded, that is, ifinf Σh > −∞, or
sup Σh <∞, or both, the values ofI on (−∞, γh(inf Σh)) and[γh(sup Σh),∞) are
transferred toIh with no loss.

DEFINITION 5. — Letϕ be a formula andH be a state expression inL, respectively.
Leth = λτ.Iτ (H). Then

I, σ |= (ϕ/H) iff Ih, σh |= ϕ

Just like(.; .), we always write projection with parentheses.

2.3. Neighbourhood formulas

Given a state expressionS, the formulas
←−
S and

−→
S are calledleft neighbourhood

andright neighbourhoodof S, respectively. Neighbourhood formulas and neighbour-
hood terms have been studied in numerous works onDC [ZHO 94, HAN 96, ZHO 98,
HE 99b, ZHO 00, ZHA 00]. The relation|= is defined on neighbourhood formulas by
the clauses:

I, σ |=
←−
S iff I, [τ,min σ] |= ⌈S⌉ for someτ < minσ

I, σ |=
−→
S iff I, [maxσ, τ ] |= ⌈S⌉ for someτ > maxσ

Consider the axioms
−→
0 ⇔ ⊥ (1)
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−−−−−→
S1 ⇒ S2 ⇔ (

−→
S1 ⇒

−→
S2) (2)

−→
S ⇔ (⊤;

−→
S ) (3)

¬(
−→
S ; ⌈¬S⌉) (4)

THEOREM 6. — The axioms (1)-(4) are complete for right-neighbourhood formulas
in DC .

We formulate this result here and prove it in Appendix A for the sake of self-
containedness. The axiomatisations of neighbourhood formulas and terms which are
available from the literature apply to slightly different settings. Together with their
left-neighbourhood mirror images, the axioms (1)-(4) are relatively complete for both
left- and right-neighbourhood formulas inDC .

3. Relative completeness of DC with projection and neighbourhood formulas

In this section we obtain the relative completeness of a proof system forDC with
projection onto state with respect to real time, which is themain result of this paper.
The proof system we present is complete relative to validityin basicDC . We obtain
completeness relative toDC with neighbourhood formulas first. We explain how the
dependency on neighbourhood formulas can be eliminated in Section 4.

Originally, (./.) was defined on the subset ofDC where the only flexible symbols
are state variables andℓ, which can be regarded as an abbreviation for

∫

1. Projection
was extended to the entireDC , because of the convenience of using other flexible
symbols to write abstract specifications. For instance, propositional temporal letters
appear in the extension ofDC by a least-fixed-point operator [PAN 95]. As we men-
tion in the introduction, a subset ofDC with both (./.) and least fixed points was
studied in [GUE 02], but no completeness result was given there. The relative com-
pleteness result from [GUE 03b] applies only to a subset of the language, and the
system involved is much more complex than the one in this paper.

We first discuss the definition of projection forDC with arbitrary non-logical sym-
bols and motivate some of the new axioms which are needed in order to cope with it
for the case of projections of atomic formulas. Then we present the rest of the proof
system and prove its relative completeness.

The relative completeness proof goes through establishingthat the axioms allow to
derive the equivalence between an arbitraryDC formula and a corresponding formula
in an appropriate special form. Valid formulas in this special form contain only certain
atomic formulas in the scope of(./.). Using the new axioms, all valid formulas of the
special form can be derived inDC without (./.).
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3.1. On the definition of projection onto state

The role of the functionγh in the definition of(./.) for DC interpretations of
languages with arbitrary flexible constant, function and relation symbols is partic-
ularly important. The main property ofγh is that it is an inverse to the function
δh, which mapsR onto the time domain where the projected interpretation is de-
fined. Intervals inR where the value ofh is 0 are mapped byδh to single time
points. There is a variety of possibilities for invertingδh at such time points. The
exact choice is irrelevant in the case of state variables, because the finite variabil-
ity of h implies that a projected intervalσh can contain at most finitely many such
time points, and therefore the values of state expressions at these points do not affect
the values of duration terms under projected interpretations. Yet this is no longer so
as soon as other types of flexible non-logical symbols get involved. One inevitable

minσ τ1 max σ

δh(τ1) = δh(max σ) = δh(τ2)δh(minσ)

σ

σh

τ2 = γh(δh(maxσ))

H

Figure 1. Projection ontoH at σ depends on the interpretation of symbols outsideσ.

consequence of any possible choice of an inverse toδh is that the evaluation of pro-
jection at some intervalsσ can depend on the interpretations of symbols outsideσ.
Let I be aDC interpretation,R be a propositional temporal letter,H be a state ex-
pression andh = λτ.Iτ (H). Let σ ∈ I, τ1, τ2 ∈ R, minσ < τ1 < maxσ < τ2
andh(τ) = 1 iff τ ∈ [minσ, τ1) ∪ [τ2,∞). Thenγh(δh(minσ)) = minσ and
γh(δh(maxσ)) = sup δ−1

h (δh(maxσ)) = sup[τ1, τ2] = τ2 (see Figure 1). Hence
Ih, σh |= (R/H) if and only if I, [minσ, τ2] |= R. In this case the restriction ofI(R)
to the subintervals ofσ is not sufficient to determine whetherI, σ |= (R/H) holds,
becauseγh(δh(maxσ)) > maxσ. Changing the definition ofγh to mapδh(maxσ)
to min δ−1

h (δh(maxσ)) = τ1 would bring a similar inadequacy for intervalsstarting
at pointsτ ∈ (τ1, τ2).
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3.2. Bringing arbitrary formulas to special forms inDC with projection onto state

The axioms involving(./.) that we present next make it possible to derive the
equivalence between an arbitrary formula in the extension of DC by (./.) and neigh-
bourhood formulas and a corresponding formula in which onlyatomic formulas ap-
pear in the scope of(./.):

ϕ⇔ (ϕ/H) for rigid ϕ (5)

(ϕ⇒ ψ/H)⇔ (ϕ/H)⇒ (ψ/H) (6)

((ϕ;ψ)/H)⇔ ((ϕ/H); (ψ/H)) (7)

(∃xϕ/H)⇔ ∃x(ϕ/H) (8)

((ϕ/S)/H)⇔ (ϕ/S ∧H) (9)

The correctness of the axioms (5)-(9) can be established by adirect check.

PROPOSITION 7. — Let ϕ be a formula in some language forDC with (./.) and
neighbourhood formulas. Then there exists a formulaψ in the same language which
contains only atomic formulas in the scope of(./.) and is such that the equivalence
ϕ ⇔ ψ can be derived inDC using the axioms (5)-(9). Furthermore, using the
axioms (1)-(3), (5) and (6), it can be achieved that only state variables occur as the
state expressions in the neighbourhood subformulas ofψ.

PROOF. — Induction on the construction ofϕ. ■

The axioms (5)-(9) were first introduced in [DAN 99a]. Proposition 7 entails the
expressibility of(./.) in DC languages where state variables are the only flexible
non-logical symbols:

COROLLARY 8 ([DAN 99A ]). — Letϕ be a formula in some language forDC with
(./.). Then there exists a projection-free formulaψ in the same language such that the
equivalenceϕ⇔ ψ can be derived inDC using the axioms (5)-(9) and (13).

PROOF. — Induction on the construction ofϕ, using the equivalences (14) and (15).
■

The special form established in Proposition 7 is basically sufficient for us to carry
out our relative completeness argument. However some further specialisations are
possible with respect to the occurrences of neighbourhood formulas and their projec-
tions:

PROPOSITION 9 ([GUE 03b]). — Let ϕ be a formula in some language forDC

with (./.) and neighbourhood formulas. Let only atomic subformulas occur in the
scope of(./.) in ϕ. Then there exists a boolean combinationψ of neighbourhood

formulas, formulas of the forms(
←−
S /H) and(

−→
S /H), and formulas which contain no

neighbourhood subformulas in the same language, such that|= ϕ⇔ ψ.

The proof of this proposition can be found in [GUE 03b], wherethere are also
axioms which make the considered equivalence derivable.
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3.3. Axioms about projection onto state of atomic formulas

Let I,H andh be like above. Let there exist at least oneτ ∈ R such thath(τ) = 1.
Then the time points which participate in the definition of projected interpretationsIh

at projected intervalsσh are the ones at whichh evaluates to1, and the time point
sup{τ ∈ R : h(τ) = 1}, in casesup Σh is finite. In the sequel, we call these time
pointsdefinitive. Other time points are involved in the definition ofIh too, but never
affect the values ofIh within projectionsσh of intervalsσ ∈ I. We call σ ∈ I

definitive, if bothminσ andmaxσ are definitive.

