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Abstract: Society is becoming increasingly 
reliant upon the dependability of computer­
based systems. Achieving and demonstrat­
ing the dependability of systems requires 
the construction and review of valid and co­
herent arguments. This paper discusses the 
need for a variety of classes of arguments in 
dependable systems and reviews existing 
approaches to the representation of argu­
ments in each of these classes. The issues 
surrounding the certification of safety criti­
cal systems demonstrate the current need 
for richer representations of dependability 
arguments which support tools for their 
construction and review. The paper dis­
cusses how a meta-logical framework, in­
formed by aspects of both formal and infor­
mal logic, offers a rich and unified means of 
representing dependability arguments and of 
thus addressing this need. 

Resume: La societe depend de plus en 
plus sur la fiabilite des systemes qui 
emploient les ordinateurs. La realisation 
et la demonstration de la fiabilite de ces 
systemes exigent la construction et 
I'evaluation d'arguments coherents et 
probants. Nous discutons du besoin 
d' avoir une variete de classes d' arguments 
dans des systemes fiables et examinons 
des approches courantes pour representer 
les arguments dans chacune de ces classes. 
Les preoccupations entourant la certifi­
cation de la securite des systemes critiques 
demontrent qu'iJ y a un besoin d'enrichir 
la representation de la fiabilite des argu­
ments qui appuient les outils employes 
pour construire et evaluer ces systemes. 
Nous decrivons comment un encadrement 
meta-logique base sur des aspects des 
logiques formelle et non formelle offre des 
moyens riches et unifies de representer 
cette fiabilite. 

Keywords: argument representation, heterogeneous logic, computer-based systems, 
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I. Introductiou 

Society's dependence on computer-based systems continues to increase. By com­
puter-based systems we mean any system (whether conceptual, physical, organi­
sational or even social) in which some software component or components playa 
significant role. For the remainder of this paper we deal primarily with such sys­
tems. The systems themselves, embracing humans, computers and engineered 
systems, become ever more complex as they feed an insatiable appetite for new 
and extended functionality. Furthermore, these trends coincide with pressure for 
systems to be brought to market faster and at lower (and more predictable) cost. 
Achieving sufficient dependability in these systems, and demonstrating this achieve-

©Informal Logic Vol .. 22,No. 3 (2002): pp.293-321. 



294 c.Gurr 

ment in a rigorous and convincing manner, is of crucial importance to the fabric of 
the modern Information Society. 

The term "dependability", particularly when applied to computer-based sys­
tems, can be considered an umbrella term which encompasses, for example, avail­
ability, reliability, safety, and security issues. In general, a system may be deemed 
dependable if it reliably achieves the reasonable expectations which are placed 
upon it, and these expectations may combine aspects of availability, security and 
so forth. For example, for an on-line ordering system to justifiably be deemed 
dependable, we would expect that it should achieve a fairly consistent, high stand­
ard of availability (the system is not often "off-line", or "clogged up" with too 
many users), reliability (does not often crash, will carry out transactions accu­
rately and faithfully), and security (does not permit unauthorised transactions, or 
unauthorised access to, or distribution of, personal or banking details). 

Both achieving and demonstrating dependability in a given system generally 
requires the construction, negotiation, and assessment of valid and coherent argu­
ments of dependability. These arguments are typically constructed and reviewed 
by broad and distributed teams who represent diverse interests and areas of exper­
tise. Given the complex nature of the arguments which must be constructed, and 
the diverse audiences which must review them, the issue of representing depend­
ability arguments is both an important and a complex one. In this paper we review 
the current state of the art in the representation of dependability arguments and 
find it regrettably lacking. Consequently, we focus upon a discussion of the need 
for, and requirements of, a richer representation of dependability arguments and of 
the lessons which Informal Logic has to offer in search of this goal. 

In the following section we present a categorisation of the various classes of 
dependability arguments for computer-based systems, and review existing ap­
proaches for their representation. We examine in detail one illustrative class of 
argument-that of certification arguments, which are typically required to support 
claims that a system achieves some standard or measure of dependability. A par­
ticular example of this is in the domain of safety critical systems, systems whose 
failure may lead to loss oftife or significant environmental impact The developers 
of such systems are typically required to present arguments that their systems are 
dependable-that is, that the systems are acceptably safe. In Section 3, we review 
the issues surrounding the production and assessment of dependability arguments 
for safety-critical systems, as illustrative of the requirements upon dependability 
arguments in general. In Section 4 we discuss in detail the implications that such 
requirements have for the representation of dependability arguments-a represen­
tation that will need to combine elements of formal and informal logics, and will 
need to support both meta-logical reasoning and tools for the construction, nego­
tiation and assessment of such arguments. Finally, in Section 5, we summarise 
and present the conclusions of these discussions, and indicate directions for fu­
ture research. 
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2. Varieties of Dependability Arguments 

For computer-based systems, we may distinguish between two varieties of argu­
ments and argumentation for which dependability is an issue. On the one hand we 
have computer-based systems that provide arguments, or argumentation support. 
and for which the dependability of these arguments is a significant requirement. 
On the other hand we have computer-based systems for which dependability is a 
significant issue, and that therefore require arguments, or argumentation support, 
in assuring this dependability. We may make a further distinction in this latter class 
between arguments used to assist the design of dependable computer-based sys­
tems, most notably in exploring design options, and arguments used in the assess­
ment of systems, particularly arguments which are required in support of some 
form of certification or as a regulatory requirement. 

We may thus categorise dependability arguments into the following three classes: 

Decision support: as used in "intelligent" systems which offer advisory support. 
Medical Informatics systems represent the classic example where the dependabil­
ity of the advice offered is highly significant. 

Design negotiation: arguments used in an exploratory fashion during the design 
of dependable systems. These arguments assist designers in the process of review 
and selection amongst a variety of design options. 

Certification: (or regulatory arguments) such as those used to structure justifi­
cations that a critical, potentially hazardous, system is sufficiently safe and reli­
able. The structure of these arguments are typically informed by accepted stand­
ards or guidelines and the arguments themselves are reviewed by independent 
third parties. 

In this section we review, for each of these classes in turn, existing approaches 
to the representation of dependability arguments. 

2.1 Decision Support 

Expert systems, an area of Artificial Intelligence research, has produced numerous 
"intelligent" decision support systems. For the majority of these systems. depend­
ability-whilst desirable-is generally neither an absolute necessity nor a manda­
tory requirement. However, certain of these systems do operate in domains such 
as hazard analysis or healthcare, where the dependability, clarity and transparency 
of the advice being offered to support decision taking. is considered a significant 
priority. Such expert systems may be broadly classified as being of three main 
types: hazard analysis and avoidance; decision support; and monitoring and diag­
nostic systems. 

The main focus of effort in producing decision support systems generally lies 
in the capture and codification of the expert knowledge that guides the advice that 
the system ultimately offers. Of relevance and interest to us here are those sys­
tems which, in addition to offering advice in support of some decision-taking task, 
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offer also the facility for review of the argument underlying the system's choice of 
what advice to offer. We do not seek to review expert systems at length here, but 
rather focus on iIIustrating an exemplar of one particular expert system which 
aims to offer dependable argumentation support for decision taking. 

PROforma, comprehensively described by Fox and Das (2000), is the combi­
nation of a formalism and suite of tools, developed at Cancer Research UK for the 
general purpose of building decision support and intelligent agents. PROforma 
includes a language which is both a formal specification language (as that term is 
used in software engineering) and a knowledge representation language (as under­
stood in AI), and also provides a set of software tools for building applications in 
the language. 

PROforma is, in essence, a first-order logic formalism extended to support 
decision making and plan execution, which it also incorporates a number of well 
known features of non-classical logics (e.g. modal logic, temporal logic ) and two 
novel logics (LA, logic of argument and L OT , logic of obligation and time) to 
support decision making and action control. The suite of authoring and execution 
software that supports this formalism have, to date, been used to develop a number 
of clinical decision-support applications. 

