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The study of ion-acoustic solitary waves in a magnetized plasma has long been considered to be an important research subject
and plays an increasingly important role in scientific research. Previous studies have focused on the integer-order models of ion-
acoustic solitary waves. With the development of theory and advancement of scientific research, fractional calculus has begun
to be considered as a method for the study of physical systems. The study of fractional calculus has opened a new window for
understanding the features of ion-acoustic solitarywaves and can be a potentially valuable approach for investigations ofmagnetized
plasma. In this paper, based on the basic system of equations for ion-acoustic solitary waves and using multi-scale analysis and the
perturbation method, we have obtained a new model called the three-dimensional(3D) Schamel-KdV equation. Then, the integer-
order 3D Schamel-KdV equation is transformed into the time-space fractional Schamel-KdV (TSF-Schamel-KdV) equation by
using the semi-inverse method and the fractional variational principle. To study the properties of ion-acoustic solitary waves, we
discuss the conservation laws of the new time-space fractional equation by applying Lie symmetry analysis and the Riemann-
Liouville fractional derivative. Furthermore, the multi-soliton solutions of the 3D TSF-Schamel-KdV equation are derived using
the Hirota bilinear method. Finally, with the help of the multi-soliton solutions, we explore the characteristics of motion of ion-
acoustic solitary waves.

1. Introduction

Ion-acoustic solitary waves are well-known to be an impor-
tant example of nonlinear phenomena in modern plasma
research [1–3]. Many researchers have studied ion-acoustic
solitary waves in different plasma systems such as thermal,
magnetized, andunmagnetized plasmas.Among the different
plasma systems, magnetized plasma systems have attracted
intense interest. Many authors have studied ion-acoustic
solitary waves in magnetized plasma based on the quantum
hydrodynamic (QHD) model [4, 5]. The QHD model is
derived from the basic system of equations of ion-acoustic
solitary waves and is one of the macroscopic mathematical
models used to describe the hydrodynamic behavior of
quantum plasmas.

For simplicity, 1D and 2D nonlinear partial differential
equations have been used to describe the evolution of
nonlinear ion-acoustic solitary waves. For the simplest 1D
geometry where the ion-acoustic solitary waves become
solitons, Washimi and Taniuti [6] derived the KdV equation
by using the reductive perturbation method. Kako and
Rowlands [7] derived the 2DKP equation based on the results
of Washimi and Taniuti. However, in the real magnetized
plasma environment, 1D and 2D models cannot solve some
of the problems encountered in the motion of ion-acoustic
solitary waves. Thus, it is necessary to introduce higher-
dimensional theories for the nonlinear ion-acoustic solitary
waves. Therefore, in this paper, we discuss a new 3D model
for nonlinear ion-acoustic solitary waves.
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Most of the QHDmodels, such as the KdVmodel, mKdV
model, and KP model, are integer-order models. Fractional
ordermodels have rarely been considered. Fractional calculus
is a generalization of integer calculus. Many of the physical
processes that have been explored to date are nonconserva-
tive. It is important to be able to apply the power of frac-
tional differentiation [8–10]. However, because of its nonlocal
character, fractional calculus has not been used in physics
and engineering.With the development of nonlinear science,
fractional calculus theory has been continuously developed
to date. Researchers have discovered that the derivatives and
integrals of fractional ordermodels are suitable for describing
various physical phenomena. In recent years, the application
of fractional differential equations has attracted increasing
attention in plasma physics [11]. Thus, research on fractional
order models is necessary.

The solution of the integer equation is a research hot spot
in the field of research and development of various models
[12–14], and similarly, the solution of fractional models has
been a focus of our research [15, 16]. Thus, many solution
methods have been found and used to solve the fractional
order equation. For instance, the iterative method [17–19],
Hirota bilinear method [20, 21], trial function method [22],
Homotopy perturbation [23], and other methods have all
been developed in the recent decades. In the past, researchers
solved integer-order models by using the Hirota bilinear
method. Recently, the Hirota bilinear method has been
used to solve fractional models. In this paper, using the
Hirota bilinear method, we obtain soliton solutions for the
new model. Various phenomena can be explained via the
application of the solutions given by the above methods [24–
26]. Additionally, the use of these methods enables a better
understanding of various magnetized plasma phenomena.
Therefore, based on the solutions derived by the abovemen-
tioned methods, we seek to determine the properties of ion-
acoustic solitary waves. The properties of the model include
conservation laws [27, 28], boundary value problems [29, 30],
and integrable systems [31, 32].

The research on conservation laws plays an important
role in the study of the physical phenomena in nonlinear
magnetized plasma. Conservation laws are a mathematical
formulation, and they indicate that the total amount of
a certain physical quantity remains the same during the
evolution of a physical system [33, 34]. In 1918, Noether
[35] proved that each conservation law is associated with
an appropriate symmetry and can be derived from the
Lagrangian function and the invariance principle. In 1996,
Riewe [36] introduced the Lagrangian function for the
fractional derivative. In the past two decades, many different
types of fractional Euler-Lagrangian equations have been
generalized. Based on these conclusion, some fractional gen-
eralizations of Noether’s theoremwere proved [37], andmany
fractional conservation laws were obtained [38]. To study the
conservation laws of the fractional differential equations, we
use Lie symmetry analysis to construct the conserved vectors
[39, 40]

In this paper, applying the basic system of equations of
ion-acoustic solitary waves [41], we develop a new 3Dmodel.
Using the new model, we study the conservation laws and

the solution of ion-acoustic solitary waves. The rest of the
paper is structured as follows: In Section 2, based on the
basic system of equations of ion-acoustic solitary waves, we
obtain a new 3D Schamel-KdV equation by using multi-scale
analysis and the perturbation method [42]. A new 3D TSF-
Schamel-KdV equation is obtained in Section 3 according
to the new integer-order model and by using the semi-
inverse method and the fractional variational principle [43,
44]. In Section 4, applying the Riemann-Liouville fractional
derivative [39, 40], we discuss the conservation laws of
the new fractional model. In Section 5, according to the
Hirota bilinear method, we obtain the soliton solutions
of the 3D TSF-Schamel-KdV equation. The propagation
of solitary waves is important because it describes the
characteristic nature of the interaction of the waves and
the plasmas. Therefore, using soliton solutions [17, 18], we
study the characteristics of motion of ion-acoustic solitary
waves.

2. Derivation of the 3D Schamel-KdV Equation

We use the basic system of equations of ion-acoustic solitary
waves given by

𝜕𝑛𝜕𝑡 + 𝜕 (𝑛𝑢)𝜕𝑥 + 𝜕 (𝑛V)𝜕𝑦 + 𝜕 (𝑛𝑤)𝜕𝑧 = 0,
𝜕𝑢𝜕𝑡 + 𝑢𝜕𝑢𝜕𝑥 + V𝜕𝑢𝜕𝑦 + 𝑤𝜕𝑢𝜕𝑧 = −𝜕𝜙𝜕𝑥 + 𝑢ΛΩ𝑒𝑥,
𝜕V𝜕𝑡 + 𝑢 𝜕V𝜕𝑥 + V𝜕V𝜕𝑦 + 𝑤𝜕V𝜕𝑧 = −𝜕𝜙𝜕𝑦 + VΛΩ𝑒𝑥,

𝜕𝑤𝜕𝑡 + 𝑢𝜕𝑤𝜕𝑥 + V𝜕𝑤𝜕𝑦 + 𝑤𝜕𝑤𝜕𝑧 = −𝜕𝜙𝜕𝑧 + 𝑤ΛΩ𝑒𝑥,
𝜕2𝜙𝜕𝑥2 + 𝜕

2𝜙𝜕𝑦2 + 𝜕
2𝜙𝜕𝑧2 = 𝑛𝑒 − 𝑛,

(1)

where 𝑛 is the ion number density, and 𝑢, V, 𝑤 are the ion
fluid velocities in the 𝑥-, 𝑦-, and 𝑧-directions, respectively.𝜙 is the electric field potential, 𝑛𝑒 is the electron number
density, and Ω is the uniform external magnetic field. Ion-
acoustic solitary waves are assumed to propagate in the 𝑥-
direction, and the direction is specified by the unit vector𝑒𝑥.

We consider the propagation of ion-acoustic solitary
waves in 3D space (𝑥, 𝑦, 𝑧) and introduce the following
independent stretched variables:

𝑇 = 𝜖3/4𝑡,
𝑋 = 𝜖1/4 (𝑥 − 𝑡) ,
𝑌 = 𝜖1/4𝑦,
𝑍 = 𝜖1/4𝑧,

(2)
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where 𝜖 is a small parameter characterizing the strength of
the nonlinearity. Thus, we can obtain

𝜕𝜕𝑡 = 𝜖3/4 𝜕𝜕𝑇 − 𝜖1/4 𝜕𝜕𝑋,
𝜕𝜕𝑥 = 𝜖1/4 𝜕𝜕𝑋,
𝜕𝜕𝑦 = 𝜖1/4 𝜕𝜕𝑌,
𝜕𝜕𝑧 = 𝜖1/4 𝜕𝜕𝑍.

(3)

The dependent variables are expanded in the following form:

𝑛 (𝑋, 𝑌, 𝑍, 𝑇) = 1 + 𝜖𝑛1 (𝑋, 𝑌, 𝑍, 𝑇)
+ 𝜖3/2𝑛2 (𝑋, 𝑌, 𝑍, 𝑇) + ⋅ ⋅ ⋅ ,

𝜙 (𝑋, 𝑌, 𝑍, 𝑇) = 𝜖𝜙1 (𝑋, 𝑌, 𝑍, 𝑇) + 𝜖3/2𝜙2 (𝑋, 𝑌, 𝑍, 𝑇)
+ ⋅ ⋅ ⋅ ,

𝑢 (𝑋, 𝑌, 𝑍, 𝑇) = 𝜖𝑢1 (𝑋, 𝑌, 𝑍, 𝑇) + 𝜖3/2𝑢2 (𝑋, 𝑌, 𝑍, 𝑇)
+ ⋅ ⋅ ⋅ ,

V (𝑋, 𝑌, 𝑍, 𝑇) = 𝜖5/4V1 (𝑋, 𝑌, 𝑍, 𝑇)
+ 𝜖3/2V2 (𝑋, 𝑌, 𝑍, 𝑇) + ⋅ ⋅ ⋅ ,

𝑤 (𝑋, 𝑌, 𝑍, 𝑇) = 𝜖5/4𝑤1 (𝑋, 𝑌, 𝑍, 𝑇)
+ 𝜖3/2𝑤2 (𝑋, 𝑌, 𝑍, 𝑇) + ⋅ ⋅ ⋅ ,

𝑛𝑒 (𝑋, 𝑌, 𝑍, 𝑇) = 1 + 𝜙 (𝑋, 𝑌, 𝑍, 𝑇)
− 43𝑏𝜙3/2 (𝑋, 𝑌, 𝑍, 𝑇)
+ 12𝜙2 (𝑋, 𝑌, 𝑍, 𝑇) ,

(4)

and the boundary conditions are given by

𝑛 = 𝑛𝑒 = 1,
𝑢 = V = 𝑤 = 𝜙 = 0,

as 𝑋 󳨀→ ∞.
(5)

Substituting (3) and (4) into (1), we can obtain the
approximate equations for 𝜖 in the following form:

𝜖 : 𝑛1 = 𝜙1, (6)

𝜖5/4 :
{{{{{{{{{{{{{

𝜕𝜙1𝜕𝑋 = 𝜕𝑢1𝜕𝑋 = 𝜕𝑛1𝜕𝑋 ,𝜕𝜙1𝜕𝑌 = VΛ1Ω𝑒𝑥 = 𝜃𝑤1,𝜕𝜙1𝜕𝑍 = 𝑤Λ1Ω𝑒𝑥 = −𝜃V1,
(7)

𝜖3/2 :
{{{{{{{{{{{{{

𝜕V1𝜕𝑌 = −𝜕𝑤1𝜕𝑍 ,𝜕V1𝜕𝑌 = −VΛ2Ω𝑒𝑥 = −𝜃𝑤2,𝜕𝑤1𝜕𝑋 = −𝑤Λ2Ω𝑒𝑥 = 𝜃V2,
(8)

𝜖7/4 :
{{{{{{{{{{{{{{{{{{{{{

𝜕𝑛1𝜕𝑇 − 𝜕𝑛2𝜕𝑋 + 𝜕𝑢2𝜕𝑋 + 𝜕V2𝜕𝑌 + 𝜕𝑤2𝜕𝑍 = 0,
𝜕𝑢1𝜕𝑇 − 𝜕𝑢2𝜕𝑋 = 𝜕𝜙2𝜕𝑋 ,𝜕V2𝜕𝑋 = 𝜕𝜙2𝜕𝑌 ,𝜕𝑤2𝜕𝑋 = 𝜕𝜙2𝜕𝑍 .