Imax σ(H) = 1 if and only if I, σ |=
−→
H , because of the form of the finite variability

property we have adopted (see Definition 1). A direct check shows thatmaxσ =

sup{τ ∈ R : h(τ) = 1} is equivalent toI, σ |= (
−−→
¬H/H) ∧ (⊤; ℓ = 0 ∧

←−
H ). Let

H! ⇋

−→
H ∨ ((

−−→
¬H/H) ∧ (⊤; ℓ = 0 ∧

←−
H ))

Thenmaxσ is definitive for projection ontoH if and only if I, σ |= H!. To determine
whether the beginning point of an interval is definitive for projection ontoH, we can
use formulas like(ℓ = 0 ∧H!;⊤). A direct check shows thath(τ) = 0 for all τ ∈ R

if and only if

I, σ |=
∫

H = 0 ∧ (
←−−
¬H/H) ∧ (

−−→
¬H/H)

at some, and, consequently, at allσ ∈ I. In this caseσh is the interval[0, 0] for all
σ ∈ I andIh is defined onσh using only the restriction ofI to [0, 0].

Here follow some axioms which, according to the above observations, can be used
to determine the truth values of projection formulas:

(ϕ/H)⇔ (
∫

H = 0; (ϕ/H);
∫

H = 0) (10)

Axiom (10) states that changing the end points of a referenceinterval does not affect
the truth value of projection formulas as long as there are nodefinitive points between
the pairs of corresponding end points. Letε denote either¬ or nothing. Then the
axioms

(ℓ = 0 ∧H!; (εR(x1, . . . , xn)/H) ∧H!)⇒ εR(x1, . . . , xn) (11)

and

(ℓ = 0∧H!; (y = f(x1, . . . , xn)/H)∧H!)⇒ y = f(x1, . . . , xn) (12)

state that if both the beginning point and the end point of an interval are definitive,
then the projection of a flexible atomic formula at this interval is equivalent to that
atomic formula itself. The corresponding axiom about atomic formulas with duration
terms, on the other hand, does not involve definitiveness of endpoints:

(y =
∫

S/H)⇔ y =
∫

(S ∧H) (13)
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Note the special form of the atomic formulas which appear in (11) and (12). Every for-
mula has an equivalent one where all the atomic formulas built using relation symbols
have this form, because of the predicate logic equivalences

R(t1, . . . , tn)⇔ ∃x1 . . . ∃xn

(

R(x1, . . . , xn) ∧
n
∧

i=1

xi = ti

)

(14)

and

y = f(t1, . . . , tn)⇔ ∃x1 . . . ∃xn

(

y = f(x1, . . . , xn) ∧
n
∧

i=1

xi = ti

)

, (15)

wherex1, . . . , xn 6∈ FV (t1), . . . , FV (tn). The corresponding axioms about projec-
tions of neighbourhood formulas are as follows:

←−−−−
S ∧H ⇒ (

←−
S /H) (16)

H!⇒ (
−→
S ⇔ (

−→
S /H)) (17)

Note that the axiom (16) about projections of left neighbourhood formulas does not
explicitly refer to the definitiveness of the beginning point of the reference interval.
Projections of neighbourhood formulas satisfy the following axioms and their mirror
images too:

⊢ H1 ⇒ H2 implies(
−→
H1/H2)⇒ (

−→
H1/H1) (18)

⊢ H1 ⇒ H2 implies(
−→
H1/H1)⇒ (

−→
H2/H2) (19)

(
−→
S /H1 ∨H2)⇒ (

−→
S /H1) ∨ (

−→
S /H2) (20)

(
−→
H1/H1 ∨H2) ∧ (

−→
H2/H2 ∨H3)⇒ (

−→
H1/H1 ∨H3) (21)

ℓ = 0 ∧ (
←−−−−−−−
H1 ∧ ¬H2 ∧

−→
H2/H2)⇒ (

−−−−−−−→
H1 ∧ ¬H2/H1 ∨H2) ∨

−→
H2 (22)

Now let us return to the case in which the beginning and the endpoints of a reference
interval σ are not known to be definitive. Ifminσ is not definitive, butmaxσ is,
then there exists a subintervalσ′ of σ such thatmaxσ′ = maxσ andminσ′ is the
closest definitive time point on the right ofminσ. In this case the truth value of a
projection formula can be determined usingσ′ and axiom (10). The case whenmaxσ
is not definitive is more subtle. Then the truth value of projection formulas(α/H) at
σ depends on the truth value ofα at some intervalσ′ whose endpoint is on the right
of maxσ. All that can be said here is that the endpointmaxσ′ of this intervalσ′ is
the samefor all projection formulas(α/H ′) onto statesH ′ which are related toH in
a certain way. Here follows a detailed explanation.

Let the state variables occurring in all the considered formulas beP1, . . . , Pn.
Then, given the interpretationI and the reference intervalσ, because of the finite
variability, we can define a (possibly infinite) ascending sequence of time pointsτ0 =
maxσ, τ1, τ2, . . . such that the interpretations of all the state variablesP1, . . . , Pn
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are constant in the intervals of the form[τi, τi+1) and at least one of these variables
changes its value atτi for every i = 1, 2, . . . . Let τ ′0 < minσ, τ ′1, τ ′2, . . . , be a
descending sequence of time points on the left ofσ with the same property. Note that
H is an expression built fromP1, . . . ,Pn. Let there exist ani such thatIτi

(H) = 1.

A direct check shows that this is equivalent toI, σ |= (
−→
H/H). In this case the truth

value of the projection(α/H) of an atomic formulaα onto state expressionH at σ
depends on the truth value ofα at an interval which ends at some of the time pointsτi,
i = 0, 1, . . . . In casemaxσ is definitive for projections ontoH, this interval ends at
τ0, which ismaxσ itself. In general, the interval in question ends atτi wherei is the
smallest number such thatI, [τi, τi+1] |= ⌈H⌉. In caseIτ (H) = 0 for all τ ≥ maxσ,

we haveI, σ |= ¬(
−→
H/H) and eitherIτ (H) = 0 for all τ ∈ R, or the truth value of

(α/H) atσ is equal to the truth value ofα at an interval which ends (and possibly also
begins) atτ ′ = γh(sup Σh). Furthermore, in this case eitherτ ′ ∈ [minσ,maxσ) or
σ = τ ′i for somei.

Now consider the projections(α/H1) and(α/H2) of the same atomic formulaα
onto two state expressionsH1 andH2. Let hj = λτ.Iτ (Hj), j = 1, 2. In case the
definitive intervals

[γh1
(δh1

(minσ)), γh1
(δh1

(maxσ))]

and

[γh2
(δh2

(minσ)), γh2
(δh2

(maxσ))] (23)

for these projections are the same, we need to be able to establish that

I, σ |= (α/H1)⇔ (α/H2). (24)

For this purpose we introduce a formula which holds atσ if and only if eitherh1, h2 6=
λτ.0 andγh1

(δh1
(maxσ)) = γh2

(δh2
(maxσ)), or h1 = h2 = λτ.0. We denote

this formula byH1 ≡ H2. To define≡, we first introduce one more auxiliary bi-
nary connective, which we denote by≤. H1 ≤ H2 holds atσ if and only if either
h1 = h2 = λτ.0, or γh1

(δh1
(maxσ)) = γmax(h1,h2)(δmax(h1,h2)(maxσ)) (where

max(h1, h2)(t) = max(h1(t), h2(t))). H1 ≤ H2 is defined as the formula
(

(
−→
H1/H1 ∨H2) ∨ (¬(

−−−−−→
H1 ∨H2/H1 ∨H2) ∧ (⊤; ℓ = 0 ∧ (

←−
H1/H1 ∨H2)))∨

(¬(
−−−−−→
H1 ∨H2/H1 ∨H2) ∧ ¬(

←−−−−−
H1 ∨H2/H1 ∨H2) ∧

∫

(H1 ∨H2) = 0))

)

.

The definition of≡ is

H1 ≡ H2 ⇋ H1 ≤ H2 ∧H2 ≤ H1.

A direct check shows thatH1 ≡ H2 andH1 ≤ H2 really express the conditions on
h1 andh2 formulated above. Defining≡ in terms of≤ is technically convenient for
the proof of Lemma 14. Two more derived operators are involved in the proof of that
lemma. They are defined by the clauses

H1 �l H2 ⇋ (
←−
H1/H1 ∨H2) andH1 �r H2 ⇋ (

−→
H1/H1 ∨H2).
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These operators can be defined semantically too:

I, σ |= H1 �l H2 iff I, [τ ′, τ ′′] |= ⌈H1⌉ andI, [τ ′′,minσ] |=
∫

(H1 ∨H2) = 0

for someτ ′, τ ′′ such thatτ ′ < τ ′′ ≤ minσ, and

I, σ |= H1 �r H2 iff I, [τ ′, τ ′′] |= ⌈H1⌉ andI, [maxσ, τ ′] |=
∫

(H1 ∨H2) = 0

for someτ ′, τ ′′ such thatmaxσ ≤ τ ′ < τ ′′ ≤ minσ.

Using�l and�r,H1 ≤ H2 can be written as

H1 �r H2 ∨ (¬(
−−−−−→
H1 ∨H2/H1 ∨H2) ∧ (⊤; ℓ = 0 ∧H1 �l H2))∨

(¬(
−−−−−→
H1 ∨H2/H1 ∨H2) ∧ ¬(

←−−−−−
H1 ∨H2/H1 ∨H2) ∧

∫

(H1 ∨H2) = 0))

The properties of�l, �r and≤ to be used in the proof of Lemma 14 are listed in the
two lemmata below. Their proofs are given in Appendix B.

