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Efficient and valuable strategies provided by large amount of available data are urgently needed for a sustainable electricity system
that includes smart grid technologies and very complex power system situations. Big Data technologies including Big Data
management and utilization based on increasingly collected data from every component of the power grid are crucial for the
successful deployment and monitoring of the system. This paper reviews the key technologies of Big Data management and
intelligent machine learning methods for complex power systems. Based on a comprehensive study of power system and Big
Data, several challenges are summarized to unlock the potential of Big Data technology in the application of smart grid. This
paper proposed a modified and optimized structure of the Big Data processing platform according to the power data sources
and different structures. Numerous open-sourced Big Data analytical tools and software are integrated as modules of the
analytic engine, and self-developed advanced algorithms are also designed. The proposed framework comprises a data interface,
a Big Data management, analytic engine as well as the applications, and display module. To fully investigate the proposed
structure, three major applications are introduced: development of power grid topology and parallel computing using CIM
files, high-efficiency load-shedding calculation, and power system transmission line tripping analysis using 3D visualization. The
real-system cases demonstrate the effectiveness and great potential of the Big Data platform; therefore, data resources can
achieve their full potential value for strategies and decision-making for smart grid. The proposed platform can provide a

technical solution to the multidisciplinary cooperation of Big Data technology and smart grid monitoring.

1. Introduction

Along with the fast installation of computers and communi-
cation smart devices, the power industry is also experiencing
tremendous changes both in the scale of power grid and in
the system complexity. To build up a modern combined
energy system of various types of energies including gas, cold,
and heat, based on the smart power system, has become a
trend of development in the energy industry. As discussed
in many literatures [1-3], a modern energy system has sev-
eral major features: (1) high penetration of new energy
resources are supported and utilized effectively; (2) it pro-
vides complementation and integration of different types of
energies such as electricity, gas, cold, and heat; and (3) an
interconnected and relatively open system, distributed

resources, and a consumption side are extensively involved.
A huge amount of measurement data including production,
operation, control, trading, and consumption are continu-
ously collected, communicated, and processed in an amazing
speed faster than any period of history [4].

Appropriate and efficient data management and analysis
systems are urgently needed to leverage massive volumes of
heterogeneous data in unstructured text, audio, and video
formats; furthermore, useful information needs to be
extracted and shared to meet the fast-growing demands of
high-accuracy and real-time performance of modern power
and energy systems [5]. Hidden values in power system big
data cannot be effectively revealed by means of traditional
power system analysis; therefore, Big Data technology and
analytics are also in desperate need.
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(i) Power system operating data
(SCADA, EMS, load, etc.)
(ii) Management data (government,

internet, GPS, etc.)
(iii) Device data (electric equipment,

sensors, information sets, etc.)
(iv) Structured data, semi-structured data,
and unstructured data.

(i) Need data mining, information

extraction, etc.

(ii) Costumer engagement, understanding
usage patterns, and finding potential
influence factors;

(iii) Improve power system stability, reduce
energy waste, and develop competitive
strategies.

Power
dig data
Qv

Complexity

(i) The speed requirement for
collecting, processing, and
providing valuable information;
(ii) Real-time tasks (equipment
reliability monitoring, state

estimation, etc.);
(iii) Need parallel computing engine.

(i) The increasing number of smart
metering devices (PMUs);

(ii) Much cheaper data storage
elements;

(iii) Complex communication
networks;
(iv) Faster data collecting speed, etc.

FIGURE 1: Power system Big Data 4V characteristics.

The Chinese power industry has considerable interests in
Big Data analytics associated with power generation and
management in order to effectively cope with severe
challenges such as limited resources and environmental
pollutions, among many others [6]. Actually, Big Data tech-
nology has already been successfully applied as a powerful
data-driven tool for solving numerous new challenges in
power grid, such as price forecasting [7, 8], load forecasting
[9], transient stability assessment [10], outlier detection
[11], and fault detection and analysis [12], among others
[13, 14]. Detailed discussions about Big Data issues and
application are reviewed in [15], as well as the insights of
Big Data-driven smart energy management in [16]. Major
tasks of the architecture for these applications are similar,
which focus on two major issues: big power data modeling
and big power data analysis.

1.1. Power Grid and Big Data. Supervisory control and data
acquisition (SCADA) devices are mainly used in traditional
power industries to collect data and to secure grid operations,
providing redundant measurements including active and
reactive power flows and injections and bus voltage magni-
tudes [17]. However, the sampling rate of SCADA is slow,
and unlike traditional SCADA systems, the phasor measure-
ment unit (PMU) is able to measure the voltage phasor of the
installed bus and the current phasors of all the lines con-
nected with that bus. In particular, PMUs are collecting data
at a sampling rate of 100 samples per second or higher; there-
fore, a huge amount of data needs to be collected and man-
aged. To be specific, the Pacific Gas and Electric Company
in the USA collects over 3TB power data from 9 million
smart meters across the state grid [18]. The State Grid
Corporation of China owns over 2.4 hundred million smart
meters, making the total amount of collected data reach
200 TB for a year, while the total number of data in informa-
tion centers can achieve up to 15PB. Big Data is also often

recognized as challenging in data volume, variety, velocity,
and value in many applications [19, 20], and the “4V”charac-
teristics are reflected in the following aspects considering
applications in the power system, which is illustrated in
Figure 1.

It is possible to get insights from the power system overall
Big Data to improve the power efficiency, potentially influ-
ence factors of the power system status, understand power
consumption patterns, predict the equipment usage condi-
tion, and develop competitive marketing strategies. The 4V
characteristic can support the whole process of the power
system, which is illustrated in Figure 2.

1.2. Challenges. From the above-mentioned research status of
Big Data technology and its application in many aspects of
the power system, it is easily concluded that Big Data man-
agement and analytics are certain development trends of
future smart grids. However, there are still challenges that
exist in this research area, and strategies and technologies
for unlocking the potential of Big Data are still at the early
stage of development. First of all, most existing power system
utilities are not prepared to handle the growing volume of
data, both for data storage and data analytics. On the one
hand, traditional machine learning or statistical computing
methods are designed for single machines, and an efficient
extension of these methods which can be utilized for parallel
computing or for large-scale data is urgently needed. On the
other hand, most of the analytic methods used in the power
system are not suitable to handle Big Data; thus, the gap
between Big Data analytics and power system applications
still exist, and high-performance computing methods are
required. Then, a big hurdle is the lack of an intelligent plat-
form integrating advanced methods for Big Data processing,
knowledge extraction and presentation, and support in
decision-making. It is believed that the success combination
of Big Data technologies and power system analysis will bring
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FIGURE 2: Sketch map of Big Data supporting whole process of the power system.

a number of benefits to the utility grid in the above-
mentioned aspects. According to these challenges, this paper
will present a novel Big Data platform for complex power
system status monitoring and evaluation using machine
learning algorithms.

2. Big Data Technologies for Complex Power
System Monitoring

With the increasing varieties of data recording devices, much
more unstructured power Big Data are being recorded
continuously. Some particular data need to be collected or
analyzed under different scales or projected to another
dimension to describe the data. Therefore, some conflicts
between data structure or semanteme need to be solved when
projecting or transforming heterogeneous data into a unified
form; the uncertainty and dynamics should also be taken into
consideration for data fusion. Based on these concerns, the

Big Data platform is designed to consist a generalized man-
agement model according to the complex logical relations
between data objects, representing the data by normalization
and extraction of the principal information. Challenges exist
in how to design a flexible data management system architec-
ture that accommodates multimode power data. This section
introduces the state of the art of Big Data management tech-
nologies and data stream and value management.

2.1. State of the Art of Big Data Management Technology. In
terms of distributed structure for Big Data management,
the most popular designs are Hadoop [21] and Spark [22].
Hadoop was established in 2005, by Apache Software
Foundation, with the key technologies of Map/Reduce [23],
Google File System (GFS) [24] developed by Google Lab,
and unrelational and high-volume data structure Bigtable
[25], which have formed a novel computing distribution
model. Base on the techniques above, Hadoop and open-
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source projects like Hive and Pig have constituted the entire
Hadoop ecosystem [26].

Hadoop, based on the distributed structure idea, enjoys
many advantages such as high extensibility and high fault
tolerance, and it is able to process heterogeneous massive
data at high efficiency and low cost. In the Haddop
ecosystem, files stored in HDFS (Hadoop Distributed File
System) uses the subordinate structure, which are divided
into several blocks; each of them has one or more duplicates
distributed on different datanodes, thus the redundancy can
prevent data from any loss caused by hardware failures.
MapReduce is a programming model and an associated
implementation for processing and generating large data-
sets. The computation can be specified by a map and a
reduce function, and the underlying runtime system auto-
matically parallelizes the computation across large-scale
clusters of machines; the flowchart is given in Figure 3.
With the high concurrent processing way, several comput-
ing processes are organized simultaneously, thus the data
handling capacity can be increased from terabyte level to
petabyte level.

It can be seen that Hadoop technology is able to provide
a reliable storage and processing approach; however, there
are still limitations due to the Map and Reduce process.
For a complex computation process, MapReduce needs a
massive amount of Jobs to finish, and the relationships
between these Jobs are managed by developers. Moreover,
MapReduce is less supportive for interactive data and real-
time data processing.

Similar to the computing frame of Hadoop MapReduce,
another open-source tool Spark, developed by University of
California Berkeley AMP lab, has the same advantages of
MapReduce. Further, Spark can keep the intermediate results
in RAM rather than write them in HDFS; thus, Spark can be
better suitable for recursive algorithms such as data mining
and machine learning applications. As a result, Spark is
usually applied as a complement to Hadoop.

The key technology to Spark is the Resilient Distributed
Dataset (RDD) [27], which is an abstraction to resolving
the issue of slower MapReduce frameworks by sharing the
data in memory rather than in disks, saving a large amount
of I/O operations performed to query the data from disks.

Therefore, RDD can greatly improve the recursive operation
of machine learning algorithms and the interactive data
mining methods.