One example of a decision support system developed with the assistance of 
PROforma is part of the RAGs project (Risk Assessment in Genetics), a collabo­
ration between Cancer Research UK and a number of UK hospitals, which is 
designed to assist the general medical practitioner (GP) in assessing and commu­
nicating genetic risk information to women who are worried about their personal 
risk. The tool consists of a user interface which allows a family tree to be con­
structed for the presenting patient, incorporating information on the incidence of 
cancers. This interfaces with a risk calculation', protocol written in PROforma 
which generates an assessment of risk level and recommendations for patient 
management, along with an explanation for the conclusions reached. The user 
interface component is designed to be generic and may interface with different 
protocol software to assess the risk of different genetic conditions. The presenta­
tion of the argument for a particular decision is relatively straightforward: a list of 
risk indicators, as determined by the system, is presented together with a list of 
potentially mitigating factors-which may lessen the assessed level of risk for a 
particular case. The system provides a simple presentation, thus, of positive and 
negative factors as justification for some overall risk assessment level. 

Expert systems for decision support, such as those developed using PROforma, 
can often show remarkable sophistication in capturing and validating the expert 
knowledge which is required to guide the system. The design of the representation 
languages utilised by such systems can thus be similarly extremely sophisticated. 
However, this sophistication is largely applied in addressing the issues surrounding 
knowledge capture and representation and, as such, is less informative regarding 
the requirements for dependability arguments than are studies in the area of certi-
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fication, as we shall see later. 

2.2 Design Rationale 

Work in the area of Design Rationale Capture has developed methods to capture 
and represent the arguments (rationale) which underpin the decision making proc­
ess in design negotiation. Gruber (Lee 1993) defines design rationale as "an expla­
nation that answers a question about why an artifact is designed as it is". Methods 
for representing design rationale thus typically focus on communicating the ra­
tionale underlying arguments rather than the argument itself, thus focusing on the 
justification of a particular argument or approach. The main advantages claimed of 
adopting such approaches are that they are useful as: 

• a communication mechanism among design team to communicate 
past critical decisions, what alternatives were investigated, and the 
reason for the chosen alternative; 

• a means of transferring design knowledge between projects with simi­
lar rationales; 

• to encourage deliberation and explicit consideration of alternatives. 

Existing approaches to representing design rationale range from relatively un­
structured approaches-such as the use of electronic notebooks which utilise 
semi-formal approaches to capturing natural language arguments-to the use of 
requirements templates, and finally to entirely formal documentation ofthe ration­
ale entities, their interdependencies, and so forth. Shum (1996) provides an excel­
lent introduction and overview of work in this area, and earlier reviews may be 
found in Carroll and Moran (1991) and Moran and Carroll (1996). In general, 
following the classification provided by Lee and Lai (1991), approaches to design 
rationale fall into three categories: 

Process-oriented design rationale: Historical records of design deci­
sions, used during the actual design discussions; 

Structure-oriented design rationale: Concerned with the structure 
of the space of all design alternatives, which may be constructed by 
post hoc consideration of the design process; 

Psychological design rationale: Concerned with the human motivations 
underlying design choices. 

The latter of these three categories is not of interest here. We next provide an 
overview of the seminal approaches in the former two categories. 

Most work in process-oriented design rationale is based on Horst Rittel's, 
1 970s Issue-Based Information System (IBIS) (Rittell and Webber 1973), in which 
the design is documented as a hierarchical structure. IBIS provides a notation with 
3 primitives: issues, which are questions that the design or argument is addressing; 
positions, which are potential resolutions of an issue; and arguments, that support 
or refute a position. Conklin (Conklin and Begeman 1988) subsequently produced 
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a graphical version called gIBIS, in which issues, positions and arguments are 
nodes in the directed graph, and the 

su~ArgUment 

Position 

./ o~Argument 
/esponds to J 

Issue ~pondsto 
Position ... Argument 

Sub-issue ~ 

Figure 1: gIBIS: graphical IBIS graphs 

connections between them are labelled to depict the relationship between con­
nected nodes. As an example, Figure 1 presents the relationships between IBIS 
concepts as a gIBIS graph. 

Structure-oriented design rationale, sometime also referred to as design space 
analysis, involves the post hoc reconstruction of the space of design alternatives 
and options that were considered during a project. Examples of systems devel­
oped to facilitate this process include: the Questions, Options and Criteria (QOC) 
notation, and Decision Representation Language (DRL). As with gIBIS, both QOC 
and DRL provide graph-based notations in which different types of nodes repre­
sent different basic elements of the notation, and directed links between nodes 
express relationships between them. 
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2.3 Certification Arguments 

For many classes of dependable systems, both computer-based and otherwise, 
there is the possibility of constructing an argument to satisfy some, typically inde­
pendent, third party that the system achieves some minimum specification or stand­
ard measure of dependability. That is, an argument that the system can be justifi­
ably said to meet some specified level of-for example-security, reliability, qual­
ity or safety. A system developer's motivation for providing a dependability argu­
ment may be the desire to attain some internationally recognised quality standard 
for a business, a process or a product. Alternatively, as is often the case with 
safety- and security-related systems, there may be a mandatory regulatory re­
quirement both to attain some specified standard, and to provide a dependability 
argument that argues the case for the attainment of that standard. 

The domain of safety-critical systems provides an illustrative example of the 
regulatory requirements for, and of, dependability arguments. A safety-critical system 
is any system where a failure could potentially lead to significant human injury, or 
even loss of life, or to significant environmental damage. Examples of safety­
critical systems come from a wide variety of industrial and other sectors. They 
include, for example, systems in the transport sector (road, rail, air and sea), from 
various energy industries (oil, gas, nuclear and electric), and numerous "hazard­
ous" industrial sectors such as the chemical and petrochemical industries. The 
design, deployment, operation and decommissioning of systems from these, and 
other, safety-critical sectors is subject to both national and international assess­
ment and regulation. 

A significant part of the design process for safety-critical applications is the 
construction of a Safety Case, a collection of documents and data which together 
present the arguments for believing that the design of the proposed system is 
acceptably safe: The safety case sets out the risks involved with the operation of 
the process or equipment, and the possible consequences of failure. It also speci­
fies what will be done (or has been done) to minimise the probability and the 
impact of these failures. The safety case is thus an example of a certification-style 
dependability argument, whose primary aim is to argue for the acceptable safety 
of some potentially hazardous system. 

Given that a safety case is often a diverse collection of assorted forms of data, 
and that it is precisely the point of contact between the various parties involved in 
the production and assessment of safety critical systems, the management and 
communication of the information and arguments contained in a safety case is 
obviously an issue of primary importance. A number of commercial, software­
based tools exist which purport to assist in addressing this issue. The majority of 
these tools are, in effect, document management tools which support the produc­
tion and management of the various documentation that is required for safety 
cases and these tools are often specifically tailored to particular industrial domains. 
Of note as illustrative of tools which provide generic support for the production 
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and management of safety cases, and which specifically support the representa­
tion of the arguments which underly a safety case, are the Safety Argument Man­
agement (SAM) and Adelard Safety Case Editor (ASCE) tools. 

