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Abstract
One of the most debated problems in the foundations of the special relativity theory
is the role of conventionality. A common belief is that the Lorentz transformation is
correct but the Galilean transformation is wrong (only approximately correct in low
speed limit). It is another common belief that the Galilean transformation is incom-
patible with Maxwell equations. However, the “principle of general covariance” in
general relativity makes any spacetime coordinate transformation equally valid. This
includes the Galilean transformation as well. This renders a new paradox. This new
paradox is resolved with the argument that the Galilean transformation is equivalent
to the Lorentz transformation. The resolution of this new paradox also provides the
most straightforward resolution of an older paradox which is due to Selleri in (Found
Phys Lett 10:73–83, 1997). I also present a consistent electrodynamics formulation
including Maxwell equations and electromagnetic wave equations under the Galilean
transformation, in the exact form for any high speed, rather than in low speed approxi-
mation. Electrodynamics in rotating reference frames is rarely addressed in textbooks.
The presented formulation of electrodynamics under the Galilean transformation even
works well in rotating frames if we replace the constant velocity vwith v = ω×r. This
provides a practical tool for applications of electrodynamics in rotating frames. When
electrodynamics is concerned, between two inertial reference frames, both Galilean
and Lorentz transformations are equally valid, but the Lorentz transformation is more
convenient. In rotating frames, although the Galilean electrodynamics does not seem
convenient, it could be the most convenient formulation compared with other trans-
formations, due to the intrinsic complex nature of the problem.
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1 Introduction

Issac Newton holds an absolute view of space and time. Newtonian mechanics is
based on the Galilean transformation between two inertial reference frames K and K′.
Einstein’s theory of special relativity is based on the Lorentz transformation, so that
the speed of light in both reference frames is the same constant c in all directions.

Given the fact that we agree on that the Lorentz transformation is a valid trans-
formation from K to K′, another question arises: Is the Lorentz transformation the
only valid transformation? There are different opinions. A person with a “yes” answer
should be called a strong relativist. A person with a “no” answer is usually called a
conventionalist.

There are three different philosophical views in the spectrum: the absolutist, the
relativist and the conventionalist. Each group is opposed to the other two groups in
opinion. The following are a few examples in each group.
(1) Absolutist

Some examples include G. Sagnac, F. Selleri and P. Marmet. Selleri believes in the
existence of absolute simultaneity, but not exactly the absolute time scale. He believes
that reference frame K′ has a different time scale from K but both K and K′ must have
the same simultaneity standard (two remote events simultaneous in K must also be
simultaneous in K′). He investigated a transformation (Selleri 1996),

t ′ = t/γ,

x ′ = γ (x − vt) , (1)

where γ = 1/
√
1 − v2/c2. Selleri calls this the “inertial transformation” and it has

the following properties:
(i) If two events are simultaneous in K, then they are also simultaneous in any other

frame K′.
Earlier, Tangherlini (1961) and Mansouri and Sexl (1977) also investigated this

transformation in Eq. (1). Mansouri and Sexl call it “absolute simultaneity”. The dif-
ference is, Mansouri and Sexl have a conventionalist view, considering that Eq. (1) is
equivalent to the Lorentz transformation, while Selleri takes an absolute view, regard-
ing Eq. (1) as “nature’s choice” (Selleri 1996) and believes that special relativity is
wrong. In Selleri’s words (Selleri 1997): “we must conclude that the famous syn-
chronisation problem is solved by nature itself: it is not true that the synchronisation
procedure can be chosen freely because Einstein’s convention leads to an unacceptable
discontinuity in the physical theory.” This is known as Selleri’s paradox, which we
shall discuss further in Sect. 5.

(ii) If the one-way speed of light in K is constant in all directions, then in reference
frame K′, the light speed is variable in different directions,

cθ = c

1 + β cos θ
, (2)

where β = v/c, and θ is the angle of the direction with respect to x ′-axis. Among all
the inertial frames with various parameter v, there is only one reference frame (where
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v = 0) in which the one-way speed of light is constant c in all directions. It is called
the “privileged frame” by Selleri (1996, 1997) or the “ether frame” by Mansouri and
Sexl (1977).

(iii) The two-way speed (or round-trip speed) of light in any direction, in any
reference frame, is the same constant c.
(2) Strong relativist

Some authors, for example, Ohanian, hold very strong anticonventionalist views.
Ohanian (2009) published a book Einstein’s Mistakes. A number of the “mistakes” of
Einstein that Ohanian criticized in his book are actually the conventionalist views of
Einstein, which in my opinion are not Einstein’s mistakes.
(3) Weak conventionalist

Reichenbach (1958) believes that the “Einstein synchronization” is a convention.
The one-way speeds of light from A to B and from B to A are not necessarily equal, as
long as the two-way speed of light is a constant in all directions. The synchronization
of the clock at B may depend on an arbitrary parameter 0 < ε < 1, with Einstein
synchronization being a special case with ε = 1/2.

Several authors (Edwards 1963; Robertson 1949; Mansouri and Sexl 1977) have
developed this idea further quantitatively. These are known as “test theories of special
relativity”. Zhang (1997) offered an analysis and comparison of these test theories.
Edwards (1963) investigated a transformation (Zhang 1997, p. 80),

t ′ = γ

[(
1 + b

c
v

)
t −

(
v

c2
+ b

c

)
x

]
,

x ′ = γ (x − vt), (3)

where v is the velocity of reference frame K′ relative to K along x-axis, and b is an
arbitrary but predefined constant, which is specific to frameK′. The light has a variable
one-way speed depending on the direction θ in the Edwards transformation,

cθ = c

1 − b cos θ
. (4)

However, the two-way speed of light is always c, a constant. The Edwards transfor-
mation is the most general form of transformation which has anisotropic one-way
light speed while keeping isotropic two-way light speed. Selleri’s inertial transforma-
tion has not been compared with these test theories in literature. It is easy to see, if
b = 0, the Edwards transformation in Eq. (3) reduces to the Lorentz transformation;
if b = −v/c, it reduces to Selleri’s “inertial transformation” as in Eq. (1).

Einstein had a limited conventionalist view. Einstein (1961) gave an interpretation
of his special relativity: “That light requires the same time to traverse the path A → M
as for the path B → M is in reality neither a supposition nor a hypothesis about the
physical nature of light, but a stipulation which I can make of my own freewill in
order to arrive at a definition of simultaneity.” I agree with Einstein on this, but this is
considered one of the “Einstein’s mistakes” by Ohanian.

Ohanian has strong objections to this view. He writes (Ohanian 2009): “he was
stipulating something that was not subject to. … Einstein was entitled to make a
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hypothesis about the speed of light, but not a stipulation. The speed of light is either
constant or not, and only measurement can decide what it is. … Einstein was lucky…
What he had asserted by stipulation actually was confirmed by experiment. In the end,
he turned out to have been right for the wrong reason.” I disagree with Ohanian on
this. The reader is referred to a comprehensive review of the whole spectrum of views
regarding the conventionality thesis by Anderson et al. (1998).

2 My paradox

It is a common understanding that Einstein’s theory of special relativity is a revolution
against Newtonian mechanics. The theory of special relativity is a refutation and mod-
ification of the classical Newtonian mechanics. What is the relationship between the
theory of special relativity (SR) and the theory of general relativity (GR)? Do SR and
GR contradict each other, or is SR a special case of GR? The common understanding
is that SR is consistent with GR and is a special case of GR under two conditions:
(i) Only inertial reference frames are concerned. (ii) There is no existence of gravity.
This means GR always applies where SR applies.