(9)

According to (6) and (7), we can obtain

𝜙1 = 𝑢1 = 𝑛1,
𝑤1 = 1𝜃 𝜕𝜙1𝜕𝑌 ,
V1 = −1𝜃 𝜕𝜙1𝜕𝑍 .

(10)

Substituting (10) into (8) and (9) and eliminating 𝜙2, 𝑢2, V2,𝑤2 and 𝑛2, we can obtain

𝜕3𝜙1𝜕𝑋3 + 𝜕3𝜙1𝜕𝑋𝜕𝑌2 + 𝜕3𝜙1𝜕𝑋𝜕𝑍2 + 2𝑏𝜙1/21 𝜕𝜙1𝜕𝑋 + 2𝜕𝜙1𝜕𝑇 = 0. (11)

Letting 𝜙1(𝑋, 𝑌, 𝑍, 𝑇) = 𝐴(𝑋, 𝑌, 𝑍, 𝑇), (11) can be rewritten as
𝐴𝑇 + 𝑎1√𝐴𝐴𝑋 + 𝑎2𝐴𝑋𝑋𝑋 + 𝑎3𝐴𝑋𝑌𝑌 + 𝑎4𝐴𝑋𝑍𝑍 = 0, (12)

where 𝑎1 = 𝑏, 𝑎2 = 1/2 and 𝑎3 = 𝑎4 = (1/2)(1 + 1/𝜃2).
Remark 1. Because of the nonlinear term √𝐴𝐴𝑋, when 𝑎1 ̸=0 and 𝑎3 = 𝑎4 = 0, (12) can be reduced to the 1D Schamel-KdV
equation. When 𝑎3 = 𝑎4 ̸= 0, (12) is a 3D equation.Therefore,
(12) is called the 3D Schamel-KdV equation. Compared to
the KdV and mKdV models [6], the nonlinearity of the 3D
Schamel-KdV equation is relatively weak. Therefore, the 3D
Schamel-KdV equation presents a new research direction for
the study of ion-acoustic solitary waves.

3. Derivation of the 3D
TSF-Schamel-KdV Equation

In Section 2, we have obtained a new 3D integer-order
Schamel-KdV equation. To learn more about ion-acoustic
solitary waves, we seek to obtain the 3D TSF-Schamel-KdV
equation by using the semi-inversemethod and the fractional
variational principle. First, we introduce some definitions as
follows.

Definition 2 (see [44]). The left Riemann-Liouville fractional
derivation of a function 𝐴(𝑋, 𝑌, 𝑍, 𝑇) is defined as

0𝐷𝜔𝑇𝐴 = 1Γ (𝑛 − 𝜔) 𝑑
𝑛

𝑑𝑇𝑛 ∫
𝑇

0
(𝑇 − 𝑡)𝑛−𝜔−1 𝐴𝑑𝑡,

𝑛 − 1 ≤ 𝜔 < 𝑛.
(13)
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Definition 3 (see [45]). The Riemann-Liouville fractional
derivation of a function 𝐴(𝑋, 𝑌, 𝑍, 𝑇) is defined as

𝐷𝜔𝑇𝐴 = 𝜕𝜔𝐴𝜕𝑇𝜔

= {{{{{{{

1Γ (𝑛 − 𝜔) 𝜕
𝑛

𝜕𝑇𝑛 ∫
𝑇0

0
(𝑇 − 𝑠)𝑛−𝜔−1 𝐴𝑑𝑠, 𝑛 − 1 ≤ 𝜔 < 𝑛,

𝜕𝑛𝐴𝜕𝑇𝑛 , 𝜔 = 𝑛.
(14)

According to the integer-order 3D Schamel-KdV equa-
tion,

𝐴𝑇 + 𝑎1√𝐴𝐴𝑋 + 𝑎2𝐴𝑋𝑋𝑋 + 𝑎3𝐴𝑋𝑌𝑌 + 𝑎4𝐴𝑋𝑍𝑍 = 0, (15)

assuming 𝐴(𝑋, 𝑌, 𝑍, 𝑇) = 𝐵𝑋(𝑋, 𝑌, 𝑍, 𝑇), where 𝐵(𝑋, 𝑌, 𝑍, 𝑇)
is a potential function, and therefore, the potential equation
of the 3D Schamel-KdV equation can be written in the
following form:

𝐵𝑋𝑇 + 𝑎1√𝐵𝑋𝐵𝑋𝑋 + 𝑎2𝐵𝑋𝑋𝑋𝑋 + 𝑎3𝐵𝑋𝑋𝑌𝑌 + 𝑎4𝐵𝑋𝑋𝑍𝑍
= 0. (16)

Then, the function of the potential equation (16) can be
described as

𝐽 (𝐵) =∭
𝑉
𝑑𝑋𝑑𝑌𝑑𝑍∫

𝑇∗
𝑑𝑇 [𝐵 (𝑋, 𝑌, 𝑍, 𝑇) (𝑏1𝐵𝑋𝑇

+ 𝑏2𝑎1√𝐵𝑋𝐵𝑋𝑋 + 𝑏3𝑎2𝐵𝑋𝑋𝑋𝑋 + 𝑏4𝑎3𝐵𝑋𝑋𝑌𝑌
+ 𝑏5𝑎4𝐵𝑋𝑋𝑍𝑍)] ,

(17)

where 𝑏𝑖, 𝑖 = 1, 2, 3, 4, 5, are Lagrangianmultipliers which can
be obtained later.

Using integration by parts for (17) and taking 𝐵𝑋|𝑅 =𝐵𝑌|𝑅 = 𝐵𝑍|𝑅 = 𝐵𝑇|𝑇∗ = 𝐵𝑋𝑋|𝑅 = 𝐵𝑋𝑌|𝑅 = 𝐵𝑋𝑍|𝑅 = 0, we
obtain

𝐽 (𝐵) =∭
𝑉
𝑑𝑋𝑑𝑌𝑑𝑍∫

𝑇∗
𝑑𝑇 [−𝑏1𝐵𝑇𝐵𝑋

− 23𝑏2𝑎1𝐵5/2𝑋 + 𝑏3𝑎2 (𝐵𝑋𝑋)2 + 𝑏4𝑎3 (𝐵𝑋𝑌)2
+ 𝑏5𝑎4 (𝐵𝑋𝑍)2] .

(18)

Using the variation of the above function, integrating each
term by parts and applying the variation optimum condition,
we obtain

𝐹 (𝑋, 𝑌, 𝑍, 𝑇, 𝐵, 𝐵𝑇, 𝐵𝑋, 𝐵𝑋𝑋, 𝐵𝑋𝑌, 𝐵𝑋𝑍)
= 𝜕𝐹𝜕𝐵 − 𝜕𝜕𝑇 ( 𝜕𝐹𝜕𝐵𝑇) −

𝜕𝜕𝑋 ( 𝜕𝐹𝜕𝐵𝑋)
+ 𝜕2𝜕𝑋2 ( 𝜕𝐹𝜕𝐵𝑋𝑋) +

𝜕𝜕𝑋𝜕𝑌 ( 𝜕𝐹𝜕𝐵𝑋𝑌)
+ 𝜕𝜕𝑋𝜕𝑍 ( 𝜕𝐹𝜕𝐵𝑋𝑍)

= 2𝑐1𝐵𝑋𝑇 + 52𝑏2𝑎1𝐵1/2𝑋 𝐵𝑋𝑋 + 2𝑏3𝑎2𝐵𝑋𝑋𝑋𝑋
+ 2𝑏4𝑎3𝐵𝑋𝑋𝑌𝑌 + 2𝑏5𝑎4𝐵𝑋𝑋𝑍𝑍 = 0.

(19)

Comparing (19) with (16), we obtain the following
Lagrangian multipliers:

𝑏1 = 12 ,
𝑏2 = 15 ,
𝑏3 = 12 ,
𝑏4 = 12 ,
𝑏5 = 12 .

(20)

Therefore, the Lagrangian form of the integer-order 3D
Schamel-KdV equation is given by

𝐿 (𝐵𝑇, 𝐵𝑋, 𝐵𝑋𝑋, 𝐵𝑋𝑌, 𝐵𝑋𝑍)
= −12𝐵𝑇𝐵𝑋 − 415𝑎1 (𝐵𝑋)5/2 + 12𝑎2 (𝐵𝑋𝑋)2
+ 12𝑎3 (𝐵𝑋𝑌)2 + 12𝑎4 (𝐵𝑋𝑍)2 .

(21)

Similarly, the Lagrangian form of the 3D TSF-Schamel-
KdV equation is given by

𝐿 (𝐷𝜔𝑇𝐵,𝐷𝛼𝑋𝐵,𝐷𝛼𝛼𝑋 𝐵,𝐷𝛼𝑋𝐷𝛽𝑌𝐵,𝐷𝛼𝑋𝐷𝛾𝑍𝐵)
= −12𝐷𝜔𝑇𝐵𝐷𝛼𝑋𝐵 − 415𝑎1 (𝐷𝛼𝑋𝐵)5/2 + 12𝑎2 (𝐷𝛼𝛼𝑋 𝐵)2
+ 12𝑎3 (𝐷𝛼𝑋𝐷𝛽𝑌𝐵)

2 + 12𝑎4 (𝐷𝛼𝑋𝐷𝛾𝑍𝐵)2 ,
(22)

where 𝐷𝛼𝛼𝑋 𝐵 = 𝐷𝛼𝑋(𝐷𝛼𝑋𝐵). Thus, the function of the 3D TSF-
Schamel-KdV equation can be obtained as

𝐽𝐹 (𝐵) = ∫
𝑅
(𝑑𝑋)𝛼 ∫

𝑅
(𝑑𝑌)𝛼 ∫

𝑅
(𝑑𝑍)𝛾 ∫

𝑇∗
(𝑑𝑇)𝜔

⋅ 𝐹 (𝐷𝜔𝑇𝐵,𝐷𝛼𝑋𝐵,𝐷𝛼𝛼𝑋 𝐵,𝐷𝛼𝑋𝐷𝛽𝑌𝐵,𝐷𝛼𝑋𝐷𝛾𝑍𝐵) .
(23)

According to the Agrawal’s method [46, 47], the variation
of functional Eq. (23) can be written as

𝛿𝐽𝐹 (𝐵) = ∫
𝑅
(𝑑X)𝛼 ∫

𝑅
(𝑑𝑌)𝛼 ∫

𝑅
(𝑑𝑍)𝛾 ∫

𝑇∗
(𝑑𝑇)𝜔

⋅ [( 𝜕𝐹𝜕𝐷𝜔𝑇𝐵)𝛿𝐷
𝜔
𝑇𝐵 + ( 𝜕𝐹𝜕𝐷𝛼𝑋𝐵)𝛿𝐷

𝛼
𝑋𝐵
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+ ( 𝜕𝐹𝜕𝐷𝛼𝛼𝑋 𝐵)𝛿𝐷
𝛼𝛼
𝑋 𝐵 + ( 𝜕𝐹

𝜕𝐷𝛼𝑋𝐷𝛽𝑌𝐵)𝛿𝐷
𝛼
𝑋𝐷𝛽𝑌𝐵

+ ( 𝜕𝐹
𝜕𝐷𝛼𝑋𝐷𝛾𝑍𝐵)𝛿𝐷

𝛼
𝑋𝐷𝛾𝑍𝐵] ,

(24)

where

∫𝑇
𝑎
(𝑑𝜏)𝑗 𝑓 (𝜏) = 𝑗∫𝑇

𝑎
𝑑𝑥 (𝑇 − 𝜏)𝑗 𝑓 (𝜏) . (25)

Using the fractional integration by parts,

∫𝑏
𝑎
(𝑑𝜏)𝑗 𝑓 (𝑧)𝐷𝑗𝑧𝑔 (𝑧)

= Γ (1 + 𝑗) [𝑔 (𝑧) 𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑏𝑎 − ∫𝑏
𝑎
(𝑑𝑧)𝑗 𝑔 (𝑧)𝐷𝑗𝑧𝑓 (𝑧)] ,
𝑓 (𝑧) , 𝑔 (𝑧) ∈ [𝑎, 𝑏] ,

(26)

we can obtain

𝛿𝐽𝐹 (𝐵) = ∫
𝑅
(𝑑𝑋)𝛼 ∫

𝑅
(𝑑𝑌)𝛼 ∫

𝑅
(𝑑𝑍)𝛾 ∫

𝑇∗
(𝑑𝑇)𝜔

⋅ [−𝐷𝜔𝑇 ( 𝜕𝐹𝜕𝐷𝜔𝑇𝐵) − 𝐷
𝛼
𝑋( 𝜕𝐹𝜕𝐷𝛼𝑋𝐵)

+ 𝐷𝛼𝛼𝑋 ( 𝜕𝐹𝜕𝐷𝛼𝛼𝑋 𝐵) + 𝐷
𝛼
𝑋𝐷𝛽𝑌( 𝜕𝐹

𝜕𝐷𝛼𝑋𝐷𝛽𝑌𝐵)

+ 𝐷𝛼𝑋𝐷𝛾𝑍( 𝜕𝐹
𝜕𝐷𝛼𝑋𝐷𝛾𝑍𝐵)] .