LEMMA 10. — The following formulas are provable using our axioms and rules
about(./.):

(
←−
H/H)⇒ H �l H, (

−→
H/H)⇒ H �r H (25)

H1 �l H2 ∧H2 �l H3 ⇒ H1 �l H3 for �∈ {�l,�r} (26)

⊢ ¬(H1 ∧H2) implies¬(H1 � H2 ∧H2 � H1) for �∈ {�l,�r} (27)

(
←−
H1/H1)⇒ H1 �l H2 ∨H2 �l H1,

(
−→
H1/H1)⇒ H1 �r H2 ∨H2 �r H1 (28)

H1 �r H2 ⇒ H1 ≤ H2 (29)
∫

(H1 ∨H2) = 0∧¬(
−−−−−→
H1 ∨H2/H1 ∨H2)⇒ (H1 �l H2 ⇒ H1 ≤ H2) (30)

LEMMA 11. — The following formulas are provable using our axioms and rules
about(./.):

⊢ H2 ⇒ H1 impliesH1 ≤ H2 (31)

H ≡ H (32)

H1 ≤ H2 ∧H2 ≤ H3 ⇒ H1 ≤ H3 (33)

S ≡ (H1 ∨H2)⇒ S ≡ H1 ∨ S ≡ H2 (34)

H1 ≤ H2 ⇒ (H1 ∨H2) ≡ H1 (35)

H1 ≤ H2 ∨H2 ≤ H1 (36)

H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒ ¬(

−→
H2/H2) (37)
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H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒ ¬(⊤; ⌈H2 ∧ ¬H1⌉;

∫

(H1 ∨H2) = 0) (38)

H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒ (

∫

H1 = 0⇒
∫

H2 = 0) (39)

H1 ≤ H2 ∧ ¬(
−→
H1/H1) ∧

∫

H1 = 0⇒ ((
←−
H2/H2)⇒ (

←−
H1/H1)) (40)

H1 ≡ H2 holds atσ iff the endpoints of the intervals in (23) are the same. The
equality of thebeginningpoints of these intervals is equivalent to the satisfactionof
H1 ≡ H2 at [minσ,minσ]. This means that we can formulate the following axiom
about equivalences between projections of formulasα of the formsR(x1, . . . , x#R),
y = f(x1, . . . , x#f ) andy = c, wherec is notℓ:

(H1 ≡ H2 ∧ ℓ = 0;H1 ≡ H2)⇒ ((α/H1)⇔ (α/H2)) (41)

The axioms below and their mirror images apply to projections of neighbourhood
formulas:

(
−→
S /H)⇔ (⊤; (

−→
S /H)) (42)

H1 ≡ H2 ⇒ ((
−→
S /H1)⇔ (

−→
S /H2)) (43)

To enable the replacement of equivalents in the scope of(./.), we introduce the rule

⊢ ϕ⇒ ψ and ⊢ H1 ⇔ H2 imply ⊢ (ϕ/H1)⇒ (ψ/H2) (44)

Using (41)-(43) and (44), one can easily derive
∫

H = 0 ∧ (
←−−
¬H/H) ∧ (

−−→
¬H/H)⇒ ((α/H)⇔ (α/0)) (45)

for all atomicα.

Σλτ.Iτ (0) is the singleton interval[0, 0] andγλτ.Iτ (0) maps it onto[0, 0]. Iλτ.Iτ (0)

is equal toI, the only difference is that only a restriction ofIλτ.Iτ (0) to a neighbour-
hood of[0, 0] is ever referred to in determining the semantics of a formula, and it is in-
volved only in determining the truth values of projections onto0. HenceI, σ |= (ϕ/0)
iff I, [0, 0] |= ϕ for all σ. This makes formulas of the form(ϕ/0) behave like rigid
formulas. The following axioms reflect this:

((ϕ/0);ψ)⇒ (ϕ/0), (ψ; (ϕ/0))⇒ (ϕ/0) (46)

The axiom below describes the effects of[0, 0] being located either on the left, or on
the right, or inside the reference interval:

(
←−
Sl ∧

−→
Sr/0)⇒







((
←−
Sl/Sl) ∧ (

←−
Sr/Sr)) ∨ ((

−→
Sl/Sl) ∧ (

−→
Sr/Sr))∨

3

(

ℓ = 0 ∧
∧

ϕ∈Φ

∀(ϕ⇔ (ϕ/0))

)






(47)

whereΦ stands for a finite set of arbitrary formulas. Note that axioms (10), (44) and
(46) apply to arbitrary formulasϕ andψ, and not only to atomic ones too.
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3.4. The proof of relative completeness

Now we are ready to prove that the axioms (10)-(13), (16)-(22), (41)-(43), (46)-
(9), their mirror images and the rule (44) are complete for the extension ofDC by
projection onto state and neighbourhood formulas relativeto validity in the extension
of DC by neighbourhood formulas only.

In order to use validity inDC with neighbourhood formulas, relative to which the
completeness of our set of axioms is being established, we extend the consideredDC

vocabularies by flexible constant, function and relation symbols to denote the flexible
constants, functions and relations which are defined by the projections of atomic for-
mulas. Then we translate the axiomatic system forDC with projection into a theory in
the language forDC with neighbourhood formulas only based on the extended vocab-
ulary. We demonstrate that the consistency of a formula withthis theory is equivalent
to the satisfiability of the result of substituting the extending non-logical symbols in
the formula by their corresponding projection formulas. Wedo this by showing that
the appropriate instances of our axioms imply that the interpretations of the extending
non-logical symbols are the same as the interpretations of the corresponding projec-
tion formulas themselves. Hence, the validity of a formula in this theory is equivalent
to the derivability of its counterpart formula using our axiomatic system and formulas
which are valid inDC with neighbourhood formulas only.

For the rest of the sectionL is some language forDC with (./.) and neighbour-
hood formulas.

DEFINITION 12. — LetH be a state expression inL. LetcH , fH ,RH , P→H , P←H be
fresh flexible relation symbols for every flexible constantc other thanℓ, every flexible
function symbolf , flexible relation symbolR and state variableP in L, respectively.
Let#P→H = #P←H = 0, #cH = 1, #fH = #f + 1 and#RH = #R. LetL′ be the
language forDC with neighbourhood formulas (without the operator(./.)) based on
the extension of the vocabulary ofL by these fresh symbols for allH.

DEFINITION 13. — We define the translationt of the formulas fromL′ into formulas
fromL as follows. If the termst0, t1, . . . , are rigid, then

t(P←H ) ⇋ (
←−
P /H)

t(P→H ) ⇋ (
−→
P /H)

t(cH(t0)) ⇋ (c = t0/H)

t(fH(t0, t1, . . . , t#f )) ⇋ (t0 = f(t1, . . . , t#f )/H)

t(RH(t1, . . . , t#R)) ⇋ (R(t1, . . . , t#R)/H)

If α is an atomic formula built using a relation symbol from the vocabulary ofL, then

t(α) ⇋ α

The clauses for compound formulas are
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t(ϕ⇒ ψ) ⇋ t(ϕ)⇒ t(ψ)
t((ϕ;ψ)) ⇋ (t(ϕ); t(ψ))
t(∃xϕ) ⇋ ∃x(t(ϕ))

The translationt is defined on atomic formulas built using the relation symbols
introduced in Definition 12 and flexible terms as the translation of their flexible-term-
free equivalents which can be obtained using (14) and (15).

Proposition 7 implies that every formula inL is equivalent to thet-translation of
some formula inL′. The translationt is invertible for formulas of the form mentioned
in Proposition 7. We extend the subset ofL in which t is invertible as follows:

If S is a state expression, thent−1(
−→
S /H) denotes the boolean combination built

of propositional temporal letters of the formP→H in the way the corresponding state
variablesP are used to buildS. We extendt−1 in the same way to projections of left
neighbourhood formulas. Similarly, ifϕ is a formula built using atomic formulas and
their projections, thent−1(ϕ) stands for the result of eliminating the occurrence of
compound terms inϕ by means of (14) and (15), distributing the projections overthe
newly introduced connectives and quantifier prefixes and then replacing the projec-
tions of atomic formulas in the obtained formula by atomic formulas built using the
corresponding symbols from the vocabulary ofL

′. For example, our convention about
extendedt−1 means that

t
−1((
−−−−−→
P ∧ ¬Q/H) ∨ (R(x)⇒ (R(f(x))/¬H)))

is

(P→H ∧ ¬Q
→

H ) ∨ (R(x)⇒ ∃y(f¬H(y, x) ∧R¬H(y))).

Note that parts of the formula which are not in the scope of(./.) are not affected by
t
−1.

Let DC
(./.)
L

be the set of the formulas ofL which can be derived using validDC

formulas and the(./.)-specific axioms enumerated in the beginning of this section.
Let DC

t

L
be the set of those formulas fromL′ whoset-translations are inDC

(./.)
L

.

The key step in our proof is Lemma 14 which provides the possibility of using
the extending non-logical symbols and the translationt from Definitions 12 and 13
in the intended way by showing that these symbols have the same meaning as the
corresponding projections of atomic formulas under interpretations which satisfy the
formulas fromDC

t

L
. To prove Lemma 14, we use some properties of the derived op-

erators≤,�l and�r defined in Subsection 3.3 These properties are listed in Lemmata
10 and 11 from Subsection 3.3.