My paradox is this: the following two views of (A) from SR and (B) from GR
contradict each other:
(A) In SR, this is taught in most of the textbooks: Michelson andMorley conducted an
experiment (M-M experiment) to detect the motion of the earth relative to the ether.
They applied the Galilean transformation and showed it would predict a fringe shift
when the two perpendicular arms of the interferometer are slowly rotated. No fringe
shiftwas detected in the experiment. Einstein thenproposed the theoryof relativitywith
the principle of relativity and the principle of constancy of the speed of light. So M-M
experiment renders a verdict: Newtonian mechanics is wrong and SR is correct; the
Galilean transformation is wrong and the Lorentz transformation is correct. Galilean
transformation is only approximately correct in the low speed limit because it is an
approximation of Lorentz transformation in the low speed limit.
(B) In GR, according to the “principle of general covariance” of Einstein (1916), any
form of smooth (or diffeomorphic) coordinate transformation

x ′ = x ′(x, y, z, t),
y′ = y′(x, y, z, t),
z′ = z′(x, y, z, t),
t ′ = t ′(x, y, z, t), (5)

is set to equal footing (see Sect. 3 for a quotation from Einstein’s 1916 paper). The
Galilean transformation

x ′ = x − vt,

y′ = y,

z′ = z,
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t ′ = t, (6)

is certainly just a special case of Eq. (5), and should be as valid as the Lorentz trans-
formation.

In the following sections, I shall provide a resolution to this paradox: the Galilean
transformation is equivalent to the Lorentz transformation in describing physically
observable phenomena. This view is in accordance with Einstein’s principle of covari-
ance in general relativity.

3 Equivalence of Galilean transformation and Lorentz transformation

In his paper The Foundation of the General Theory of Relativity, Einstein (1916)
advocates for the principle of general co-variance:

“The general laws of nature are to be expressed by equations which hold good for
all systems of co-ordinates, that is, are co-variantwith respect to any substitutions
whatever (general co-variant).
…All our space-timeverifications invariably amount to a determinationof space-
time coincidences. If, for example, events consisted merely in the motion of
material points, then ultimately nothing would be observable but the meetings
of two or more of these points. Moreover, the results of our measurings are
nothing but verifications of suchmeetings of thematerial points of ourmeasuring
instrumentswith othermaterial points, coincidences between the hands of a clock
and points on the clock dial, and observed point-events happening at the same
place at the same time.
The introductionof a systemof reference serves noother purpose than to facilitate
the description of the totality of such coincidences. We allot to the universe four
space-time variables x1, x2, x3, x4 in such a way that for every point-event there
is a corresponding system of values of the variables x1 . . . x4. To two coincident
point-events there corresponds one system of values of the variables x1 . . . x4,
i.e. coincidence is characterized by the identity of the co-ordinates. If, in place of
the variables x1 . . . x4, we introduce functions of them, x ′

1, x
′
2, x

′
3, x

′
4, as a new

system of co-ordinates, so that the systems of values are made to correspond to
one another without ambiguity, the equality of all four co-ordinates in the new
system will also serve as an expression for the space-time coincidence of the
two point-events. As all our physical experience can be ultimately reduced to
such coincidences, there is no immediate reason for preferring certain systems
of co-ordinates to others, that is to say, we arrive at the requirement of general
co-variance.”

The “principle of general covariance” is straightforward enough to establish that the
Galilean transformation is equivalent to the Lorentz transformation.

It is still a common belief that the Galilean transformation is wrong because it
implies infinite signal speed. This is not true. What is true is its converse statement—
infinite signal speed implies the possible implementation of the Galilean transforma-
tion, but not the other way around. When the clock at location A reads time tA, we
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send a signal to location B with infinite speed, and set the clock at B the same as tA.
The clocks at different locations coordinated in such a way will obey the Galilean
transformation.

What is not immediately intuitive is that even with finite signal (light) speed, we
can still coordinate clocks in different locations in such a way that they obey the
Galilean transformation from one reference frame to another. I shall illustrate this in
the following.

Given an arbitrary reference frameK, we adopt Einstein time coordination protocol
in it so that the one-way light speed is a constant c in all directions. I shall call K the
primary Galilean reference frame or simply the primary frame. Note the primary
Galilean reference frame is by arbitrary human choice, instead of the unique choice
dictated by nature as Newton believed.

Notation: We use upper case letters (X ,Y , Z , T ) to denote the space and time
coordinates in the primary frame K.

Now consider another reference frame K′ which has velocity v relative to K in
the X direction. We can again perform the Einstein time coordination protocol in K′,
the space and time coordinates are denoted by (xE , yE , zE , tE ). These clocks in K′
measuring tE are called E-clocks.

Now we define a coordinate transformation inside reference frame K′ as follows.

t
N

def= γ tE + γ v

c2
xE ,

xN

def= 1

γ
xE ,

yN
def= yE ,

zN
def= zE , (7)

where
def= denotes equal by definition. Again notice, Eq. (7) is also just a special case of

themost general coordinate transformation Eq. (5), which is allowed by Einstein. Note
Eq. (7) is not a transformation between two reference frames, but rather the internal
re-coordination of the space coordinates and time coordinate separately for the same
reference frame K′.

Starting from the assumption that (xE , yE , zE , tE ) and (X ,Y , Z , T ) are related by
the Lorentz transformation, it just needs some straightforward calculation to prove
that (xN , yN , zN , tN ) and (X ,Y , Z , T ) are related by the Galilean transformation (see
Fig. 1),

tN = T ,

xN = X − vT ,

yN = Y ,

zN = Z . (8)

I shall call (xN , yN , zN ) the Newton coordinates, and tN the N-time for frame K′.
They do not correspond to what we would measure with physical instruments.
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Fig. 1 Relationship between Lorentz transformation and Galilean transformation

Fig. 2 Analogy in quantum
mechanics: relationship between
Schrödinger’s picture and
Heisenberg’s picture

This can be put in an analogy in quantummechanics. It is similar to the relationship
between the Schrödinger’s picture and Heisenberg’s picture. In the Schrödinger’s
picture, the operators representing physical observables are static while the quantum
states evolve with time. Historically, Heisenberg took a very different approach. In
the Heisenberg’s picture, the state is static while the operators (or infinite dimensional
matrices) representing physical observables evolve with time. If we just look at the
appearances of these two theories, they seem to be totally different and unrelated. It
was Dirac who revealed their relationship. They are related by a basis change in the
Hilbert space. Hence Dirac united the two theories in the framework of the abstract
Hilbert spaces. The Schrödinger’s picture and the Heisenberg’s picture are equivalent,
and they describe the same physical phenomena (Fig. 2). Of course an analogy cannot
substitute for a proof, but it helps us to understand the concepts.
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Equation 7 suggests a practical method to implement a system of clocks called N-
clocks for reference frame K′, which tell the N-time tN . At each location in space we
place an N-clock side by side with the E-clock. The N-clock can be implemented using
an E-clock by embedding a computer chip in it. The computer takes the E-time tE and
its own coordinate xE (and the parameter v) as input and then computes its output tN
according to Eq. (7). This should not be a novel idea, nor difficult in practice, as all
the modern atomic clocks have utilized sophisticated electronic circuits in them.

Another note on the notation of the symbols: we use K and K′ to denote two
reference frames. However, for the simplicity of the appearance of symbols, we do not
use the prime (′) to denote the coordinates in the reference frame K′, but rather, we use
lower cases (without primes), (xE , yE , zE , tE ) and (xN , yN , zN , tN ) for the Einstein and
Newton coordinates in frame K′ respectively. The Einstein and Newton coordinates
in frame K are identical, which are (X ,Y , Z , T ).