(27)

Optimizing the variation Eq. (24), 𝛿𝐽𝐹(𝐵) = 0, we can obtain
the Euler-Lagrange equation of the 3D TSF-Schamel-KdV
equation as

− 𝐷𝜔𝑇 ( 𝜕𝐹𝜕𝐷𝜔𝑇𝐵) − 𝐷
𝛼
𝑋( 𝜕𝐹𝜕𝐷𝛼𝑋𝐵) + 𝐷

𝛼𝛼
𝑋 ( 𝜕𝐹𝜕𝐷𝛼𝛼𝑋 𝐵)

+ 𝐷𝛼𝑋𝐷𝛽𝑌( 𝜕𝐹
𝜕𝐷𝛼𝑋𝐷𝛽𝑌𝐵) + 𝐷

𝛼
𝑋𝐷𝛾𝑍( 𝜕𝐹

𝜕𝐷𝛼𝑋𝐷𝛾𝑍𝐵)
= 0.

(28)

Substituting (22) into (28), we obtain

𝐷𝜔𝑇𝐷𝛼𝑋𝐵 + 𝑎1 (𝐷𝛼𝑋𝐵)1/2𝐷𝛼𝛼𝑋 𝐵 + 𝑎2𝐷𝛼𝛼𝛼𝛼𝑋 𝐵
+ 𝑎3𝐷𝛼𝛼𝑋 𝐷𝛽𝛽𝑌 𝐵 + 𝑎4𝐷𝛼𝛼𝑋 𝐷𝛾𝛾𝑍 𝐵 = 0.

(29)

Letting 𝐷𝛼𝑋𝐵(𝑋, 𝑌, 𝑍, 𝑇) = 𝐴(𝑋, 𝑌, 𝑍, 𝑇) and substituting𝐷𝛼𝑋𝐵(𝑋, 𝑌, 𝑍, 𝑇) into (29), we can obtain

𝐷𝜔𝑇𝐴 + 𝑎1√𝐴𝐷𝛼𝑋𝐴 + 𝑎2𝐷𝛼𝛼𝛼𝑋 𝐴 + 𝑎3𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴
+ 𝑎4𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴 = 0.

(30)

Eq. (30) is the 3D TSF-Schamel-KdV equation.

4. Conservation Laws of the 3D
TSF-Schamel-KdV Equation

4.1. Lie Symmetry Analysis. In the previous section, we have
obtained the 3D TSF-Schamel-KdV equation. To learn about
the properties of the new model, we study the conservation
laws [48, 49]. First, we convert (30) to the following fractional
partial differential equation form:

𝐷𝛾𝑇𝐴 = 𝑄(𝑋, 𝑌, 𝑍, 𝑇, 𝐴𝑚,𝐷𝜔𝑇𝐴,𝐷𝛼𝑋𝐴,𝐷𝛼𝛼𝛼X 𝐴,
𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴,𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴, . . .) , 𝜔, 𝛼, 𝛽, 𝛾 > 0. (31)

We assume that (31) is invariant under a one parameter
Lie group of point transformations in the following form:

𝑋󸀠 = 𝑥 + 𝜖𝜉 (𝑋, 𝑌, 𝑍, 𝑇, 𝐴) + 𝑂 (𝜖2) ,
𝑌󸀠 = 𝑌 + 𝜖𝜁 (𝑋, 𝑌, 𝑍, 𝑇, 𝐴) + 𝑂 (𝜖2) ,
𝑍󸀠 = 𝑍 + 𝜖𝜓 (𝑋, 𝑌, 𝑍, 𝑇, 𝐴) + 𝑂 (𝜖2) ,
𝑇󸀠 = 𝑇 + 𝜖𝜏 (𝑋, 𝑌, 𝑍, 𝑇, 𝐴) + 𝑂 (𝜖2) ,
𝐴󸀠 = 𝑥 + 𝜖𝜂 (𝑋, 𝑌, 𝑍, 𝑇, 𝐴) + 𝑂 (𝜖2) ,

𝐷𝜔𝑇𝐴󸀠 󳨀→ 𝐷𝜔𝑇𝐴 + 𝜖𝜂𝑇𝜔 + 𝑂 (𝜖2) ,
𝐷𝛼𝑋𝐴󸀠 󳨀→ 𝐷𝛼𝑋𝐴 + 𝜖𝜂𝑋𝛼 + 𝑂 (𝜖2) ,
𝐷𝛼𝛼𝛼𝑋 𝐴󸀠 󳨀→ 𝐷𝛼𝛼𝛼𝑋 𝐴 + 𝜖𝜂𝑋𝑋𝑋𝛼 + 𝑂 (𝜖2) ,

𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴󸀠 󳨀→ 𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝜖𝜂𝑋𝑌𝑌𝛼,𝛽 + 𝑂 (𝜖2) ,
𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴󸀠 󳨀→ 𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴 + 𝜖𝜂𝑋𝑍𝑍𝛼,𝛾 + 𝑂 (𝜖2) ,

(32)

where 𝜉, 𝜁, 𝜓, 𝜏, and 𝜂 are infinitesimal functions, and 𝜂𝑇𝜔 , 𝜂𝑋𝛼 ,𝜂𝑋𝑋𝑋𝛼 , 𝜂𝑋𝑌𝑌𝛼,𝛾 , and 𝜂𝑋𝑍𝑍𝛼,𝛾 are the prolongations of infinitesimal
functions defined as

𝜂𝑇𝛾 = 𝐷𝜔𝑇 (𝜂) + 𝜉𝐷𝜔𝑇 (𝐴𝑋) − 𝐷𝜔𝑇 (𝜉𝐴𝑋) + 𝜁𝐷𝜔𝑇 (𝐴𝑌)
− 𝐷𝜔𝑇 (𝜁𝐴𝑌) + 𝜓𝐷𝜔𝑇 (𝐴𝑍) − 𝐷𝜔𝑇 (𝜓𝐴𝑍)
+ 𝐷𝜔𝑇 (𝐷𝑇 (𝜏) 𝐴) − 𝐷𝛾+1𝑇 (𝜏𝐴)
+ 𝜏𝐷𝛾+1𝑇 (𝐴) ,

𝜂𝑋𝛼 = 𝐷𝛼𝑋 (𝜂) + 𝐷𝛼𝑋 (𝐴)𝐷𝑋 (𝜉) − 𝐷𝛽𝑌 (𝐴)𝐷𝑋 (𝜁)
− 𝐷𝛾𝑍𝐴𝐷𝑍 (𝜓) ,

𝜂𝑋𝑋𝑋𝛼 = 𝐷𝛼𝑋 (𝜂𝑋𝑋𝛼 ) − 𝐴𝑋𝑋𝑋𝐷𝛼𝑋 (𝜉) − 𝐴𝑋𝑋𝑌𝐷𝛼𝑋 (𝜁)
− 𝐴𝑋𝑋𝑍𝐷𝑍 (𝜓) − 𝐴𝑋𝑋𝑇𝐷𝛼𝑋 (𝜏) ,

𝜂𝑋𝑌𝑌𝛼,𝛽 = 𝐷𝛼𝑋 (𝜂𝑌𝑌𝛽 ) − 𝐴𝑋𝑋𝑌𝐷𝛼𝑋 (𝜉) − 𝐴𝑋𝑌𝑌𝐷𝛼𝑋 (𝜁)
− 𝐴𝑋𝑌𝑍𝐷𝛼𝑋 (𝜓) − 𝐴𝑋𝑌𝑇𝐷𝛼𝑋 (𝜏) ,
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𝜂𝑋𝑍𝑍𝛼,𝛽 = 𝐷𝛼𝑋 (𝜂𝑍𝑍𝛾 ) − 𝐴𝑋𝑋𝑍𝐷𝛼𝑋 (𝜉) − 𝐴𝑋𝑌𝑍𝐷𝛼𝑋 (𝜁)
− 𝐴𝑋𝑍𝑍𝐷𝛼𝑋 (𝜓) − 𝐴𝑋𝑍𝑇𝐷𝛼𝑋 (𝜏) ,

(33)

where𝐷𝑇 and𝐷𝑋 are the total derivative operators given by

𝐷𝑇 = 𝜕𝜕𝑇 + 𝐴𝑇 𝜕𝜕𝑇 + 𝐴𝑇𝑇 𝜕𝜕𝐴𝑇 + 𝐴𝑋𝑇
𝜕𝜕𝐴𝑋

+ 𝐴𝑌𝑇 𝜕𝜕𝐴𝑌 + 𝐴𝑍𝑇
𝜕𝜕𝐴𝑍 + ⋅ ⋅ ⋅ ,

𝐷𝑋 = 𝜕𝜕𝑋 + 𝐴𝑋 𝜕𝜕𝐴 + 𝐴𝑋𝑋 𝜕𝜕𝐴𝑋 + 𝐴𝑇𝑋
𝜕𝜕𝐴𝑇

+ 𝐴𝑌𝑋 𝜕𝜕𝐴𝑌 + 𝐴𝑍𝑋
𝜕𝜕𝐴𝑍 + ⋅ ⋅ ⋅ .

(34)

Applying the generalized Leibnitz rule as given by

𝐷𝜔𝑇 (𝑓 (𝑡) 𝑔 (𝑡)) =
∞∑
𝑛=0

(𝜔𝑛)𝐷𝜔−𝑛𝑡 𝑓 (𝑡)𝐷𝑛𝑡 𝑔 (𝑡) ,
𝜔 > 0,

(35)

where

(𝜔𝑛) =
(−1)𝑛−1 𝜔Γ (𝑛 − 𝜔)Γ (1 − 𝜔) Γ (𝑛 + 1) , (36)

and the chain rule for a compound function defined as

𝑑𝑚𝑓 (𝑔 (𝑡))
𝑑𝑡𝑚 = 𝑚∑

𝑘=0

𝑘∑
𝑟=0

(𝑘𝑟)
1𝑘! [−𝑔 (𝑡)𝑘−𝑟]

𝑑𝑘𝑓 (𝑔 (𝑡))
𝑑𝑡𝑘 , (37)

we can obtain the following equation:

𝜂𝑇𝜔 = 𝐷𝜔𝑇 (𝜂) − 𝜔𝐷𝜔𝑇 (𝜏) 𝜕𝜔𝐴𝜕𝑇𝜔
− ∞∑
𝑛=1

(𝜔𝑛)𝐷𝑛𝑇 (𝜉)𝐷𝜔−𝑛𝑇 𝐴𝑋 − ∞∑
𝑛=1

(𝜔𝑛)𝐷𝑛𝑇 (𝜁)

⋅ 𝐷𝜔−𝑛𝑇 𝐴𝑌 − ∞∑
𝑛=1

(𝜔𝑛)𝐷𝑛𝑇 (𝜓)𝐷𝜔−𝑛𝑇 𝐴𝑍
− ∞∑
𝑛=1

( 𝜔
𝑛 + 1)𝐷𝑛+1𝑇 (𝜏)𝐷𝜔−𝑛𝑇 𝐴.