G4.1.1 

6 A-J Overall argument 

G4 
'Switchover' to RVSM will not 
endanger the ongoing ATS 

G4.1.3 
Measures have been put 
in place to mitigate 
hazards 

G4.1.2 
The hazards of 
switchover have been 
identified 

Figure 2: A part of EUR RVSM safety case argument 

SAM [18] is a tool that supports the construction and presentation of safety 
cases and safety assessments, integrating documentation produced from a variety 
of safety assessment techniques. SAM utilises a graph-based notation, the Goal 
Structuring Notation (GSN) (Wilson, Kelly, and McDermid 1995), to represent 
the argument and evidence structure which underlies a safety case. GSN repre­
sents arguments as a graph with a variety of nodes which represent, variously: 
claims; supporting arguments; evidence; justifications and the like. Figure 2 illus­
trates the use of GSN to represent part of a safety case argument. This example is 
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an adapted version of a GSN diagram taken from the EUR RVSM Pre-Implemen­
tation safety case I, which is required by the European Union as part of the assess­
ment of Reduced Vertical Separation Minimum (RVSM), a planned change to Air 
Traffic Control practices across European airspace. 

Figure 2 is a slight simplification of Figure A-17 from the EUR RVSM pre­
implementation safety case2

, which presents the structure of the argument that 
"switchover" (the changeover period between current practice and the new RVSM) 
will be acceptably safe. This top-level claim is represented in Figure 2 by the box 
labelled G4, and is supported by two sub-arguments represented by the boxes 
labelled St4.l and St4.2. The first ofthese sub-arguments is supported by a number 
of claims, represented by the boxes labelled G4.l.l through G4.l.3 (in the actual 
EUR R VSM safety case there are, in fact, 5 sub-claims at this point rather than the 
3 depicted here). The evidence which supports these claims, contained elsewhere 
in the safety case, is referred to by the circular nodes at the bottom of the graph. 
Finally, the triangular nodes associated with the boxes labelled G4 and St4.2 indi­
cate that these nodes are, respectively, a sub-argument (of argument A-I) and 
have an associated sub-argument (in the case of St4.2). 

ASCEJ is a tool for building safety cases and showing the safety arguments 
they are founded upon. In common with SAM, ASCE goes beyond standard word 
processors-the usual tools for building safety cases-to support the develop­
ment and presentation of a hypertextual safety case which shows the safety argu­
ment structure in a graphical format. These representations of arguments are simi­
l&r to those of GSN, being graph-based representations with nodes of various 
types. ASCE differentiates between between material (nodes) acting as safety claims, 
arguments and evidence. It has a graphical tool for creating and presenting the 
safety argument structure and a further editor for editing the content of the nodes 
in the graphical network. 

The GSN and ASCE notations share many similarities with the graph-based 
design rationale notations cited previously. However, the majority of these existing 
notations for representing dependability arguments provide little support for the 
semantics of arguments. That is, most of these notations offer little, if any, means 
of assessing the meaning of the elements of an argument, and thus offer little 
assistance in evaluating the quality, validity, strength, or similar properties, of any 
of the arguments they represent. In this paper we explore the requirements of a 
richer language for representing dependability arguments, a language in which 
issues of the meaning, validity and quality of an argument are captured and may 
thus be examined and reasoned over. To motivate and illustrate these require­
ments, and to guide the form of such an argument representation language, in the 
following section we explore in more detail the role of arguments and argumenta­
tion in the construction and review of an exemplar of dependability arguments: the 
safety case. 
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3. Argnmentation and the Safety Case 

A safety case is collection of documents and evidence, produced and collated by 
the developers of a safety-critical system, which is primarily aimed at convincing 
the regulatory authorities that the proposed system is acceptably safe. The safety 
case also has an important secondary role as a repository of analyses of the sys­
tem and documentation of safety procedures, failsafe mechanisms and the like. 
This paper focuses on the primary role of safety cases as arguments of system 
safety. 

The safety case is a point of contact between experts from disciplines as di­
verse as electronic engineering, town planning, nuclear science and medicine. It 
contains contributions from a broad and distributed team of designers, suppliers 
and analysts. For large and complex systems, the production of the safety case 
may be the responsibility of the procurers or end users, who must therefore col­
late, organise and present evidence and arguments for safety supplied from both 
within their own organisation and from external suppliers. The design and assess­
ment of safety critical systems often involves broad and distributed teams of de­
signers, suppliers, users and analysts who represent diverse areas of expertise and 
motivations and a broad range of technical and non-technical disciplines. Safety 
cases are generally assessed by independent organisations who must ensure both 
that the arguments for safety are valid, and that relevant industrial standards and 
guidelines have been adhered to throughout. 

The growing use of programmable devices is making system safety assess­
ment increasingly complex, at the same time rendering many standard safety engi­
neering techniques inapplicable. More and more frequently, safety cases have to 
combine the uncertainty of statistics with the abstract absoluteness of logics, and 
assess the validity of formal proofs in the context of unexpected and asynchro­
nous events. Software can be considered to be safety critical only in the context of 
the larger system: of the hardware in which it is implemented, the attached periph­
erals and the operating environment. An error in software cannot directly cause 
injury, but the consequences of a software error upon the attached peripherals or 
operating environment-that it causes a missile to be launched unintentionally, 
prevents the brakes of an aircraft from operating when it lands, or fails to cor­
rectly shut down a nuclear reactor in an emergency situation-may cause injury, 
fatality or major environmental damage. When considering the safety, correctness 
and dependability of safety critical software we must therefore consider the soft­
ware in the context of the whole system and the environment in which it operates. 
This entails drawing upon a body of expertise from domains as diverse as electri­
cal, chemical, automotive, aero-spatial and nuclear engineering; risk assessment; 
and environmental analysis. The safety case is thus a collection of data drawn 
from multiple sources, representing diverse disciplines, which must be assessed 
by a range of both technical and non-technical experts, who exhibit a range of 
differing interests. The accurate and effective communication between these groups 
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of the structure of dependability arguments is therefore an issue of primary impor­
tance. 

Safety cases typically contain a preamble, defining context such as 
environment(s) of expected use and lifetime; the conclusions of a hazard analysis, 
identifying likely hazards and their severity; an argument as to how the specifica­
tion will overcome or mitigate these hazards to an acceptable level of safety; an 
argument as to how the implementation can be assured to comply with the speci­
fication; and an argument that sufficient procedures and safeguards are in place to 
ensure that operation, maintenance and eventual decommissioning of the system 
will similarly assure acceptable safety. 

The two main protagonists in the construction and review of safety cases are 
the developers of the proposed system and the assessors, who are members or 
representatives of the relevant regulatory authorities. In certain industrial domains 
a safety case may be assessed by more than one regulatory authority. An example 
of this is the UK's rail transportation network, which is currently overseen by a 
number of more-or-less independent authorities, including the HSE (UK govern­
ment's "Health and Safety Executive"), Railtrack (responsibility for tracks and 
signalling), the SRA ("Strategic Rail Authority", a quasi-independent policy insti­
tute which was initially created as a subsidiary of Rail track), and a number of train 
operating companies-profit-making businesses between whom the UK rail net­
work has been split into geographic regions. Naturally, producing safety cases to 
simultaneously satisfy such a complex collection of organisations with varying 
authorities and responsibilities, is no trivial matter. Byzantine regulatory environ­
ments aside, however, the process of reviewing safety cases is typically one of 
negotiation between developers and assessors. It is common for the process of 
review to undergo several phases where the developers are given the opportunity 
to respond to issues raised by the assessors, being encouraged to revise and resubmit 
a safety case that was failed in an earlier phase. Ultimately, however, responsibility 
and authority for the acceptance or rejection of a safety case rests with the asses­
sors. 

