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We present the first simple analytical description of the interdiffusion process
where the competition between the Kirkendall shift and the backstress is
considered. It is shown that two diffusion subzones are formed; these sections
are linked to the fast and slow diffusing component. During the interdiffusion
process, the stress effect does not vanish.

Keywords: Kirkendall shift; backstress; interdiffusion; stress effect; vacancy
distribution

‘Every physical law must have mathematical beauty’

Paul Dirac

1. Introduction

Complexity of interdiffusion is, first of all, due to the difference of mobilities of differ-
ent species. Difference of mobilities leads to the numerous phenomena: the lattice shift,
the stress generation and relaxation, the non-equilibrium distribution of vacancies and
voiding, the evolution of dislocation network, often to the diffusion-driven grain-
boundaries motion, sometimes to the bifurcations and instabilities of markers distributions
[1–12]. In this work, we consider one-dimensional interdiffusion in a two-component
alloy, in which intrinsic diffusivities (mobilities) are composition invariant. The diffu-
sion flux (in standard Darken approach, it means the flux in the moving lattice reference
frame) depends on the gradient of the diffusion potential,

Jdi ¼ �Mici
@li
@x

: (1)

The diffusion potential gradient is a generalized thermodynamic driving force and
reflects the change of energy due to the diffusion (motion) of atoms. The overall com-
ponent flux is a sum of diffusion and drift counterparts: Ji ¼ Jdi þ cit. Interdiffusion
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proceeds under constraint of almost constant total volume, that is, we neglect the devia-
tions from Vegard’s law. This constraint means zero divergence of overall volume flux
density [9]:

@

@ x
ðXAJA þ XBJBÞ ¼ 0: (2)

In planar diffusion couple with concentration gradient along x-axis, it immediately leads
to

XAJA þ XBJB ¼ kðtÞ: (3)

In the closed diffusion couple that does not exchange mass with the surrounding k(t) = 0
and we get finally:

XAJA þ XBJB ¼ 0: (4)

When the only driving force is chemical potential gradient, li ¼ lchi , the volume flux is
given by:

Xi Ji ¼ MiciXi
@lchi
@x

þ Xicit ¼ D�
i u

@Ni

@x
þ Nit: (5)

The thermodynamic factor equals u ¼ NA

kT

@lchA
@NA

¼ NB

kT

@lchB
@NB

, where Ni is the atomic
fraction ðNA þ NB ¼ 1Þ.

Below we will concentrate on the kinetic effects that are related to difference of
mobilities, namely on the stress generation and relaxation. So-called concentration stres-
ses have been analysed in textbooks and will not be considered here [3,13]. Therefore,
we will assume the constant and equal atomic volumes (ΩA ≅ ΩB ≅ Ω). In the closed
diffusion couple, it implies that its overall volume is constant as well. Difference of
mobilities Mi ¼ D�

i =kT , in other words, of the tracer diffusivities D�
i leads to ‘contradic-

tion’ with constraint of constant volume. Interdiffusion leads to the accumulation of
matter at the side of slower component of the diffusion couple. Due to the volume con-
straint, Equation (2), nature just must find some ways to reduce this accumulation to
zero. One can distinguish at least three basic ways of the accumulation reduction:

(1) Kirkendall effect – movement of lattice from slower diffusant side towards the
faster diffusant side with some drift velocity, υ, that is common for both compo-
nents and measured by inert markers frozen within moving lattice. The only
driving force is chemical potential, li ¼ lchi and the local drift velocity is deter-
mined by constraint of the constant volume. Thus, from Equations (4) and (5),
we get:

X JA þ X JB ¼ �D�
Au

@NA

@x
þ NAt

� �
þ �D�

Bu
@NB

@x
þ NBt

� �
¼ 0: (6)

Constraint of constant volume in the form of Equation (4) immediately gives
famous Darken expressions for the drift velocity:

t ¼ ðD�
B � D�

AÞu
@NB

@x
(7)

and for the volume interdiffusion flux:
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X JB ¼ �ðNAD
�
B þ NBD

�
AÞu

@NB

@x
� �~D

@NB

@x
; (8)

where effective Darken interdiffusivity equals:

~D ¼ ðNAD
�
B þ NBD

�
AÞu: (9)

In a case of large difference of mobilities and atomic fractions not too close to
zero or unity, Darken interdiffusivity is determined mainly by the faster diffusant.