There might be an objection to this idea of implementation of N-clocks: the com-
putation on the computer may take a time delay, rather than giving an instant output
from the input. In fact, the implementation of N-clocks can even be achieved in amuch
easier way, without using a computer doing the translation on the fly all the time. We
realize that at any particular location with coordinate xE in K′, tN is linearly related
to tE in such a way tN = γ tE + a, where γ is a scaling factor depending on the speed
v only, and a = (γ v/c2)xE is an offset, which is a constant at each location xE . We
only need to re-calibrate the E-clock to obtain an N-clock by re-labeling the time unit
on the clock by a factor of 1/γ and then adding a constant a once and for all.

Note that now we have two sets of coordinate and time systems for the same
reference frame K′. E-time is no longer the unique God-given time standard for K′.
When we speak of time, we must make clear whether it is E-time or N-time to avoid
confusion, both of which are equally legitimate. Newton time coordination provides
a different simultaneity standard from Einstein simultaneity. When we talk about
distance, we must make clear whether it is E-distance or N-distance. When we talk
about speed, we must make clear what coordinates and time we are using. If we use
E-distance and E-time, we get E-speed. If we use N-distance and N-time, we get N-
speed. Hence the N-speed of light is not a constant in K′, but this is just a different
description. Both describe the same physical phenomena.

The inverse transformation of Eq. (7) can be easily obtained:

tE = 1

γ
tN − γ v

c2
xN ,

xE = γ xN ,

yE = yN ,

zE = zN . (9)

This formulationmight seem the comebackofNewton’s absolute space and absolute
time, and the primary frame K might look like the absolute ether reference frame, but
this is not the case. As we discussed earlier, the primary frame K is an arbitrarily
choice by convention. Any inertial frame can be chosen as the primary frame K. It is
“preferred by humans”, but not “privileged by nature”.
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In reference frame K′ we define the E-velocity to be

uE

def= (
uxE , uyE , uzE

) def=
(
dxE

dtE
,
dyE
dtE

,
dzE
dtE

)
, (10)

and N-velocity to be

uN

def= (
uxN , uyN , uzN

) def=
(
dxN

dtN
,
dyN
dtN

,
dzN
dtN

)
. (11)

It is straightforward to find that E-velocity and N-velocity are related by

uxE = uxN

1 − v(v+uxN )

c2

,

uyE = uyN

γ
(
1 − v(v+uxN )

c2

) ,

uzE = uzN

γ
(
1 − v(v+uxN )

c2

) , (12)

and its inverse transformation is

uxN = uxE

γ 2
(
1 + vuxE

c2

) ,

uyN = uyE

γ
(
1 + vuxE

c2

) ,

uzN = uzE

γ
(
1 + vuxE

c2

) . (13)

Let us look at a few examples. For a light beam with E-velocity uxE = c, it
translates to N-velocity uxN = c − v. For a light beam with E-velocity uxE = −c,
it translates to N-velocity uxN = −(c + v). Take another example. Let v = 0.90c.
A mass particle with E-velocity uxE = 0.99c translates to N-velocity uxN = 0.10c.
E-velocity uxE = −0.99c translates to N-velocity uxN = −1.73c. The magnitude of
N-velocity can exceed c but the physics is the same.Newton coordination is completely
as valid as Einstein coordination. Any physical phenomena which can be described
by Einstein coordination can be described by (or translated to) Newton coordination
as well.

4 Electrodynamics under Galilean transformation

It is also a common belief that the Galilean transformation is incompatible with the
Maxwell equations. A quick rebuttal is that “non-invariant” and “incompatible” are
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different concepts. The latter means “logically contradicting”, while the former does
not.

Suppose in reference frame K, we adopt Einstein coordination x0 = t, x1 =
x, x2 = y, x3 = z and rationalized natural units (Heaviside-Lorentz units and c = 1).
The Maxwell equations in vacuum are in the form

∇ × B − ∂tE = j,

∇ · E = ρ,

∇ × E + ∂tB = 0,

∇ · B = 0. (14)

When the sources are zero, j = 0 and ρ = 0, the electromagnetic wave equations are

(
∂2t − ∇2

)
E = 0,

(
∂2t − ∇2

)
B = 0. (15)

A particle with electric charge q and velocity u is subject to Lorentz 3-force

f = q (E + u × B) . (16)

We can obtain the Maxwell equations in reference frame K′ using the Galilean
transformation. These equations have a different form (and are more complex than
Eq. (14)). This only means that they are not convenient but it does not mean they are
wrong. I shall argue from the following two aspects.
(1) Even if theMaxwell equations in reference frameK′ under Galilean transformation
have a different form than that in K, they describe the same physical phenomena. They
are the same physical law in different forms. Let us take an example in Newtonian
mechanics. With the usual time standard, Newton’s second law (in x-direction) takes
the form of

fx = m
d2x

dt2
. (17)

Now suppose we adopt a new time standard τ with τ = et , Newton’s second law will
take the form

fx = mτ
d

dτ

(
τ
dx

dτ

)
. (18)

Newton’s law is the same but just in a different form. It is only a matter of convenience.
(2) The Maxwell equations are not invariant under Galilean transformation. This is
only the case when the Maxwell equations are written in 3-vector form. If they are
written in 4-dimensional tensor form

∂αF
αβ = jβ,

∂αFβγ + ∂βFγα + ∂γ Fαβ = 0, (19)
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they are covariant under any linear transformations, which include the Lorentz trans-
formation, and the Galilean transformation as well. The only difference is that the
Lorentz transformation is pseudo-orthogonal while the Galilean transformation is not.
But there is no requirement in the principle that a transformation has to be pseudo-
orthogonal. In reference frame K, the spacetime quadratic form is

ds2 = gμνdx
μdxν

= dt2 − dx2 − dy2 − dz2. (20)

The pseudo-metric tensor gμν is diagonal. Under Lorentz transformation, it remains
diagonal. However, under Galilean transformation, it becomes non-diagonal. The
Galilean transformation can be written as

(
x ′)μ = Λμ

ν x
ν, (21)

where Λ is a matrix

Λ =

⎡

⎢⎢
⎣

1 0 0 0
−v 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ . (22)

In reference frame K′,

ds2 = g′
μν

(
dx ′)μ (

dx ′)ν

=
(
1 − v2

) (
dt ′

)2 − 2vdt ′dx ′ − (
dx ′)2 − (

dy′)2 − (
dz′

)2
, (23)

with the pseudo-metric tensor

g′
μν =

⎡

⎢⎢
⎣

1/γ 2 −v 0 0
−v −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥
⎦ , (24)

where γ = 1/
√
1 − v2, and c = 1.

In the following subsections, we shall derive the Maxwell equations in 3-vector
form to show they are just as valid under Galilean transformation. They take more
complex forms but that is only a matter of convenience rather than validity.

In reference frame K, the contravariant and covariant field tensors Fμν , Fμν , and
the 3-vector field strengths E and B are related by

Fμν =

⎡

⎢⎢
⎣

0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

⎤

⎥⎥
⎦ , Fμν =

⎡

⎢⎢
⎣

0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

⎤

⎥⎥
⎦ . (25)
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Under Galilean transformation, the charge and current transform according to

ρ′ = ρ,

j′ = j − ρv. (26)

We also notice the differential operators transform according to

∂t ′ = ∂t + v · ∇,

∇′ = ∇. (27)

In reference frame K′ under Galilean transformation Eq. (6), the contravariant field
tensor is

(
F ′) μν = Λμ

αΛν
βF

αβ

=

⎡

⎢⎢
⎣

0 −E1 −E2 −E3
E1 0 −(B3 − vE2) B2 + vE3
E2 B3 − vE2 0 −B1
E3 −(B2 + vE3) B1 0

⎤

⎥⎥
⎦ . (28)

The covariant field tensor is

F ′
μν = g′

μαg
′
νβF

′αβ

=

⎡

⎢⎢
⎣

0 E1 E2 − vB3 E3 + vB2
−E1 0 −B3 B2

−(E2 − vB3) B3 0 −B1
−(E3 + vB2) −B2 B1 0

⎤

⎥⎥
⎦ . (29)