LEMMA 14 (TRUTH LEMMA ). — Let the vocabulary ofL contain finitely many
flexible symbols. LetI0 be an interpretation ofL′ andσ0 ∈ I. LetI0, σ0 |= ϕ for all
ϕ ∈ DC

t

L
. Then there exist two interpretationsI andI ′ of L′ and an intervalσ ∈ I

such thatI, σ |= ϕ iff I0, σ0 |= ϕ for all ϕ fromL
′, andI ′ has the same restriction to

subintervals ofσ asI and satisfies
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I ′, σ′ |= P←H ⇔ (
←−
P /H)

I ′, σ′ |= P→H ⇔ (
−→
P /H)

I ′, σ′ |= ∀x(cH(x)⇔ (c = x/H))

I ′, σ′ |= ∀y∀x1 . . . ∀x#f (fH(y, x1, . . . , x#f )⇔ (y = f(x1, . . . , x#f )/H))

I ′, σ′ |= ∀x1 . . . ∀x#R(RH(x1, . . . , x#R)⇔ (R(x1, . . . , x#R)/H))

for all subintervalsσ′ of σ and all the non-logical symbolsP , c, f andR of their
respective types fromL.

We need to useσ andI in the lemma instead ofσ0 andI0 themselves, because pro-
jection onto0 makes the location of reference intervals relative to0 relevant, and the
location ofσ0 may happen to be different from the one described by thet-translations
of theL

′ formulas which it satisfies underI0.

PROOF. — Throughout this proof we refer to our axioms directly, despite the fact
that they are written using(./.) and we are actually working with formulas fromL′.
When referring to an axiom, we mean a formula whicht maps to an instance of this
axiom, or to some formula which is straightforwardly derivable from such an instance,
in order to achieve brevity.

Let P1, . . . , Pn be all the state variables fromL. Let E be the set of the con-

junctions
n
∧

i=1

εiPi whereεi is either¬ or nothing,i = 1, . . . , n. There are2n such

conjunctions. Every state expression fromL has a propositionally equivalent one of
the form

∨

E′ whereE′ ⊆ E. Rule (44) implies that we can assume that all the
involved state expressionsH are of this form.

We first defineσ andI. Let Sl, Sr ∈ E satisfyI0, σ0 |= t
−1((
←−
Sl ∧

−→
Sr/0)). The

existence of a unique pair of such state expressions followsfrom the facts⊢
∨

E
and⊢ ¬(S ∧ S′) for different S, S′ ∈ E, and axioms (1)-(3), (5) and (6). LetΦ

consist of the formulas
←−
Sl ,
−→
Sr and all the formulas of the formsR(x1, . . . , x#R),

y = f(x1, . . . , x#f ) andy = c, whereR, f and c are some of the finitely many
flexible symbols inL andy, x1, x2, . . . is some fixed sequence of distinct individual
variables. Then axiom (47) implies that at least one of the three formulas

t
−1((
←−
Sl/Sl) ∧ (

←−
Sr/Sr)), t

−1((
−→
Sl/Sl) ∧ (

−→
Sr/Sr))

and

t
−1



3



ℓ = 0 ∧
∧

ϕ∈Φ

∀(ϕ⇔ (ϕ/0))








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holds atσ0 underI0. Let δ = minσ0 − 1 or δ = maxσ0 + 1 in case it is the first one
or the second one, respectively. In case it is the third formula, letδ ∈ σ0 be such that

I0, [δ, δ] |= t
−1





∧

ϕ∈Φ

∀(ϕ⇔ (ϕ/0))



 . (48)

We chooseσ to be[minσ0 − δ,maxσ0 − δ]. We defineI by the equalities

I(s) = I0(s) for all rigid s;
I(P )(τ) = I0(P )(τ + δ) for state variablesP ;
I(c)(σ′) = I0(c)([minσ′ + δ,maxσ′ + δ]) for flexible c 6

.
= ℓ;

I(s)(σ′, d1, . . . , d#s) = I0(s)([minσ′ + δ,maxσ′ + δ], d1, . . . , d#s)
for all other flexibles, exceptℓ.

The correspondence betweenI, σ, I0 andσ0 described in the lemma can be estab-
lished by a direct check. Furthermore, in caseδ ∈ σ0, we have0 ∈ σ and (48) implies

I, [0, 0] |=
←−
P ⇔ P←

0
,
−→
P ⇔ P→

0
, c0(c),

∀x1 . . . ∀x#ff0(f(x1, . . . , x#f ), x1, . . . , x#f ),
∀x1 . . . ∀x#RR(x1, . . . , x#R)⇔ R0(x1, . . . , x#R)

(49)

for all the flexible symbolsP , c, f andR of their respective types fromL.

We defineI ′ only as much as necessary to prove the lemma. The values ofI ′ on
symbols and at intervals not mentioned here are irrelevant to the required properties of
I ′ and can be arbitrary. As required by the lemma,I ′ is the same asI at subintervals
of σ.

Let ζ1, ζ2 ∈ R be such that0 ∈ (ζ1, ζ2) and[ζ1, ζ2] ∩ σ = ∅, in case0 6∈ σ.

Let k = 2n and the sequenceS1, . . . , Sk contain all the conjunctions fromE and
satisfyI, σ |= t

−1(Si ≤ Si+1), i = 1, . . . , k − 1. The existence of such a sequence
follows from (33) and (36) of Lemma 11. Letk0 be the smallest number such that
I, σ |= t

−1(¬(
−→
Sk0/Sk0)). Let k0 = k + 1, in caseI, σ |= t

−1((
−→
Si/Si)) for all

i = 1, . . . , k. Then

I, σ |= t
−1(Si �r Si+1), i = 1, . . . , k0 − 1, andI, σ |= t

−1(¬(
−→
Si/Si))

for i = k0, . . . , k, because of (25)-(29) from Lemma 10 and (37) from Lemma 11,
respectively. ObviouslyI, σ |=

−→
Si0 for somei0 ∈ {1, . . . , k}. ThenI, σ |= (Si0∨Sj)!

for all j = 1, . . . , k, whence axiom (17) implies thatI, σ |= t
−1((
−→
Si0/Si0 ∨ Sj)).

HenceI, σ |= t
−1(Si0 ≤ Sj), j = 1, . . . , k by the definition of≤, which means that

i0 = 1. Furthermore, axiom (18) implies thatI, σ |= t
−1((
−→
S1/S1)), which means

that k0 > 1. Let τ1 = maxσ andτ2, . . . , τk0−1, ξ1, . . . , ξk0−2 ∈ R be such that
τ1 < ξ1 < τ2 < . . . < ξk0−2 < τk0−1 (see Figure 2). Let there be no suchξs, in
casek0 = 2. Let τk0−1 < ζ1, in casemaxσ < 0. We putI ′(P )(τ) = 1 if and
only if P occurs positively inSi for τ ∈ [τi, ξi), i = 1, . . . , k0 − 2, or P occurs
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ξ′
2

τ ′

2
. . .ξ′mτ ′

m ζ1

max σ = τ1τ ′

1
= min σ

ξ1 τ2 ξ2 . . . τk0−1 ζ2ξk0−2

σ

0

Figure 2. Definitive time points for projections underI ′, assuming thatmaxσ < 0.

positively inSk0−1 for τ ≥ τk0−1, in case0 ≤ maxσ, and forτ ∈ [τk0−1, ζ1), in

casemaxσ < 0. If I, [maxσ,maxσ] |= t
−1((
←−−
¬Si/Si)), then we putI ′(P )(τ) = 1 if

and only ifI, [maxσ,maxσ] |= P←Si
for τ ∈ [ξi−1, τi); otherwise we putI ′(P )(τ) =

I ′(P )(τi−1) for τ ∈ [ξi−1, τi), i = 2, . . . , k0 − 1. According to this definition,I ′(P )
agrees withI(P ) atmaxσ, and indeed at[maxσ, τ) for someτ > maxσ.

Let k1 be the smallest number such thatk0 ≤ k1 andI, σ |=
∫

Sk1 = 0. Let
k1 = k + 1, if I, σ |=

∫

Si > 0 for all i = k0, . . . , k. Then

I, σ |=
∫

Si = 0, i = k1, . . . , k,

because of (39) from Lemma 11. Letk2 be the smallest number such thatk1 ≤ k2

andI, σ |= t
−1(¬(

←−
Sk2/Sk2)). Let k2 = k + 1, in caseI, σ |= t

−1((
←−
Si/Si)) for all

i = k1, . . . , k. Then

I, σ |= t
−1(¬(

←−
Si/Si)), i = k2, . . . , k, (50)

because of (40) from Lemma 11.