Recently, a number of Big Data management systems
have been developed to handle Big Data issues. For example,
four representatives, MongoDB [28], Hive [29], AsterixDB
[30], and a commercial parallel shared-nothing relational
database system, have been evaluated in [31], with the pur-
pose of studying and comparing Big Data systems using a
self-developed microbenchmark and exploring the trade-
offs between the performance of a system for different oper-
ations versus the richness of the set of features it provides. In
terms of Big Data platform and tools that are suitable for
power system and smart grid utilities, main contributions
are made by leading IT companies like IBM [32], HP [33],
and Oracle [34]. A number of IBM cases are done in order
to improve the energy efficiency. For example, Vestas
increases wind turbine energy production using a Big Data
solution to more accurately predict weather patterns and
pinpoint wind turbine placement [35]. CenterPoint Energy
applies analytics to millions of streaming messages from
intelligent grid devices enabling it to improve electric
power reliability [36]. In the meantime, some newly estab-
lished small technology companies, like C3 IoT [37], Opower
[38] which has been acquired by Oracle in June 2016, Solargis
[39], and AutoGrid [40], are doing Big Data analytics
research and development according to the electricity
market demand.

The large Internet companies in China, namely, Baidu
[41], Aliyun [42], and Tencent [43], are all developing Big
Data platform, tools, and applications according to their
own business. For example, Baidu has been first in the world
to open its Big Data engine to the public, which consists of
key technologies of Big OpenCloud, Data Factory, Baidu
Brain, and others. In this way, Baidu has won the prior
opportunities to cooperate with the government, organiza-
tions, manufacturing companies, medical services, finance,
retail, and education fields. Other companies like Inspur
[44], Huawei [45], and Lenovo [46] also provide hardware
from computer servers and storages to the Big Data analytic
software, which have laid a good foundation for the develop-
ment of the Big Data platform.
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2.2. Data Stream and Value Management. One of the most
important ways to form Big Data is real-time data streaming,
which is recorded continuously with time series. The data
stream can be limitless, bringing a critical challenge for the
data management system to store and process the streaming
data. A definition was first proposed by Guha and Mcgregor
in [47] that streaming data is considered to be an ordered
sequence which can only be read one or a few times. There-
fore, data stream management technology is the key issue
to handling Big Data storage and processing.

Figure 4 shows the comparison between the traditional
data processing model and the data stream processing model.
For the traditional database, data storage is statical and not
queried or updated often. Users send data manipulation lan-
guage (DML) statements as queries, and the system will
return the results after searching in the database. Therefore,
there are inevitable I/O exchanges generated which will slow
down the searching efficiency. For real-time processing of
large amounts of streaming data, the traditional approach
cannot meet the requirement. On the contrary, only synopsis
data structure is stored instead of storing the entire dataset,
and the data volume is much less and simpler to query com-
pared to the traditional model.

The early research and design of the Big Data stream
management system was only for single task applications.
In order to handle streaming data with multiple tasks, the
continuous query language was first proposed by Terry in
Tapestry [48] in 1992, mainly used for filtering E-mails and
the bulletin board system. Then it was followed by Mark
Sullivan of Bell Labs in 1996, who designed a real-time
monitoring tool named Tribeca [49] for the application of
network surveillance. Tribeca was able to provided a limited
number of continuous query languages and query opera-
tions. NiagaraCQ [50] was cooperatively developed by the
Oregon Graduate Institute and University of Wisconsin,
which support continuous query language and monitoring
of durable and stable datasets in the entire wide-area net-
work. In addition, Viglas and Naughton from the same pro-
ject proposed a rate-based optimization on the issues of data
streaming query speed [51]. In order to meet the require-
ments of data stream applications, a general data stream
management is needed, and the official concept of a data
stream management system was proposed in [52].

Nowadays, the most popular general data stream man-
agement system can be summarized as follows: Aurora
[53], which was developed by the Massachusetts Institute of

Technology, University of Brown, and Brandeis University,
has a simple but special frame and can be used especially
for data streaming surveillance based on a key technology
of trigger networks. Aurora has a good balance on accuracy,
response time, resource utilization, and practicability, but
with a drawback of a simple query approach using the load
shedding technique. TelegraphCQ [54], developed by the
University of California Berkeley, is mainly used for sensor
networks, which comprise a front end, a sharing storage,
and a back end. The data stream in a constantly changing
and unpredictable environment can be adaptively referred
in any query. However, the approximate query mechanism
will be neglected when the resource is insufficient. STREAM
[55], developed by Stanford University, is the prototype sys-
tem based on relational database. Under the circumstances of
limited resources, STREAM can extend the searching lan-
guage and execute the queries with high efficiency; thus,
STREAM has a better performance on the continuous query.
Other very famous data stream management systems are also
released to cope with data stream challenges, such as Storm
by Twitter [56], Data Freeway by Facebook [57], Samza by
LinkedIn [58], TimeStream by Microsoft [59], and Gigascope
by AT&T [60].

Data value in power systems can provide guidance
towards data acquisition, data processing, and data applica-
tion. Data valuation can be determined by several factors,
including data correlation, data fidelity, and data freshness
[61]. To be specific, data correlation can be considered from
two aspects: one is how it is related with power dispatch, fault
evaluation, and risk assessment; the other one is the correla-
tion within the data itself, where the data value will be higher
when the correlation is higher. Data fidelity refers to the con-
formance of the collected data to the real data situation.
Defects of collected data always exist due to the sampling
rate, noise, and data acquisition equipment from different
devices across the entire grid; thus, the real data situation
may not be revealed. At last, data freshness is also an impor-
tant factor which determines the data value, especially in
power systems where most data is streaming data, which is
recorded without interrupt.

3. Analytical Tools and Methods for Power
System Big Data

3.1. Big Data Analytical Open-Source Tools. Data analysis
approaches such as machine learning play an important role
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TaBLE 1: Open-source/free software of Big Data machine learning method brief descriptions.

Brief descriptions

6
Name Date Developer
James Rawlings, University of
Qctave 1993 Wisconsin-Madison; John
Ekerdt
Weka 1994 University of Waikato
R 1996 Ross Thaka, Robert Gentleman
Soeren Sonnenburg and
Shogun 1999 Gunnar Raetsch
http://AForge.net 2008 Andrew Kirillov, Fabio
Caversan
Grant Ingersoll, Apache
Mahout 2009 Software Foundation
. UC Berkeley AMPLab, The
MLIb 2009 Apache Software Foundation.
scikit-learn 2010 David Cournapeau, Matthieu
Brucher, etc.
Bioinformatics Lab, University
Orange 2010 of Ljubljana, Slovenia
CUDA-Convnet 2012 Alex Krizhevsky
ConvNet]S 2012 Andrej KarPathy, Stanford
University
Cloudera Oryx 2013 Sean Owen, Cloudera Hadoop

Distribution

A high-level language for numerical computations;
suitable for solving linear and nonlinear problems;
mostly compatible with Matlab, batch-oriented
language [64].

Can be applied directly or called from a self-developed
Java code and well-suited for developing new machine
learning schemes [65].

A language and environment for statistical computing
and graphics; provides more than 70 packages of
statistical learning algorithm; highly extensible [66].

It provides a wide range of unified machine learning
methods; easily combines multiple data representations,
algorithm classes, and general purpose tools; rapid
prototyping of data pipelines and extensibility of new
algorithms [67].

It is an open-source C# framework in the fields of
Computer Vision and Artificial Intelligence; image
processing, neural networks, genetic algorithms, fuzzy
logic, machine learning, robotics, etc. [68].

It is an environment for quickly creating scalable
machine learning applications; a framework to build
scalable algorithms; has mature Hadoop MapReduce

algorithms; suitable for Scala + Apache Spark, H20, and
Apache Flink [69].

It is the Spark implementation of machine learning
algorithms; easy to write parallel programs; and has
potential to build new algorithms [70].

It is built on NumPy, SciPy, and matplotlib in Python
environment; accessible, reusable in various contexts,
and with simple and efficient tools [71].

It is a data visualization and data analysis software; has
interactive workflows with a large toolbox and a
visualized process design based on Qt graphical interface
[72].

It is a machine learning library with a built-in GPU
acceleration; has been written by C++; with the CUDA
GPU processing technology by NVidia [73].

It is a JavaScript library for training deep learning
models in the browser; is able to specify and train
convolutional networks; comprises an experimental
reinforcement learning module [74].

It provides simple real-time large-scale machine
learning and predictive analytics infrastructure; is able to
continuously build/update models from large-scale data

streams and query models in real time [75].

in power systems as algorithms can be trained using histori-
cal data collected over time, providing useful information for
system operators. As historical data is collecting at an
increasing speed with large volume, effective machine learn-
ing approaches are urgently needed in discovering valuable
information and providing to power system operators. Big
Data is stored in a distributed way on multiple computers;
thus, it is not appropriate for all machine learning methods
to process. Moreover, if data analytics needs to be finished
on a single computer, it may be too large to fit into the main
memory. Most traditional libraries/tools, such as R [62],

Weka [63], and Octave [64], implemented machine learning
algorithms in a single-threaded fashion by design and are not
able to analyze large volumes of distributed data. More
recently, advanced modern Big Data processing platforms
are designed and implemented with parallel machine learn-
ing algorithms in order to achieve high efficiency. First of
all, this section gives a comprehensive literature survey of
state-of-the-art machine learning libraries and tools for Big
Data analytics in Table 1.

From Table 1, it can be seen that along with the rapid
development of the computer technology, a hot favorite of
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developing machine learning library/tools started in the early
1990s. In almost a decade, the research trend moved forward
to distributed and large volumes of data from the traditional
single machine algorithm design. Octave is the earliest devel-
oped machine learning package, performing numerical
experiments using a language that is mostly compatible with
Matlab. Similarly, Weka was also developed by universities,
which makes this free software suitable for academic use by
integrating general purpose machine learning packages. In
particular, R has been widely used in both academia and
industry due to the comprehensive statistical computing
and graphics software environment. As mentioned above,
Octave, Weka, and R are designed for single-threaded com-
puting and thus are not able to handle large volumes of
power system data.

In recent years, the R community has developed many
packages for Big Data processing. For example, the biglm
package [76] is able to perform linear regression for large
data, and the bigrf [77] package provides a Random Forest
algorithm in which trees can be grown concurrently on a sin-
gle machine, and multiple forests can be built in parallel on
multiple machines then merged into one. Another group of
R packages, such as hive [78], focus on providing interfaces
between R and Hadoop, so that developers can access HDFS
and run R scripts in the MapReduce paradigm.

Among the oldest, most venerable of machine learning
libraries, Shogun was created in 1999 and written in C++,
but is not limited to working in C++. In terms of supported
language, Shogun can be used transparently in such languages
and environments: as Java, Python, C#, Ruby, R, Lua, Octave,
and Matlab, thanks to the SWIG library [79]. Another
machine learning project designed for Hadoop, Oryx comes
courtesy of the creators of the Cloudera Hadoop distribution.
Oryx is designed to allow machine learning models to be
deployed on real-time streamed data, enabling projects like
real-time spam filters or recommendation engines.