The contravariant 4-velocity in reference frame K′ is

(
u′) μ = d

(
x ′)μ

ds
= γu′

[
1, u′

1, u
′
2, u

′
3

]tr
, (30)

where the superscript tr denotes matrix transpose and

γu′ = 1/
√
1 − u′2. (31)

The covariant 4-velocity in reference frame K′ is

u′
μ = g′

μνu
′ν

= γu′
[
1/γ 2 − vu′

1, −v − u′
1, −u′

2, −u′
3

]tr
. (32)

The Lorentz 4-force is (
f ′)μ = q

(
F ′)μν

u′
ν . (33)
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When we consider the Maxwell equations under Galilean transformation, the
Galilean transformation only describes how the space and time coordinates trans-
form. There is still another question: what is the transformation law for the EM fields
E and B? In general, the fields E′ and B′ observed in reference frame K′ are not
necessarily the same as those E and B in frame K. We know this as this is the case
of the field transformation in relativistic electrodynamics which employs the Lorentz
transformation for the coordinate transformation. The field transformation in relativity
is motivated by the wish that the Maxwell equations keep the same form in frame K′.
With Galilean coordinate transformation, we know that the Maxwell equations cannot
keep the same form. Then what will be the correct form of field transformation?

In my opinion, the field transformation is not the nature’s law. It can be arbitrary
by convention. Our consideration is again convenience rather than absolute truth.
The EM field as a whole is described by the field tensor Fμν . We view this field
tensor Fμν more essential than the 3-vectors E and B, which are just some names of
the components of Fμν . Because the Lorentz transformation is pseudo-orthogonal,
the contravariant components Fμν and the covariant components Fμν are the same, or
differ by aminus sign. It does notmake a differencewhetherwe use the contravariant or
covariant tensor. However, since theGalilean transformation is not pseudo-orthogonal,
the contravariant components Fμν and the covariant components Fμν are different.
This leaves us freedom of either choosing the contravariant components Fμν or the
covariant components Fμν , or a mixture of them, to be the field E′ and B′. This in turn
leads to different field transformation laws.

The transformation of the field is not directly observable. What matters to the
physical phenomenon is the field together with how the field interacts with matter
(Lorentz force law). In the following subsections, we discuss the four different choices
of using the contravariant or covariant tensors, or a mixture of both, which lead to four
different field transformation laws, the form of Maxwell equations, the equation of
EM waves, as well as the Lorentz force law. In the appendix, we show a proof that all
these approaches are equivalent, meaning leading to the same numerical values of the
Lorentz force, despite the different forms of equations.

In the following subsections, we use the symbols E′ = (E ′
1, E

′
2, E

′
3), B

′ =
(B ′

1, B
′
2, B

′
3) for electric and magnetic field strengths, and auxiliary variables

E ′
1,E

′
2,E

′
3,B

′
1,B

′
2,B

′
3, which can be viewed as the duals of E′ and B′. To avoid

confusion, note in each subsection, these symbols have different definitions, reflecting
different views. (It is an abuse of notation to use the same symbol for different mean-
ings, but these symbols are used in different subsections so that we don’t have a fear
of confusion. The reason for doing so is to make the symbols less messy by omitting
extra subscripts or superscripts to distinguish different versions of them.)

Note that some of the equations in the following formulations could be further
simplified, given the fact that v is a constant, but we choose not to. This way, these
formulas will be applicable in a broader context, namely in rotating reference frames
(Sect. 7), where we only have to replace v with v = ω × r.
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4.1 EM field in the form of contravariant tensor F��

We choose to define the electric and magnetic fields in reference frame K′ as

⎡

⎣
E ′
1

E ′
2

E ′
3

⎤

⎦ def=
⎡

⎢
⎣

(
F ′)10

(
F ′)20

(
F ′)30

⎤

⎥
⎦ ,

⎡

⎣
B ′
1

B ′
2

B ′
3

⎤

⎦ def=
⎡

⎢
⎣

(
F ′)32

(
F ′)13

(
F ′)21

⎤

⎥
⎦ . (34)

This means

(
F ′)μν =

⎡

⎢⎢
⎣

0 −E ′
1 −E ′

2 −E ′
3

E ′
1 0 −B ′

3 B ′
2

E ′
2 B ′

3 0 −B ′
1

E ′
3 −B ′

2 B ′
1 0

⎤

⎥⎥
⎦ . (35)

Comparing with Eq. (28), we find the field transformation in 3-vector form is

E′ = E,

B′ = B − v × E. (36)

The inverse transformation of Eq. (36) is

E = E′,
B = B′ + v × E′. (37)

The Maxwell equations in 3-vector form are

∇′ × (
B′ + v × E′) − (

∂t ′ − v · ∇′)E′ = j′ + ρ′v,
∇′ · E′ = ρ′,
∇′ × E′ + (

∂t ′ − v · ∇′) (
B′ + v × E′) = 0,

∇′ · (
B′ + v × E′) = 0. (38)

This can be simplified to

∇′ × B′ − ∂t ′E
′ = j′,

∇ · E′ = ρ′,
∇′ × E′ + ∂t ′B

′ = (
v · ∇′) (

B′ + v × E′) − v × ∂t ′E
′,

∇ · B′ = −∇′ · (
v × E′) . (39)

The first two equations are Galilean invariant.When the sources are zero, the equations
of electromagnetic wave in vacuum are

[(
∂t ′ − v · ∇′)2 − ∇′2]E′ = 0,

[(
∂t ′ − v · ∇′)2 − ∇′2] (

B′ + v × E′) = 0. (40)
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The Lorentz 4-force is

(
f ′)μ = q

(
F ′)μν

u′
ν

= qγu′

⎡

⎢⎢
⎣

(u′
1 + v)E ′

1 + u′
2E

′
2 + u′

3E
′
3(

1/γ 2 − vu′
1

)
E ′
1 + u′

2B
′
3 − u′

3B
′
2(

1/γ 2 − vu′
1

)
E ′
2 − (u′

1 + v)B ′
3 + u′

3B
′
1(

1/γ 2 − vu′
1

)
E ′
3 + (u′

1 + v)B ′
2 − u′

2B
′
1

⎤

⎥⎥
⎦ . (41)

The Lorentz 3-force is

f ′ = q
{[
1 − v · (u′ + v)

]
E′ + (u′ + v) × B′} . (42)

4.2 EM field in the form of covariant field tensor F��

We choose to define the electric and magnetic fields in reference frame K′ as

⎡

⎣
E ′
1

E ′
2

E ′
3

⎤

⎦ def=
⎡

⎣
F ′
01

F ′
02

F ′
03

⎤

⎦ ,

⎡

⎣
B ′
1

B ′
2

B ′
3

⎤

⎦ def=
⎡

⎣
F ′
32

F ′
13

F ′
21

⎤

⎦ . (43)

We also define auxiliary dual fields E ′
1,E

′
2,E

′
3,B

′
1,B

′
2,B

′
3 such that

(
F ′)μν def=

⎡

⎢⎢
⎣

0 −E ′
1 −E ′

2 −E ′
3

E ′
1 0 −B′

3 B′
2

E ′
2 B′

3 0 −B′
1

E ′
3 −B′

2 B′
1 0

⎤

⎥⎥
⎦ , F ′

μν =

⎡

⎢⎢
⎣

0 E ′
1 E ′

2 E ′
3−E ′

1 0 −B ′
3 B ′

2−E ′
2 B ′

3 0 −B ′
1−E ′

3 −B ′
2 B ′

1 0

⎤

⎥⎥
⎦ . (44)