(2) Backstress effect (osmotic pressure – this notion being introduced by Bokstein
and Shvindlerman [14]). In this case, the diffusion potential is a sum of chemical
and common stress forces, li ¼ lchi þ lstress and equalization of the diffusion
fluxes (the local volume conservation = conservation of the lattice sites) instead
of lattice shift is provided by the stress gradient appearing due to attempt of mat-
ter accumulation. Each diffusing atom of both species is affected by common
stress force: F ¼ �@lstress=@x ¼ X @r=@x, where r ¼ �p ¼ 1=3Sprik is hydro-
static part of the stress tensor. In a planar diffusion couple with concentration
gradient along x-axis, one has [3]:

rxx ¼ rxy ¼ rxz ¼ 0; ryy ¼ rzz ¼ 1

2
Sprik ¼ 3

2
r: (10)

Force is the same for both species and in general the drift velocity under common
stress force and chemical potential will be now different, due to different mobili-
ties, and this is a main difference with Darken analysis. In the ‘ideal case’, action
of force should lead to the zero drift term. Thus, the volume fluxes are purely
diffusional (υ = 0) and are given by Nernst–Einstein relation [15], Equation (1):

X Ji ¼ �D�
i u

@Ni

@x
þ Ni

D�
i

kT
F ¼ �D�

i u
@Ni

@x
þ NiX

D�
i

kT

@r
@x

: (11)

Then, the constraint of constant volume, Equation (4), will give:

X JA þ X JB ¼ �D�
A/

@NA

@x
þ NA

D�
A

kT
F

� �
þ �D�

B/
@NB

@x
þ NB

D�
B

kT
F

� �
¼ 0 (12)

and one obtains the magnitude of backstress force:

F ¼ X
@r
@x

¼ D�
B � D�

A

NAD�
A þ NBD�

B

kTu
@NB

@x
(13)

and an expression for interdiffusion flux:

JB ¼ �JA ¼ � D�
AD

�
B

NAD�
A þ NBD�

B

u
@NB

@x
� �DNP

@NB

@x
: (14)

Effective interdiffusivity here is sometimes called Nernst–Planck diffusivity [6,13],

DNP ¼ D�
AD

�
B

NAD�
A þ NBD�

B

u (15)
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It is controlled by the slower component, contrary to Darken case. Backstress
effect is well known in electromigration community, after Herring explanation
of Blech experiments with Al strips [16,17]. Electromigration issues will not be
discussed here.

(3) Non-equilibrium vacancy distribution. This way of providing local volume con-
servation was first analysed in details by Nazarov and Gurov [18]. In this case,
the diffusion potential is a difference of component chemical and common
vacancy potentials, li ¼ lchi � lV , and equalization of the diffusion fluxes
instead of lattice shift is provided by the non-equilibrium vacancy gradient
appearing due to attempt of matter accumulation.

Formally, this way is very similar to previous one (and was presented one
year earlier than osmotic pressure concept). Role of effective force here is
played by the gradient of vacancy chemical potential, proportional to the gradi-
ent of deviation of vacant sites fraction from its local equilibrium value:

FV ¼ � @lV
@x

¼ � @

@x
kT ln

NV

Neq
V

� �
ffi � kT

Neq
V

@ðNV � Neq
V Þ

@x
(16)

Role of non-equilibrium vacancy distribution is important at the initial stages of
interdiffusion when the width of diffusion zone is less or by the order of magni-
tude comparable with the mean migration length of vacancies [5,19]. This length
depends on dislocation density and is typically of micron or sub-micron size. The
effective interdiffusivity of Nazarov-Gurov coincides with Nernst–Planck
expression, Equation (15).