Let E← = {S ∈ E : I, σ |= t
−1((
←−
Si/Si))}. (50) implies E← ⊆

{S1, . . . , Sk2−1}. There exists a uniqueS ∈ E such thatI, σ |=
←−
S . Then axiom

(16) implies thatI, σ |= t
−1((
←−
S /S)) andI, σ |= t

−1(S �l S′) for all otherS′ ∈ E.
HenceE← 6= ∅. LetE← containm conjunctions and the sequenceS′1, . . . , S

′

m con-
tain all the conjunctions fromE← and satisfyI, σ |= S′i �l S

′

i+1, i = 1, . . . ,m − 1.
Lemma 10 implies that there is a unique such sequence and we have just shown that

I, σ |=
←−
S′1. Furthermore, together with axiom (10), (30) from Lemma 10 implies that

Sk1 , . . . , Sk2−1 is a subsequence ofS′1, . . . , S
′

m.

Let τ ′1 = minσ and τ ′2, . . . , τ
′

m, ξ
′

2, . . . , ξ
′

m ∈ R be such thatτ ′m < ξ′m <
τ ′m−1 . . . < τ ′2 < ξ′2 < τ ′1. Let τ ′m > ζ2, in case0 < minσ. We putI ′(P )(τ) = 1
if and only if P occurs positively inS′i for τ ∈ [ξ′i+1, τ

′

i), i = 1, . . . ,m − 1,
or P occurs positively inS′m for τ ∈ [ζ2, τ

′

m), in case0 < minσ, and for all
τ < τ ′m, in caseminσ ≤ 0. If I, [minσ,minσ] |= t

−1((¬S′i/S
′

i)), then we put
I ′(P )(τ) = 1 if and only if I, [minσ,minσ] |= P→S′

i
for τ ∈ [τi, ξi); otherwise we

put I ′(P )(τ) = I ′(P )(ξi) for τ ∈ [τi, ξi), i = 2, . . . ,m. Axiom (16) implies that

I ′, σ |=
←−
S′1. This implies thatI andI ′ agree at[τ,minσ) for someτ < minσ.

In case0 6∈ σ, we putI ′(P )(τ) = 1 if and only if P occurs positively inSl for
τ ∈ [ζ1, 0), and we putI ′(P )(τ) = 1 if and only if P occurs positively inSr for



Axiomatisation of projection inDC 171

τ ∈ [0, ζ2). If 0 < minσ, we putI ′(P )(τ) = I ′(P )(ζ1) for all τ < ζ1. If maxσ < 0,
we putI ′(P )(τ) = I ′(P )(0) for all τ ≥ ζ2.

Axioms (5), (6) and the choice ofk2 guarantee thatI ′(P )(τ) = 0 for all τ and all
P which occur positively in some of the conjunctionsSk2 , . . . ,Sk.

Now let us prove thatI ′ satisfies the equivalence aboutP→H from the lemma. Let
σ′ ∈ I andσ′ ⊆ σ.

Let I, [maxσ′,maxσ] |=
∫

H > 0. Let τ be the least time point in
[maxσ′,maxσ) such thatIτ (H) = 1. ThenI, σ′ |= P→H iff I, [minσ′, τ ] |= P→H by

axiom (10) andI, [minσ′, τ ] |= P→H iff I, [minσ′, τ ] |=
−→
P by axiom (17). Hence in

this caseI ′, σ′ |= P→H ⇔ (
−→
P /H).

If I, [maxσ′,maxσ] |=
∫

H = 0, thenI, σ′ |= P→H iff I, σ |= P→H andI ′, σ′ |=

(
−→
P /H) iff I ′, σ |= (

−→
P /H) by axioms (10) and (42). LetH be

∨

E′ whereE′ ⊆ E.

Let E′ 6= ∅ andi be the least number such thatSi ∈ E′. Then we haveI, σ |=
t
−1(H ≡ Si) by (31), (34) and (35) from Lemma 11. A lengthy but simple check

shows thatI ′, σ |= H ≡ Si. Now axiom (43) implies thatI ′, σ |= P→H ⇔ P→Si

andI, σ |= (
−→
P /H) ⇔ (

−→
P /Si). Hence it is sufficient to prove thatI ′, σ |= P→Si

⇔

(
−→
P /Si). We have the following four cases:

Case 1.1 ≤ i < k0. ThenI, σ |= t
−1((
−→
Si/Si)), which means thatI, σ |= P→Si

iff P occurs inSi positively. By the definition ofI ′, this is equivalent toI ′, [τi, ξi) |=
⌈Si ∧ P ⌉, in casei < k0 − 1, andI ′, [τi, τ) |= ⌈Si ∧ P ⌉ for someτ > τi, in case
i = k0 − 1. Axiom (22) and the position ofSi in the sequenceS1, . . . , Sk imply that
I ′, [maxσ, τi] |=

∫

Si = 0. HenceI ′, σ |= (
−→
P /Si) iff P occurs inSi positively too.

Case 2.k0 ≤ i < k1. ThenI, σ |= t
−1(¬(

−→
Si/Si)) ∧

∫

Si > 0. Let τ be the
least time point such thatI, [τ,maxσ] |=

∫

Si = 0. Then axiom (10) implies that

I ′, σ |= (
−→
P /Si) iff I ′, [minσ, τ ] |= (

−→
P /Si), andI ′, σ |= P→Si

iff I ′, [minσ, τ ] |=
P→Si

. It can be shown thatI ′τ ′(Si) = 0 for all τ ′ ≥ maxσ, and, consequently, for

all τ ′ ≥ τ . This impliesI, [minσ, τ ] |= ¬(
−→
Si/Si). I ′, σ |=

∫

Si > 0 and the

choice ofτ imply I ′, [minσ, τ ] |= (⊤; ℓ = 0 ∧
←−
Si). HenceI ′, [minσ, τ ] |= Si!.

Furthermore,I, [minσ, τ ] |= t
−1(¬(

−→
Si/Si)) by axiom (10), becauseI ′, [τ,maxσ] |=

∫

Si = 0. This impliesI ′, [minσ, τ ] |= t
−1(Si!). Hence bothI ′, [minσ, τ ] |= P→Si

andI ′, [minσ, τ ] |= (
−→
P /Si) are equivalent toI ′, [minσ, τ ] |=

−→
P by axiom (17).

Case 3.k1 ≤ i < k2. ThenI, σ |= t
−1(¬(

−→
Si/Si) ∧

∫

Si = 0 ∧ (
←−
Si/Si)). In this

caseI ′, σ |= (
−→
P /Si) andI ′, σ |= P→Si

are equivalent toI ′, [minσ,minσ] |= (
−→
P /Si)

andI ′, [minσ,minσ] |= P→Si
by axiom (10), respectively. Another lengthy simple

check shows thatI ′τ (Si) = 0 for all τ ≥ minσ. I, σ |= t
−1((
←−
Si/Si)) implies that

Si ∈ E←. Now recall the sequenceS′1, . . . , S
′

m of the conjunctions fromE←. Let

Si be S′1 from this sequence. ThenI ′, [minσ,minσ] |=
←−
Si. SinceI ′τ (Si) = 0



172 JANCL – 14/2004. Issue on Interval Temporal Logics and Duration Calculi

for all τ ≥ minσ, I ′, [minσ,minσ] |= ¬(
−→
Si/Si). I, σ |=

∫

Si = 0 andI, σ |=

t
−1(¬(

−→
Si/Si)) imply I, [minσ,minσ] |= t

−1(¬(
−→
Si/Si)) by axiom (10). Hence

I ′, [minσ,minσ] |= Si! andI ′, [minσ,minσ] |= t
−1(Si!). Then axiom (17) implies

that bothI ′, [minσ,minσ] |= (
−→
P /Si) andI ′, [minσ,minσ] |= P→Si

are equivalent to

I ′, [minσ,minσ] |=
−→
P . If Si isS′j for somej > 1, then the definition ofI ′ and axiom

(22) imply thatI ′τ (Si) = 0 for all τ ≥ τ ′j , there exists aτ ′ < τ ′j such thatI ′τ (Si) = 0
for all τ ∈ [τ ′, τ ′j) andI ′τ (P ) = 1 for τ ∈ [τ ′j , ξ

′

j) iff I ′, [minσ,minσ] |= P→S′

j
. Fur-

thermore, thenI ′, [minσ,minσ] |= (
−→
P /Si) is equivalent to the existence ofτ ′ > τ ′j

such thatI ′τ (P ) = 1 for τ ∈ [τ ′j , τ
′) too. HenceI ′, [minσ,minσ] |= P→S′

j
and

I ′, [minσ,minσ] |= (
−→
P /Sj) are equivalent again.

Case 4.k2 ≤ i ≤ k. ThenI, σ |= t
−1(¬(

−→
Si/Si) ∧

∫

Si = 0 ∧ ¬(
←−
Si/Si)) and

I ′τ (Si) = 0 for all τ ∈ R. Axiom (45) implies thatI ′, σ |= P→Si
⇔ P→

0
andI ′, σ |=

(
−→
P /Si) ⇔ (

−→
P /0). If 0 6∈ σ, then the definition ofI ′(P )(τ) for τ ∈ [0, ζ2) implies

I ′, σ |= P→
0
⇔ (
−→
P /0). Otherwise we haveI ′, σ |= P→

0
iff I ′, [0, 0] |= P→

0
and

I ′, σ |= (
−→
P /0) iff I ′, [0, 0] |= (

−→
P /0) by axiom (10). ThenI ′, σ |= P→

0
⇔ (
−→
P /0)

follows from (49), becauseI ′ andI agree on state variables at a proper neighbourhood
of σ.