3.2. Machine Learning and Statistical Processing Methods

3.2.1. Machine Learning Algorithms. Besides the powerful
open-source algorithms or tools mentioned above, machine
learning and statistical processing methods are also applied
to support handling various issues of the power data. Basic
machine learning algorithms are embedded in different
open-source libraries/tools. Table 2 gives a comprehensive
study and comparison.

There are many benefits for the modern power system
since machine learning algorithms have been applied in
many aspects of power systems successfully. Firstly, system
stability and reliability have been remarkably increased.
Many literatures have reported impressive experimental
results of various machine learning algorithms with applica-
tions in oscillation detection, voltage stability, fault or tran-
sient detection and restoration, islanding detection and
restoration, postevent analysis, etc. [80-83]. With the emer-
gence of the Big Data analytics and smart grid technology,
the above-mentioned monitoring and detection methods
have been greatly improved, and an increasing number of
novel approaches are being studied. For instance, real-time

identification of dynamic events using PMUs is proposed in
[84]; based on data-driven and physics models, security of
power system protection and anomaly detection are greatly
improved, thanks to the rich synchrophasor data.

Secondly, power equipment utilization and efficiency are
greatly increased. In the power industry, the issues of waste of
equipment resources are difficult to handle, and data
resource is independent, thus it is impossible to evaluate
the exact status of each asset. Big Data analytics can provide
better validation and calibration of the models, eliminate the
independence of data resources, and help operators under-
stand the operating characteristics and life cycles of the
equipments. For example, a data-driven approach for deter-
mining the maintenance priority of circuit breakers is intro-
duced in [85]; the proposed method can consider both
equipment-level condition monitoring parameters and
system-level reliability impacting indices; thus, the mainte-
nance priority list can be generated.

Thirdly, Big Data visualization can help operators
improve situation awareness and assist decision-making.
Machine learning and data analytics only produce numerical
results or two-dimensional charts and diagrams, which need
operators with professional skills or experience to give accu-
rate and timely decision. A Big Data platform with 3D visu-
alization in [86] manages massive power Big Data with
multimode heterogeneous characters, showing the tripping
lines and affected areas based on a 3D environment. Thus,
the operators can make quicker and more reliable decisions
and take possible preventive actions under the circumstance
of thunder and lightning weather.

3.2.2. Statistical Processing Control Methods. Statistical pro-
cessing control methods originally are applied in industrial
quality control, employing statistical methods to monitor
and control a process based on historical and online data. In
our early work, some data-driven methods based on linear
principal component analysis (PCA) [87] were applied in
power system data analysis [88], setting up a distributed adap-
tive learning framework for wide-area monitoring, capable of
integrating machine learning and intelligent algorithms in
[89]. In order to handle power system dynamic data and non-
linear variables, dynamic PCA [90] and recursive PCA [91]
were also developed to improve the model accuracy. It is
worth mentioning that linear PCA is unable to handle all pro-
cess variables due to the normal Gaussian distribution
assumption imposed on them, and many extensions using
neural networks have been developed [92, 93]. To address
the challenges of handling the redundant input variables,
obtaining higher model accuracy, and utilizing non-
Gaussian distributed variables, an improved radial basis func-
tion neural network model-based intelligent method is also
proposed in the early work [94]. The neural input selection
is based on a fast recursive algorithm (FRA) [95, 96], which
was proposed for the identification of nonlinear dynamic sys-
tems using linear-in-the-parameter models. It is possible to
utilize optimization methods in order to get more accurate
models by tuning algorithm-specific parameters, such as par-
ticle swarm pptimization (PSO), genetic algorithm (GA), dif-
ferential evolution (DE), artificial bee colony (ABC), and ant
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TaBLE 2: Comparisons of open-source machine learning tools/algorithms for Big Data.
. Open source/free software
Category Algorithm Weka R Shogun  Mahout MLib  Orange  Oryx
Logistic regression v v N v N
(Complementary) naive Bayes v v v v v
Decision tree v N v
Classification Neural networks +/ v
SVM v v v v
Random forest v v N v/
Hidden Markov models v v/
Linear regression i N N N v
) Generalized linear models v v
Regression ) )
Lasso/ridge regression N N v
Decision tree regression v vV
k-means v v v % v %
Fuzzy k-means +/ v
Clustering
Gaussian mixture model (GMM) v
Streaming k-means v
Alternating least squares (ALS v v v VA
Collaborative filtering 8 4 )
Matrix factorization-based v
Singular value decomposition (SVD v v/ v/
Dimensionality Reduction 8 o P ( ) )
Principal component analysis v N v N
o o Stochastic gradient descent) v v/
Optimization primitive o
Limited-memory BFGS (L-BFGS) v ~
TF-IDF v
Feature extraction
Word2Vec N
. ot o FP growth v v
requent pattern minin
d P 8 Association rules v N v

colony optimization (ACO), among other heuristic methods.
The proper tuning of the algorithm-specific parameters is a
very crucial factor which affects the performance of the
above-mentioned algorithms. The improper tuning of
algorithm-specific parameters either increases the computa-
tional effort or yields the local optimal solution. In our early
work [97-99], teaching-learning-based optimization (TLBO)
has been utilized for training an RBF neural network battery
model. The TLBO method does not have any algorithm-
specific parameters and significantly reduces the load of tun-
ing work.

These methods mentioned above can be programmed
and integrated as part of the analysing engine to support
the processing of the power Big Data. Therefore, the data
processing engine can support overall system operation and
control by building a dynamic, global, and abstract power
data model, based on which consequences are inferred and
decisions are made. A detailed method comparison can be
found in Table 3.

The fundamental assumption for many standard data-
driven methods such as PCA, PLS, and LDA is that the

measurement signals follow multivariate Gaussian distribu-
tions. As introduced in Table 3, PCA and PLS have similar
principals to extract latent variables, but they perform in dif-
ferent ways. PCA tries to extract the biggest variance from the
covariance matrix of the process variables, while PLS
attempts to find factors or latent variables (LVs) to describe
the relationship of output and input variables. PCA and
LDA are also closely related in finding linear combinations
of variables to explain data. However, LDA deals with the dis-
crimination between classes, while PCA deals with the entire
data samples without considering the class structure of the
data. Similar to PLS, SIMs require both the input process data
and the output data to form input-output relations. A brief
comparison among the above-discussed basic data-driven
methods is given in Table 4.

The issues of Gaussian distribution assumption on
data, requirement of input-output relationships, the num-
ber of principal components or latent variables, and the
computational complexity for these methods are compared
in this table. In addition, LDA is comparable with PCA
and the datasets should be well documented in order to
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TABLE 3: An overview of state-of-the-art intelligent processing methods.

Category Method Descriptions Applications
. PCA SUmmarizes the variation in a Pattern recognition [100], dimension reduction
Principal component correlated multiattribute data to a set of ;
. . [101], feature extraction [102], process
analysis (PCA) uncorrelated components, a linear L
.. .. . monitoring [103].
combination of the original variables.
PLS can find the fundamental relations
. between two data matrices, and latent Power load forecasting [104], performance
Partial least squares (PLS) . . .
dard variables are needed to model the evaluation of power companies [105], etc.
Standar covariance structure in these spaces.
Linear discriminant LDA finds a linear Cf)mblnatlon of Face recognition [106], feature selection for
analysis (LDA) features that characterizes or separates power system security assessment [107]
two or more classes of objects or events. ’
Subspace identification SIMs are powerful tools for 1@ent1fymg the Power oscillatory state space model [108],
state space process model directly from s .
methods (SIM) data power system stability analysis [109], etc.
RPCA is a generalization of PCA to time
. series; the eigenvector and eigenvalue  Voltage stability moitoring [110], power system
Recursive PCA . . . .
matrices are updated with every new data fault location detections [111].
i . sample.
ime-varyin
i DPCA includes dynamic behavior in the
Dvnamic PCA PCA model by applying a time lag shift Industrial monitoring [112, 113], dynamic
n method while retaining the simplicity of ~economic evaluation of electrical vehicles [114].
model construction.
Igiﬁﬁgssg;iitsi;nsg;ﬁigfﬁjgg?;;?g; Power equipment assessment [115], real-time
Kernel PCA/PLS then to compute the PCs in that feature fault diagnosis [116], power system monitoring
[117], etc.
. space.
Nonlinear

Neural networks

Neural networks are computational
models that can be used to estimate or
approximate unknown nonlinear
functions.

Dimension reduction [118, 119], voltage
stability assessment [120], fault location
detection [121], etc.

Independent component
analysis (ICA)

Gaussian mixture models

Non-Gaussian (GMM)

Support vector data
description (SVDD)

ICA decomposes multivariate signals into
additive subcomponents which are
independent non-Gaussian signals.

Fault detection [122], power quality monitoring
[123], and estimation [124].

GMM describe an industrial process by
local linear models using finite GMM and
Bayesian inference strategy.

Power flow modeling [125], power load
modeling [126].

SVDD defines a boundary around normal
samples with a small number of support
vectors.

Classification, process monitoring [127],
oscillation modes detection [128], etc.

TABLE 4: A brief comparison among basic data-driven methods.
PCA PLS LDA SIM
Gaussian distribution v N N
Input-output relationship v/ v
Number of principal components v
Number of latent variables N
Computational complexity Low Medium Medium Medium

offer detailed information about the normal operating con-
dition and faulty cases. SIM does not impose any special
assumption on the process data since it only investigates
the input-output relationship, and different threshold com-
putation methods are available for Gaussian and non-
Gaussian distributed data. The number of PCs and LVs

are important design parameters in PCA and PLS
methods, which can affect modeling performance. The
main computation burden comes from performing SVD
on the covariance matrix of different dimensions; thus,
the standard PCA has lower computational cost over other
basic methods.
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TaBLE 5: Comparisons of the non-Gaussian data methods.
Method Data assumption Parameters Disadvantages
Can be described as a linear combination of non- (1) High computational cost
ICA Gaussian variables Number of ICs (2) Hard to determine the control limit
. . Multiple parameters in (1) Complicated to train the models

GMM Can be described by local linear models the model (2) Hard to determine the number of local models
Kernel parameters in (1) Hard to tune the kernel parameters

SVDD No strict assumption of data distribution P (2) Trade-oft between accurate boundary and low

the model

false alarm control limit

For time-varying process methods, recursive and adap-
tive methods are able to track slow-varying processes with a
stable model structure. However, the model updating may
be carried out randomly if no appropriate updating scheme
is available. Meanwhile, dynamic process monitoring
methods are easy to implement in practice, but the number
of dynamic steps significantly affects the monitoring results
and the window size is difficult to be determined.