A significant difference between safety critical systems and non-safety-critical 
systems is in the degree of attention paid to assessment and testing, often enforced 
by industrial standards, both of the design and the design process of such sys­
tems, and of the system in use. These standards often enforce mandatory require­
ments upon the design, development, testing, assessment and certification of such 
systems. For safety critical systems in which software plays a significant role a 
newly emerging standard of particular import is IEC 61508\ which addresses the 
functional safety of such systems. Both the form and content of safety cases are 
significantly informed by standards such as IEC 61508, as it is partly according to 
compliance with the stipulations of these standards that safety cases are judged. 
There are a variety of standards, both generic and specific to various industrial 
domains, both national and international, and both providing suggested guidelines 
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and stipulating mandatory procedures and policies. In the past decade or so there 
has been a notable change in standards, moving away from the prescriptive stand­
ards of the past towards more goal-setting standards that are common today. This 
change has placed greater responsibility on the developers of a safety case to 
present a convincing argument that there is justifiable confidence in the safety of 
the proposed system. In the following section we review the motivations underly­
ing the move to goal-setting standards such as IEC 61508, and discuss the effect 
this has upon the structure, form and content of safety cases. 

3.1 Goal setting standards 

The domain of safety critical systems is one that can be said, albeit with a degree 
of Qustifiable) cynicism, to be disaster-driven. That is, that standards, regulations 
and requirements will change over time, and more often than not, the driving 
forces that motivate these changes are significant disasters or catastrophic inci­
dents. A notable example which resulted in a major change for the philosophy 
underlying safety arguments across all industrial domains, in Europe at least, was 
the Piper Alpha disaster of 1988. 

On 6 July 1988, on the offshore oil drilling platform Piper Alpha, 100 miles off 
the East Coast of Scotland in the North Sea, there was an escape of flammable 
gas. The gas ignited causing an explosion which led to large oil fires. The heat 
ruptured the riser of a gas pipeline from another installation, producing a further 
massive explosion and fireball that engulfed Piper Alpha. All this took just 22 min­
utes. The scale of the disaster was enormous. 167 people died, 62 people sur­
vived. 

The extent of death and injury resulting from the Piper Alpha disaster was of 
great concern to the offshore petroleum industry worldwide, and widespread re­
views for safety equipment and emergency response were undertaken. In the UK 
a public enquiry, undertaken by Lord Cullen, was commissioned in July 1988 to 
establish the circumstances of the accident and to make recommendations as to 
the future safety regime. His report led to extensive restructuring of the UK off­
shore safety legislation, with the primary onus of responsibility for offshore safety 
being shifted towards the operating companies and away from the regulatory au­
thorities. 

The Cullen inquiry confirmed that that the owners ofthe Piper Alpha platform 
had complied with relevant safety regulations. In particular, the inquiry confirmed 
that various emergency life-saving measures, such as the provision of an emer­
gency room-fire-proof "bolt-hole" for workers, had been included in the plat­
form as prescribed by regulations. However, this emergency room was, in actual­
ity, virtually inaccessible during emergency situations such as that of 6 July 1988 
and, as such, did not succeed in keeping the Piper Alpha workers safe. The regu­
lations in force before July 1988 stipulated that an emergency room was required 
for offshore oil platforms. but compliance these stipulations did not, clearly. guar-
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antee that this emergency room would actually be able to serve its intended pur­
pose. 

Lord Cullen specified that goal-setting regulations, which require certain ob­
jectives to be met using appropriate methods, be implemented on offshore oil 
platforms to replace the formerly prescriptive regulations, which imposed detailed 
measures that had to be taken invariably. Non-mandatory guidance notes would 
accompany goal-setting regulations to facilitate meeting goals effectively. Ooal­
setting regulations, though they may seem like a subtle change in procedure, actu­
ally alter safety methods considerably. 

Under prescriptive regulations the operating companies were required simply 
to produce evidence that they had complied with the mandated measures, and any 
consideration of whether this actually achieved acceptable safety was the respon­
sibility of the regulators. Lord Cullen was highly critical of this approach as it 
could, and in the case of Piper Alpha clearly had, foster a situation in which the 
operating companies merely complied with "the letter of the law" without regard 
as to whether compliance actually achieved acceptable safety (the "spirit" of the 
law). The move to goal-setting regulations shifted the burden of proof onto the 
operating companies, who now were required to argue, in the safety case, that 
their proposals would achieve acceptable safety. While this move to goal-setting 
regulations was initially directed at the offshore petroleum industry, the implica­
tions of the lessons learned from Piper Alpha were felt to be clearly applicable to 
the safety-critical industries in general and over the past decade goal-setting regu­
lations, embodied in standards, have become the norm for all safety-critical do­
mains. Consequently the need for developers and operators of safety-critical sys­
tems to construct and present convincing arguments of acceptable safety, con­
tained within their safety cases, has become a major aspect of their business. 

The safety case constructs an argument that the system is acceptably sa/e. 
What it means for a system to be acceptably safe is itself open to some interpreta­
tion, with the commonly accepted definitions again typically set out in standards. 
In general, these definitions assert that for a system to be "acceptably safe", the 
likelihood of it being involved in some event with severe consequences (such as 
loss of life or significant environmental damage) is, for its expected operating 
lifespan, sufficiently low. A specific definition of "acceptably safe" will typically 
assign numeric values, such as, that the probability of any undesirable event is 
below some stated value; that the probability of an undesirable event over some 
given period of time is below some stated value; that the probability of any single 
demand upon the system is below some stated value; or that the estimated mean 
time between undesirable events is above some stated value. The details of any 
particular definition are largely determined by the type of system and by the indus­
trial domain in which it operates. In the main body of the safety case is presented 
the argument that the proposed system achieves the level of safety set out by this 
definition and the evidence in support of this argument. This evidence can include 
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such diverse elements as test data, analyses of formal models of the system, 
appeals to expert judgement and evidence of compliance with "industrial best prac­
tice"-generally understood to be determined by standards and potentially demon­
strated through independent certification. Furthermore, a common expectation of 
the designers of safety critical systems is that they will incorporate hazard mitiga­
tion features or procedures into the design-that is, safeguards and procedures 
designed to reduce the detrimental impact of various hazards if they actually do 
occur-and the presence and claimed effectiveness of these mitigations will also, 
typically, be described in the safety case. 

3.2 The structure of safety cases 

A safety case is usually prefaced by a description of the context in which the 
subsequent argument of system safety is situated. This can include a description 
of the environment or environments in which the proposed system is expected to 
operate, and of the expected lifespan of the system. Often the preface will include 
a list, assumed not to be exhaustive, of the significant hazards or risks that the 
system might face in these environments. The construction of such a list of haz­
ards is itself a regulated and reviewable process, for which there are widely ac­
cepted and standardised analytical techniques for the identification, quantification 
and prioritisation of potential hazards. 

We may again look to standards as the primary indicators of the structuring of 
the evidence and arguments contained in a typical safety case. For the European 
Union, one of the most important industry-generic standards is the recent lEe 
61508. This standard accepts that most safety cases will commence with a de­
scription of the context of the proposed system, and insists that this is followed by 
a thorough hazard analysis. The conclusions of this analysis set out the systems' 
risks: the unsafe consequences of the system (loss of life, detrimental environ­
mental impact), and the potential manners by which these unsafe situations might 
conceivably arise. From this description of the risks of the system is derived, and 
recorded in the safety case, a set of safety requirements, which in effect detail the 
constraints and safeguards which must be enforced upon the system to ensure 
that the identified risks do not arise. These safety requirements inform the bulk of 
the remaining safety case, as ensuring the requirements are met is equated with 
achieving acceptable safety. 

In common with many earlier standards, lEe 61508 presents a fairly general 
model of a safety critical system's "lifecycle". The main stages of this lifecycle 
are: the systems conception; its specification; the implementation of this specifica­
tion; the operation of the system; its maintenance; and its eventual decommissioning. 
For each of these lifecycle stages, lEe 61508 sets out the various forms of analy­
ses, documentation (of, for example, operating and maintenance procedures­
both routine and emergency) and evidence that should be produced and recorded 
in the safety case. The safety case presents this information in support of argu-
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ments that, for each Iifecycle stage, the safety requirements are met and thus that 
acceptable safety will be achieved. 

lEe 61508 suggests specific analytical tools and techniques for each of the 
various lifecycle stages. However, while the standard insists that some analysis is 
carried out at each stage, it does not insist that developers must use the suggested 
techniques. Developers are free to use alternative techniques as long as they present 
arguments to mitigate these deviations from the standards. These arguments must 
convince the assessors that the alternative techniques used by the developers are 
at least as effective as the lEe 61508 suggested techniques that they have re­
placed. 