Comparing with Eq. (29), we find the field transformation in 3-vector form is

E′ = E + v × B,

B′ = B. (45)

The dual field vectors E ′ and B′ are related to E′ and B′ through

E ′ = E′ − v × B′,
B′ = B′ − v × (

E′ − v × B′) . (46)

The inverse transformation of Eq. (45) is

E = E′ − v × B′,
B = B′. (47)
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The Maxwell equations in 3-vector form are

∇′ × B′ − (
∂t ′ − v · ∇′) (

E′ − v × B′) = j′ + ρ′v,
∇′ · (

E′ − v × B′) = ρ′,
∇′ × (

E′ − v × B′) + (
∂t ′ − v · ∇′)B′ = 0,

∇′ · B′ = 0. (48)

This can be simplified to

∇′ × B′ − ∂t ′E
′ = j′ + ∇′ × [

v × (
E′ − v × B′)] + v × (∇′ × E′) ,

∇′ · E′ = ρ′ + ∇′ · (
v × B′) ,

∇′ × E′ + ∂t ′B
′ = 0,

∇′ · B′ = 0. (49)

The last two equations are Galilean invariant.When the sources are zero, the equations
of electromagnetic wave in vacuum are

[(
∂t ′ − v · ∇′)2 − ∇′2] (

E′ − v × B′) = 0,
[(

∂t ′ − v · ∇′)2 − ∇′2]B′ = 0. (50)

The Lorentz 4-force is

(
f ′)μ = q

(
F ′)μν

u′
ν

= qγu′

⎡

⎢⎢
⎣

(u′
1 + v)E ′

1 + u′
2E

′
2 + u′

3E
′
3(

1/γ 2 − vu′
1

)
E ′
1 + u′

2B
′
3 − u′

3B
′
2(

1/γ 2 − vu′
1

)
E ′
2 − (u′

1 + v)B′
3 + u′

3B
′
1(

1/γ 2 − vu′
1

)
E ′
3 + (u′

1 + v)B′
2 − u′

2B
′
1

⎤

⎥⎥
⎦ . (51)

The Lorentz 3-force is

f ′ = q
{[
1 − v · (u′ + v)

]
E ′ + (u′ + v) × B′}

= q
{[
1 − v · (u′ + v)

] [
E′ − v × B′] + (u′ + v) × [

B′ − v × (
E′ − v × B′)]} .

(52)

4.3 EM field in the form of amixture of F�� and F��

We choose to define the electric and magnetic fields in reference frame K′ as

⎡

⎣
E ′
1

E ′
2

E ′
3

⎤

⎦ def=
⎡

⎣
F ′
01

F ′
02

F ′
03

⎤

⎦ ,

⎡

⎣
B ′
1

B ′
2

B ′
3

⎤

⎦ def=
⎡

⎢
⎣

(
F ′)32

(
F ′)13

(
F ′)21

⎤

⎥
⎦ . (53)
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We also define auxiliary dual fields E ′
1,E

′
2,E

′
3,B

′
1,B

′
2,B

′
3 such that

(
F ′)μν def=

⎡

⎢⎢
⎣

0 −E ′
1 −E ′

2 −E ′
3

E ′
1 0 −B ′

3 B ′
2

E ′
2 B ′

3 0 −B ′
1

E ′
3 −B ′

2 B ′
1 0

⎤

⎥⎥
⎦ , F ′

μν
def=

⎡

⎢⎢
⎣

0 E ′
1 E ′

2 E ′
3−E ′

1 0 B′
3 B′

2−E ′
2 B′

3 0 −B′
1−E ′

3 −B′
2 B′

1 0

⎤

⎥⎥
⎦ . (54)

Comparing with Eqs. (29) and (28), we find the field transformation in 3-vector form
is

E′ = E + v × B,

B′ = B − v × E. (55)

In the component form, assuming v is in x direction,

E ′
1 = E1, B ′

1 = B1,

E ′
2 = E2 − vB3, B ′

2 = B2 + vE3,

E ′
3 = E3 + vB2, B ′

3 = B3 − vE2. (56)

The dual field vectors E ′ and B′ are related to E and B through

E ′ = E,

B′ = B.

However, we need to find the relation between E ′,B′ and E′,B′. To do this, we need
to find the inverse transformation of Eq. (55). This is more complex than previous
cases. By Eq. (55), we have

[
I

γ 2 + v ⊗ v
]

· E = E′ − v × B′,
[
I

γ 2 + v ⊗ v
]

· B = B′ + v × E′,

where v ⊗ v is the tensor product of v with itself, which can be viewed as a matrix or
linear transformation acting on a vector, I is the unit tensor or the unit matrix, and
γ = 1/

√
1 − v2. Solving these equations, we obtain the inverse field transformation

E = F
(
E′ − v × B′) ,

B = F
(
B′ + v × E′) , (57)

where F is a matrix whose inverse is

F−1 = I

γ 2 + v ⊗ v.
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In the component form, assuming v is in x direction,

F =
⎡

⎣
1 0 0
0 γ 2 0
0 0 γ 2

⎤

⎦ ,

and

E1 = E ′
1, B1 = B ′

1,

E2 = γ 2 (
E ′
2 + vB ′

3

)
, B2 = γ 2 (

B ′
2 − vE ′

3

)
,

E3 = γ 2 (
E ′
3 − vB ′

2

)
, B3 = γ 2 (

B ′
3 + vE ′

2

)
. (58)

Compare Eqs. (56) and (58) with the relativistic field transformations, we find they are
similar. The relativistic forward and inverse transformations are symmetric regarding
γ , while Eq. (56) involves no γ factor but its inverse Eq. (58) involves a factor of γ 2.
The dual field vectors E ′ and B′ are related to E and B through

E ′ = F
(
E′ − v × B′) ,

B′ = F
(
B′ + v × E′) . (59)

The Maxwell equations in 3-vector form are

∇′ × [
F

(
B′ + v × E′)] − (

∂t ′ − v · ∇′) [
F

(
E′ − v × B′)] = j′ + ρ′v,

∇′ · [
F

(
E′ − v × B′)] = ρ′,

∇′ × [
F

(
E′ − v × B′)] + (

∂t ′ − v · ∇′) [
F

(
B′ + v × E′)] = 0,

∇′ · [
F

(
B′ + v × E′)] = 0. (60)

The purpose of this is only to show that the Maxwell equations can indeed be written
out explicitly in terms of the quantities in frame K′ under Galilean transformation.
To actually solve these equations, it is easier to solve them using variables E and B
satisfying the following equations,

∇′ × B − (
∂t ′ − v · ∇′)E = j′ + ρ′v,

∇′ · E = ρ′,
∇′ × E + (

∂t ′ − v · ∇′)B = 0,

∇′ · B = 0. (61)

This is in fact the same as Eq. (69) in the next subsection. After solving this for E and
B, E′ and B′ can be obtained via the transformation Eq. (55).
When the sources are zero, the equations of electromagnetic wave in vacuum are

[(
∂t ′ − v · ∇′)2 − ∇′2] (

E′ − v × B′) = 0,
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[(
∂t ′ − v · ∇′)2 − ∇′2] (

B′ + v × E′) = 0. (62)

This is because
[(

∂t ′ − v · ∇′)2 − ∇′2
]
is a scalar differential operator while F is a

constant matrix.
The Lorentz 4-force is

(
f ′)μ = q

(
F ′)μν

u′
ν

= qγu′

⎡

⎢⎢
⎣

(u′
1 + v)E ′

1 + u′
2E

′
2 + u′

3E
′
3(

1/γ 2 − vu′
1

)
E ′
1 + u′

2B
′
3 − u′

3B
′
2(

1/γ 2 − vu′
1

)
E ′
2 − (u′

1 + v)B ′
3 + u′

3B
′
1(

1/γ 2 − vu′
1

)
E ′
3 + (u′

1 + v)B ′
2 − u′

2B
′
1

⎤

⎥⎥
⎦ . (63)