Compared to linear monitoring methods, nonlinear
approaches can be used in much wider applications due to
the flexibility of nonlinear functions, which can model non-
linear relationships between variables. Especially for the ker-
nel methods, various nonlinearities can be modelled by
introducing different kernel functions. Similarly, neural net-
works are also capable of modeling any kind of nonlinearity
theoretically. However, there are still some drawbacks; for
example, the structure of the neural networks is difficult to
determine and the training of the network parameters is also
computationally demanding. A similar issue exists to kernel-
based methods and an appropriate kernel parameter tuning
method is needed, and the selection of a kernel function
is not a trivial issue. A new approach to tackle the issues
of representing nonlinear behavior as well as the non-
Gaussian distributed variables is urgently needed.

For non-Gaussian distributed data, the basic methods
cannot perform well due to the Gaussian distribution
assumption. Alternatively, ICA, GMM, and SVDD are three
most widely used and promising methods for non-Gaussian
process monitoring. Although these methods were developed
separately, they are actually highly related to each other.
Sometimes, these methods can even be combined, and they
are also capable of handling more than only one data charac-
teristic. For example, ICA is used to describe the measure-
ment signals as a linear combination of non-Gaussian
variables, while GMM has a similar assumption that the pro-
cess dataset can be described by several local linear models.
Moreover, the calculation of control limits for ICA-based
non-Gaussian process monitoring involves kernel density
estimation, which is commonly used for SVDD. Detailed
comparative advantages and disadvantages of these methods
are listed in Table 5.

4. A Real-System Case

In this paper, a Big Data platform integrated with data man-
agement and analytical engine is proposed as a real-system
case study. This platform was designed to meet the special

condition of power grid in South China, such as large-scale,
complex geographical and weather conditions and AC/DC
mixed operation over long distances. Big Data technologies
are applied to this power network to assist with condition
monitoring and state estimation of the transmission and dis-
tribution systems, collecting multiplatform power data and
realizing high-efficiency processes and analysis of data from
the power grid at different levels.

4.1. The Framework of Electric Power Big Data Platform. The
framework of the electric power Big Data platform consists of
database, data interface, Big Data Management system, ana-
Iytic engine with various machine learning tools and algo-
rithms, and application and 3D visualization modules; a
detailed structure is given in Figure 5. The first challenge is
to set up an eflicient database for the large volume of multi-
source heterogeneous power data which are collected
through different sources. A traditional power system data-
base is designed to store structured data files using tables;
thus, the size of storage is limited and the data operation effi-
ciency is low. For Big Data platforms, various data are col-
lected, for example, operational data collected from the
production management system and energy management
system, real-time data recorded from an online monitoring
system and equipment monitoring system, and other forms
of heterogeneous data of weather files, geography informa-
tion, images, and video data. In terms of data status, histori-
cal data, real-time data, and data streaming are all needed for
Big Data processing and analysis. This platform integrates
several data storages according to each data structure, so that
the platform can provide useful and timely information to
assist decision-making by processing large amounts and dif-
ferent data structures with high efficiency. All the informa-
tion and knowledge can be integrated to provide strategies
for system operation and evaluation, system inspection,
and status estimation for power equipments and the entire
power grid.

In order to efficiently manage and store the multisource
Big Data, this paper proposes a special data acquisition
structure. For various databases, SQOOP is a tool designed
for efficiently transferring bulk data between HDES and
structured datastores such as relational databases (MySQL,
Oracle). For messages between databases and the platform,
MQTT (message queuing telemetry transport) is chosen as
part of the data interface. MQTT is well known as an
“Internet of Things” connectivity protocol, and it was
designed as an extremely lightweight published/subscribed
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FIGURE 5: Big Data processing and analysing platform for electric power system condition monitoring.

messaging transport. For files such as documents and
working logs of each equipment, transmission lines, and
substations, FTP (file transfer protocol) is the common
tool to transfer through the Internet to the platform.

Based on this data interface, power system data collected
by smart devices can be managed in real time. Data prepro-
cessing, including data verification, outlier removal, transfor-
mation, and evaluation process, can be realized to provide a
solid and practical database for the analysis procedure. More-
over, other relative unstructured data such as weather condi-
tion, lighting and storms, geography information, and
human activities (local population, age distribution, profes-
sionals, behavior and active pattern, internet sentiment, and
so on) can be connected to a certain extent with the power
load, power generation, consumptions, electricity market,
and so on. These data sources mentioned above are impossi-
ble to be processed and analyzed simultaneously through the
traditional way; only this novel approach using Big Data to
deal with the challenges can establish a more comprehensive
knowledge model of the city power grid.

4.2. High-Performance Analytical Engine. To effectively man-
age the Big Data is only the first step; the key issue is to set up
an analytic engine with high efficiency. Based on the func-
tional modules and the need for power system applications,
this particular analytic engine can provide with several
practical functions, such as operation risk evaluation,

status estimation, and decision-making support. The detailed
structure of the Big Data computational engine is given in
Figure 6.

This analytical engine integrates a number of open-
source basic algorithm packs and self-developed algorithms.
The open-source algorithm packs mentioned in Section 3
have been developed and tested by researchers and compa-
nies for many years. For example, Apache Spark, a fast and
general engine for large-scale data processing, can be used
interactively with Scala, Python, and R shells. Many powerful
computing libraries are integrated in Apache Spark, such as
numerical computing tool NumPy, science computing tool
SciPy, data analysing library Pandas, scalable machine learn-
ing library MLIib [70], API for graphs and graph-parallel
computation GraphX [129], and so on. In addition, this plat-
form has combined an interactive developing and operating
environment IPython and Jupyter [130]. Effective power grid
decision-making depends critically on anlytic methods in the
platform. Therefore, effective methods for the real-time
exploitation of large volumes of power data are needed
urgently. Robust data analytics, high-performance computa-
tion, efficient data network management, and cloud comput-
ing techniques are critical towards the optimized operation of
power systems.

For self-developed algorithms, spatial-temporal correla-
tion analysis is able to mine both the strong and weak con-
nections among the numerous variables in a power grid, by
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setting up a power system spatial-temporal model and a data-
driven model based on the process history database. Model-
ling methods are provided, including artificial neural
networks, linear and nonlinear analysis methods, Gaussian-
based kernel methods, regression and classification methods,
and clustering methods. Pattern recognition methods for
spatial-temporal correlations are provided, and the spatial
proximity weights, time delay, and correlation effect are
calculated and quantized [131]. This idea is suitable for ana-
lysing the consumption behaviors of citizens in different
locations and time, as well as the effect on power transmis-
sion lines by the power grid surroundings including geo-
graphic information, weather variations, human activities,
and road vehicles and traffic situations [132]. A knowledge
base of interconnected factors within the entire city grid
can be set up for analysis and predictions.

This proposed distributed computational engine is the
key element of the entire Big Data platform; many functional
modules can be developed based on these open-source tools.
It is believed that this novel approach will gradually change
the traditional way of power system analysis and operation,
which is also the only efficient way to realize future smart
grids with high level of automation and intelligence.

4.3. 3D Visualization. The geographic information system
(GIS) has been widely used in electric power systems
[133, 134], which is vital for improving the operation effi-
ciency of the electric power system. It can maintain, manage,
and analyze power data and integrate power network models,
maps, and related data in a solution for desktops, webs, and
mobile devices. Most power GIS systems mainly adopt a
two-dimensional map as the visualization model. However,

2D GIS has significant limitations in terms of presentation
and analysis of geospatial and power data, and it is difficult
to display panorama information of power running status.
The proposed Big Data platform adopts a web-based visuali-
zation method based on Cesium and 3D City Database
(3DCityDB) [135] to construct a three-dimensional pano-
rama electric power visualization system, which is given as
in Figure 7.

The 3D models of electric tower, line, equipment, and
geographical entity (buildings, roads, etc.) will be visualized
in Cesium scene and managed by a Cesium manager. In the
server side, Java Servlet and JavaServer Pages for power-
related data processing functions reside in Tomcat which
directly communicate with web client and process client
requests. The two-dimensional map requests will be submit-
ted to the Geoserver, while three-dimensional map requests
will be processed by a 3DCityDB web feature service. 3DCi-
tyDB is a free open-source package consisting of a database
scheme and a set of software tools to import, manage, ana-
lyze, visualize, and export virtual 3D city models according
to the CityGML standard. In this architecture, 3DCityDB
has two important tasks: one is to convert a two-
dimensional electric map model to a three-dimensional
model and save into the PostgreSQL database, and the
second is used to provide a three-dimensional web feature
service for a power system client based on Cesium.

Based on the model calculation and Big Data analytical
engine, the visualization of spatial information and power
system applications can be realized in the way of providing
services. Thus, the power system equipments and power grid
can be merged together with GIS and revealed on the map, as
well as the environmental factors. Therefore, many demands
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of power grid visualization can be reached, including real- CIMIE file update on
time monitoring, analysis, and decision-making, among ftp
others. The development of the 3D visualization system can l Y
Import CIM/E data to

provide an optimal way of presenting the huge amount of
information and improve the situation awareness of system
operators as well as the novel explanation of newly appeared
information; thus, the accuracy of decision-making for the
entire power system can be greatly increased.

5. Application Study

5.1. Development of Power Grid Topology and Parallel
Computing Using CIM Files. Power element data, connec-
tions, and their status are stores as common information
model (CIM) files in the power system, which are significant
for power system analytics. The first step is to extract the con-
nectivity between each electric point as data to be stored in
the relational database. For most of the analytic methods,
the above-mentioned CIM file extraction is applied to fit in
the relational database. However, a topology analysis needs
plenty of correlation analyses between multiple and complex
tables; it is hard to meet the demand of real-time and fast-
speed processing requirement. The proposed platform in this
paper develops a fast-processing scheme for the power grid
topology setup; thus, the analysis can be realized with high
efficiency. The diagram is given in Figure 8.