The analyses and evidence that must be produced, as recommended by lEe 
61508 and similar standards, are many and varied. They include formal (math­
ematically-based) modelling, testing, probabilistic risk assessments, and appeals to 
external (to the developer) evidence and arguments-such as expert judgement, or 
the use of system components which are certified by accepted independent au­
thorities. Furthermore, this wealth of information in the safety case combines 
evidence and the results of analyses constructed from a wide and diverse variety 
of areas of expertise, potentially including the results of architectural, environmen­
tal, mechanical, electrical, structural and software studies in addition to those of 
whatever industrial domain the system operates in, be it chemical, petrochemical, 
energy (nuclear, gas, electricity, or other), transport (road, rail, air or sea), or 
military. 

The combination of this often vast quantity of disparate data into safety case 
arguments which must be accessible, coherent and convincing to those charged 
with assessing them, is clearly a significant concern for system developers. Thus, 
it is easy to understand the strong desire, on the part of both developers and 
assessors, for tools and techniques to assist in the construction and review of 
safety case arguments. 

3.3 The form of safety case arguments 

The first step in constructing a safety case is the hazard analysis. The methods 
and tools of hazard analysis are mature and well understood, and standards can 
afford to tend more to the prescriptive in their demands for what must be carried 
out. For the engineering of software, as a less mature discipline, hazard analysis 
techniques are less well developed and the subject of ongoing research. However, 
as hazards are typically physical in nature, the hazard analysis of software specifi­
cally is not an issue we need consider here. Furthermore, there is generally little 
argumentation in the hazard analysis and so, again, our interest here is primarily in 
the post-hazard analysis stages of safety case construction and review. 

A study of safety-cases from a sociological perspective by MacKenzie (1996) 
suggests that, essentially, computer-system safety cases draw upon four different 
kinds of argument: 
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induction: this system is safe because testing shows that it is safe; 

deduction: this system is safe because it can be proven mathematically 
that its design is a correct implementation of its specification, which is 
safe 
construction: this system is safe because the process used to design it 
is a safe process that leads to safe systems; 

authority: the system is safe because an expert authority has judged it 
to be safe 

Two of these, deduction and induction, are most often utilised in the analysis 
of specifications and implementations respectively. Software, however, differs 
noticeably from traditional physical engineered systems in that its modes offailure 
are less predictable and more likely to happen "without warning". Consider, for 
example, a load-carrying beam which tests have shown can carry a given weight. 
We may clearly assume that the beam can also carry any load of less than this 
weight. Over time, the beam may deteriorate so that it will ultimately fail, but there 
are likely to be observable signs of immanent failure so that this too is--to some 
extent at least-predictable. If a piece of software, by contrast, is shown to be­
have correctly for a given input, we may still make absolutely no assumptions 
about its behaviour for different, even subtly different, input. Furthermore, when 
software does fail to behave as intended for some particular input, there are sel­
dom any observable indications to this failure prior to its occurrence. Thus, while 
tests of physical components permit us to make inferences about their behaviour 
in a broad range of situations, tests of software components-which are often far 
more complex functionally than their physical counterparts do not typically permit 
us to make similar inferences of general behaviour. This difficulty in evaluating the 
software product through testing, is often compensated for by evaluating rather 
the process by which the software was developed. Thus we have a third type of 
argument utilised in safety cases for software-based components, named argu­
ment by construction by MacKenzie. 

The fourth type of argument identified by MacKenzie is that of authority. The 
interpretation of this term is equivalent to argument from cognitive authority, or 
appeal to expert judgement. However, other forms of arguments by appeal to 
authority are prevalent throughout safety case arguments and in fact will typically 
underpin or justify particular inductive, deductive and constructive arguments. 
Inductive arguments, based upon testing, may use appeals to administrative or 
cognitive authorities to justify both the choice of a particular testing strategy and 
the conclusions drawn form the testing. Constructive arguments may similarly 
use appeals to authority to justify the acceptability and worth of the chosen devel­
opment process. In typical deductive arguments, some model of the system or a 
component is proven to possess desirable qualities or to prevent undesirable situ­
ations. These proofs may be mathematically incontrovertible, however the ques-
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tion remains as to whether the model used is a sufficiently accurate representation 
ofthe reality of the implemented system or component. Again, an argument from 
authority-typically an appeal to the expert judgement of the creator(s) of the 
model-will be the underlying justification of the validity of this deductive argu­
ment. 

An important issue in the representation of safety case arguments is the ability 
to assess the strength of any particular argument. We would wish to be able, with 
reasonable objectivity, to assess both whether a given argument is sufficiently 
convincing and, if convincing, whether it hides any weaknesses that should be of 
concern. Studies in Informal Logic are of enormous value here, as they offer a 
rich understanding of what it means for an argument to be plausible or convincing, 
and of the circumstances under which steps in an argument that are not strictly 
deductively valid-such as appeals to authority-may be determined to be reason­
able. 

Walton (1989) discusses appeals to authority at some length, defining different 
varieties of appeals to authority, common errors in certain types of appeal, and 
sets of "critical questions" which must be asked of any such appeals to assess 
their worth. Walton divides appeals to authority into two varieties which are very 
different in nature (although noting that any given appeal may possess elements of 
both. Authority is an ambiguous term which may refer either to an administrative 
authority, one who has the right to exercise command in some relevant situation, 
or to a cognitive authority. That is, one who has expertise in some domain of 
knowledge. An appeal may be made to either of these forms of authority. The 
citing of expert opinion is a common example of the latter. 

Following Walton, we may describe appeals to expert authority by the follow-
ingschema: 

E is an expert in domain (of knowledge) D 

E asserts that A is known to be true 

A is withinD 

Therefore, A may (plausibly) be taken to be true. 

With this schema, and the sets of common errors and critical questions discussed 
in Walton (1989), we may see how any given appeal to expert authority should be 
examined for its plausibility. Suppose, for example, that expert E is cited as assert­
ing that statement A is known to be true. Many questions must be asked of this 
appeal before we may assert, with reasonable confidence, that we believe A to be 
true. We must ask, for example, is it true that E is known to be an expert in 
domain D and, if so, is it true that A is knowledge that is actually within that 
domain? Furthermore, we must ask whether E* has actually made the assertion 
A, or whether some interpretation of their statement has taken place. If this is so, 
then further questions must be asked to determine whether that interpretation is 
both accurate and reasonable. Finally, we must assure ourselves that the cited 
pronouncement has been, or can be, validated with a reasonable degree of confi-
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dence. Is there, for instance, objective evidence in support of the pronouncement? 
Is there, perhaps, disagreement on this topic between the cited experts and other 
authorities, and do these disagreements bring the pronouncement into question? A 
representation of safety case arguments must permit such questions to be asked. 
Knowledge gained from the study of informal logic, such as the understanding of 
what is required to validate appeals to authority, we may learn much concerning 
what is required to assess safety case arguments, and thus about both what is 
necessary and what is possible in the representation of safety case arguments. 