The Lorentz 3-force is

f ′ = q
{[
1 − v · (u′ + v)

]
E ′ + (

u′ + v
) × B′}

= q
{[
1 − v · (u′ + v)

]
F

(
E′ − v × B′) + (

u′ + v
) × B′} . (64)

4.4 EM field in the form of amixture of F�� and F��

We choose to define the electric and magnetic fields in reference frame K′ as

⎡

⎣
E ′
1

E ′
2

E ′
3

⎤

⎦ def=
⎡

⎢
⎣

(
F ′)10

(
F ′)20

(
F ′)30

⎤

⎥
⎦ ,

⎡

⎣
B ′
1

B ′
2

B ′
3

⎤

⎦ def=
⎡

⎣
F ′
32

F ′
13

F ′
21

⎤

⎦ . (65)

We also define auxiliary dual fields E ′
1,E

′
2,E

′
3,B

′
1,B

′
2,B

′
3 such that

(
F ′)μν =

⎡

⎢⎢
⎣

0 −E ′
1 −E ′

2 −E ′
3

E ′
1 0 −B′

3 B′
2

E ′
2 B′

3 0 −B′
1

E ′
3 −B′

2 B′
1 0

⎤

⎥⎥
⎦ , F ′

μν =

⎡

⎢⎢
⎣

0 E ′
1 E ′

2 E ′
3−E ′

1 0 −B ′
3 B ′

2−E ′
2 B ′

3 0 −B ′
1−E ′

3 −B ′
2 B ′

1 0

⎤

⎥⎥
⎦ . (66)

Comparing with Eqs. (28) and 29, we find the field transformation in 3-vector form is

E′ = E,

B′ = B. (67)

We find the dual field vectors E ′ and B′ are related to E′ and B′ through

E ′ = E′ + v × B′,
B′ = B′ − v × E′. (68)
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The Maxwell equations in 3-vector form are

∇′ × B′ − (
∂t ′ − v · ∇′)E′ = j′ + ρ′v,

∇′ · E′ = ρ′,
∇′ × E′ + (

∂t ′ − v · ∇′)B′ = 0,

∇′ · B′ = 0. (69)

This can be simplified to

∇′ × B′ − ∂t ′E
′ = j′ − (

v · ∇′)E′,
∇′ · E = ρ′,

∇′ × E′ + ∂t ′B
′ = (

v · ∇′)B′,
∇ · B′ = 0. (70)

The second and the fourth equations are Galilean invariant. When the sources are zero,
the equations of electromagnetic wave in vacuum are

[(
∂t ′ − v · ∇′)2 − ∇′2]E′ = 0,

[(
∂t ′ − v · ∇′)2 − ∇′2]B′ = 0. (71)

If v is in the direction of x , Eq. (71) can be simplified,

1

γ 2 ∂2x ′E′ + ∂2y′E′ + ∂2z′E
′ + 2v∂t ′∂x ′E′ − ∂2t ′E

′ = 0,

1

γ 2 ∂2x ′B′ + ∂2y′B′ + ∂2z′B
′ + 2v∂t ′∂x ′B′ − ∂2t ′B

′ = 0. (72)

The Lorentz 4-force is

(
f ′)μ = q

(
F ′)μν

u′
ν

= qγu′

⎡

⎢⎢
⎣

(u′
1 + v)E ′

1 + u′
2E

′
2 + u′

3E
′
3(

1/γ 2 − vu′
1

)
E ′
1 + u′

2B
′
3 − u′

3B
′
2(

1/γ 2 − vu′
1

)
E ′
2 − (u′

1 + v)B′
3 + u′

3B
′
1(

1/γ 2 − vu′
1

)
E ′
3 + (u′

1 + v)B′
2 − u′

2B
′
1

⎤

⎥⎥
⎦ . (73)

The Lorentz 3-force is

f ′ = q
{[
1 − v · (u′ + v)

]
E′ + (u′ + v) × B′}

= q
{[
1 − v · (u′ + v)

]
E′ + (u′ + v) × (

B′ − v × E′)} . (74)
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4.5 Discussions

Let us summarize the four different approaches. These are distinguished by different
field transformation rules (now switching to SI units):

(1) E′ = E,

B′ = B − 1

c2
v × E. (75)

(2) E′ = E + v × B,

B′ = B. (76)

(3) E′ = E + v × B,

B′ = B − 1

c2
v × E. (77)

(4) E′ = E,

B′ = B. (78)

4.5.1 About the relativist view

Consider a solenoid with a magnet bar inside it. The magnet is at rest and the solenoid
is moving. From the point of view of the magnet, there is magnetic field B in space
but E = 0. The electron in the wire has a velocity u and is subject to Lorentz force
f = q(u × B). However, because motion is relative, from the point of view of the
solenoid, the solenoid itself is at rest and the electron has zero velocity u = 0. The
force on the electron is f = qE with E �= 0. This serves as part of the motivation
of the special theory of relativity in Einstein’s 1905 paper (Einstein 1905). With the
Lorentz transformation, the relativistic field transformation is

E′ = γ (E + v × B) − (γ − 1)v̂(v̂ · E),

B′ = γ
(
B − v

c2
× E

)
− (γ − 1)v̂(v̂ · B), (79)

where v̂ is the unit vector in the direction of v.
However, this relativistic field transformation is not the only field transformation

that explains the relativity. It is just a convention for the purpose of convenience. The
Galilean transformation togetherwith field transformation choice Eq. (77) can embody
this principle of relativity as well.

4.5.2 About the Galilean approximations

Le Bellac and Lévy-Leblond (1973) published a paper with the title “Galilean elec-
tromagnetism”. There are two differences between their study and ours. First, they
pursue a theory which is the approximation of the relativistic electrodynamics in the
low speed limit. Second, they try to make this approximate theory in Galilean invari-
ant form. By contrast, our formulation of electrodynamics is completely exact and
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rigorous without any approximation, and furthermore, our formulation is not Galilean
invariant, which is expected.

They studied two Galilean limits, the electric limit |E| � c |B| and the magnetic
limit c |B| � |E|. The field transformations under these two limits do correspond to
our transformations Eqs. (75) and (76). However, they claim that transformation Eq.
(77) does not correspond to any Galilean limit. This should not be the case. As can be
seen, in the low speed approximation γ ≈ 1, the Lorentz field transformation Eq. (79)
is reduced to Eq. (77). With |E| � c |B|, Eq. (77) is further reduced to the electric
limit Eq. 75. With c |B| � |E|, Eq. (77) is further reduced to the magnetic limit Eq.
(76).

Rousseaux (2008) gave an example showing that using Eq. (77), the composition
of transformations from K to K′ and from K′ to K′′ is different from that from K
directly to K′′. This issue can also be dismissed. We must bear in mind that the
electrodynamics in 3-vector form is not Galilean invariant. Our derivation of all these
field transformations Eqs. (75) through (78) is based on the assumption that K is the
primary reference frame (which can be viewed as “preferred frame” with isotropic
speed of light). Eq. (77) applies to transformations from K to K′, and from K to K′′,
but it does not apply from K′ to K′′, which must take a different form, because K′ is
not the primary reference frame.