(38)

For the chain rule given by (37), when𝑓(𝑡) = 1, we obtain
𝐷𝜔𝑇 = 𝜕

𝜔𝜂𝜕𝑇𝜔 + 𝜂𝐴 𝜕
𝜔𝐴𝜕𝑇𝜔 − 𝐴𝜕

𝜔𝜂𝐴𝜕𝑇𝜔
+ ∞∑
𝑛=1

(𝜔𝑛)
𝜕𝑛𝜂𝐴𝜕𝑇𝑛 𝐷𝜔−𝑛𝑇 𝐴 + 𝑅𝑎,

(39)

where

𝑅𝑎 = ∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=0

[(𝜔𝑛)(
𝑛
𝑚)(

𝑘
𝑟)

1𝑘! 𝑇𝑛−𝜔Γ (𝑛 + 1 − 𝜔) (−𝐴)𝑟 𝜕
𝐴

𝜕𝑇𝐴 (𝐴)𝑘−𝑟 𝜕𝑛−𝑚+𝑘𝜂
𝜕𝑇𝑛−𝑚𝜕𝐴𝑘] . (40)

Therefore, (38) can be rewritten as

𝜂𝑇𝜔 = 𝜕
𝜔𝜂𝜕𝑇𝜔 + (𝜂𝐴 − 𝜔𝐷𝑇 (𝜏)) 𝜕

𝜔𝐴𝜕𝑇𝜔 − 𝐴𝜕
𝜔𝜂𝐴𝜕𝑇𝜔

+ ∞∑
𝑛=1

[(𝜔𝑛)
𝜕𝜔𝜂𝐴𝜕𝑇𝜔 − (

𝜔
𝑛 + 1)𝐷𝑛+1𝑇 (𝜏)]𝐷𝜔−𝑛𝑇

− ∞∑
𝑛=1

(𝜔𝑛) [𝐷𝑛𝑇 (𝜉)𝐷𝜔−𝑛𝑇 (𝐴𝑋) + 𝐷𝑛𝑇 (𝜁)𝐷𝜔−𝑛𝑇 (𝐴𝑌)
+ 𝐷𝑛𝑇 (𝜓)𝐷𝜔−𝑛𝑇 𝐴𝑍] + 𝑅𝑎.

(41)

Similarly, using the generalized Leibnitz rule and the
chain rule for a compound function, we also obtain the
following equation:

𝜂𝑋𝛼 = 𝜕
𝛼𝜂𝜕𝑋𝛼 + (𝜂𝐴 − 𝛼𝐷𝑋 (𝜉)) 𝜕

𝛼𝐴𝜕𝑋𝛼 − 𝐴𝜕
𝛼𝜂𝐴𝜕𝑋𝛼

+ ∞∑
𝑛=1

[(𝛼𝑛)
𝜕𝛼𝜂𝐴𝜕𝑋𝛼 − (

𝛼
𝑛 + 1)𝐷𝑛+1𝑇 (𝜉)]𝐷𝛼−𝑛𝑋

− ∞∑
𝑛=1

(𝛼𝑛) [𝐷𝑛𝑇 (𝜉)𝐷𝛼−𝑛𝑇 𝐴𝑌 + 𝐷𝑛𝑋 (𝜓)𝐷𝛼−𝑛𝑋 (𝐴𝑍)
+ 𝐷𝑛𝑇𝜏𝐷𝛼−𝑛𝑇 (𝐴𝑇)] + 𝑅𝑏,

(42)

where

𝑅𝑏 = ∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=0

[(𝛼𝑛)(
𝑛
𝑚)(

𝑘
𝑟)

1𝑘! 𝑋𝑛−𝛼Γ (𝑛 + 1 − 𝛼) (−𝐴)𝑟 𝜕
𝑚

𝜕𝑋𝑚 [(𝐴)𝑘−𝑟] 𝜕𝑛−𝑚+𝑘𝜂
𝜕𝑋𝑛−𝑚𝜕𝐴𝑘] . (43)
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The infinitesimal generator𝑀 can be defined as follows:

𝑀 = 𝜉 𝜕𝜕𝑋 + 𝜁 𝜕𝜕𝑌 + 𝜓 𝜕𝜕𝑍 + 𝜏 𝜕𝜕𝑇 + 𝜂 𝜕𝜕𝐴. (44)

Under the infinitesimal transformations, the invariance of the
system (31) leads to the following invariance condition:

𝑃𝑟(𝑛)𝑀(Δ)󵄨󵄨󵄨󵄨󵄨Δ=0 = 0, 𝑛 = 1, 2, 3, . . . ,
Δ = 𝐷𝜔𝑇𝐴 + 𝑎1√𝐴𝐷𝛼𝑋𝐴 + 𝑎2𝐷𝛼𝛼𝛼𝑋 𝐴

+ 𝑎3𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝑎4𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴.
(45)

According to (42) and (43), we can obtain

𝑃𝑟(𝜔,𝛼,𝛽,𝛾,4)𝑀(Δ) = 𝜏 𝜕𝜔𝜕𝑇𝜔 + 𝜉 𝜕
𝛼

𝜕𝑋𝛼 + 𝜁 𝜕
𝛽

𝜕𝑌𝛽 + 𝜓 𝜕
𝛾

𝜕𝑍𝛾
+ 𝜂 𝜕𝜕𝐴 + 𝜂𝑇𝛾 𝜕

𝜕𝐷𝛾𝑇𝐴 + 𝜂
𝑋
𝛼

𝜕𝜕𝐷𝛼𝑋𝐴
+ 𝜂𝑋𝑋𝑋𝛼

𝜕𝜕𝐷𝛼𝛼𝛼𝑋 𝐴
+ 𝜂𝑋𝑌𝑌𝛼,𝛽

𝜕
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴

+ 𝜂𝑋𝑍𝑍𝛼,𝛾

𝜕
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴.

(46)

Then, we can obtain the following invariance criterion:

𝜂𝑇𝜔 + 12𝑎1 1√𝐴𝜂𝐷𝛼𝑋𝐴 + 𝑎1√𝐴𝜂𝑋𝛼 + 𝑎2𝜂𝑋𝑋𝑋𝛼 + 𝑎3𝜂𝑋𝑌𝑌𝛼,𝛽

+ 𝑎4𝜂𝑋𝑍𝑍𝛼,𝛾 = 0.
(47)

Substituting (33), (34), (41), and (42) into (47) and
equating the coefficients of alike partial derivatives, fractional
derivatives and powers of𝐴, the set of determining equations
can be obtained as

(𝜔𝑛)
𝜕𝛾𝜂𝐴𝜕𝑇𝛾 − (

𝜔
𝑛 + 1)𝐷𝑛+1𝑇 (𝜏) = 0,

(𝛼𝑛)
𝜕𝛼𝜂𝐴𝜕𝑋𝛼 − (

𝛼
𝑛 + 1)𝐷𝑛+1𝑋 (𝜉) = 0,

𝜉𝐴 = 𝜉𝑇 = 0,
𝜁𝐴 = 𝜁𝑇 = 0,
𝜏𝑋 = 𝜏𝑌 = 0,
𝜂 = 𝐴 (3𝜉𝑋 − 𝜔𝜏𝑇) ,
𝜂𝐴𝐴 = 0,

𝛼𝜉𝑋 − 𝜔𝜏𝑇 = 0,
𝜕𝜔𝜂𝜕𝑇𝜔 − 𝐴

𝜕𝜔𝜂𝐴𝜕𝑇𝜔 + 𝑎1√𝐴(
𝜕𝛼𝜂𝜕𝑋𝛼 − 𝐴𝜕𝛼𝜂𝐴𝜕𝑋𝛼 )

+ 𝑎2𝐷𝛼𝛼𝛼𝑋 (𝜂) + 𝑎3𝐷𝛼𝑋𝐷𝛽𝛽𝑌 (𝜂) + 𝑎4𝐷𝛼𝑋𝐷𝛾𝛾𝑍 (𝜂) = 0.
(48)

By solving the above equations, we can obtain a series of Lie
algebra of point symmetries as

𝜏 = 𝑐2𝛼𝑇 + 𝑐1,
𝜉 = 𝑐2𝜔𝑋 + 𝑐3,
𝜁 = 𝑐2𝛾𝑌 + 𝑐4𝑍 + 𝑐5,
𝜓 = 𝑐2𝛽𝑍 − 𝑐4𝑌 + 𝑐6,
𝜂 = −𝑐2𝛼 (3 − 𝜔)𝐴.

(49)

Hence, a series of Lie algebra of point symmetries can be
written as

𝑀1 = 𝜕𝜕𝑇,
𝑀2 = 𝜕𝜕𝑋,
𝑀3 = 𝜕𝜕𝑌,
𝑀4 = 𝜕𝜕𝑍,
𝑀5 = 𝜔𝑋 𝜕𝜕𝑋 + 𝛾𝑌 𝜕𝜕𝑌 + 𝛽𝑍 𝜕𝜕𝑍 + 𝛼𝑇 𝜕𝜕𝑇

− 𝛼 (3 − 𝜔)𝐴 𝜕𝜕𝐴.

(50)

4.2. Conservation Laws. We have obtained the Lie symmetry
generator in Section 4.2. In this section, we will discuss
conservation laws of the 3D TSF-Schamel-KdV equation
based on the obtained Lie symmetry generator.We know that
the conservation laws of (30) satisfy the following equation:

𝐷𝑇 (𝐶𝑇) + 𝐷𝑋 (𝐶𝑋) + 𝐷𝑌 (𝐶𝑌) + 𝐷𝑍 (𝐶𝑍) = 0, (51)

where 𝐶𝑇, 𝐶𝑋, 𝐶𝑌 and 𝐶𝑍 are the conserved vectors.
A formal Lagrangian for the 3D TSF-Schamel-KdV equa-

tion can be presented as

L = 𝑠 (𝑋, 𝑌, 𝑍, 𝑇) (𝐷𝜔𝑇𝐴 + 𝑎1√𝐴𝐷𝛼𝑋𝐴 + 𝑎2𝐷𝛼𝛼𝛼𝑋 𝐴
+ 𝑎3𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝑎4𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) ,

(52)

where 𝑠(𝑋, 𝑌, 𝑇) is a new dependent variable. According to
the formal Lagrangian, an action integral is defined as

∫
𝑅
∫
𝑅
∫
𝑅
∫
𝑇∗

L (𝑋, 𝑌, 𝑍, 𝑇, 𝐴, 𝑠, 𝐷𝜔𝑇𝐴,𝐷𝛼𝑋𝐴,𝐷𝛼𝛼𝛼𝑋 𝐴,𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴,𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)𝑑𝑋𝑑𝑌𝑑𝑍𝑑𝑇. (53)
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Therefore, we can obtain the adjoint equation of (30) as the
Euler-Lagrange equation

𝐹∗ = 𝛿L𝛿𝐴 = 0, (54)

where 𝛿/𝛿𝑚 is the Euler-Lagrange operator defined as

𝛿𝛿𝐴 = 𝜕𝜕𝐴 + (𝐷𝜔𝑇)∗ 𝜕𝜕𝐷𝜔𝑇 + (𝐷
𝛼
𝑋)∗ 𝜕𝜕𝐷𝛼𝑋𝐴

− (𝐷𝛼𝛼𝛼𝑋 )∗ 𝜕𝜕𝐷𝛼𝛼𝛼𝑋 𝐴 − (𝐷𝛼𝑋𝐷𝛽𝛽𝑌 )
∗ 𝜕
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴

− (𝐷𝛼𝑋𝐷𝛾𝛾𝑍 )∗ 𝜕
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴,

(55)

where (𝐷𝜔𝑇)∗, (𝐷𝛼𝑋)∗, (𝐷𝛼𝛼𝛼𝑋 )∗, (𝐷𝛼𝑋𝐷𝛽𝛽𝑌 )∗, and (𝐷𝛼𝑋𝐷𝛾𝛾𝑍 )∗ are
the adjoint operators of the Riemann-Liouville fractional
differential operators 𝐷𝜔𝑇, 𝐷𝛼𝑋, 𝐷𝛼𝛼𝛼𝑋 , 𝐷𝛼𝑋𝐷𝛽𝛽𝑌 , and 𝐷𝛼𝑋𝐷𝛾𝛾𝑍 ,
respectively. These are given by

(𝐷𝜔𝑇)∗ = (−1)𝑛 𝐼𝑛−𝜔𝑝 (𝐷𝑛𝑇) = 𝐶
𝑇𝐷𝜔𝑝 ,

(𝐷𝛼𝑋)∗ = (−1)𝑚 𝐼𝑚−𝛼𝑞 (𝐷𝑚𝑋) = 𝐶
𝑋𝐷𝛼𝑞 ,

(56)

where 𝐼𝑛−𝜔𝑝 and 𝐼𝑚−𝛼𝑞 are the right-sided fractional integral
operators of orders 𝑛 − 𝜔 and 𝑚 − 𝛽, respectively. 𝐶

𝑇𝐷𝜔𝑝
and 𝐶

𝑋𝐷𝛼𝑞 are the right-sided Caputo fractional differential
operators of orders 𝜔 and 𝛼, respectively. Therefore, the
adjoint equation (54) can be rewritten as

𝐹∗ = (𝐷𝛾𝑇)∗ 𝑠 + 𝑎1√𝐴(𝐷𝛼𝑋)∗ 𝑠 − 𝑎2 (𝐷𝛼𝛼𝛼𝑋 )∗ 𝑠
− 𝑎3 (𝐷𝛼𝑋𝐷𝛽𝛽𝑌 )∗ 𝑠 − 𝑎4 (𝐷𝛼𝑋𝐷𝛾𝛾𝑍 )∗ 𝑠 = 0.