If E′ = ∅, which is equivalent to⊢ H ⇔ 0, then the rule (44) implies that
I ′, σ′ |= P→H ⇔ P→

0
, andI ′, σ |= P→

0
⇔ (
−→
P /0) is established as in Case 4 above.

The equivalence aboutP←H is established similarly. To establish the equivalences
about formulas built using relation symbols, we use the now established equivalences
about the projections of neighbourhood formulas involved in the definition of the
formulas abbreviated using(.)!, which appear in the axioms (11), (12) and (41).
The truth values of projections of atomic formulas built using relation symbols at
subintervalsσ′ of σ can be defined using the interpretations of the involved flexible
constant, function and relation symbols at intervals whoseend points are in the set
{τ ′m, . . . , τ

′

1} ∪ σ ∪ {τ1, . . . , τk0−1} ∪ {0}. We only need to defineI ′ on such inter-
vals.

It can be easily shown thatDC
t

L
contains the formulas

∃yfH(y, x1, . . . , x#f ),

fH(y1, x1, . . . , x#f ) ∧ fH(y2, x1, . . . , x#f )⇒ y1 = y2

and

∃ycH(y), cH(y1) ∧ cH(y2)⇒ y1 = y2

for all flexible function symbolsf and constantsc from L. This means that for every
interval σ′ ⊆ σ and alld1, . . . , d#f ∈ R there exists a uniquee ∈ R such that
I(fH)(σ′, e, d1, . . . , d#f ) andI(cH)(σ′, e).
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Let H be a state expression. If6⊢ Si ⇒ H for all i = 1, . . . , k, then⊢ H ⇔ 0.
Then, to establish the equivalences aboutcH , fH andRH from the lemma, we use
that (49) holds together with the equalities

I ′(cH)(σ′, e) = I ′(cH)([0, 0], e)

I ′(fH)(σ′, e, d1, . . . , d#f ) = I ′(fH)([0, 0], e, d1, . . . , d#f )

and

I ′(RH)(σ′, d1, . . . , d#R) = I ′(RH)([0, 0], d1, . . . , d#R),

respectively, which follow from axiom (10), for the case0 ∈ σ. We use (49) to define
I ′ at [0, 0], in case0 6∈ σ. For the rest of the proof we assume thati is the least number
such that⊢ Si ⇒ H andh = λτ.I ′τ (H).

Let i < k0. If τ ∈ σ, thenγh(δh(τ)) ∈ {τ ∈ σ : h(τ) = 1} ∪ {τi}, whereγh and
δh are as in the definition of(./.). We need to defineI ′ on flexible non-logical symbols
at intervals whose endpoints are in this set.I ′ andI coincide at intervals whose both
endpoints are inσ. Givenτ ∈ σ such thath(τ) = 1, we putI ′(c)([τ, τi]) = e where
e is the unique element ofR such thatI(cH)([τ,maxσ], e) for all flexible constants
c, and we putI ′(f)([τ, τi], d1, . . . , d#f ) = e wheree is the unique element ofR
such thatI(fH)([τ,maxσ], e, d1, . . . , d#f ) for all flexible function symbolsf and
d1, . . . , d#f ∈ R. We put

I ′(R)([τ, τi], d1, . . . , d#R) = I(RH)([τ,maxσ], d1, . . . , d#R)

for all flexible relation symbolsR andd1, . . . , d#R ∈ R. We put

I ′(c)([τi, τi]) = e iff I(cH)([maxσ,maxσ], e),

I ′(f)([τi, τi], d1, . . . , d#f ) = e iff I(fH)([maxσ,maxσ], e, d1, . . . , d#f ),

and

I ′(R)([τi, τi], d1, . . . , d#R) = I(RH)([maxσ,maxσ], d1, . . . , d#R).

In casek0 ≤ i < k1, projections ontoH at subintervals ofσ depend only on the
interpretationI of flexible non-logical symbols at subintervals ofσ and cause no need
to provide values forI ′, becauseI ′ is the same asI at such intervals.

Let k1 ≤ i < k2. Then there exists a uniquej ∈ {1, . . . ,m} such thatSi = S′j .
SinceSk1 , . . . , Sk2−1 is a subsequence ofS′1, . . . , S

′

m, γh(δh(τ)) = τj for all τ ∈ σ.
We put

I ′(c)([τj , τj ]) = e iff I(cH)(σ, e),

I ′(f)([τj , τj ], d1, . . . , d#f ) = e iff I(fH)(σ, e, d1, . . . , d#f )

and

I ′(R)([τj , τj ], d1, . . . , d#R) = I(RH)(σ, d1, . . . , d#R)
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for all flexible constantsc, function symbolsf and relation symbolsR, respectively.

The casei ≥ k2 is similar to the case⊢ H ⇔ 0

The correctness of the above clauses follows from axiom (41)and (34) and (35)
from Lemma 11. A direct check using these theorems and axiom together with axiom
(10) shows thatI ′ now satisfies the equivalences about the symbolscH , fH andRH
from the lemma. ■

THEOREM 15 (RELATIVE COMPLETENESS OFDC WITH (./.) AND NEIGHBOUR-
HOOD FORMULAS). — Letϕ be a valid formula inL. Thenϕ can be derived from
formulas valid inDC with neighbourhood formulas by means of the axioms (10)-(13),
(16)-(22), (41)-(43), (46)-(47) and the rule (44).

PROOF. — We may assume thatL has only the flexible symbols occurring inϕ in its
vocabulary. Then Proposition 7 implies that there exists a formulaψ such thatϕ⇔ ψ
is derivable using the axioms and rule mentioned above and(./.) occurs inψ only in
subformulas of the forms occurring on the right sides of the equivalences from Lemma
14. Assume thatϕ is not derivable in the above way for the sake of contradiction. Then
neither isψ. Hence¬ψ is consistent with the set of formulasDC

(./.)
L

, and therefore
t
−1(¬ψ) is consistent with the setDC

t

L
. SinceDC

t

L
contains all the valid formulas in

L
′, then there exists an interpretationI0 of L′ and an intervalσ0 ∈ I such thatI0, σ0 |=

t
−1(¬ψ) andI0, σ0 |= χ for all χ ∈ DC

t

L
. Now Lemma 14 implies that there exist

interpretationsI andI ′ of L′ and an intervalσ ∈ I such thatI, σ |= χ iff I0, σ0 |= χ
for all χ ∈ L

′, I ′ coincides withI at subintervals ofσ and theI ′-interpretations of
the extending non-logical symbols ofL

′ are the same as those of their corresponding
projection formulas at subintervals ofσ. In particular,I ′, σ |= t

−1(¬ψ). An induction
on the construction ofψ shows thatI ′, σ |= t

−1(ψ) ⇔ ψ. Hence,I ′, σ |= ¬ψ and,
consequently,I ′, σ |= ¬ϕ, which is a contradiction. This means thatϕ can be derived
from formulas valid in the extension ofDC by neighbourhood formulas using only
our axioms and rule. ■

4. The scope of relative completeness

In this section we discuss the part neighbourhood formulas have in our relative
completeness result and how it applies to extensions ofDC by other operators.

As pointed out in Subsection 2.3 and proved in Appendix A, theaxioms (1)-(4)
and their left-neighbourhood mirror images are complete for neighbourhood formu-
las relative toDC with no extending construct whatsoever. It is important to note
that, given a finite set of neighbourhood formulas, it takes finitely many instances of
(1)-(4) to achieve this axiomatisation. The detailed proofin Appendix A shows how
the relevant instances can be determined from the given neighbourhood formulas. Let
Nϕ be the conjunction of the instances of (1)-(4) which are relevant to neighbour-
hood subformulas of some formulaϕ. Then the deduction theorem forDC (cf. e.g.
[HAN 92, HAN 97, ZHO 04]) implies that the validity ofϕ in DC with neighbour-
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hood formulas is equivalent to the validity of2Nϕ ⇒ ϕ in DC without extending
constructs, if the neighbourhood formulas in this implication be regarded as proposi-
tional temporal letters. Hence our completeness result canbe stated relative toDC

with no extending constructs and we can assume that our axiomatisation applies to
projection onto state as the only extending operator inDC as well.

Finally, let us note that the relative completeness propagates straightforwardly to
the extensionDC

∗ of DC by the unary modality known asiteration and denoted by
(.)∗ [DAN 96, DAN 99b]. Iteration is defined inDC and, more generally, inITL as
follows

I, σ |= ϕ∗ iff either minσ = maxσ, or there exist ann < ω andσ1, . . . , σn ∈ I

such thatσ1; . . . ;σn = σ andI, σi |= ϕ, i = 1, . . . , n.