The proposed platform detects any update of CIM files
which were transmitted into the FTP end, load new data into
memory, and correlate with other structured data using
Spark SQL, generating a preprocessed data table. After that,
a fast search according to “physical-electrical-physical” rules
in the power grid is applied to set up a topology of the grid.
The whole process is realized based on the Spark SQL data-
base and parallel computation; thus, the analysis efficiency
is greatly improved, thanks to the fast and parallel correla-
tion analysis. Under this framework, many tasks can be

File update detected
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L v
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setup correlations
Gather data, compute

sparkSQL

4{

!

per-unit values. Topology analysis
based on “physical-
l electrical-

physical” pattern

]

Analysis using topology
result, output of the
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F1GURE 8: Fast-speed analysis flowchart for CIM files.

done easily including analysis result extraction, power grid
topology setup, power system branch model calculation,
and “bus-branch” model analysis and other functions.
Therefore, this platform is able to provide a database and
analytical engine for power grid large-scale parallel compu-
tation, real-time status analysis for smart grids, and other
useful applications.

5.2. High-Efficiency Load-Shedding Calculation. The calcula-
tion of load-shedding in the power system can quantify how
much loss the real system is undergoing after equipment fail-
ure in an objective way; thus, it can measure the operation
risks and provide significant information for decision-
making of equipment reconditioning or replacement. The
actual reduction of load-shedding for different types on each
electrical point is needed for the calculation; thus, it is very
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TaBLe 6: The comparisons of parallel computing with single
machine results.

Machines Model Memory Cores Executor Time
Machines ~ YARN 60G 30 30 11 min
Single Local 200G 20 20 2.5hours

time-consuming to calculate power grid risk evaluation with
plenty of predefined fault scenarios. In the proposed plat-
form, a calculation scheme based on Spark and Compute
Unified Device Architecture (CUDA) is applied, as shown
in Figure 9.

The complete load-shedding scheme contains two stages:
offline test stage and online parallel computing stage. The
computation tasks are firstly divided into different working
regions on Spark, then Matlab algorithms are packed and
called, and further processing of each computation task is
transmitted to working threads on every division, where par-
allel computing is realized. After that, results at each step are
collected progressively; thus, the risk evaluation tasks for
multiple scenarios can be finished. For real-system cases, a
total number of 6000 scenario files with 1.2 GB size are calcu-
lated according to the flowchart given in Figure 9, and the
comparison with calculation time on a single machine is
given in Table 6.

It can be easily seen that parallel computing is able to
solve the problem of low efficiency when risk evaluation in
multiscenarios is taken in the power system. The load level
of each electrical point can be monitored dynamically, and
the topology change of power grid due to any system main-
taining or drop out of multiple power system units can also
be calculated with high efficiency, therefore, the computation
time is greatly shortened.

5.3. Power System Transmission Line Tripping Analysis Using
3D Visualization. With the support of the Big Data platform,

transmission line trip records, power quality data, weather
data, and other related data can be collected, in order to
monitor and analyze the transients. In addition, a three-
dimensional visualization system is developed to merge
together all the analysis results with geographic, landforms,
and even weather conditions, then display in a very intuitive
way. Therefore, situation awareness of system operators is
greatly enhanced. Two main tasks are introduced in this sec-
tion: firstly, the correlation between line trips and power
transients is analyzed by employing statistical methods, espe-
cially the distribution patterns of line tripping and power
quality voltage dips against the lasting time. Secondly, the
interconnection rules among line tripping, weather condi-
tion, voltage dips, and voltage swells and other disturbances
are exploited.

In order to analyze the correlation between transmission
line trips and voltage dips, multisource data is needed,
consisting of (1) transmission line tripping data, recording
tripping time, fault description, fault type, and so on, and
(2) voltage disturbance data, including monitoring location,
disturbance type, happening time, lasting time, and magni-
tude. The first step to analyze the transients is data fusion,
combining two sets of data according to the unified time tags,
and the preprocess diagram is given in Figure 10.

For analysis of voltage dips at different voltage levels of
110kV and 10kV, the voltage dip recordings are divided into
four kinds, including voltage dips caused by line trips at
110kV and 10kV, not by line trips at 110kV and 10kV.
Taking 10kV voltage level for example, the scatter plot is
generated and shown in Figure 11.

In this figure, each symbol represents a transient event,
with duration as the x-axis and magnitude as the y-axis. In
order to separate the transient events by their causing rea-
sons, the blue dot represents the voltage dip caused by line
trips while the red x shows that the occurring voltage dip
was not due to line trips, both at the 10kV voltage level.
The x-axis has taken the logarithm for the purpose of
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showing the distribution more clearly. Generally speaking, it
can be seen from Figure 11 that at the 10kV level, the lasting
time of voltage dips caused by line trips is less than that
caused by other reasons, as shown in the left ellipse, with
duration around 100ms. And the voltage dips caused by
other reasons last for a longer time, as enclosed in the right
ellipse.

The scattered points only show the distribution of
durations against magnitudes of the voltage dips. It is
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necessary to combine substation coordinates, maps, and
other geographic information with these transients; thus,
the transmission line status and the affected substation can
be shown in terms of voltage dip magnitudes and durations.
Therefore, the possible influence of transmission line trip-
pings to the substations can be visualized to system opera-
tors. The Big Data platform employs a 3D simulation
display system, using data from the management layer as well
as the model output directly from the computing engine,
including 3D models of power line and electric equipment,
3D building models, geospatial data, and power attribute
data. Geospatial data as a 3D virtual environment can show
geographic objects (e.g., roads, bridges, and rivers) around
the electricity network. The generated 3D virtual environ-
ment with power transmission line situation is given in
Figure 12.

In Figure 12, the green line represents the normal opera-
tional transmission line, while the red lines are with the
appearance of the line trips. In order to show the voltage
transient status, a cylinder with blue color shows the voltage
dip magnitude, and the pink cylinder is the duration, and the
name of the affected transmission lines is shown in the float-
ing red tags above the cylinders. Therefore, the affected area
can be directly visualized through the 3D virtual environ-
ment, and the dynamic change of the power grid operational
status is easier to control for the system operators. If any
transient happened, actions can be taken in time to prevent
any enlargement of the accident.

6. Discussion and Conclusion

This paper reviewed both the issues of Big Data technologies
for power systems and employed a Big Data platform for
power system monitoring and evaluation analysis. Based on
the review of Big Data management technology and analyti-
cal tools and machine learning methods, a case study of the
proposed novel Big Data platform for a power system is given
with three application cases introduced. The framework of
the power system Big Data platform consists of database col-
lecting power data from all different parts across the grid,
data interface, Big Data management system integrating dif-
ferent management technologies, analytic engine with vari-
ous machine learning tools and algorithms, applications,
and 3D visualization modules for further optimizing the
strategy and decision-making assistance.

Based on the various power data sources, the proposed
platform has integrated different data interfaces and distrib-
uted data storage according to the data structure; thus, the
platform is able to handle traditional structured data, semi-
structured data, and unstructured data simultaneously. For
the analytical engine, both open-source tools and self-
developed models are integrated as modules. In our early
work, intelligent processing methods have been proved to
be able to handle linear, dynamic, nonlinear, and non-
Gaussian distributed variables by setting up accurate and
efficient models. This has enabled the decision-making sub-
system to focus on generating an optimized equipment main-
tenance strategy and providing a global view for situation
awareness and information integration.
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In order to demonstrate the effectiveness of the proposed
platform, three real-system cases are introduced including
development of power grid topology and parallel computing
using CIM files, high-efficiency load-shedding calculation,
and power system transmission line tripping analysis using
3D visualization. These cases are all realized based on the
proposed Big Data platform; the key issue in case one is to
extract the connectivity between each electric point from dif-
ferent databases. It is suitable to process high-volume and
multimode heterogeneous data using multiple data storage
methods in the proposed Big Data platform with very high
efficiency. In case two, with a proposed parallel computing
scheme based on Spark and CUDA, load-shedding calcula-
tion in power systems under different scenarios can be real-
ized in a very fast-speed way, and a comparison between
single-machine and multiple-machine parallel computing is
given, which demonstrated the high efficiency of the scheme.
A highlight in the third case is the utilization of a Big Data
platform with the 3D visualization system. With the help of
the Big Data virtual environment, the affected transmission
lines and areas can be directly detected, with detailed
dynamic information of line tripping time, location, dura-
tion, and causes. With the help of the 3D visualization sys-
tem, digital results become more valuable and situation
awareness of system operators is greatly enhanced, which is
a reliable way to improve the safety and reliability of the
entire power grid.

As mentioned in this survey, the development of future
smart grid will towards a huge and complex energy system,
which is deeply integrated with traditional power and renew-
able energies, as well as the powerful information and com-
munication systems. The energy system also represents
three levels or perspectives of the entire objective existence:
physical energy level, industrial information level, and
human society level. Under this big picture, more researchers

are focusing on novel dimensions. For newly developed
machine learning and data mining tools, deep learning,
transfer learning, and multidata fusion methods are receiving
extensive attention in recent years. Deep learning integrates
supervised and unsupervised learning, with multiple hidden
layer artificial neural network structures, and is capable of
extracting abstract conceptions from data. While transfer
learning makes a break through fundamental assumptions
of the statistical learning theory, it can improve learning
accuracy by utilizing the correlated data with different distri-
butions. Multidata fusion technique is capable of analysing
heterogeneous datasets collecting from different data sources;
thus, it can extract more useful information.

By applying the above-mentioned new methods and
technologies, more research directions and topics gradually
appear. Firstly, the load prediction and modeling problem
is the earliest application of data mining and analytics. Along
with the fast installations of smart meters, much more pre-
cisely load modeling can be achieved by utilizing the equip-
ment data and electrical measurements at both transient
and steady states. More machine learning methods are avail-
able for load prediction and modeling, including feed-
forward artificial neural network, SVMs, recurrent artificial
neural networks, and regression trees, among others. Sec-
ondly, the fusion and merging analysis of the power system
and transportation system can be done along with the
increasing number of electrical vehicles. Considering the load
data from charging stations, traffic flow and transportation
network, on-board GPS tracks of electrical vehicles, and
other data related to the driving and charing behaviors, a
research on the driving and charging behavior characteristics
is achievable. Closely related to that, the electricity market
prediction and simulation is another possible hot topic,
which can also be applied in many aspects such as evaluation
of market shares for the individual power company,
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investment income for power generation, and decision-
making for power market mechanism design.