(57)

Based on Section 4.1, we obtain infinitesimal symmetry
of (30). We assume that the Lie characteristic function𝑊 is
given by

𝑊 = 𝜂 − 𝜏𝐴𝑇 − 𝜉𝐴𝑋 − 𝜁𝐴𝑌 − 𝜓𝐴𝑍. (58)

Applying this on the𝑀5 of the symmetry (50), we obtain

𝑊1 = 𝐴𝑋,
𝑊2 = 𝐴𝑌,
𝑊3 = 𝐴𝑍,
𝑊4 = 𝐴𝑇,
𝑊5 = −𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌

− 𝛽𝑍𝐴𝑍.

(59)

Using the Riemann-Liouville fractional derivative, the
components of the conserved vectors of (30) are defined as

𝐶𝑇 = 𝜏𝐼 + 𝑛−1∑
𝑘=0

(−1)𝑘0 𝐷𝛾−1−𝑘𝑇 (𝑊)𝐷𝑘𝑇 𝜕L
𝜕 ( 0𝐷𝛾𝑇𝐴)

− (−1)𝑛 𝐽(𝑊,𝐷𝑛𝑇 𝜕L
𝜕 ( 0𝐷𝛾𝑇𝐴)) ,

𝐶𝑋 = 𝜉𝐼 +𝑊( 𝜕L𝜕𝐷𝛼𝑋𝐴 + 𝐷
𝛼𝛼
𝑋

𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴
+ 𝐷𝛽𝛽𝑌 𝜕L

𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝐷
𝛾𝛾

𝑍

𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) − 𝐷

𝛼
𝑋 (𝑊)

⋅ [𝐷𝛼𝑋 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] − 𝐷𝛽𝑌 (𝑊) [𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

− 𝐷𝛾𝑍 (𝑊) [𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] + 𝐷

𝛼𝛼
𝑋 (𝑊)

⋅ [ 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] + 𝐷𝛽𝛽𝑌 (𝑊) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

+ 𝐷𝛾𝛾𝑍 (𝑊) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] ,

𝐶𝑌 = 𝜁𝐼 +𝑊[𝐷𝛼𝑋(𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛽
𝑌 (𝑊)

⋅ [𝐷𝛼𝑋( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛼
𝑋 (𝑊)

⋅ [𝐷𝛽𝑌( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛽𝑌 (𝑊)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴) ,

𝐶𝑍 = 𝜁𝐼 +𝑊[𝐷𝛼𝑋(𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] − 𝐷

𝛾

𝑍 (𝑊)
⋅ [𝐷𝛼𝑋( 𝜕L

𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝑚)] − 𝐷
𝛼
𝑋 (𝑊)

⋅ [𝐷𝛾𝑍( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛾𝑍 (𝑊)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) ,

(60)

where 𝑛 = [𝜔] + 1, and 𝐽 is the integral given by
𝐽 (𝑎, 𝑏)
= 1Γ (𝑛 − 𝜔) ∫

𝑇

0
∫𝑇0
𝑇

𝑓 (𝜏,𝑋, 𝑌) 𝑔 (𝜇,𝑋, 𝑌)
(𝜇 − 𝜏)𝜔+1−𝑛 𝑑𝜇 𝑑𝜏, (61)
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with the property that

𝐷𝑇𝐽 (𝑓, 𝑔) = 𝑓𝑇𝐼𝑛−𝛾𝑇󸀠
𝑔 − 𝑔0𝐼𝑛−𝛾𝑇 𝑓. (62)

The conservation laws of the 3D TSF-Schamel-KdV equation
are explained in detail below (see the appendix).

5. Multi-Soliton Solutions for the 3D TSF-
Schamel-KdV Equation

The solution of the model is a relatively broad research area
in science [50, 51]. In this section, using the simplified Hirota
bilinearmethod [24, 52], we seekmultiple soliton solutions of
the 3D TSF-Schamel-KdV equation.

First, we introduce the following fractional transforms:

𝑇󸀠 = 𝑝1𝑇𝜔Γ (1 + 𝜔) ,
𝑋󸀠 = 𝑝2𝑋𝛼Γ (1 + 𝛼) ,
𝑌󸀠 = 𝑝3𝑌𝛽Γ (1 + 𝛽) ,
𝑍󸀠 = 𝑝4𝑍𝛾Γ (1 + 𝛾) ,

(63)

where 𝑝1, 𝑝2, 𝑝3 and 𝑝4 are constants. Using the above
transformations and omitting the apostrophe, we can convert
the derivatives into classical derivatives,

𝜕𝜔𝐴𝜕𝑇𝜔 = 𝑝1 𝜕𝐴𝜕𝑇 ,
𝜕𝛼𝐴𝜕𝑋𝛼 = 𝑝2 𝜕𝐴𝜕𝑋,
𝜕𝛽𝐴𝜕𝑌𝛽 = 𝑝3 𝜕𝐴𝜕𝑌,
𝜕𝛾𝐴𝜕𝑍𝛾 = 𝑝4 𝜕𝐴𝜕𝑍.

(64)

Then, (30) can be described as

𝐴𝑇 + 𝑎1√𝐴𝐴𝑋 + 𝑎2𝐴𝑋𝑋𝑋 + 𝑎3𝐴𝑋𝑌𝑌 + 𝑎4𝐴𝑋𝑍𝑍 = 0. (65)

We assume that the solution of (65) has the form

𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = 𝑒𝜃𝑖(𝑋,𝑌,𝑍,𝑇), (66)

where

𝜃𝑖 (𝑋, 𝑌, 𝑍, 𝑇) = 𝑘𝑖𝑋 + 𝑟𝑖𝑌 + 𝑞𝑖𝑍 − 𝑢𝑖𝑇. (67)

Substituting (66) and (67) into the linear term of (65), we can
obtain the following dispersion relation:

𝑢𝑖 = 𝑎2𝑘3𝑖 + 𝑎3𝑘𝑖𝑟2𝑖 + 𝑎4𝑘𝑖𝑞2𝑖 . (68)

Hence, 𝜃𝑖 can be written as

𝜃𝑖 (𝑋, 𝑌, 𝑍, 𝑇) = 𝑘𝑖𝑋 + 𝑟𝑖𝑌 + 𝑞𝑖𝑍
− (𝑎2𝑘3𝑖 + 𝑎3𝑘𝑖𝑟2𝑖 + 𝑎4𝑘𝑖𝑞2𝑖 ) 𝑇. (69)

5.1. Single-Soliton Solution. Weassume that the single-soliton
solution of (65) has the following form:

𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = 𝑅 (ln𝑓)𝑋𝑋 , (70)

where 𝑓(𝑋, 𝑌, 𝑍, 𝑇) is the auxiliary function defined as

𝑓 (𝑋, 𝑌, 𝑍, 𝑇) = 1 + 𝑒𝜃1(𝑋,𝑌,𝑍,𝑇)
= 1 + 𝑒𝑘1𝑋+𝑟1𝑌+𝑞1𝑍−(𝑎2𝑘31+𝑎3𝑘1𝑟21+𝑎4𝑘1𝑞21)𝑇. (71)

Substituting (70) into (65), we obtain

𝑅 = (18𝑎2𝑎1 )
2 . (72)

Substituting (71) and (72) into (70), we obtain the following
single-soliton solution:

𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = (18𝑎2𝑎1 )
2 𝑘21 𝑒𝜃1(𝑋,𝑌,𝑍,𝑇)

(1 + 𝑒𝜃1(𝑋,𝑌,𝑍,𝑇))2
= (18𝑎2𝑎1 )

2 𝑘21
⋅ 𝑒𝑘1𝑋+𝑟1𝑌+𝑞1𝑍−(𝑎2𝑘31+𝑎3𝑘1𝑟21+𝑎4𝑘1𝑞21)𝑇
(1 + 𝑒𝑘1𝑋+𝑟1𝑌+𝑞1𝑍−(𝑎2𝑘31+𝑎3𝑘1𝑟21+𝑎4𝑘1𝑞21)𝑇)2 .

(73)

The above equation can be rewritten as

𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = (18𝑎2𝑎1 )
2 𝑘21sech2 (𝜃1 (𝑋, 𝑌, 𝑍, 𝑇)2 ) , (74)

where

𝜃1 = 𝑘1 𝑋𝛼Γ (1 + 𝛼) + 𝑟1 𝑌𝛽Γ (1 + 𝛽) + 𝑞1 𝑍𝛾Γ (1 + 𝛾)
− (𝑎2𝑘31 + 𝑎3𝑘1𝑟21 + 𝑎4𝑘1𝑞21) 𝑇𝜔Γ (1 + 𝜔) .

(75)

5.2. Two-Soliton Solution. We assume that the two-soliton
solution has the following form:

𝑓 (𝑋, 𝑌, 𝑍, 𝑇) = 1 + 𝑒𝜃1(𝑋,𝑌,𝑍,𝑇) + 𝑒𝜃2(𝑋,𝑌,𝑍,𝑇)
+ 𝑎12𝑒𝜃1(𝑋,𝑌,𝑍,𝑇)+𝜃2(𝑋,𝑌,𝑍,𝑇),

(76)

where 𝜃1 and 𝜃2 are defined in (69). We know that

𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = (18𝑎2𝑎1 )
2 (ln𝑓)𝑋𝑋 , (77)

and substituting this expression into (65), the coefficient 𝑎12
can be obtained as

𝑎12 = 𝑘21 + 𝑘22 − 𝑘1𝑘2𝑘21 + 𝑘22 + 2𝑘1𝑘2 . (78)

Therefore, the two-soliton solution for (65) has the following
form:
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𝐴 (𝑋, 𝑌, 𝑍, 𝑇) = (18𝑎2𝑎1 )
2 𝑘21𝑒𝜃1 + 𝑘22𝑒𝜃2 + [𝑎12 (𝑘22𝑒𝜃1 + 𝑘21𝑒𝜃2) + 𝑎12 (𝑘1 + 𝑘2)2 + (𝑘1 − 𝑘2)2] 𝑒𝜃1+𝜃2

(1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑎12𝑒𝜃1+𝜃2)2 , (79)

where

𝜃1 = 𝑘1𝑋𝛼Γ (1 + 𝛼) + 𝑟1𝑌𝛽Γ (1 + 𝛽) +
𝑞1𝑍𝛾Γ (1 + 𝛾)

− (𝑎2𝑘31 + 𝑎3𝑘1𝑟21 + 𝑎4𝑘1𝑞21) 𝑇𝜔Γ (1 + 𝜔) ,
𝜃2 = 𝑘2𝑋𝛼Γ (1 + 𝛼) + 𝑟2𝑌𝛽Γ (1 + 𝛽) +

𝑞2𝑍𝛾Γ (1 + 𝛾)
− (𝑎2𝑘32 + 𝑎3𝑘2𝑟22 + 𝑎4𝑘2𝑞22) 𝑇𝜔Γ (1 + 𝜔) .