Further variants of appeals to authority and other extra-logical forms of justifi­
cation may be observed in safety cases as warrants for both the stating of asser­
tions and in arguing for confidence in particular assertions. One common example 
of a further variant of an appeal to authority is a claim that some aspect of a 
system is acceptably safe because industrial "best practices" have been followed. 
Such an appeal may be used to justify the use of a construction argument, for 
example. Alternatively an appeal to best practice may be used in support of an 
induction argument, as justification for the adoption of some particular testing 
strategy or method. The phrase "best practices" can, and has, been applied to 
many aspects of the development and operation of safety-critical systems. For 
example, design processes, analysis techniques, design philosophies, operating 
procedures and emergency mitigation procedures can all be asserted as following 
accepted industrial best practice. The knowledge as to what constitutes best prac­
tice can be embodied in standards or can be viewed as being widely accepted. One 
example of this, both in standards and commonly accepted, is the use of redun­
dancy to improve confidence in safety. 

There are two common forms of redundancy used in safety-critical systems. 
The first is the use of redundant components in systems, improving dependability 
through the existence of either "back-up" or "checking" components. One variety 
of this form of redundancy which is accepted as being best practice is Triple 
Modular Redundancy (TMR): the use of three equivalent components in parallel 
for some critical function. The advantage ofTMR over double redundancy is seen 
in situations where a component, rather than simply failing, can fail in opposition 
to its intention. For example, a cable intended to pull an aircraft aileron into the up 
position could fail by pulling the aileron downwards. In such a situation the two 
"healthy" components will "outvote" the failing component, thus ensuring correct 
behaviour. The use of TMR in critical components is generally accepted to be 
industry best practice. It should however, be noted that the application of redun­
dancy, including TMR, to software components is a difficult and open issue, as 
identical software components typically exhibit identical behaviour, including iden­
tical failures, and thus redundancy will not improve reliability. 

The second common form of redundancy for safety critical systems is in 
arguments of system safety. It has been known, and is advised by certain stand­
ards, for developers to construct "multi-legged" safety arguments. That is, argu-
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ments consisting of two or more redundant "legs", each of which is by itself an 
argument of system safety. The reasoning here is that these multiple, redundant, 
arguments support confidence in each other, as potential errors in anyone leg 
(mistaken assumptions, flawed inferences, misinterpretation of data, and so forth) 
are mitigated by the existence of the other, independent argument legs. An example 
of such multi-legged arguments is the safety case constructed to justify the pro­
tection system for the UK's Sizewell B nuclear reactor. Sizewell B was the first UK 
nuclear reactor to implement an entirely software-controlled emergency shutdown 
protection system, and the safety case justifying the use of this, for that environ­
ment, novel technology was two legged, consisting of (allegedly) independent 
process- and product-based arguments. 

A representation of safety case arguments must accommodate each of the 
forms of arguments described here: induction, deduction, construction, appeals to 
authority and other non-logical warrants. Furthermore, such a representation must 
support the combination of sub-arguments of all of these forms, and permit the 
objective evaluation of such complex, combined arguments. We next clarify the 
process by which safety case arguments are typically evaluated. 

3.4 The process by which safety cases are negotiated 

Walton (1989) describes argument dialogues as consisting of four clear, if not 
necessarily distinct, stages: opening; confrontation; argument; and closing. In the 
opening stage the type of argument is made clear and the dialogue rules which will 
govern the dialogue are agreed. The choice of dialogue rules will determine: spe­
cifics ofthe language to be used; the rules for turn taking in the dialogue; strategic 
rules (what constitutes a win or loss); and rules of commitment-under what 
conditions propositions are accepted and when responsibility for a proposition is 
entailed. In the confrontation stage the issue under discussion is announced, thus 
clarifying the goal or goals of the argument. The third stage is the argument itself, 
and in effect continues until both parties accept either a win or a loss (a third 
possibility, of stalemate, is of course possible, but does not concern us here). 
Once the goal is fulfilled, the dialogue enters the final, closing stage, where various 
agreements, consequences or future actions and responsibilities may be ascribed 
to the participants. 

Of a variety of types of argument studied in informal logic, the negotiation of 
safety cases is best understood as a form of persuasion dialogue (Walton 1984), 
also known as a "critical discussion". The negotiation of safety cases is in fact 
closely related to that of an inquiry-a subcase of persuasion dialogue. Informal 
logic has studied one type of inquiry, the legal argument, at great length. However, 
the safety case negotiation differs from the legal argument in two key respects. 
Firstly that, while assessors will subject a safety case to rigorous and exhausting 
scrutiny, the negotiations between developers and assessors are largely coopera­
tive and very rarely display the confrontational nature that often characterises legal 
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negotiations. Secondly, while safety case negotiations will conform to accepted 
dialogue rules and forms, these are nowhere near as rigid, formulaic or as firmly 
established as those in legal argumentation. 

In safety case negotiations, the first two of the four argument dialogue stages 
(the opening and confrontation stages) are pretty much standardised and thus 
fairly perfunctory. The issue under discussion (whether the proposed system is 
acceptably safe) is generally both clear and fixed, the dialogue rules are widely 
known and accepted, and the goal and strategic rules for determining whether it is 
achieved (a win being ultimate acceptance of some variant of safety case as legiti­
mate justification for approval of some variant of the proposed system, a lose 
being ultimate rejection of the same) are likewise generally understood. The fourth 
and final argument stage, the closing, is similarly generally understood and ac­
cepted-there often may be many and substantial further requirements and obliga­
tions placed upon the developers, but these are not of interest here. Of interest to 
us is the third stage, the argumentation stage. 

In the argumentation stage the assessors have the right to investigate and ques­
tion all evidence and arguments presented in the developers' safety case. The 
assessors may freely, as they see fit, qualify presented evidence, question assump­
tions, question or reject appeals to authority, and refute inferences made. The 
developers may respond to any such issues raised by the assessors by strengthen­
ing their safety case. This strengthening may include, for example, adding extra 
evidence, further justifications of assumptions or of appeals to authority, further 
such appeals, or even the offering of alternative arguments to those in the original 
safety case. The developers may also alter the proposals regarding the system that 
the safety case supports. They may, for example, qualify claims about the context 
of the system (its potential operating environments and lifespan), or they may 
offer to alter the design, either by including additional safeguards or even by mak­
ing alterations to the design itself. This negotiation process-in which the safety 
case may be critiqued, amended, and critiqued once more--continues until the 
assessors determine that they have reached a final judgement of whether to accept 
or reject the safety case. In the case of ultimate rejection, further appeals by the 
developers are possible and may well bring in legal aspects to an ongoing argument 
dialogue, but for our purposes these do not differ significantly from continued 
negotiations over the safety case. 

Given the situation we have presented here-where safety cases combine com­
plex and diverse evidence into arguments of acceptable safety, for review by, 
potentially, a number of regulatory authorities through a process of (generally 
cooperative) negotiation-the desire for an effective means of representing safety 
cases arguments is apparent. Such a representation must accommodate both logi­
cal and extra-logical warrants, must permit the combination of quantitative and 
qualitative assessments of safety--of the results of formal, mathematical analy­
ses, empirical assessments and appeals both to a variety of forms of authority and 
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to a variety of further, extra-logical warrants. Furthermore, such a representation 
must support both developers in the construction of safety case arguments and 
assessors in their review, and must support both parties in the process of negotia­
tion and revision of safety cases. In the next section we discuss in more detail the 
requirements for representations of safety case argument representation, and 
present our proposals for a language of such representations. 

4. A meta-framework for argument representation 

There are many benefits to having a formal representation of argumentation. A 
clear syntax permits us to be precise about both the objects that the representation 
deals with and the kinds of statements we may make-the sentences in the lan­
guage--concerning these objects. A clear semantics permits us to be precise about 
the meaning of these statements and, given both a model-theory and a proof­
theory, we may also be precise about what constitutes a valid argument in this 
representation. However, any representation of dependability arguments must also 
accommodate extra-logical forms of reasoning over and above those represent­
able in classical formal logics, such as first order logic. A representation of de­
pendability arguments must support not only logical arguments but also numerical 
(probabilistic) ones, temporal arguments (where evidence has a finite lifespan), 
judgements of confidence, and other such informally warranted arguments. 