To extend our relative completeness result toDC
∗, it is sufficient to extend the

list of axioms (5)-(9) used to drive(./.) down to atomic formulas by one for formulas
built using(.)∗:

(ϕ∗/H)⇔ (ϕ/H)∗ ∨
∫

H = 0. (51)

Proposition 9 can be extended toDC
∗ too. An axiom which generalises (51) was

shown in [GUE 02] to apply to a subset of the extension ofDC by least-fixed-point
operatorµ [PAN 95]. In the general it is more straightforward to take projection for-
mulas out of the scope ofµ by using a definitional extension for projection formulas.
This means to prove, e.g.,

2(∀x1 . . . ∀x#R(RH(x1, . . . , x#R)⇔ (R(x1, . . . , x#R)/H)))⇒ ϕ,

whereRH is some fresh flexible relation symbol, if the original formula to prove is

[λx1, . . . , xn.(R(x1, . . . , xn)/H)/RH ]ϕ.

5. Concluding remarks

Obviously the definition of projection can have different variants for DC with
more than state expressions only. In this article we stick tothe variant from our earlier
work [GUE 02]. We believe that some alternative variants could be handled with
the use of neighbourhood formulas in similar ways. The particular variant of the
operator needed should be determined by the needs of the considered applications.
It is worth noting that our technique involves axioms which allow detailed treatment
of projection at the level of atomic formulas. This means that one can axiomatise
different variants for the different flexible non-logical symbols in the same vocabulary,
if an application requires that. An important element of choice in the definition is to
considerDC interpretations which are defined on the entireR only. Alternatively,
one can defineDC on time domains of the forms of all the possible kinds of intervals
Σλτ.Iτ (H), which includesR itself, and semibounded and bounded intervals. Then one
can refer to an appropriate model withΣλτ.Iτ (H) as the time domain when defining
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projection onto stateH. This may cause the use of(
←−
S /H) and(

−→
S /H) in a possible

axiomatisation to change or vanish.
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A. Appendix: Proof of Theorem 6

PROOF. — LetS be a state expression. Let

a(S) ⇋ [⊥/0][
−→
P /P : P ∈ SV (S)]S.

The formulaa(S) is isomorphic toS. A simple induction on the construction ofS
shows that

−→
S ⇔ a(S) (52)

is derivable using axioms (1) and (2). Hence every formulaϕ in DC with right-
neighbourhood formulas has an equivalent oneψ which contains only state variables
in its right-neighbourhood subformulas. The equivalence can be derived using (52).
Given aψ of this form we put

t(ψ) ⇋ [RP /
−→
P : P ∈ SV (ψ)]ψ,

whereRP is a fresh propositional temporal letter for eachP ∈ SV (ψ). Let Nψ
denote the conjunction

∧

p∈SV (ψ)

(
−→
P ⇒ (⊤;

−→
P )) ∧ (

−→
¬P ⇒ (⊤;

−→
¬P )) ∧ ¬(

−→
P ; ⌈¬P ⌉) ∧ ¬(

−→
¬P ; ⌈P ⌉)

of the instances of axioms (3) and (4) forP ∈ SV (ψ). Let us prove that ifψ is valid,
then t(2Nψ ⇒ ψ), which contains no right-neighboudhood formulas, is validtoo.
Assume it is not, for the sake of contradiction. Then there isan interpretationI and
an intervalσ ∈ I such that

I, σ |= 2t(Nψ) ∧ ¬t(ψ).

Let the interpretationJ coincide withI on all non-logical symbols inψ, except pos-
sibly the state variablesP ∈ SV (P ). Let

J(P )(τ) =







I(P )(τ), if τ < maxσ,
1, if τ ≥ maxσ andI, σ |= RP
0, if τ ≥ maxσ andI, σ 6|= RP

ThenJ, σ |= 2t(Nψ) ∧ ¬t(ψ) andJ, σ′ |= RP ⇔
−→
P for intervalsσ′ ⊆ σ. To realise

that, consider the cases:

Case 1. maxσ′ = maxσ. ThenJ, σ′ |= RP iff J, σ |= RP , because thet-

translations of the instances
−→
P ⇒ (⊤;

−→
P ) and

−→
¬P ⇒ (⊤;

−→
¬P ) of axiom (4) forP

and¬P are conjunctive members ofNψ, whichI satisfies, andI coincides withJ at

σ. Hence, by the definition ofJ(P )(τ) for τ ≥ maxσ, we haveJ, σ′ |= RP ⇔
−→
P .

Case 2. maxσ′ < maxσ. ThenJ, σ′ |= RP iff I, [maxσ′,maxσ] |= ⌈P ⌉,

because thet-translations of the instances¬(
−→
P ; ⌈¬P ⌉) and¬(

−→
¬P ; ⌈P ⌉) of axiom (3)
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for P and¬P are conjunctive members ofNψ, whichI satisfies, andI coincides with

J at subintervals ofσ. HenceJ, σ′ |= RP ⇔
−→
P again.

Now J, σ |= ¬ψ follows fromJ, σ |= 2(RP ⇔
−→
P ) for P ∈ SV (P ) andJ, σ |=

¬t(ψ) by substitution of equivalents, which contradicts the validity of ψ. Hence, ifψ
is valid, then2Nψ ⇒ ψ is valid inDC , provided that right-neighbourhood formulas
are treated as propositional temporal letters and to deriveψ itself from this implication
only the instances of (3) and (4) which appear inNψ are needed. ■

B. Appendix: Proofs of Lemmata 10 and 11

PROOF(LEMMA 10). — (25) follows from the definitions of�l and�r by rule (44).
(29) follows from the definitions of�r and≤ immediately. (26) is simply axiom (21).
The first two deductions below and their mirror images prove (27) and (28). The last
deduction proves (30). LetH1,2 ⇋ H1 ∨H2 for the sake of brevity.

(27):

1 ¬(
←−−−−−
H1 ∧H2/H1,2) ⊢ ¬(H1 ∧H2), rule (44)

2 ¬(
←−−−−−
H1 ∧H2/H1,2)⇒ ¬(

←−
H1/H1,2) ∨ ¬(

←−
H2/H1,2) axioms (1)-(3), (5)

and (6) and rule (44)
3 ¬(H1 �l H2 ∧H2 �l H1) 1, 2, def. of�l

(28):

1 (
←−
H1/H1)⇒ (

←−−
H1,2/H1,2) axiom (19)

2 (
←−−
H1,2/H1,2)⇔ (

←−
H1/H1,2) ∨ (

←−
H1/H1,2) axioms (1)-(3), (5) and (6)

and rule (44)

3 (
←−
H1/H1)⇒ H1 �l H2 ∨H2 �l H1 1, 2, def. of�l

(30):

1
∫

H1,2 = 0⇒ ((
←−
H1/H1,2)⇒ (⊤; ℓ = 0 ∧ (

←−
H1/H1,2))) axiom (10),DC

2
∫

H1,2 = 0 ∧ ¬(
−−→
H1,2/H1,2)⇒

((⊤; ℓ = 0 ∧ (
←−
H1/H1,2))⇒ H1 ≤ H2 def. of≤

3
∫

H1,2 = 0 ∧ ¬(
−−→
H1,2/H1,2)⇒ (H1 �l H2 ⇒ H1 ≤ H2) 1, 2, def. of�l

■

PROOF(LEMMA 11). — Using axiom (10), one can easily derive (31). (31) implies
(32) and (38) implies (39) in basicDC . LetHi,j ⇋ Hi ∨Hj for the sake of brevity
in the deductions for (33)-(38) and (40) below. In these deductions we frequently use
that

(
−−→
Hi,j/Hi,j)⇔ (

−→
Hi/Hi,j) ∨ (

−→
Hj/Hi,j) (53)

and its mirror image can be derived from axioms (1)-(3), (5) and (6) by rule (44).
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(33):
1 (

−→
H1/H1,2) ∧ (

−→
H2/H2,3)⇒ (

−→
H1/H1,3) axiom (21)

2 (
−→
H1/H1)⇒ (

−−→
H1,3/H1,3) axiom (19)

3 (
−−→
H1,3/H1,3)⇒ (

−→
H1/H1,3) ∨ (

−→
H3/H1,3) (53)

4 ¬(
−−→
H2,3/H2,3)⇒ ¬(

−→
H3/H3) axiom (19)

5 ¬(
−→
H3/H3)⇒ ¬(

−→
H3/H1,3) axiom (18)

6 (
−→
H1/H1,2) ∧ ¬(

−−→
H2,3/H2,3)⇒ (

−→
H1/H1,3) 2-5

7 H1 ≤ H2 ∧ ¬(
−−→
H1,2/H1,2)⇒ ¬(

−→
H2/H2,3) (37), axioms (18), (19)

8 ¬(
−→
H1/H1,2) ∧ ¬(

−→
H2/H1,2)⇒ ¬(

−−→
H1,2/H1,2) (53)

9 ¬(
−→
H1/H1,2) ∧H1 ≤ H2 ⇒ ¬(

−→
H2/H1,2) (53) and def. of≤

10 ¬(
−→
H1/H1,2) ∧H1 ≤ H2 ⇒ ¬(

−−→
H1,2/H1,2) 8, 9

11 H1 ≤ H2 ∧ ¬(
−→
H1/H1,2)⇒ ¬(

−→
H2/H2,3) 7, 10

12 (
←−
H1/H1,2) ∧ (

←−
H2/H2,3)⇒ (

←−
H1/H1,3) axiom (21)