(80)

5.3. Three-Soliton Solution. To investigate the three-soliton
solution of (65), we assume that the auxiliary function𝑓(𝑋, 𝑌, 𝑍, 𝑇) has the following form:

𝑓 (𝑋, 𝑌, 𝑍, 𝑇) = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 + 𝑎12𝑒𝜃1+𝜃2𝑎13𝑒𝜃1+𝜃3
+ 𝑎23𝑒𝜃2+𝜃3 + 𝑎123𝑒𝜃1+𝜃2+𝜃3 ,

(81)

where

𝑎𝑖𝑗 = 𝑘2𝑖 + 𝑘2𝑗 − 𝑘𝑖𝑘𝑗𝑘2𝑖 + 𝑘2𝑗 + 2𝑘𝑖𝑘𝑗 . (82)

Substituting (77) and (81) into (65), we find the following
pattern:

𝑎123 = 𝑎12𝑎13𝑎123. (83)

According to the pattern obtained in Section 5.3, the𝑁-soliton solutions for the 3𝐷 TSF-Schamel-KdV equation
can be obtained, where 𝑁 ≥ 1. Based on the single-
soliton solution and the two-soliton solution, we can study
the characteristics of the motion of the ion-acoustic solitary
waves.

In this section, we describe the interaction of two small
ion-acoustic solitary waves with finite amplitude in a weakly
relativistic 3D magnetic plasma. Then, we can study the
characteristics of motion of the solitary waves by changing
the coefficients. Based on the single-soliton solution of ion-
acoustic solitary waves, we obtain the evolution plots of the
ion-acoustic solitary waves (see Figure 1). Figure 1 shows that
the solitonic amplitude increases with an increase in the 𝑎2/𝑎1
ratio, and the initial superimposed solitons travel different
distances over a period of time for the different choices of 𝑎1
and 𝑎2. Therefore, we conclude that the soliton moves along
the positive 𝑥-axis with constant amplitude and velocity.

Examination of Figure 2(a) shows that the propagation
trajectory of the soliton exhibits a periodic oscillation.

Figure 2(a) shows the curve propagation trajectory with
constant amplitude and constantly changing velocity, where
the velocity changes with time. Furthermore, Figure 2(b)
shows the two-soliton interaction with constantly changing
velocity. When 𝑇 → 0, the trajectory is sinusoidal with
periodic oscillation. Otherwise, when𝑇 is far from the origin,
the trajectory is parabolic-like. It can be seen fromFigure 2(c)
that the soliton generates a peak at the time of the interaction.
Based on this, we conclude that, in addition to the periodic
oscillation of the solitons in the local region, the large-scale
propagation trajectories for such a structure show parabolic-
type curves. Thus, if the variable coefficients are taken to
have other forms, the corresponding characteristic curves
will present different behaviors.

Remark 4. The present study describes the propagation and
interaction of two small but finite amplitude ion-acoustic
solitary waves in a weakly relativistic 3D magnetized plasma.
Our conclusions can be considered as a generalization of the
model suggested by Nejoh [53] and Pakira and Chowdhury
[54] by including the effect of different coefficients. It has
been found that the initial superposed solitons travel different
distances over a period of time for the different choices of𝑎1 and 𝑎2 and that the solitonic amplitude increases with an
increase in the 𝑎2/𝑎1 ratio.Moreover, the time fractional order𝜔 and space fractional orders 𝛼, 𝛽, and 𝛾 play an important
role in higher-order perturbation theory in the variation of
the soliton amplitude. We believe that our research may be of
basic interest for particle trapping experiments. Compared to
other solitary waves, the unique features of the ion-acoustic
solitary waves are the existence of an ultra-low frequency
regime for wave propagation and the high charging of the
grains, which can fluctuate because of the collection of plasma
currents onto dust surfaces. It is difficult to carry out a
reasonable comparison between previous studies and the
present work. Nevertheless, due to the flexibility provided
by the nonextensive method, we suggest that the quantita-
tive discrepancies between the theory and experiment can
be reduced. Thus, the application of our model may be
particularly interesting in some plasma environments, such
as space-plasmas, laser-plasma interactions, and the plasma
sheet boundary layer of the earth’s magnetosphere.

6. Conclusions

In this paper, based on the basic system of equations of
ion-acoustic solitary waves, we have obtained a new 3D
Schamel-KdV equation by applying multi-scale analysis and
the perturbation method. Then, based on the newly devel-
oped model and using the semi-inverse method and the
fractional variational principle, a new 3D TSF-Schamel-KdV
equation is obtained. We study the conservation laws and
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Figure 1: Plots for the evolution of the one-soliton solution of ion-acoustic solitary waves with (a): 𝑡 = 1, 𝑎1 = 1, 𝑎3 = 0, 𝑎4 = 1, 𝑘1 = 1,𝑟1 = 0.4, 𝑞1 = 0.4, 𝛼 = 0.8, 𝛽 = 1, 𝛾 = 1, 𝜔 = 2; (b): 𝑡 = 3, 𝑎1 = 1, 𝑎3 = 0, 𝑎4 = 1, 𝑘1 = 1, 𝑟1 = 0.4, 𝑞1 = 0.4, 𝛼 = 0.8, 𝛽 = 1, 𝛾 = 1, 𝜔 = 1.5;
(c): 𝑡 = 5, 𝑎1 = 1, 𝑎3 = 0, 𝑎4 = 1, 𝑘1 = 1, 𝑟1 = 0.4, 𝑞1 = 0.4, 𝛼 = 0.8, 𝛽 = 1, 𝛾 = 1, 𝜔 = 1.5, and 𝑎2 = 0.1 (solid line), 𝑎2 = 0.09 (dotted line),𝑎2 = 0.08 (dashed line).
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Figure 2: Interaction of the two solitons of ion-acoustic solitary waves with (a): 𝑎1 = 1, 𝑎2 = 0.1, 𝑎3 = 1, 𝑎4 = 1, 𝑘1 = 1.6, 𝑟1 = 1, 𝑞1 = 1,𝑘2 = −1.9, 𝑟2 = 1, 𝑞2 = 1, 𝛼 = 0.9, 𝛽 = 0.8, 𝛾 = 0.9, 𝜔 = 1.9; (b): 𝑎1 = 1, 𝑎2 = 0.1, 𝑎3 = 1, 𝑎4 = 1, 𝑘1 = 1.6, 𝑟1 = 1, 𝑞1 = 1, 𝑘2 = −1.9, 𝑟2 = 1,𝑞2 = 1, 𝛼 = 0.7, 𝛽 = 1, 𝛾 = 1, 𝜔 = 2.8; (c): 𝑎1 = 1, 𝑎2 = 0.1, 𝑎3 = 1, 𝑎4 = 1, 𝑘1 = 1.6, 𝑟1 = 1, 𝑞1 = 1, 𝑘2 = −1.9, 𝑟2 = 1, 𝑞2 = 1, 𝛼 = 0.8, 𝛽 = 1,𝛾 = 1, 𝜔 = 2.8.
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soliton solutions of the 3D TSF-Schamel-KdV equation. By
theory and image analysis, the following conclusions can be
obtained:

(1) Based on the basic system of equations and using
multi-scale analysis and the perturbation method, we have
obtained a new 3D Schamel-KdV equation. This equation is
more suitable than other models for the study of ion-acoustic
solitary waves. Furthermore, based on the new integer-order
model and using the semi-inverse method and the fractional
variational principle, we obtain the 3D TSF-Schamel-KdV
equation. The fractional model opens the door to the study
of ion-acoustic solitary waves.

(2) Using the Riemann-Liouville fractional derivative, we
study the conservation laws of the 3D TSF-Schamel-KdV
equation. Then, we discuss the soliton solutions of the new
fractional model. Using the multi-soliton solutions, we study
the characteristics of motion of ion-acoustic solitary waves.

Appendix

When 𝜔 ∈ (0, 1) and 𝑛 = 1, we can obtain the following
components of the conserved vectors:

𝐶𝑇𝑖 = 𝜏𝐼 + (−1) 00𝐷𝜔−1𝑇 (𝑊𝑖)𝐷0𝑇 𝜕L
𝜕 ( 0𝐷𝛾𝑇𝑚) − (−1)

1

⋅ 𝐽 (𝑊𝑖, 𝐷1𝑇 𝜕L𝜕 ( 0𝐷𝜔𝑇𝑚)) = 0𝐷𝜔−1𝑇 (𝑊𝑖) 𝑠
+ 𝐽 (𝑊𝑖, 𝐷1𝑇𝑠) ,

𝐶𝑋𝑖 = 𝜉𝐼 +𝑊𝑖( 𝜕L𝜕𝐷𝛼𝑋𝐴 + 𝐷
𝛼𝛼
𝑋

𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴
+ 𝐷𝛽𝛽𝑌 𝜕L

𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝐷
𝛾𝛾

𝑍

𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) − 𝐷

𝛼
𝑋 (𝑊𝑖)

⋅ [𝐷𝛼𝑋 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] − 𝐷𝛽𝑌 (𝑊𝑖) [𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

− 𝐷𝛾𝑍 (𝑊𝑖) [𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] + 𝐷

𝛼𝛼
𝑋 (𝑊𝑖)

⋅ [ 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] + 𝐷𝛽𝛽𝑌 (𝑊𝑖) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

+ 𝐷𝛾𝛾𝑍 (𝑊𝑖) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] ,

𝐶𝑌𝑖 = 𝜁𝐼 +𝑊𝑖 [𝐷𝛼𝑋(𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛽
𝑌 (𝑊𝑖)

⋅ [𝐷𝛼𝑋( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛼
𝑋 (𝑊𝑖)

⋅ [𝐷𝛽𝑌( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛽𝑌 (𝑊𝑖)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴) ,

𝐶𝑍𝑖 = 𝜁𝐼 +𝑊𝑖 [𝐷𝛼𝑋(𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] − 𝐷

𝛾

𝑍 (𝑊𝑖)

⋅ [𝐷𝛼𝑋( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝑚)] − 𝐷

𝛼
𝑋 (𝑊𝑖)

⋅ [𝐷𝛾𝑍( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛾𝑍 (𝑊𝑖)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) ,

(A.1)

When 𝑖 = 1 and 𝑊1 = 𝐴𝑋, we can obtain the following
components of the conserved vectors:

𝐶𝑇1 = 0𝐷𝜔−1𝑇 (𝐴𝑋) 𝑠 + 𝐽 (𝐴𝑋, 𝐷1𝑇𝑠) ,
𝐶𝑋1 = 𝐴𝑋 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑋)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑋)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑋) + 𝐷𝛽𝛽𝑌 (𝐴𝑋)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑋)] 𝑠,

𝐶𝑌1 = 𝑎3 [𝐴𝑋𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑋) 𝑠] ,

𝐶𝑌1 = 𝑎4 [𝐴𝑋𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑋) 𝑠] .

(A.2)

When 𝑖 = 2 and 𝑊2 = 𝐴𝑌, we can obtain the following
components of conserved vectors:

𝐶𝑌2 = 0𝐷𝜔−1𝑇 (𝐴𝑌) 𝑠 + 𝐽 (𝐴𝑌, 𝐷1𝑇𝑠) ,
𝐶𝑋2 = 𝐴𝑌 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑌)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑌)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑌) + 𝐷𝛽𝛽𝑌 (𝐴𝑌)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑌)] 𝑠,

𝐶𝑌2 = 𝑎3 [𝐴𝑌𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑌)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑌) 𝑠] ,

𝐶𝑌2 = 𝑎4 [𝐴𝑌𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑌)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑌) 𝑠] .

(A.3)
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When 𝑖 = 3 and 𝑊2 = 𝐴𝑍, we can obtain the following
components of the conserved vectors:

𝐶𝑇3 = 0𝐷𝜔−1𝑇 (𝐴𝑍) 𝑠 + 𝐽 (𝐴𝑍, 𝐷1𝑇𝑠) ,
𝐶𝑋3 = 𝐴𝑍 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑍)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑍)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑍) + 𝐷𝛽𝛽𝑌 (𝐴𝑍)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑍)] 𝑠,

𝐶𝑌3 = 𝑎3 [𝐴𝑍𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑍) 𝑠] ,

𝐶𝑍3 = 𝑎4 [𝐴𝑍𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑍) 𝑠] .