In conclusion, this paper has demonstrated a glance of
the crossover and merging of the latest Big Data technol-
ogy and smart grid technology. There are still many
researchworks to do in the future. From all the application
aspects, Big Data technology for human behavior in pano-
rama mode has a great and long-term potential in real-
time future smart grid and energy system, even the city
planning, pollution abatement, transportation planning,
and other useful applications.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (51607177, 61433012, and
U1435215), Shenzhen Science and Technology Innovation
Commission application demonstration project (No.
KJYY20160608154421217), and China Postdoctoral Science
Foundation (2018M631005).

References

[1] Y. XUE, “Energy internet or comprehensive energy net-
work?,” Journal of Modern Power Systems and Clean Energy,
vol. 3, no. 3, pp. 297-301, 2015.

[2] Y.Xue and Y. Lai, “Integration of macro energy thinking and
big data thinking part one big data and power big data,”
Automation of Electric Power Systems, vol. 40, no. 1,
pp. 1-8, 2016.

[3] Y.XueandY. Lai, “Integration of macro energy thinking and
big data thinking: part two applications and exploration,”
Automation of Electric Power Systems, vol. 40, no. 8,
pp- 1-13, 2016.

[4] A. Gandomi and M. Haider, “Beyond the hype: big data
concepts, methods, and analytics,” International Journal of
Information Management, vol. 35, no. 2, pp. 137-144, 2015.

[5] X.He, Q. Ai, R.C. Qiu, W. Huang, L. Piao, and H. Liu, “A big
data architecture design for smart grids based on random
matrix theory,” IEEE Transactions on Smart Grid, vol. 8,
no. 2, p. 1, 2017.

[6] Chinese Society of Electrical Engineering, “Chinese white
paper on the development of large power data,” pp. 1-10, 2013.

[7] A.A.MunshiandY. A.-R. I. Mohamed, “Big data framework
for analytics in smart grids,” Electric Power Systems Research,
vol. 151, pp. 369-380, 2017.

[8] K. Wang, C. Xu, Y. Zhang, S. Guo, and A. Zomaya, “Robust
big data analytics for electricity price forecasting in the smart
grid,” IEEE Transactions on Big Data, p. 1, 2017.

[9] D. Wang and Z. Sun, “Big data analysis and parallel load
forecasting of electric power user side,” Proceedings of the
Csee, vol. 35, no. 3, pp. 527-537, 2015.

[10] B. Wang, B. Fang, Y. Wang, H. Liu, and Y. Liu, “Power sys-
tem transient stability assessment based on big data and the
core vector machine,” IEEE Transactions on Smart Grid,
vol. 7, no. 5, pp. 2561-2570, 2016.

17

[11] W. Alves, D. Martins, U. Bezerra, and A. Klautau, “A hybrid
approach for big data outlier detection from electric power
scada system,” IEEE Latin America Transactions, vol. 15,
no. 1, pp. 57-64, 2017.

[12] Y. Zhao, P. Liu, Z. Wang, L. Zhang, and J. Hong, “Fault and
defect diagnosis of battery for electric vehicles based on big data
analysis methods,” Applied Energy, vol. 207, pp. 354-362, 2017.

[13] J.Baek, Q. H. Vu,J. K. Liu, X. Huang, and Y. Xiang, “A secure
cloud computing based framework for big data information
management of smart grid,” IEEE Transactions on Cloud
Computing, vol. 3, no. 2, pp. 233-244, 2015.

[14] S.J. Plathottam, H. Salehfar, and P. Ranganathan, “Convolu-
tional neural networks (cnns) for power system big data anal-
ysis,” in 2017 North American Power Symposium (NAPS),
pp. 1-6, Morgantown, WV, USA, September 2017.

[15] S. Sagiroglu, R. Terzi, Y. Canbay, and I. Colak, “Big data issues
in smart grid systems,” in 2016 IEEE International Conference
on Renewable Energy Research and Applications (ICRERA),
pp. 1007-1012, Birmingham, UK, November 2016.

[16] K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy
management: from big data to big insights,” Renewable ¢
Sustainable Energy Reviews, vol. 56, pp. 215-225, 2016.

[17] G. N. Korres and N. M. Manousakis, “State estimation and
bad data processing for systems including pmu and scada
measurements,” Electric Power Systems Research, vol. 81,
no. 7, pp. 1514-1524, 2011.

[18] Pacific Gas and Electric Company, “Pacific gas and electric,”
2013, https://www.pge.com/.

[19] C.Tu, X. He, Z. Shuai, and F. Jiang, “Big data issues in smart
grid - a review,” Renewable & Sustainable Energy Reviews,
vol. 79, pp. 1099-1107, 2017.

[20] J. Zhu, E. Zhuang, J. Fu, J. Baranowski, A. Ford, and J. Shen,
“A framework-based approach to utility big data analytics,”
IEEE Transactions on Power Systems, vol. 31, no. 3,
pp. 2455-2462, 2016.

[21] The Apache Software Foundation, “The apache hadoop,”
2005, http://hadoop.apache.org/index.html.

[22] The Apache Software Foundation, “The apache spark,” 2000,
http://spark.apache.org/.

[23] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp- 107-113, 2008.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, p. 29, 2003.

[25] F.Chang,]. Dean, S. Ghemawat et al., “Bigtable: a distributed
storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, pp. 1-4, 2008.

[26] J. Yates, J. D. Mcgregor, J. E. Ingram, and J. Yates, “Hadoop
and its evolving ecosystem, in: International Workshop on
Software,” in 5th International Workshop on Software Ecosys-
tems (IWSECO), pp. 57-68, Potsdam, Germany, June 2013.

[27] R. B. Ray, M. Kumar, and S. K. Rath, Fast Computing of
Microarray Data Using Resilient Distributed Dataset of
Apache Spark, Springer International Publishing, 2016.

[28] K. Chodorow, MongoDB: The Definitive Guide, O’Reilly
Media, Inc., 2013.

[29] A. Thusoo, J. S. Sarma, and N. Jain, “Hive - a petabyte scale
data warehouse using hadoop,” in 2010 IEEE 26th Interna-
tional Conference on Data Engineering (ICDE 2010),
pp- 996-1005, Long Beach, CA, USA, March 2010.


https://www.pge.com/
http://hadoop.apache.org/index.html
http://spark.apache.org/

18

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]
(39]
[40]
(41]

(42]

[43]
[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

S. Alsubaiee, K. Faraaz, E. Gabrielova et al., “Asterixdb: a
scalable, open source bdms,” Proceedings of the VLDB
Endowment, vol. 7, no. 14, pp. 1905-1916, 2014.

P. Pirzadeh, M. J. Carey, and T. Westmann, “Bigfun: a perfor-
mance study of big data management system functionality,”
in 2015 IEEE International Conference on Big Data (Big
Data), pp. 507-514, Santa Clara, CA, USA, November 2015.
International Business Machines, “Ibm energy and utilities,”
2015, April 2018, http://www-935.ibm.com/industries/
energy/case_studies.html.

A. Joiner, “Big data changes everything,” 2014, April 2017,
http://h20435.www2.hp.com/t5/HP-Software/Big-Data-is-
changing-everything/ba-p/100623#.V3]JBok9Z_hV.
ORACLE, “Leverage big data and analytics,” 2014, April
2018, https://www.oracle.com/industries/utilities/electricity/
index.html.

International Business Machines, “Ibm energy and utilities,”
2017, August 2018, https://www.ibm.com/industries/uk-en/
energy/.

International Business Machines, “Ibm energy and utilities,
centerpoint energy,” 2017, August 2018, https://www.ibm
.com/industries/uk-en/energy/case-studies.html.

C3I0T, “C3 iot platform,” 2009, April 2018, http://c3iot.com/
products/#energy_grid.

Opower, “Elevate your customer experience,” 2007, April
2018, http://www.opower.com/.

Solargis, “Accurate and efficient solar energy assessment,”
2010, April 2018, http://solargis.info/.

AutoGrid, “Turning data into power,” 2011, December 2017,
http://www.auto-grid.com/.

Baidu, “Baidu Big Data,” 2011, December http://bdp.baidu
.com/.

Aliyun, “Aliyun data ide,” 2011, December 2017, https://
data.aliyun.com/product/ide?spm=a2c0j.7906235.header.11
.ntdqdP.

Tencent, “Tencent big data,” 2009, December 2017, http://
bigdata.qq.com/.

Inspur, “Inspur,” 2009, December 2017, http://www.inspur
.com/.

Huawei, “Fusioninsight,” 2015, December 2017, http://e huawei
.com/cn/products/cloud-computing-dc/cloud-computing/
bigdata/fusioninsight.

Lenovo, “Lenovo thinkclouds,” 2016, December 2017, http://
appserver.lenovo.com.cn/Lenovo_Series_List.aspx?Category
Code=A30B03.

S. Guha and A. Mcgregor, “Stream order and order statistics:
quantile estimation in random-order streams,” SIAM Journal
on Computing, vol. 38, no. 5, pp. 2044-2059, 2009.

D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous
queries over append-only databases,” ACM SIGMOD Record,
vol. 21, no. 2, pp. 321-330, 1992.

M. Sullivan, “Tribeca: A Stream Database Manager for
Network Traffic Analysis,” in VLDB’96, Proceedings of 22th
International Conference on Very Large Data Bases, Mumbai
(Bombay), India, September 1996.

J. Chen, D. J. Dewitt, F. Tian, and Y. Wang, NiagaraCQ: a
Scalable Continuous Query System for Internet Databases,
ACM, 2000.

S. D. Viglas and J. F. Naughton, “Rate-based query optimi-
zation for streaming information sources,” in Proceedings

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

[61]

(62]

(63]

(64]

[65]

[66]

Complexity

of the 2002 ACM SIGMOD international conference on
Management of data - SIGMOD 02, pp. 37-48, Madison,
Wisconsin, June 2002.

A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: semantic foundations and query execution,” VLDB
Journal, vol. 15, no. 2, pp. 121-142, 2006.

D. Carney, U. Cetintemel, M. Cherniack et al., “Monitoring
streams — a new class of data management applications,”
in VLDB ‘02: Proceedings of the 28th International Conference
on Very Large Databases, pp. 215-226, Hong Kong SAR,
China, August 2002.

J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran et al.,
“Adaptive query processing: technology in evolution,” IEEE
Data Engineering Bulletin, vol. 23, pp. 7-18, 2000.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data streams systems,” in PODS 02
Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
pp- 1-16, Madison, Wisconsin, June 2002.

A. Toshniwal and D. Taneja, “Storm @ twitter,” in Proceed-
ings of the 2014 ACM SIGMOD International Conference on
Management of Data, ACM, pp. 147-156, Snowbird, Utah,
USA, June 2014.