13 (⊤; ℓ = 0 ∧ (
←−
H1/H1,2))∧

(⊤; ℓ = 0 ∧ (
←−
H2/H2,3))⇒

(⊤; ℓ = 0 ∧ (
←−
H1/H1,3)) 12,DC

14 (
−−→
Hi,j/Hi,j)⇔ (

−→
Hi/Hi) ∨ (

−→
Hj/Hj) i, j = 1, 2, 3, (53)

and axioms (18) and (19)
15

∫

Hi,j = 0⇔
∫

Hi = 0 ∧
∫

Hj = 0 i, j = 1, 2, 3, DC

16 ¬(
−−→
H1,2/H1,2) ∧ ¬(

←−−
H1,2/H1,2)∧

∫

H1,2 = 0 ∧ ¬(
−−→
H2,3/H2,3)∧

¬(
←−−
H2,3/H2,3) ∧

∫

H2,3 = 0 ⇒

¬(
−−→
H1,3/H1,3) ∧ ¬(

←−−
H1,3/H1,3) ∧

∫

H1,3 = 0 14, 15
17 H1 ≤ H2 ∧H2 ≤ H3 ⇒ H1 ≤ H3 1, 6, 11, 13, 16, def. of≤

(34):
1 (

−→
S /S ∨H1,2) ∧ (

−−→
H1,2/S ∨H1,2)⇒

2
∨

i=1

(
−−−−→
S ∧Hi/S ∨H1,2) axioms (1)-(3),

(5) and (6)

2 (
−−−−→
S ∧Hi/S ∨H1,2)⇒ (

−−−−→
S ∧Hi/S ∨Hi) i = 1, 2, axiom (18)

3 (
−−−−→
S ∧Hi/S ∨Hi)⇒ (

−→
S /S ∨Hi) ∧ (

−→
Hi/S ∨Hi) i = 1, 2,

axioms (1)-(3), (5), (6)

4

(

(
−→
S /S ∨H1,2)∧

(
−−→
H1,2/S ∨H1,2)

)

⇒

2
∨

i=1

(
−→
S /S ∨Hi) ∧ (

−→
Hi/S ∨Hi) 1-3

5 (
−→
S /S ∨H1,2) ∨ (

−−→
H1,2/S ∨H1,2)⇒

(
−−−−−→
S ∨H1,2/S ∨H1,2) axioms (1)-(3),(5), (6)
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6 (
←−
S /S ∨H1,2) ∧ (

←−−
H1,2/S ∨H1,2)⇒

2
∨

i=1

(
←−
S /S ∨Hi) ∧ (

←−
Hi/S ∨Hi) like 4

7

(

(⊤; ℓ = 0 ∧ (
←−
S /S ∨H1,2))∧

(⊤; ℓ = 0 ∧ (
←−−
H1,2/S ∨H1,2))

)

⇒

2
∨

i=1

(

(⊤; ℓ = 0 ∧ (
←−
S /S ∨Hi))∧

(⊤; ℓ = 0 ∧ (
←−
Hi/S ∨Hi))

)

6, DC

8







¬(
−−−−−→
S ∨H1,2/S ∨H1,2)∧

¬(
←−−−−−
S ∨H1,2/S ∨H1,2)∧
∫

(S ∨H1,2) = 0






⇒

2
∧

i=1







¬(
−−−−→
S ∨Hi/S ∨Hi)∧

¬(
←−−−−
S ∨Hi/S ∨Hi)∧
∫

(S ∨Hi) = 0






axiom (19),DC

9 S ≡ H1,2 ⇒ S ≡ H1 ∨ S ≡ H2 4-6, 8, def. of≤

(35):

1 (
−→
H1/H1,2)⇒ (

−−→
H1,2/H1,2) rule (44)

2 H1 ≤ H2 ∧ ¬(
−→
H1/H1,2)⇒ ¬(

−−→
H1,2/H1,2) def. of≤

3 (
←−
H1/H1,2)⇒ (

←−−
H1,2/H1,2) rule (44)

4 (⊤; ℓ = 0 ∧ (
←−
H1/H1,2))⇒ (⊤; ℓ = 0 ∧ (

←−−
H1,2/H1,2)) 3, DC

5 H1 ≤ H2 ⇒ H1,2 ≡ H1 1, 2, 4, def. of≤

(36):

1 ¬(Hi ≤ Hj)⇒






(¬
−→
Hi/H1,2)∧

((
−−→
H1,2/H1,2) ∨ (⊤; ℓ = 0 ∧ (¬

←−
Hi/H1,2)))∧

((
−−→
H1,2/H1,2) ∨ (

←−−
H1,2/H1,2) ∨

∫

H1,2 > 0))







i = 1, 2, j = 3− i,
def. of ≤, rule (44),
axioms (5) and (6),
DC

2 (¬
−→
H1/H1,2) ∧ (¬

−→
H2/H1,2)⇒ ¬(

−−→
H1,2/H1,2) (53) and rule (44)

3
2
∧

i=1

(⊤; ℓ = 0 ∧ (¬
←−
Hi/H1,2))⇒

(⊤; ℓ = 0 ∧ ¬(
←−−
H1,2/H1,2)) (53) and rule (44),DC

4 (⊤; ⌈H1,2⌉;
∫

H1,2 = 0) ∨
∫

H1,2 = 0 DC

5 (⊤; ⌈H1,2⌉;
∫

H1,2 = 0)⇒

(⊤; ⌈H1,2⌉;
∫

H1,2 = 0 ∧
←−−
H1,2) axiom (4),DC

6 (⊤; ⌈H1,2⌉;
∫

H1,2 = 0 ∧
←−−
H1,2)⇒

(⊤;
∫

H1,2 = 0 ∧ (
←−−
H1,2/H1,2)) axiom (16),DC

7 (⊤;
∫

H1,2 = 0 ∧ (
←−−
H1,2/H1,2))⇒

(⊤; ℓ = 0 ∧ (
←−−
H1,2/H1,2)) axiom (10),DC
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8
2
∧

i=1

(⊤; ℓ = 0 ∧ (¬
←−
Hi/H1,2))⇒

∫

H1,2 = 0 3-7,DC

9
∫

H1,2 = 0 ∧ (⊤; ℓ = 0 ∧ (¬
←−
Hi/H1,2))⇒

¬(
←−
Hi/H1,2) axioms (5), (6),

(10),DC

10 H1 ≤ H2 ∨H2 ≤ H1 1, 2, 8, 9 and (53)

(37):

1 H1 ≤ H2 ⇒ (
−→
H1/H1,2) ∨ ¬(

−−→
H1,2/H1,2) def. of≤

2 ¬(
−→
H1/H1)⇒ ¬(

−→
H1/H1,2) axiom (18)

3 ¬(
−−→
H1,2/H1,2)⇒ ¬(

−→
H2/H2) (53) and axiom (19)

4 H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒ ¬(

−→
H2/H2) 1-3

(38):

1 ¬(
−→
H1/H1)⇒ ¬(

−→
H1/H1,2) axiom (18)

2 H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒

((⊤; ℓ = 0 ∧ (
←−
H1/H1,2)) ∨

∫

H1,2 = 0 1, def. of≤
3

∫

H1,2 = 0⇒ ¬(⊤; ⌈H2 ∧ ¬H1⌉;
∫

H1 = 0) DC

4 (⊤; ⌈H2 ∧ ¬H1⌉;
∫

H1,2 = 0)⇒

(⊤;
←−−−−−−−
H2 ∧ ¬H1 ∧

∫

H1,2 = 0) axiom (4),DC

5 (⊤;
←−−−−−−−−
¬H1 ∧H1,2 ∧

∫

H1,2 = 0)⇒

(⊤; (
←−−
¬H1/H1,2) ∧

∫

H1,2 = 0) axiom (16),DC

6 (⊤; (
←−−
¬H1/H1,2) ∧

∫

H1,2 = 0)⇒

(⊤; (
←−−
¬H1/H1,2) ∧ ℓ = 0) axiom (10),DC

7 H1 ≤ H2 ∧ ¬(
−→
H1/H1)⇒

¬(⊤; ⌈H2 ∧ ¬H1⌉;
∫

H1,2 = 0) 2, 3, 6 and (53)

(40):

1 H1 ≤ H2 ∧ ¬(
−→
H1/H1) ∧

∫

H1 = 0⇒
∫

H1,2 = 0 (39),DC

2
∫

H1,2 = 0 ∧ (⊤; ℓ = 0 ∧ (
←−
Hi/H1,2))⇒ (

←−
H1/H1,2) axiom (10),DC

3 (
←−
H1/H1,2)⇒ (

←−
H1/H1) axiom (18)

4 ¬(
−→
H1/H1)⇒ ¬(

−→
H1/H1,2) axiom (18)

5 ¬(
←−−
H1,2/H1,2)⇒ ¬(

←−
H2/H2) axiom (19)

6 H1 ≤ H2 ∧ ¬(
−→
H1/H1) ∧

∫

H1 = 0⇒

((
←−
H2/H2)⇒ (

←−
H1/H1)) 1-5, def. of≤

■