We assert that classical logics, whilst a useful starting point, are clearly insuf­
ficient for the representation of dependability arguments. In this section we first 
enumerate the various forms of arguments over and above those permissible in 
classical logic that a representation of dependability arguments must accommo­
date. We further argue that, rather than simply a first-order representation of de­
pendability arguments, what is required is in fact a meta-levelframework in which 
we may not merely represent arguments (as first order theories) but may also 
reason about these arguments themselves. We discuss the many issues that such 
an approach raises, primarily: 

• what features and attributes are required to represent dependability 
arguments as first order theories? 

• what forms of reasoning over, and analysis of, dependability argu­
ments are required-and what does this suggest in terms of a meta­
framework for representing and manipulating them? 

• what is necessary to integrate this framework with existing and future 
approaches to argument representation, analysis, reuse and tool sup­
port? 

Following discussion of these issues, we present a proposal for such a meta­
framework for the representation of dependability arguments. 
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4.1 Requirements for the representation of dependability arguments 

We may take evidence to be the atomic elements from which dependability argu­
ments are constructed. To represent such arguments we thus require a language 
whose atoms are citations of (bodies of) evidence. Arguments may then be con­
structed from these atomic elements just as more complex logical sentences are 
constructed from atomic propositions by using logical operators such as conjunc­
tion, disjunction, negation and so forth. However, in contrast to logical proposi­
tions, the evidence cited in dependability arguments often possess numerous fea­
tures not captured in classical first-order logic. An obvious example being quanti­
tative measures, such as probabilities or assessments of confidence in the evi­
dence. Furthermore, in dependability arguments the evidence presented may be 
both cited and composed in many ways beyond those understandable as classical 
logical operations. 

Quantitative values are often associated with the evidence presented in depend­
ability cases, particularly when the evidence cited refers to the results of the test­
ing of some component or subsystem of the system under consideration. Such, 
typically probabilistic, measures must be combined and it can be a requirement of 
the argument that it present the probability associated with the overall argument, a 
value calculated through composition of the values associated with the individual 
items of cited evidence. Safety cases, for example, are often required to present an 
overall measure ofthe probability of unsafe behaviour, and to argue that this prob­
ability is sufficiently low. Further quantitative values may also be associated with 
particular pieces of evidence. For example, appeals to expert judgement can have 
associated with them some measure of confidence in the cited assertions. This 
measure may be either, or both, of confidence by the appealer in the expert or of 
confidence by the expert in their assertion. Similarly, in the fragment of the EUR 
RVSM safety case argument shown in Figure 2, we see that the collection of 
evidence supported the claim that switchover is safe (Claim St4.1), is associated 
with a "confidence" argument-an argument that the cited evidence is trustwor­
thy (Claim St4.2). 

Evidence in a dependability case may have other associated features in addition 
to quantitative values. Another common example being that evidence often has an 
associated vitality. That is, any cited evidence typically carries with it some con­
straints over the period of time for which it may be considered valid. It may be 
that, at some point in the future, a particular piece of evidence is no longer consid­
ered valid. This point in time may be known at the point at which a dependability 
argument is constructed, or it might be that in the future certain classes of evi­
dence are retrospectively asserted to have become invalid. It has been known, for 
example, for new or updated industrial standards to mandate changes in assess­
ment that can invalidate evidence or even arguments derived in earlier safety cases 
from forms of analysis that are now deemed to be no longer trustworthy or reli­
able. This then requires the re-appraisal of safety cases which cite evidence or 
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arguments that are derived from these, now outdated, forms of analysis. Alterna­
tively, it is conceivable that one's measure of confidence in a piece of evidence, 
say the results of a some analysis of a specification, may diminish over time as the 
evolving reality of the implemented system "drifts" further and further away from 
the idealisation of the original specification. 

To capture such quantitative and qualitative attributes in the representation of 
dependability arguments we may associate features with the basic atomic ele­
ments of the representation. In certain cases these features may be very simple in 
nature, such as simple binary values, whereas in other cases - such as in the use 
of temporal features - we will likely require a language for expressing the neces­
sary details of the feature associated with any particular piece of evidence. For 
example, to represent the vitality of a variety of evidence we may choose to use a 
feature-language with the expressiveness of a complete propositional, temporal 
logic. There are several logical formalisms that associate features with their pri­
mary objects of discourse. The majority of these are subsumed under the term 
description logics [3] and their most important domains of study to date have been 
in the areas of knowledge representation and the semantic analysis of natural lan­
guage. These studies, particularly in the area of knowledge representation, offer 
the foundations for a variety of feature-languages. 

In addition to associating features with evidence, we would wish to be able to 
identify, and refer to, particular claims or items of evidence. For identification and 
reference purposes a simple set of distinct labels would suffice. However, the use 
of more sophisticated languages of labels to identify both atomic propositions and 
individual steps in a logical proof, as explored by Gabbay's Labelled Deductive 
Systems [9], would permit both modularisation of arguments (a sub-argument is 
referenced via the label of its top-level claim) and the use of non-classical, context 
sensitive, operators-as in, for example, varieties of Linear Logic [l0] where an 
item of evidence, may be used at most once in an argument. 

The primary element of an object language for representing dependability argu­
ments is thus a claim. Claims have features, or attributes, and are identified by 
unique labels. Basic claims are taken to be particular pieces of evidence, and com­
plex claims are built up from these using logical and extra-logical warrants. A 
dependability argument is thus a proof in this object language, supporting the top­
level claim. While evidence and claims may have many features or attributes asso­
ciated with them that are not typically represented in classical logic, the means by 
which evidence is composed to construct complex dependability statements also 
goes beyond the forms of compositions permitted by classical logical operators. 
Many extra-logical warrants are permissible in dependability arguments, such as 
various forms of appeals to authority, "best practice" and "multi-legged" argu­
ments. A language for the representation of dependability arguments must also 
accommodate such extra-logical warrants. In practice, to support the representa­
tion of arguments that are in the process of construction, it is likely that certain 
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claims will be flagged as being "incomplete", or "as-yet-unvalidated", and these 
extra attributes and their consequences must also be accommodated as extra­
logical warrants for the acceptance of incomplete claims. 

To make these various accommodations, such extra-logical warrants will take 
the form of extra operators, similar in character to the logical operators such as 
classical conjunction, disjunction, implication, negation and so forth. As extra op­
erators, these extra-logical warrants will thus claim their own rules in the proof 
theory and semantic interpretations in the model theory. 

Finally, as arguments are modular, we may construct heterogeneous arguments, 
where distinct legs of the argument utilise distinct local logics. Thus, certain sub­
arguments could utilise relatively sophisticated probabilistic or temporal feature­
languages as required, with other sub-arguments utilising linear or other non-clas­
sical logics, whilst the overall argument which combined these sub-arguments 
might itself-being relatively abstract by nature-simply utilise classical propositional 
logic with relatively simple and straightforward use of features. 

4.2 Meta-level reasoning over dependability arguments 

A language which does accommodate the above features, attributes, and logical 
and extra-logical operators, provides an object language in which dependability 
arguments become complex statements-theories, if one will. However, while 
such an object language allows us to construct and validate arguments, we also 
require the ability to reason about such arguments. We need a language in which 
we may express and reason about the properties and qualities of arguments, such 
as their validity or 'strength', and in which we may manipulate, transform and 
reuse arguments. A meta-language, a (partial) language in which the atomic ob­
jects are not evidence but are entire first-order arguments themselves, provides a 
framework in which we may explore such issues. 