5 Selleri’s paradox and a new resolution

Selleri’s paradox (1997) refers to the setting of Sagnac’s experiment on a rotating disk,
which has angular velocity ω. At one point A on the rim of the disk, two beams of
light are sent in opposite directions along the circle with radius r . Because the disk is
rotating, the two beams of light take different times Δt1 and Δt2 to travel along the
circle and come back to A. Note these time intervals are measured by a single clock
at a single location. This implies anisotropic speed of light along the circle. This is
confirmed by the fringe shift in the experiment and is known as Sagnac effect. Selleri
applies the transformation in Eq. (1) to the circle on the disk and shows that the light
speed in the direction of rotation and the opposite direction are

c+ = c

1 + v/c
, c− = c

1 − v/c
, (80)

where v = ωr and the ratio of the two is

c−
c+

= c + v

c − v
�= 1. (81)

Selleri suggests to take the limit of r → ∞ and ω → 0 while keeping v = ωr
constant. In this limit, acceleration is v2/r → 0, which locally is effectively an inertial
reference frame. The ratio c−/c+ is a constant during this limit process, and in the
limit, c−/c+ �= 1 implies anisotropic light speed in the inertial reference frame. This
contradicts the principle of constancy of the speed of light in special relativity (Fig. 3).
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Fig. 3 Selleri’s paradox with discontinuity argument in the limit of zero acceleration on a large rotating
disk

The M-M experiment is related to Selleri’s paradox. The earth is not exactly an
inertial frame. It is orbiting the sun and has acceleration. We can imagine that the
earth is fixed to the rim of a huge disk rotating around the sun. This is exactly the
Selleri’s limit of large r but small ω on a rotating disk.

Several authors (Rizzi and Tartaglia 1998, 1999; Budden 1998; Weber 2004; Kass-
ner 2012) have discussed this paradox, reflecting conflicting views. Selleri argues
for the absolute simultaneity and the existence of a “privileged reference frame” and
claims special relativity is wrong. A relativist contends to “circumvent” the paradox:
the culprit that leads to this apparent contradiction is the “central synchronization”,
which is different from “Einstein synchronization”. If we adopt “Einstein synchro-
nization” on the circle, the “local speed” of light is still a constant c in both directions.

Rizzi et al. (2004) have more detailed discussions of Selleri’s transformation.
The coordinate transformations are closely related to synchronization of clocks in
a reference frame, as each coordinate transformation determines one synchronization
standard. This paper discusses the validity of internal coordinates transformations and
it is stressed that the observable quantities are dependent on the reference frame, but
should be independent of the coordinates chosen within a given frame.

In an inertial reference frame K, let r , ϕ be the polar coordinates and t be the time
coordinate. Suppose a disk is rotating with angular velocity ω relative to K. We also
use polar coordinates r ′, ϕ′ in the rotating reference frame K′, and let t ′ be the time
in K′. The kinematics in the rotating reference frame has been well studied (Møller
1952) using the transformation

t ′ = t,

r ′ = r ,

ϕ′ = ϕ − ωt . (82)

(Selleri’s inertial transformation Eq. (1) works only on the circle (the rim) to have
constant two-way speed of light, but not on the entire disk.)
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Fig. 4 Resolution of Selleri’s
paradox

We may call Eq. (82) the “rotational Galilean transformation” or “Galilean-like
transformation”. We may call any transformation “Galilean-like transformation” if it
has the Galilean or Newtonian character t ′ = t . On the rim of the disk with radius r ,
light has different linear velocities, c − ωr in the direction of rotation, and c + ωr in
the opposite direction. In Selleri’s limit of r → ∞, ω → 0 while keeping v = ωr
constant, Eq. (82) transfers to Galilean transformation as in Eq. (6). In the limiting
inertial reference frame, light has velocity c−v in one direction and c+v in the opposite
direction. However, the speed of light depends on the convention of time coordination
standard. We have concluded that the Galilean transformation is equivalent to the
Lorentz transformation. This offers the most straightforward resolution of Selleri’s
paradox (see Fig. 4).

Selleri used the transformation in Eq. (1) to make his argument of the paradox,
instead of the rotational Galilean transformation in Eq. (82). The cause for Selleri’s
paradox is his absolutist view. He believes the transformation in Eq. (1) is the only
correct transformation of nature’s choice and the Lorentz transformation is wrong.
Mansouri and Sexl (1977) already argued that the transformation in Eq. (1) is equiva-
lent to the Lorentz transformation. In fact, the one-way speed of light has no absolute
meaning. All transformations including Eq. (1), the Galilean transformation and the
Lorentz transformation, are equivalent.

6 Selleri’s limit: Sagnac effect andMichelson-Morley experiment

Rizzi andRuggiero (2004) edited a bookRelativity in Rotating Frames, which includes
18 papers contributed by 23 authors and a round-table discussion with heated debate
of these authors. The key issues are Ehrenfest paradox and Sagnac effect, the synchro-
nization and coordinate transformation for the rotating disk. This book is stimulating.
As I mentioned in Sect. 1, there are three different philosophical views: the absolutist,
the relativist and the conventionalist. Each group is opposed to the other two groups
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in opinion. The papers compiled in this book reflect all these three views. Especially
the dialogues in the round-table are a debate of all these three views.

The M-M experiment and the Sagnac experiment were conducted in the late 1800s
and early 1900s in order to detect the absolute motion of the earth. Sagnac observed
fringe shift while M-M did not.

There is a debate what Sagnac effect proves. Absolutists, like Sagnac himself,
believe it is the proof of the existence of the ether and anisotropic speed of light,
while relativists believe it is the proof of relativity theory. Sagnac himself adopted the
rotational Galilean transformation Eq. (82), which results in anisotropic light speed
on the circle. The relativists adopt the “Einstein synchronization” on the circle, which
results in the constant speed of light on the circle, but it also results in a discontinuity,
or “time-lag” around the circle. In general, the “time-lag” around any closed path
(Gourgoulhon 2013) is

Δt ′ = 1

c2Γ0

∮
Γ 2v · dl ≈ 2

c2
ω · A , (83)

where Γ = 1/
√
1 − ω2r2/c2, Γ0 is the Γ where the path starts and ends, v is the

velocity of the point on the disk relative to K, A is the area vector enclosed by the
closed path. The approximation holds when ωr � c. In my opinion, these are just
equivalent explanations, like the two sides of the same coin.

What will happen if we put an M-M interferometer on the rim of a big rotating
disk? We can imagine that the earth is fixed to the rim of a huge disk rotating around
the sun. The light making a round trip along one arm of the M-M interferometer is
a closed path. In theory, the fringe shift should not be exactly zero. However, if the
size of the arm is very small compared with the radius of the rotating disk (distance
between the earth and the sun), its enclosed area is approximately zero. Hence the
fringe shift should be very close to zero (much less than the experimental uncertainty)
and no significant fringe shift can be detected. This is exactly the Selleri’s limit of
large r but small ω on a rotating disk. The earth also has spin. This is also a rotating
system. For the similar reason, on the surface of the earth, where M-M experiment
was conducted, it is close to the Selleri’s limit. In the limit of inertial frame, the M-M
experiment results in no fringe shift, regardless whether light speed is constant or not.
The light speed is only the result of the convention of time coordination, rather than
absolute truth.

7 Selleri’s limit: connection to electrodynamics in rotating frames

Schiff (1939) studied the Maxwell equations in rotating frames under the “rotational
Galilean transformation”

t ′ = t,

x ′ = x cosωt + y sinωt,

y′ = −x sinωt + y cosωt,
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z′ = z. (84)

This is the Cartesian form of the same transformation as in Eq. (82). He used the
covariant field tensor only, which corresponds to our case of subsection 4.2. He studied
theMaxwell equations in the coordinate form. If those equations in component formare
written in the 3-vector form, they should look identical to our Eq. (49). The difference
is, in their equations in the rotational context, v = ω × r is a variable, while in Eq.
(49), v is a constant. This should not be a surprise. For the rotational transformation
Eq. (84), the charge and current transform as

ρ′ = ρ,

j′ = j − ρv, where v = ω × r, (85)

and the differential operators transform as

∂t ′ = ∂t + v · ∇, where v = ω × r,

∇′ = ∇, (86)

This is in the same apparent form as Eqs. (26 and (27, except that v is no longer a
constant.