Z. Shao, “Real-time analytics at facebook,” 2015, http://www-
conf.slac.stanford.edu/xIdb2011/talks/xIdb2011_tue_0940_
facebookrealtimeanalytics.pdf.

C. Riccominig, “How linkedin uses apache samza,” 2014,
http://www.infoq.com/articles/linkedin-samza.

Z. Qian, Y. He, C. Su et al,, “Timestream: reliable stream
computation in the cloud,” in Proceedings of the 8th ACM
European Conference on Computer Systems - EuroSys ‘13,
pp. 1-14, Prague, Czech Republic, April 2013.

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk,
“Gigascope: a stream database for network applications,” in
Proceedings of the 2003 ACM SIGMOD international confer-
ence on on Management of data - SIGMOD ‘03, pp. 647-
651, San Diego, California, June 2003.

R. Meier, E. Cotilla-Sanchez, B. Mccamish, and D. Chiu,
“Power system data management and analysis using synchro-
phasor data,” in 2014 IEEE Conference on Technologies for
Sustainability (SusTech), pp. 225-231, Portland, OR, USA,
July 2014.

R. Thaka and R. Gentleman, “R: a language for data analysis
and graphics,” Journal of Computational & Graphical Statis-
tics, vol. 5, no. 5, pp. 299-314, 1996.

G. Holmes, A. Donkin, and I. H. Witten, “Weka: a machine
learning workbench,” in Proceedings of ANZIIS ‘94 - Austra-
lian New Zealnd Intelligent Information Systems Conference,
pp. 357-361, Brisbane, Queensland, Australia, December
1994.

J. W. Eaton, “gnu octave,” 2014, January 2018, http://www
.gnu.org/software/octave/.

R. R. Bouckaert, E. Frank, M. A. Hall et al., “WEKAA4"'Ex-
periences with a Java Open-Source Project,” Journal of
Machine Learning Research, vol. 11, no. 5, pp. 2533-2541,
2010.

F. Morandat, B. Hill, L. Osvald, and J. Vitek, “Evaluating
the design of the r language - objects and functions for
data analysis,” in Proceedings of the 26th European Con-
ference on Object-Oriented Programming, pp. 104-131,
Beijing, China, June 2012.


http://www-935.ibm.com/industries/energy/case_studies.html
http://www-935.ibm.com/industries/energy/case_studies.html
http://h20435.www2.hp.com/t5/HP-Software/Big-Data-is-changing-everything/ba-p/100623#.V3JBok9Z_hV
http://h20435.www2.hp.com/t5/HP-Software/Big-Data-is-changing-everything/ba-p/100623#.V3JBok9Z_hV
https://www.oracle.com/industries/utilities/electricity/index.html
https://www.oracle.com/industries/utilities/electricity/index.html
https://www.ibm.com/industries/uk-en/energy/
https://www.ibm.com/industries/uk-en/energy/
https://www.ibm.com/industries/uk-en/energy/case-studies.html
https://www.ibm.com/industries/uk-en/energy/case-studies.html
http://c3iot.com/products/#energy_grid
http://c3iot.com/products/#energy_grid
http://www.opower.com/
http://solargis.info/
http://www.auto-grid.com/
http://bdp.baidu.com/
http://bdp.baidu.com/
https://data.aliyun.com/product/ide?spm=a2c0j.7906235.header.11.ntdqdP
https://data.aliyun.com/product/ide?spm=a2c0j.7906235.header.11.ntdqdP
https://data.aliyun.com/product/ide?spm=a2c0j.7906235.header.11.ntdqdP
http://bigdata.qq.com/
http://bigdata.qq.com/
http://www.inspur.com/
http://www.inspur.com/
http://e.huawei.com/cn/products/cloud-computing-dc/cloud-computing/bigdata/fusioninsight
http://e.huawei.com/cn/products/cloud-computing-dc/cloud-computing/bigdata/fusioninsight
http://e.huawei.com/cn/products/cloud-computing-dc/cloud-computing/bigdata/fusioninsight
http://appserver.lenovo.com.cn/Lenovo_Series_List.aspx?CategoryCode=A30B03
http://appserver.lenovo.com.cn/Lenovo_Series_List.aspx?CategoryCode=A30B03
http://appserver.lenovo.com.cn/Lenovo_Series_List.aspx?CategoryCode=A30B03
http://www-conf.slac.stanford.edu/xldb2011/talks/xldb2011_tue_0940_facebookrealtimeanalytics.pdf
http://www-conf.slac.stanford.edu/xldb2011/talks/xldb2011_tue_0940_facebookrealtimeanalytics.pdf
http://www-conf.slac.stanford.edu/xldb2011/talks/xldb2011_tue_0940_facebookrealtimeanalytics.pdf
http://www.infoq.com/articles/linkedin-samza
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

Complexity

[67]

(68]
(69]

(70]

(71]

(72]

(73]
(74]

(75]

(76]

(771

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

S. Sonnenburg, G. Tsch, S. Henschel et al., “The shogun
machine learning toolbox,” Journal of Machine Learning
Research, vol. 11, pp- 1799-1802, 2010.

L. M. Surhone, M. T. Tennoe, and S. F. Henssonow,
AForge.NET, Betascript Publishing, 2010.

S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in
Action, Manning Publications Co., 2011.

X. Meng, J. Bradley, B. Yavuz et al., “Mllib: machine learning
in apache spark,” Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1235-1241, 2015.

F. Pedregosa, G. Varoquaux, and E. Duchesnay, “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

J. Demsar, T. Curk, A. Erjavec et al., “Orange: data mining
toolbox in python,” Journal of Machine Learning Research,
vol. 14, pp. 2349-2353, 2013.

A. Krizhevskey, “Cuda-convnet,” 2012, April 2018, http://
code.google.com/p/cuda-convnet/.

A. Karpathy, “Convnetjs:deep Learning in your browser,”
http://cs.stanford.edu/people/karpathy/convnetjs/.

S. Owen, “Cloudera oryx: Simple real-time large-scale
machine learning infrastructure,” 2014, https://github.com/
cloudera/oryx.

T. Lumley, “biglm: bounded memory linear and generalized
linear  models,” 2014,  http://cran.r-project.org/web/
packages/biglm/index.html.

L. B. A. Lim and A. Cutler, “bigrf: Big random forests: classi-
fication and regression forests for large data sets,” 2014,
http://cran.rproject.org/web/packages/bigrf/index.html.

S. T. I. Feinerer, “hive: Hadoop interactive,” 2014, http://cran
.rproject.org/web/packages/hive/index.html.

D. M. Beazley, “Swig: an easy to use tool for integrating
scripting languages with ¢ and c++,” in 4th Annual Tcl/Tk
Workshop, Monterey, CA, July 1996.

G. Marchesan, M. R. Muraro, G. Cardoso, L. Mariotto, and
A. P. de Morais, “Passive method for distributed-generation
island detection based on oscillation frequency,” IEEE Trans-
actions on Power Delivery, vol. 31, no. 1, pp. 138-146, 2016.
X. Xu, Z. Yan, M. Shahidehpour, H. Wang, and S. Chen,
“Power system voltage stability evaluation considering
renewable energy with correlated variabilities,” IEEE Trans-
actions on Power Systems, vol. 33, no. 3, pp. 3236-3245, 2018.
J. Liu, N. Tai, and C. Fan, “Transient-voltage-based protec-
tion scheme for DC line faults in the multiterminal VSC-
HVDC system,” IEEE Transactions on Power Delivery,
vol. 32, no. 3, pp. 1483-1494, 2017.

M. Sahraei-Ardakani, X. Li, P. Balasubramanian, K. W.
Hedman, and M. Abdi-Khorsand, “Real-time contingency
analysis with transmission switching on real power system
data,” IEEE Transactions on Power Systems, vol. 31, no. 3,
pp. 2501-2502, 2016.

S. Brahma, R. Kavasseri, H. Cao, N. R. Chaudhuri,
T. Alexopoulos, and Y. Cui, “Real-time identification of
dynamic events in power systems using PMU data, and
potential applications—models, promises, and challenges,”
IEEE Transactions on Power Delivery, vol. 32, no. 1,
pp. 294-301, 2017.

J. Zhong, W. Li, C. Wang, and J. Yu, “A rankboost based data-
driven method to determine maintenance priority of circuit
breakers,” IEEE Transactions on Power Delivery, vol. 33,
no. 3, pp. 1044-1053, 2018.

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

19

Y. Liu, Y. Guo, Z. Yang, J. Hu, G. Lu, and Y. Wang, “Power
system transmission line tripping analysis using a big data
platform with 3d visualization,” in 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1-8, Hono-
lulu, HI, USA, November 2017.

J. E. Jackson and G. S. Mudholkar, “Control procedures for
residuals associated with principal component analysis,”
Technometrics, vol. 21, no. 3, pp. 341-349, 1979.

Y. Guo, K. Li, and D. Laverty, “A statistical process control
approach for automatic anti-islanding detection using syn-
chrophasors,” in 2013 IEEE Power ¢ Energy Society General
Meeting, pp. 1-5, Vancouver, BC, Canada, July 2013.

K. Li, Y. Guo, D. Laverty, H. He, and M. Fei, “Distributed
adaptive learning framework for wide area monitoring of
power systems integrated with distributed generations,”
Energy and Power Engineering, vol. 5, no. 4, pp. 962-969,
2013.

Y. Guo, K. Li, and D. M. Laverty, “Loss-of-main monitoring
and detection for distributed generations using dynamic
principal component analysis,” Journal of Power and Energy
Engineering, vol. 2, no. 4, pp. 423-431, 2014.

Y. Guo, K. Li, D. M. Laverty, and Y. Xue, “Synchrophasor-
based islanding detection for distributed generation systems
using systematic principal component analysis approaches,”
IEEE Transactions on Power Delivery, vol. 30, no. 6,
pp. 2544-2552, 2015.

A. Kheirkhah, A. Azadeh, M. Saberi, A. Azaron, and
H. Shakouri, “Improved estimation of electricity demand
function by using of artificial neural network, principal
component analysis and data envelopment analysis,” Com-
puters & Industrial Engineering, vol. 64, no. 1, pp. 425-441,
2013.

A. Onwuachumba and M. Musavi, “New reduced model
approach for power system state estimation using artificial
neural networks and principal component analysis,” in 2014
IEEE Electrical Power and Energy Conference, pp. 15-20,
Calgary, AB, Canada, November 2014.