In a meta-framework, dependability arguments would be first-order terms in 
the language. Sentences in the language would permit us to reason about these 
arguments; in particular, to reason about, 

• the properties of dependability arguments, such as their validity and 
simplicity, or the perceptions and assumptions that underly them. 

• the quality of dependability arguments: are sub-arguments independ­
ent; how robust is an argument; does it critically reuse or depend upon 
particular evidence? 

• transformations of arguments, such as simplifications or restrictions 
to particular viewpoints, and reasoning over classes of arguments. 

• abstracting over common patterns of arguments, to support reuse and 
to understand under what constraints and contexts such reuse is valid. 

Let us take viewpoints as an example to illustrate the need for, and benefits of, 
such a meta-framework. Consider the situation in which a systems developer 
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constructs and presents to an assessor the dependability case for some proposed 
system. Let us refer to the representation of the argument in this dependability 
case, in our argument representation object language, as AO. Let us assume that, 
as it stands, this argument is (logically) valid. However, suppose that the assessor, 
whilst inspecting the argument AO, determines that at certain points it uses an 
appeal that the assessors find unsatisfactory. It might be, for example, that some 
authority is cited in whom the assessors have insufficient confidence. In this case 
the assessors would wish to inspect whether the argument remained valid if the 
confidence in these appeals was significantly weakened--or even rejected entirely. 
The assessors take a particular viewpoint of the argument, in which certain evi­
dence or warrants for conclusions are weakened or rejected. This viewpoint is, in 
effect, a transformation of the argument AO to a new argument, A I, which may in 
fact not be valid. If it is the case that A 1 is not sufficient to satisfy the authorities 
then it would be returned to the developers who may then transform the argument 
again, to a new argument A2, in which the weaknesses of A I have been ad­
dressed-possibly by the addition of extra evidence or some other strengthening 
of the weaknesses highlighted by the transformation from AO to A 1. A meta-frame­
work in which we may represent arguments as first order terms, permits us a 
means of expressing a variety of such transformations of these arguments, and of 
reasoning over the properties of these transformations-whether they preserve 
(logical) validity, for example. Furthermore, representing arguments as first order 
terms permits us to reason over partial instantiated patterns or fragments of argu­
ments, and thus assists in the understanding of the viability and consequences of 
the reuse of arguments, such as that currently studied by Smith and Harrison (2002). 

5. Conclusions and future work 

The study of dependability argumentation is both a rich and interesting area. De­
pendability arguments are often complex in nature, combining disparate forms and 
sources of evidence in detailed arguments, which must then be reviewed by, and 
negotiated with, a broad audience exhibiting diverse competencies and interests. 
The issue of representing dependability arguments is a pressing one, and current 
approaches-while often expressive-generally lack sufficient semantics or depth 
to provide the necessary support for the analysis and evaluation of arguments. 

Adopting a formal approach to representing dependability arguments has many 
advantages, most notably in the precision and exactness that such an approach 
brings to questions of the meaning and validity of an argument. However, given 
the relative sophistication and detail contained in a typical dependability argument, 
the expressiveness required of any language for representing such arguments goes 
significantly beyond what typical formal logics presently offer. Our review of 
safety cases has explored this topic, and illustrates what is required of a represen­
tation for it both to be sufficiently expressive, and to support the variety of evalu­
ations and manipulations demanded of dependability arguments. Studies of the 
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representation of dependability arguments have much to learn from the study of 
Informal Logic, an illustrative example being the study in Informal Logic of issues 
of validity and plausibility with regard to appeals to authority-a major aspect of 
many safety cases. 

We propose that, to be sufficiently expressive, a (formal) representation of 
dependability arguments requires both an object language and a meta-framework. 
At the object level, arguments may be constructed as theories in an extended 
logical language: where evidence captured as atomic propositions, with associated 
identifying labels and sets of features, and where complex statements are con­
structed by combining these propositions using both logical and extra-logical op­
erators. At the meta-level, these representations of dependability arguments as 
extra-logical theories become themselves the objects of discourse: permitting rea­
soning over their various qualities such as validity, strength, robustness and the 
like; and permitting the manipulation and transformation of such arguments whilst 
maintaining strict control over the constraints under which these transformations 
are considered permissible. Such a meta-framework is an essential requirement 
for the foundations of the argumentation tools which are equally necessary to 
support dependability arguments. 

The formalisation of such a representation of dependability arguments is the 
subject of ongoing study. At present the syntax of both the object and meta­
languages is available and work is ongoing concerning the semantics, both model­
theoretic and proof-theoretic, for these. As the saying goes: the proof of the pud­
ding is in the eating, however. Consequently we must explore the sufficiency of 
the expressiveness of this representation through its application to practical exam­
ples of the modelling of dependability arguments, such as the EUR R VSM safety 
case illustrated in Figure 2. Such application will permit us to explore important 
questions: such as whether further features or attributes are required for claims; 
and whether further extra-logical warrants are necessary. The application of our 
representation in this manner will not only assist in the evaluation of its expressive­
ness but will also teach valuable lessons concerning the requirements of tool sup­
port for dependability argumentation, and the requirements for the transformation, 
manipulation and reuse of dependability arguments. 

Consideration of tools to support dependability argumentation brings us to one 
final issue that we consider important for future study. We have considered at 
some length here the requirements for a sufficiently expressive representation of 
dependability arguments, yet we must also consider what such a representation 
requires to be sufficiently effective for the human user. This is to say, the object 
language and meta-framework we propose offers a sufficiently expressive form 
of representing dependability arguments, but a formal description of such an argu­
ment may be confusing or unconvincing unless it is presented in a form which is 
(or forms which are) accessible to the broad range of reviewers who must assess 
it. This issue, as it relates specifically to dependability arguments for safety-critical 
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systems, is discussed at length in (Gurr 1997). A conclusion of that discussion is 
that salient and accessible presentations of the high-level structure of dependability 
arguments, such as those which the diagrammatic ASCE and GSN notations re­
viewed in Section 2 seek to capture, are an essential part of an effective argument 
representation. 

Diagrams and new diagrammatic languages are frequently cited as being "natural" 
and "intuitive" notations, permitting "easy" and "accurate" communication of com­
plex structures and concepts. Indeed, such claims have been readily applied to the 
many graph-based notations popular in dependability argumentation, as reviewed 
in Section 2. However, the veracity of these claims is seldom tested and often the 
design of such diagrammatic languages follows no clear or obvious principles of 
usability, readability or effectiveness for the human user. Recent work in Gurr 
(1999) and Gurr and Tourlas (2000) addresses these issues, drawing together 
results from formal methods, visual language theory, cognitive science, empirical 
psychology and graphic design in order to deduce guidelines for the design and 
use of new diagrammatic languages, and for the construction of diagrams in exist­
ing diagrammatic languages. 

Building upon this foundation we intend to supplement our languages for rep­
resenting dependability arguments with effective diagrammatic languages, thus 
providing natural and intuitive representations of arguments for human readers. 
After all, it is clear that ultimate responsibility for acceptance or rejection of any 
dependability argument will always rest with a human agent or agency. As such, it 
is both in our interests and within our responsibility to ensure that these agents or 
agencies are presented with the most comprehensive, comprehensible and acces­
sible representations of dependability arguments that it is within our power to 
provide. 

Notes 

I EUR-RVSM Pre-Implemtation Safety Case, Edition 2, 14 August 2001. Available from: 
http://www.eur-rvsm.eom/library.htm. 
2 Cf Endnote I, 
3 ASCE (Adelard Safety Case Editor), Homepage: http://www.adelard.com/software/asce. 
" IEC 61508, Draji International Standard 1508 "Functional Sa/ety.' Safety Related Syslems" 
Available from British Standards Institution, BSI Sales Office, 389 Chiswiek High Road, London 
W44AL 1995, 
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