(A.4)

When 𝑖 = 4 and 𝑊4 = 𝐴𝑇, we can obtain the following
components of the conserved vectors:

𝐶𝑇4 = 0𝐷𝜔−1𝑇 (𝐴𝑇) 𝑠 + 𝐽 (𝐴𝑇, 𝐷1𝑇𝑠) ,
𝐶𝑋4 = 𝐴𝑇 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑇)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑇)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑇) + 𝐷𝛽𝛽𝑌 (𝐴𝑇)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑇)] 𝑠,

𝐶𝑌4 = 𝑎3 [𝐴𝑇𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑇 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑇 (𝐴𝑋) 𝑠] ,

𝐶𝑍4 = 𝑎4 [𝐴𝑇𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑇)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑇) 𝑠] .

(A.5)

When 𝑖 = 5 and 𝑊5 = −𝛼(3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 −𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍, we can obtain the following components of
the conserved vectors:

𝐶𝑇5 = 0𝐷𝜔−1𝑇 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠 + 𝐽 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍, 𝐷1𝑇𝑠) ,

𝐶𝑋5 = (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴Y

− 𝛽𝑍𝐴𝑍) (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇

− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) ⋅ 𝐷𝛽𝑌𝑠 − 𝑎4𝐷𝛾𝑍 (−𝛼 (3
− 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛾𝑍𝑠
+ [𝐷𝛼𝛼𝑋 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) + 𝐷𝛽𝛽𝑌 (𝐴𝑋) + 𝐷𝛾𝛾𝑍
⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)] 𝑠,

𝐶𝑌5 = 𝑎3 [(−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 [−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍]𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠] ,

𝐶𝑌5 = 𝑎4 [(−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠] .

(A.6)

When 𝜔 ∈ (1, 2) and 𝑛 = 2, we can obtain the following
components of the conserved vectors:

𝐶𝑇𝑖 = 𝜏𝐼 + (−1) 00𝐷𝜔−1𝑇 (𝑊𝑖)𝐷0𝑇 𝜕L
𝜕 ( 0𝐷𝛾𝑇𝑚) − (−1)

1

⋅ 𝐽 (𝑊𝑖, 𝐷1𝑇 𝜕L𝜕 ( 0𝐷𝜔𝑇𝑚)) + (−1)
1
0𝐷𝜔−2𝑇 (𝑊𝑖)

⋅ 𝐷1𝑇 𝜕𝐿𝜕0𝐷𝜔𝑇 − (−1)
2 𝐽(𝑊𝑖, 𝐷2𝑇 𝜕L𝜕 ( 0𝐷𝜔𝑇𝑚))

= 0𝐷𝜔−1𝑇 (𝑊𝑖) 𝑠 + 𝐽 (𝑊𝑖, 𝐷1𝑇𝑠) − 0𝐷𝜔−1𝑇 (𝑊𝑖) 𝑠𝑇
− 𝐽 (𝑊𝑖, 𝐷2𝑇𝑠) ,

𝐶𝑋𝑖 = 𝜉𝐼 +𝑊𝑖( 𝜕L𝜕𝐷𝛼𝑋𝐴 + 𝐷
𝛼𝛼
𝑋

𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴
+ 𝐷𝛽𝛽𝑌 𝜕L

𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴 + 𝐷
𝛾𝛾

𝑍

𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) − 𝐷

𝛼
𝑋 (𝑊𝑖)
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⋅ [𝐷𝛼𝑋 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] − 𝐷𝛽𝑌 (𝑊𝑖) [𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

− 𝐷𝛾𝑍 (𝑊𝑖) [𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] + 𝐷

𝛼𝛼
𝑋 (𝑊𝑖)

⋅ [ 𝜕L𝜕𝐷𝛼𝛼𝛼𝑋 𝐴] + 𝐷𝛽𝛽𝑌 (𝑊𝑖) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴]

+ 𝐷𝛾𝛾𝑍 (𝑊𝑖) [ 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴] ,

𝐶𝑌𝑖 = 𝜁𝐼 +𝑊𝑖 [𝐷𝛼𝑋(𝐷𝛽𝑌 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛽
𝑌 (𝑊𝑖)

⋅ [𝐷𝛼𝑋( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] − 𝐷

𝛼
𝑋 (𝑊𝑖)

⋅ [𝐷𝛽𝑌( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛽𝑌 (𝑊𝑖)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛽𝛽𝑌 𝐴) ,

𝐶𝑍𝑖 = 𝜁𝐼 +𝑊𝑖 [𝐷𝛼𝑋(𝐷𝛾𝑍 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] − 𝐷

𝛾

𝑍 (𝑊𝑖)

⋅ [𝐷𝛼𝑋( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝑚)] − 𝐷

𝛼
𝑋 (𝑊𝑖)

⋅ [𝐷𝛾𝑍( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴)] + 𝐷

𝛼
𝑋𝐷𝛾𝑍 (𝑊𝑖)

⋅ ( 𝜕L
𝜕𝐷𝛼𝑋𝐷𝛾𝛾𝑍 𝐴) .

(A.7)

When 𝑖 = 1 and 𝑊1 = 𝐴𝑋, we can obtain the following
components of the conserved vectors:

𝐶𝑇1 = 0𝐷𝜔−1𝑇 (𝐴𝑋) 𝑠 + 𝐽 (𝐴𝑋, 𝐷1𝑇𝑠) − 0𝐷𝜔−1𝑇 (𝐴𝑋)
⋅ 𝑠𝑇 − 𝐽 (𝐴𝑋, 𝐷2𝑇𝑠) ,

𝐶𝑋1 = 𝐴𝑋 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑋)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑋)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑋) + 𝐷𝛽𝛽𝑌 (𝐴𝑋)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑋)] 𝑠,

𝐶𝑌1 = 𝑎3 [𝐴𝑋𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑋) 𝑠] ,

𝐶𝑌1 = 𝑎4 [𝐴𝑋𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑋)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑋) 𝑠] .

(A.8)

When 𝑖 = 2 and 𝑊2 = 𝐴𝑌, we can obtain the following
components of the conserved vectors:

𝐶𝑌2 = 0𝐷𝜔−1𝑇 (𝐴𝑌) 𝑠 + 𝐽 (𝐴𝑌, 𝐷1𝑇𝑠) − 0𝐷𝜔−1𝑇 (𝐴𝑌) 𝑠𝑇
− 𝐽 (𝐴𝑌, 𝐷2𝑇𝑠) ,

𝐶𝑋2 = 𝐴𝑌 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑌)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑌)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑌) + 𝐷𝛽𝛽𝑌 (𝐴𝑌)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑌)] 𝑠,

𝐶𝑌2 = 𝑎3 [𝐴𝑌𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑌)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑌) 𝑠] ,

𝐶𝑌2 = 𝑎4 [𝐴𝑌𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑌)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑌)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑌) 𝑠] .

(A.9)

When 𝑖 = 3 and 𝑊2 = 𝐴𝑍, we can obtain the following
components of the conserved vectors:

𝐶𝑇3 = 0𝐷𝜔−1𝑇 (𝐴𝑍) 𝑠 + 𝐽 (𝐴𝑍, 𝐷1𝑇𝑠) − 0𝐷𝜔−1𝑇 (𝐴𝑍)
⋅ 𝑠𝑇 − 𝐽 (𝐴𝑍, 𝐷2𝑇𝑠) ,

𝐶𝑋3 = 𝐴𝑍 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑍)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑍)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑍) + 𝐷𝛽𝛽𝑌 (𝐴𝑍)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑍)] 𝑠,

𝐶𝑌3 = 𝑎3 [𝐴𝑍𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 (𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (𝐴𝑍) 𝑠] ,

𝐶𝑍3 = 𝑎4 [𝐴𝑍𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑍)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑍) 𝑠] .

(A.10)

When 𝑖 = 4 and 𝑊4 = 𝐴𝑇, we can obtain the following
components of the conserved vectors:

𝐶𝑇4 = 0𝐷𝜔−1𝑇 (𝐴𝑇) 𝑠 + 𝐽 (𝐴𝑇, 𝐷1𝑇𝑠) − 0𝐷𝜔−1𝑇 (𝐴𝑇) 𝑠𝑇
− 𝐽 (𝐴𝑇, 𝐷2𝑇𝑠) ,
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𝐶𝑋4 = 𝐴𝑇 (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (𝐴𝑇)𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (𝐴𝑇)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 (𝐴𝑇) + 𝐷𝛽𝛽𝑌 (𝐴𝑇)
+ 𝐷𝛾𝛾𝑍 (𝐴𝑇)] 𝑠,

𝐶𝑌4 = 𝑎3 [𝐴𝑇𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑇 (𝐴𝑋)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑇 (𝐴𝑋) 𝑠] ,

𝐶𝑌4 = 𝑎4 [𝐴𝑇𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 (𝐴𝑇)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (𝐴𝑇)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (𝐴𝑇) 𝑠] .

(A.11)

When 𝑖 = 5 and 𝑊5 = −𝛼(3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 −𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍, we can obtain the following components of
the conserved vectors:

𝐶𝑇5 = 0𝐷𝜔−1𝑇 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠 + 𝐽 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍, 𝐷1𝑇𝑠)
− 0𝐷𝜔−1𝑇 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠𝑇 − 𝐽 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍, 𝐷2𝑇𝑠) ,

𝐶𝑋5 = (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍) (𝑎√𝐴𝑠 + 𝑎2𝐷𝛼𝛼𝑋 𝑠 + 𝑎3𝐷𝛽𝛽𝑌 𝑠 + 𝑎4𝐷𝛾𝛾𝑍 𝑠)
− 𝑎2𝐷𝛼𝑋 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠 − 𝑎3𝐷𝛽𝑌 (−𝛼 (3 − 𝜔)𝐴
− 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) ⋅ 𝐷𝛽𝑌𝑠
− 𝑎4𝐷𝛾𝑍 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋
− 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛾𝑍𝑠 + [𝐷𝛼𝛼𝑋 ⋅ (−𝛼 (3 − 𝜔)𝐴
− 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)
+ 𝐷𝛽𝛽𝑌 (𝐴𝑋) + 𝐷𝛾𝛾𝑍 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)] 𝑠,

𝐶𝑌5 = 𝑎3 [(−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝐷𝛽𝑌𝑠 − 𝐷𝛽𝑌 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 [−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌

− 𝛽𝑍𝐴𝑍]𝐷𝛽𝑌𝑠 + 𝐷𝛼𝑋𝐷𝛽𝑌 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠] ,

𝐶𝑌5 = 𝑎4 [(−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝐷𝛾𝑍𝑠 − 𝐷𝛽𝑍 ⋅ (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍)𝐷𝛼𝑋𝑠
− 𝐷𝛼𝑋 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇 − 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌
− 𝛽𝑍𝐴𝑍)𝐷𝛾𝑍𝑠 + 𝐷𝛼𝑋𝐷𝛾𝑍 (−𝛼 (3 − 𝜔)𝐴 − 𝛼𝑇𝐴𝑇
− 𝜔𝑋𝐴𝑋 − 𝛾𝑌𝐴𝑌 − 𝛽𝑍𝐴𝑍) 𝑠] .

(A.12)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This project was supported by the National Natural Science
Foundation of China (nos. 11701334, 41476019), CAS Inter-
disciplinary Innovation Team “Ocean Mesoscale Dynamical
Processes and Ecological Effect”, China Postdoctoral Science
Foundation Funded Project (no. 2017M610436), and Nature
Science Foundation of Shandong Province of China (no.
ZR2018MA017).

References

[1] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, and A. A.
Mahmoud, “Ion-acoustic waves in unmagnetized collision-
less weakly relativistic plasma of warm-ion and isothermal-
electron using time-fractional KdV equation,” Advances in
Space Research, vol. 49, no. 12, pp. 1721–1727, 2012.

[2] J. Han, S. Du, and W. Duan, “Ion-acoustic solitary waves
and their interaction in a weakly relativistic two-dimensional
thermal plasma,” Physics of Plasmas, vol. 15, no. 11, Article ID
112104, 2008.