The rotationalGalilean transformationEq. (84) and the rectilinearGalilean transfor-
mation Eq. (6) are different, but share certain similarities.Within a small neighborhood
on the rotating disk, the rotational Galilean transformation can be approximated by the
rectilinear Galilean transformation, and in the Selleri’s limit, the rotational Galilean
transformation transits to the rectilinear Galilean transformation.

Our formulation of electrodynamics under Galilean transformation in Sect. 4 works
for rotating reference frame under rotational Galilean transformation Eq. (84) as well,
if we replace the constant velocity v with v = ω × r. Care needs to be taken about
whether v is constant when we try to simplify the formulas, because a simplification
involving the differential operator ∇ may be valid when v is constant, but not valid
when v = ω × r.

8 Conclusion

A new paradox is rendered and resolved with the argument that the Galilean transfor-
mation and the Lorentz transformation are equivalent and equally valid. This leads to a
straightforward resolution of Selleri’s paradox. The Maxwell equations, equations of
electromagneticwaves in vacuumand the Lorentz force formulas underGalilean trans-
formations are investigated, which may find practical applications. The coordinate,
vector component, and tensor component values found via the Galilean transforma-
tion do not have the values one would measure with instruments, but are generalized
values. The author would like to thank the anonymous referees for their constructive
suggestions.
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Appendix

In subsections 4.1 through 4.4, we discussed the Maxwell equations, equations of EM
waves and the Lorentz force laws under different field transformations, all of which are
under the assumption of Galilean coordinate transformation. These equations under
different field transformations take very different forms. This may raise a question to
some people: which field transformation leads to a definition of E′ and B′ which is the
“physical EM field” in the reference frame K′?We have commented in Sect. 4 that the
numerical values of E′ and B′ themselves do not have absolute meanings. It is how
the EM field interact with matter (Lorentz force law) that has a physical meaning. In
subsections 4.1 through 4.4, the Maxwell equations and Lorentz force laws all appear
in very different forms, however, whenwe put the field transformations and the Lorentz
force law together, we can compare the numerical values of Lorentz force, and we
find that all of which are exactly equal. In the following, we “prove” this is indeed the
case. The proof is trivial, but might be illustrative for the readers. The reason that the
proof is trivial is that to obtain the Lorentz force in all the subsections, we used the
same definition of the Lorentz 4-force using the field tensor Fμν (Eq. 33), which is
the starting point in the first place. In the same reference frame, if the Lorentz 4-force
is the same, so is the Lorentz 3-force and vice versa. The Lorentz force derived under
the Galilean transformation even agrees with the Lorentz force in the relativistic case
using Lorentz transformation.

When we discuss the formula for the Lorentz force law in frame K′, it should be
expressed in the field E′, B′, and the velocity of the test charge u′, all measured in
frame K′. These are Eqs. (42), (52), (64) and (74). However, E′ and B′ have different
definitions in these formulas and we cannot compare them directly. To compare the
numerical value of these formulas, it is a good idea that we express E′ and B′ in
terms of E and B. Since subsection 4.4 has the simplest field transformation, we start
with subsection 4.4 first, and then compare all other subsections with it. At the end,
we also compare with the Lorentz force in K′ in relativity resulted from Lorentz
transformation, and we find they are also the same.
(4.4) Using the field transformation (copied from Eq. 67)

E′ = E,

B′ = B,
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and the Lorentz force law (copied from Eq. 74)

f ′ = q
{[
1 − v · (u′ + v)

]
E′ + (u′ + v) × (

B′ − v × E′)} ,

we obtain
f ′ = q

{[
1 − v · (u′ + v)

]
E + (u′ + v) × (B − v × E)

}
. (87)

(4.1) Using the field transformation (copied from Eq. 36),

E′ = E,

B′ = B − v × E,

and the Lorentz force law (copied from Eq. (42))

f ′ = q
{[
1 − v · (u′ + v)

]
E′ + (u′ + v) × B′} ,

we obtain the same formula as Eq. (87).

(4.2) Using the field transformation (copied from Eq. 45)

E′ = E + v × B,

B′ = B,

and the Lorentz force law (copied from Eq. 52)

f ′ = q
{[
1 − v · (u′ + v)

] [
E′ − v × B′] + (u′ + v) × [

B′ − v × (
E′ − v × B′)]} ,

we obtain the same formula as Eq. (87).

(4.3) Using the field transformation (copied from Eq. 55)

E′ = E + v × B,

B′ = B − v × E,

and the Lorentz force law (copied from Eq. 64)

f ′ = q
{[
1 − v · (u′ + v)

]
F

(
E′ − v × B′) + (

u′ + v
) × B′} ,

and by Eq. (57), we obtain the same formula as Eq. (87).

(*) Equivalence to the relativistic case
The relativistic field transformation (copied from Eq. 79) is

E′ = γ (E + v × B) − (γ − 1)v̂(v̂ · E),

B′ = γ (B − v
c2

× E) − (γ − 1)v̂(v̂ · B).
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It will be more convenient to use the component form in the calculations, which we
omitted. The Lorentz force is invariant from frame K to frame K′:

f ′ = q
(
E′ + u′ × B′) . (88)

However, we must be cautious in that the velocity u′ in this formula is different from
u′ in Eq. (87). The quantity u′ in Eq. (88) is the E-velocity but u′ in Eq. (87) is the
N-velocity (see Eq. (13) in Sect. 3). After the conversion between E-velocity and N-
velocity, it can be shown that Eq. (88) is the same as Eq. (87). Once again, we find that
the Galilean approach to electrodynamics is equivalent to the Lorentz-Minkowskian
electrodynamics. The only difference is which is more convenient.

Recently, Speake and Ortolan (2020) published a review paper on the Maxwell
equations in rotating frames.They compared the approaches of Schiff (1939) and Irvine
(1964). Schiff and Irvine adopted different methods and the forms of the Maxwell
equations are quite different. Shiff’s result corresponds to our subsection 4.2. Irvine
used a method of orthogonal tetrads (also known as moving frames ). The method of
moving frames is a very useful technique in differential geometry. Let (x ′, y′, z′, t ′) be
a local coordinate chart in any open neighborhood of a pseudo-Riemannian manifold.
The arena in which to discuss rotating reference frames is the Minkowski space (flat
spacetime), which is a trivial example of pseudo-Riemannian manifolds. However,
the general language and theory of pseudo-Riemannian manifold is useful when we
apply general curvilinear coordinates. In the tangent space at each point (x ′, y′, z′, t ′),
we can use the natural basis (∂x ′ , ∂y′ , ∂z′ , ∂t ′). These basis vectors in general are not
pseudo-orthogonal. Of course, the basis of any vector space is not unique. In the
tangent space at any point, we can always adopt a pseudo-orthogonal basis. These
pseudo-orthogonal basis vectors vary smoothly from point to point in the manifold.
These frames at each point form a smooth frame field. The dual of the vector fields in
the frame fields is a differential 1-form field. However, this 1-form field is not exact.
This is the case of rotating reference frames. There does not exist any coordinate chart
(x ′, y′, z′, t ′) such that the natural bases (∂x ′ , ∂y′ , ∂z′ , ∂t ′) are pseudo-orthogonal at all
points in an open neighborhood of the manifold. However, this does not prevent us
from using pseudo-orthogonal basis at each point, and the pseudo-orthogonal moving
frames (orthogonal tetrads). We can make transformations to change from the natural
basis (∂x ′ , ∂y′ , ∂z′ , ∂t ′) to the pseudo-orthogonal basis locally at any time.
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