Y. Guo, K. Li, Z. Yang, J. Deng, and D. M. Laverty, “A novel
radial basis function neural network principal component
analysis scheme for pmu-based wide-area power system
monitoring,” Electric Power Systems Research, vol. 127,
pp. 197-205, 2015.

K. Li, J.-X. Peng, and G. W. Irwin, “A fast nonlinear model
identification method,” IEEE Transactions on Automatic
Control, vol. 50, no. 8, pp. 1211-1216, 2005.

K. Li, J.-X. Peng, and E.-W. Bai, “Two-stage mixed discrete-
continuous identification of radial basis function (rbf) neural
models for nonlinear systems,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 56, no. 3, pp. 630-643,
2009.

Z.Yang, K. Li, Q. Niu, Y. Xue, and A. Foley, “A self-learning
tlbo based dynamic economic/environmental dispatch con-
sidering multiple plug-in electric vehicle loads,” Journal of
Modern Power Systems and Clean Energy, vol. 2, no. 4,
pp. 298-307, 2014.

Z.Yang, K. Li, Q. Niu, and Y. Xue, “A comprehensive study
of economic unit commitment of power systems integrating
various renewable generations and plug-in electric vehicles,”
Energy Conversion and Management, vol. 132, pp. 460-481,
2017.

Z. Yang, K. Li, Q. Niu, and Y. Xue, “A novel parallel-series
hybrid meta-heuristic method for solving a hybrid unit


http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/
http://cs.stanford.edu/people/karpathy/convnetjs/
https://github.com/cloudera/oryx
https://github.com/cloudera/oryx
http://cran.r-project.org/web/packages/biglm/index.html
http://cran.r-project.org/web/packages/biglm/index.html
http://cran.rproject.org/web/packages/bigrf/index.html
http://cran.rproject.org/web/packages/hive/index.html
http://cran.rproject.org/web/packages/hive/index.html

20

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

commitment problem,” Knowledge-Based Systems, vol. 134,
pp. 13-30, 2017.

Q. Shao and C. J. Feng, “Pattern recognition of chatter
gestation based on hybrid pca-svm,” Applied Mechanics and
Materials, vol. 120, pp. 190-194, 2011.

M. D. Farrell and R. M. Mersereau, “On the impact of pca
dimension reduction for hyperspectral detection of difficult
targets,” IEEE Geoscience and Remote Sensing Letters, vol. 2,
no. 2, pp. 192-195, 2005.

L. I. Kuncheva and W. J. Faithfull, “Pca feature extraction for
change detection in multidimensional unlabeled data,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 25, no. 1, pp. 69-80, 2014.

Q. Jiang, X. Yan, and B. Huang, “Performance-driven distrib-
uted pca process monitoring based on fault-relevant variable
selection and bayesian inference,” IEEE Transactions on
Industrial Electronics, vol. 63, no. 1, pp. 377-386, 2016.

R. Zhang, W. Cai, L. Ni, and G. Lebby, “Power system load
forecasting using partial least square method,” in 2008 40th
Southeastern Symposium on System Theory (SSST), pp. 169-
173, New Orleans, LA, USA, March 2008.

W. Zheng and H. Wang, “Organizational performance evalu-
ation of power supply with partial least-squares regression,”
in 2011 IEEE 18th International Conference on Industrial
Engineering and Engineering Management, pp. 161-163,
Changchun, China, September 2011.

H. Yu and J. Yang, “A direct LDA algorithm for high-
dimensional data — with application to face recognition,”
Pattern Recognition, vol. 34, no. 10, pp. 2067-2070, 2001.

C. A. Jensen, M. A. El-Sharkawi, and R. J. Marks, “Power
system security assessment using neural networks: feature
selection using fisher discrimination,” IEEE Transactions on
Power Systems, vol. 16, no. 4, pp. 757-763, 2001.

R. Eriksson and L. Soder, “Wide-area measurement system-
based subspace identification for obtaining linear models to
centrally coordinate controllable devices,” IEEE Transactions
on Power Delivery, vol. 26, no. 2, pp. 988-997, 2011.

C. Luo and V. Ajjarapu, “Invariant subspace based eigenvalue
tracing for power system small-signal stability analysis,” in
2009 IEEE Power ¢ Energy Society General Meeting,
pp. 1-9, Calgary, AB, Canada, July 2009.

J. Yang, W. Li, T. Chen, W. Xu, and M. Wu, “Online estima-
tion and application of power grid impedance matrices based
on synchronised phasor measurements,” IET Generation,
Transmission & Distribution, vol. 4, no. 9, p. 1052, 2010.

A. H. Al-Mohammed and M. A. Abido, “A fully adaptive
PMU-based fault location algorithm for series-compensated
lines,” IEEE Transactions on Power Systems, vol. 29, no. 5,
pp. 2129-2137, 2014.

E. L. Russell, L. H. Chiang, and R. D. Braatz, “Fault detection
in industrial processes using canonical variate analysis and
dynamic principal component analysis,” Chemometrics and
Intelligent Laboratory Systems, vol. 51, no. 1, pp. 81-93, 2000.

R. Srinivasan, C. Wang, W. K. Ho, and K. W. Lim, “Dynamic
principal component analysis based methodology for cluster-
ing process states in agile chemical plants,” Industrial &
Engineering Chemistry Research, vol. 43, no. 9, pp. 2123-
2139, 2004.

M. Chen and L. X. Guo, “The synthetic evaluation method of
the dynamic performance and economic performance of bat-
tery electric vehicle based on principal component analysis,”

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Complexity

Applied Mechanics and Materials, vol. 215-216, pp. 1259-
1262, 2012.

W. Sun and G. Ma, “Condition assessment of power supply
equipment based on kernel principal component analysis
and multi-class support vector machine,” in 2009 Fifth Inter-
national Conference on Natural Computation, pp. 485-488,
Tianjin, China, August 2009.

J. Ni, C. Zhang, and S. X. Yang, “An adaptive approach based
on KPCA and SVM for real-time fault diagnosis of HVCBs,”
IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1960
1971, 2011.

Z. Weiqing, S. Fengqi, X. Zhigao, Q. Zongliang, and
Z.Jianxin, “An investigation on system anomaly source diag-
nosis using kpca-fpsdg,” in 2012 Asia-Pacific Power and
Energy Engineering Conference, pp. 1-4, Shanghai, China,
March 2012.

G. Hinton and R. Salakhutdinov, “Reducing the dimensional-
ity of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504-507, 2006.

S. Theodoridis and K. Koutroumbas, Pattern Recognition and
Neural Networks, Cambridge University Press, 1996.

D. Q. Zhou, U. D. Annakkage, and A. D. Rajapakse, “Online
monitoring of voltage stability margin using an artificial neu-
ral network,” IEEE Transactions on Power Systems, vol. 25,
no. 3, pp. 1566-1574, 2010.

M.-R. Mosavi and A. Tabatabaei, “Traveling-wave fault loca-
tion techniques in power system based on wavelet analysis
and neural network using gps timing,” Wireless Personal
Communications, vol. 86, no. 2, pp. 835-850, 2016.

Y. Zhang and S. J. Qin, “Fault detection of nonlinear
processes using multiway kernel independent component
analysis,” Industrial & Engineering Chemistry Research,
vol. 46, no. 23, pp. 7780-7787, 2007.

M. Ruiz-Llata, G. Guarnizo, and C. Boya, “Embedded power
quality monitoring system based on independent component
analysis and svms,” in The 2011 International Joint Confer-
ence on Neural Networks, pp. 2229-2234, San Jose, CA,
USA, July 2011.

C. Uzunoglu, M. Ugur, F. Turan, and S. Cekli, “Amplitude
and frequency estimation of power system signals using
independent component analysis,” in 2013 21st Signal Process-
ing and Communications Applications Conference (SIU),
pp. 1-4, Haspolat, Turkey, April 2013.

G. Valverde, A. T. Saric, and V. Terzija, “Stochastic monitor-
ing of distribution networks including correlated input
variables,” IEEE Transactions on Power Delivery, vol. 28,
no. 1, pp. 246-255, 2013.

R. Singh, B. C. Pal, and R. A. Jabr, “Statistical representation
of distribution system loads using gaussian mixture model,”
IEEE Transactions on Power Systems, vol. 25, no. 1,
pp. 29-37, 2010.

X. Liu, L. Xie, U. Kruger, T. Littler, and S. Wang, “Statistical-
based monitoring of multivariate non-gaussian systems,”
AICHE Journal, vol. 54, no. 9, pp. 2379-2391, 2008.

X. Liu, D. McSwiggan, T. B. Littler, and J. Kennedy,
“Measurement-based method for wind farm power system
oscillations monitoring,” IET Renewable Power Generation,
vol. 4, no. 2, p. 198, 2010.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“Graphx: a resilient distributed graph system on spark,” in
First International Workshop on Graph Data Management



Complexity

[130]

[131]

[132]

[133]

[134]

[135]

Experiences and Systems - GRADES ‘13, pp. 1-6, New York,
June 2013.

F. Pérez and B. E. Granger, “IPython: a system for interactive
scientific computing,” Computing in Science & Engineering,
vol. 9, no. 3, pp. 21-29, 2007.

L. Yin and S.-L. Shaw, “Exploring space-time paths in phys-
ical and social closeness spaces: a space—time gis approach,”
International Journal of Geographical Information Science,
vol. 29, no. 5, pp. 742-761, 2015.

Z. Yang, K. Li, and A. Foley, “Computational scheduling
methods for integrating plug-in electric vehicles with power
systems: a review,” Renewable & Sustainable Energy Reviews,
vol. 51, pp. 396-416, 2015.

M. Jahangiri, R. Ghaderi, A. Haghani, and O. Nematollahi,
“Finding the best locations for establishment of solar-wind
power stations in middle-east using gis: a review,” Renewable
& Sustainable Energy Reviews, vol. 66, pp. 38-52, 2016.

M. A. Anwarzai and K. Nagasaka, “Utility-scale implementa-
ble potential of wind and solar energies for Afghanistan using
gis multi-criteria decision analysis,” Renewable & Sustainable
Energy Reviews, vol. 71, pp. 150-160, 2017.

B. He, W. X. Mo, J. X. Hu, G. Yang, G. J. Lu, and Y. Q. Liu,
“Development of power grid web3d gis based on cesium,”
in 2016 IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC), pp. 2465-2469, Xi’an, China, October
2016.

21



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