[3] A. R. Seadawy, “Stability analysis for two-dimensional ion-
acoustic waves in quantum plasmas,” Physics of Plasmas, vol. 21,
no. 5, Article ID 052107, 2014.

[4] F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, “Quantum
ion-acoustic waves,” Physics of Plasmas, vol. 10, no. 10, pp. 3858–
3866, 2003.

[5] M. G. Ancona and G. J. Iafrate, “Quantum correction to the
equation of state of an electron gas in a semiconductor,” Physical
Review B: Condensed Matter and Materials Physics, vol. 39, no.
13, pp. 9536–9540, 1989.



16 Complexity

[6] H. Washimi and T. Taniuti, “Propagation of ion-acoustic soli-
tary waves of small amplitude,” Physical Review Letters, vol. 17,
no. 19, pp. 996–998, 1966.

[7] M. Kako and G. Rowlands, “Two-dimensional stability of ion-
acoustic solitons,” Journal of Plasma Physics, vol. 18, no. 3, article
no. 001, pp. 165–170, 1976.

[8] C. Lu, C. Fu, and H. Yang, “Time-fractional generalized
Boussinesq equation for Rossby solitary waves with dissipation
effect in stratified fluid and conservation laws as well as exact
solutions,” Applied Matheamtics and Computation, vol. 327, pp.
104–116, 2018.

[9] C. Fu, C. N. Lu, and H. W. Yang, “Time-space fractional
(2+1) dimensional nonlinear Schrodinger equation for envelope
gravity waves in baroclinic atmosphere and conservation laws
as well as exact solutions,”Advances in Difference Equations, vol.
2018, p. 56, 2018.

[10] Z.Wang, X.Huang, andG. Shi, “Analysis of nonlinear dynamics
and chaos in a fractional order financial systemwith time delay,”
Computers & Mathematics with Applications. An International
Journal, vol. 62, no. 3, pp. 1531–1539, 2011.

[11] S. Guo, L. Mei, Y. He, and Y. Li, “Time-fractional Schamel-KdV
equation for dust-ion-acoustic waves in pair-ion plasma with
trapped electrons and opposite polarity dust grains,” Physics
Letters A, vol. 380, no. 9-10, pp. 1031–1036, 2016.

[12] M. Tao and H. Dong, “Algebro-geometric solutions for a
discrete integrable equation,” Discrete Dynamics in Nature and
Society, pp. 1–9, 2017.

[13] J. Yang,W.Ma, andZ.Qin, “Lumpand lump-soliton solutions to
the (2+1)-dimensional Ito equation,”Analysis andMathematical
Physics, vol. 1, pp. 1–10, 2017.

[14] H. W. Yang, Z. H. Xu, D. Z. Yang, X. R. Feng, B. S. Yin, and H.
H. Dong, “ZK-Burgers equation for three-dimensional Rossby
solitary waves and its solutions as well as chirp effect,” Advances
in Difference Equations, Paper No. 167, 22 pages, 2016.

[15] X. Zhang, L. Liu, and Y.Wu, “Variational structure andmultiple
solutions for a fractional advection-dispersion equation,” Com-
puters & Mathematics with Applications, vol. 68, no. 12, part A,
pp. 1794–1805, 2014.

[16] Q. Feng and F. Meng, “Explicit solutions for space-time frac-
tional partial differential equations in mathematical physics by
a new generalized fractional Jacobi elliptic equation-based sub-
equation method,” Optik - International Journal for Light and
Electron Optics, vol. 127, no. 19, pp. 7450–7458, 2016.

[17] E. M. Abulwafa, E. El-Shewy, and A. A. Mahmoud, “Time-
fractional effect on pressure waves propagating through a fluid
filled circular long elastic tube,” Egyptian Journal of Basic and
Applied Sciences, vol. 3, no. 1, pp. 35–43, 2016.

[18] Z. Bai, S. Zhang, S. Sun, and C. Yin, “Monotone iterative
method for fractional differential equations,” Electronic Journal
of Differential Equations, vol. 2016, article 6, 2016.

[19] Y. Cui, W. Ma, Q. Sun, and X. Su, “New uniqueness results
for boundary value problem of fractional differential equation,”
Nonlinear Analysis: Modelling and Control, vol. 23, no. 1, pp. 31–
39, 2018.

[20] H.M. Jaradat, “New solitarywave andmultiple soliton solutions
for the time-space fractional Boussinesq equation,” Italian
Journal of Pure and Applied Mathematics, no. 36, pp. 367–376,
2016.

[21] M. Alquran, H. M. Jaradat, S. Al-Shara’, and F. Awawdeh, “A
new simplified bilinear method for the N-soliton solutions for
a generalized FmKdV equation with time-dependent variable

coefficients,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 16, no. 6, pp. 259–269, 2015.

[22] A. Biswas, “1-soliton solution of the generalized Zakharov-
Kuznetsov equation with nonlinear dispersion and time-
dependent coefficients,” Physics Letters A, vol. 373, no. 33, pp.
2931–2934, 2009.

[23] Y. Liu and Z. Li, “The homotopy analysis method for approx-
imating the solution of the modified Korteweg-de Vries equa-
tion,” Chaos, Solitons & Fractals, vol. 39, no. 1, pp. 1–8, 2009.

[24] W.-X. Ma and Y. Zhou, “Lump solutions to nonlinear partial
differential equations via Hirota bilinear forms,” Journal of
Differential Equations, vol. 264, no. 4, pp. 2633–2659, 2018.

[25] J.-B. Zhang and W.-X. Ma, “Mixed lump-kink solutions to the
BKP equation,”Computers&Mathematics withApplications. An
International Journal, vol. 74, no. 3, pp. 591–596, 2017.

[26] H.-Q. Zhao and W.-X. Ma, “Mixed lump-kink solutions to the
KP equation,” Computers & Mathematics with Applications. An
International Journal, vol. 74, no. 6, pp. 1399–1405, 2017.

[27] S. Y. Lukashchuk, “Conservation laws for time-fractional sub-
diffusion and diffusion-wave equations,” Nonlinear Dynamics,
vol. 80, no. 1-2, pp. 791–802, 2015.

[28] H. Yang, B. Yin, Y. Shi, and Q. Wang, “Forced ILW-Burgers
equation as a model for Rossby solitary waves generated by
topography in finite depth fluids,” Journal of AppliedMathemat-
ics, vol. 2012, Article ID 491343, 2012.

[29] Y. Zhang, Z. Bai, and T. Feng, “Existence results for a coupled
system of nonlinear fractional three-point boundary value
problems at resonance,” Computers & Mathematics with Appli-
cations. An International Journal, vol. 61, no. 4, pp. 1032–1047,
2011.

[30] F. Wang, Y. Cui, and F. Zhang, “Existence of nonnegative
solutions for second order m-point boundary value problems
at resonance,” Applied Mathematics and Computation, vol. 217,
no. 10, pp. 4849–4855, 2011.

[31] X.-X. Xu, “An integrable coupling hierarchy of the mKdV-
integrable systems, its hamiltonian structure and corresponding
nonisospectral integrable hierarchy,” Applied Mathematics and
Computation, vol. 216, no. 1, pp. 344–353, 2010.

[32] H. H. Dong, B. Y. Guo, and B. S. Yin, “Generalized fractional
supertrace identity for Hamiltonian structure of NLS–MKdV
hierarchy with self-consistent sources,”Analysis andMathemat-
ical Physics, vol. 6, no. 2, pp. 199–209, 2016.

[33] C. M. Khalique and G. Magalakwe, “Combined sinh-cosh-
Gordon equation: symmetry reductions, exact solutions and
conservation laws,”QuaestionesMathematicae, vol. 37, no. 2, pp.
199–214, 2014.

[34] X.-Y. Li, Y.-Q. Zhang, and Q.-L. Zhao, “Positive and negative
integrable hierarchies, associated conservation laws and Dar-
boux transformation,” Journal of Computational and Applied
Mathematics, vol. 233, no. 4, pp. 1096–1107, 2009.

[35] E. Noether, “Invariante variations probleme,” Gott Nachr, vol.
1918, pp. 235–257, 1918.

[36] F. Riewe, “Nonconservative Lagrangian and Hamiltonian
mechanics,” Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, vol. 53, no. 2, pp. 1890–1899, 1996.

[37] A. B. Malinowska, “A formulation of the fractional Noether-
type theorem for multidimensional Lagrangians,” Applied
Mathematics Letters, vol. 25, no. 11, pp. 1941–1946, 2012.

[38] G. S. Frederico and D. F. Torres, “Fractional conservation laws
in optimal control theory,” Nonlinear Dynamics, vol. 53, no. 3,
pp. 215–222, 2008.



Complexity 17

[39] S. Sahoo and S. S. Ray, “Analysis of Lie symmetries with conser-
vation laws for the (3+1) dimensional time-fractional mKdV-
ZK equation in ion-acoustic waves,” Nonlinear Dynamics, vol.
90, no. 2, pp. 1105–1113, 2017.

[40] G. Wang, A. H. Kara, and K. Fakhar, “Symmetry analysis and
conservation laws for the class of time-fractional nonlinear
dispersive equation,” Nonlinear Dynamics, vol. 82, no. 1-2, pp.
281–287, 2015.

[41] A. R. Seadawy, “Three-dimensional nonlinear modified Za-
kharov-Kuznetsov equation of ion-acoustic waves in a magne-
tized plasma,” Computers & Mathematics with Applications. An
International Journal, vol. 71, no. 1, pp. 201–212, 2016.

[42] H. W. Yang, X. Chen, M. Guo, and Y. D. Chen, “A new ZK–BO
equation for three-dimensional algebraic Rossby solitary waves
and its solution as well as fission property,”Nonlinear Dynamics,
pp. 1–14, 2017.

[43] S. A. El-Wakil andE.M.Abulwafa, “Formulation and solution of
space-time fractional Boussinesq equation,” Nonlinear Dynam-
ics, vol. 80, no. 1-2, pp. 167–175, 2015.

[44] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran, and A. A.
Mahmoud, “Time-fractional KdV equation: formulation and
solution using variational methods,” Nonlinear Dynamics, vol.
65, no. 1-2, pp. 55–63, 2011.

[45] K. Singla and R. K. Gupta, “Space–time fractional nonlinear
partial differential equations: symmetry analysis and conserva-
tion laws,” Nonlinear Dynamics, vol. 89, no. 1, pp. 321–331, 2017.

[46] O. P. Agrawal, “A general formulation and solution scheme for
fractional optimal control problems,” Nonlinear Dynamics, vol.
38, no. 1-4, pp. 323–337, 2004.

[47] O. P. Agrawal, “Fractional variational calculus and the transver-
sality conditions,” Journal of Physics A: Mathematical and
General, vol. 39, no. 33, pp. 10375–10384, 2006.

[48] W.-X. Ma, “Conservation laws by symmetries and adjoint
symmetries,” Discrete and Continuous Dynamical Systems -
Series S, vol. 11, no. 4, pp. 707–721, 2018.

[49] M. McAnally and W.-X. Ma, “An integrable generalization of
the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian
reduced hierarchy,” Applied Mathematics and Computation, vol.
323, pp. 220–227, 2018.

[50] Y. Zou and G. He, “On the uniqueness of solutions for a class of
fractional differential equations,” Applied Mathematics Letters,
vol. 74, pp. 68–73, 2017.

[51] Y. Liu,H.Dong, andY. Zhang, “Solutions of a discrete integrable
hierarchy by straightening out of its continuous and discrete
constrained flows,” Analysis and Mathematical Physics.

[52] W.-X. Ma, X. Yong, and H.-Q. Zhang, “Diversity of interaction
solutions to the (2+1)-dimensional Ito equation,” Computers &
Mathematics with Applications, vol. 75, no. 1, pp. 289–295, 2018.

[53] Y. Nejoh, “The effect of the ion temperature on the ion acoustic
solitary waves in a collisionless relativistic plasma,” Journal of
Plasma Physics, vol. 37, no. 3, pp. 487–495, 1987.

[54] G. P. Pakira and A. R. Chowdhury, “Higher-order corrections
to the ion-acoustic waves in a relativistic plasma (isothermal
case),” Journal of PlasmaPhysics, vol. 40, no. 2, pp. 359–367, 1988.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