In this work, we do not assume the equalization of the diffusion fluxes by some unique
way at any time moment and consider the following question: what way or combination
of ways of satisfying constant volume constraint is actually used by nature at various
stages of interdiffusion? In other words, what is the interrelation between Kirkendall
shift, stress gradient and non-equilibrium vacancy distribution at different stages of the
interdiffusion process and at various positions within the diffusion zone?

In this case, the diffusion potential is a sum of component chemical and common
vacancy and stress potentials, li ¼ lchi � lV þ lstress. Consequently, we need interrela-
tion between lattice drift, backstress and non-equilibrium vacancy concentration.
Recently, a linear interrelation between drift velocity and stress gradient was suggested
[20], but the factor of proportionality remained a fitting parameter. On the other hand,
there is simple link between divergence of drift velocity and the rate of stress evolution
[21], see also similar relation for electro-migration [22], both can be used at least in the
case when the plasticity limit is not reached. Namely, when the divergence of drift
velocity is determined by the vacancy generation/annihilation rate, which means genera-
tion or annihilation of lattice sites. This means dilatation of alloy leading to stress:

@t
@x

¼ �NV � Neq
V

sV
¼ � 1

B

@Sprik
@t

; (17)

where B is the bulk modulus.
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In this paper, we at first write down the full set of equations with account of all
above-mentioned factors. The possible voiding will be not considered.

2. Theory

2.1. Formulation of the problem; the self-consistent set of equations

Simultaneous evolution of concentration profiles, lattice drift, stresses and non-equilibrium
vacancies implies that diffusion potential that is sum of chemical potential, stress and
vacancy terms. The problem is described by the set of 4 differential equations, where
NA;r;NV and t are unknowns:

@NA

@t
¼ � @

@x
�D�

Au
@NA

@x
þ NAX

D�
A

kT

@r
@x

þ NA
D�

A

Neq
V

@ðNV � Neq
V Þ

@x
þ NAt

� �
(18)

@NB

@t
¼ � @

@x
�D�

Bu
@NB

@x
þ NBX

D�
B

kT

@r
@x

þ NB
D�

B

Neq
V

@ðNV � Neq
V Þ

@x
þ NBt

� �
(19)

@NV

@t
¼ � @

@x
ðD�

B � D�
AÞu

@NB

@x
� X

NAD�
A þ NBD�

B

kT

@r
@x

� NAD�
A þ NBD�

B

Neq
V

@ðNV � Neq
V Þ

@x
þ NBt

� �

�NV � Neq
V

sV
;

;

(20)

@r
@t

¼ 1

3

@Sprik
@t

¼ �B

3

@t
@x

; (21)

The components conservation law, Equations (18) and (19), describes the redistribution
of components with account of chemical driving forces, stress gradient, non-equilibrium
vacancy gradient and lattice drift. Equation (20) does the same for vacancies, taking the
sinks and sources of vacancies into account in relaxation approximation, that is, using
an approximation of effective medium [23]. Last Equation, (21), relates stress and drift
velocity in hydrostatic approximation. It does not take into account the relaxation by
dislocation sliding and therefore is applicable only for an undercritical stresses. The
relaxation time for vacancies, sV , can be expressed in terms of mean migration length:

sV ¼ L2V
DV

� NVL2V
NAD�

A þ NBD�
B

: (22)

Summation of Equations (18)–(20) immediately gives relation between the drift velocity
distribution and local vacancy concentration: @t=@x ¼ �ðNV : � Neq

V Þ=sV . As we already
mentioned, non-equilibrium vacancy distribution influences the interdiffusion process
only at the initial stages of interdiffusion in massive diffusion couples when the diffu-
sion zone width is about or less than the vacancy mean migration length. So, in micro-
metric or nanometric systems, we should take non-equilibrium vacancies into account.
The full numeric analysis of the set (18)–(21) will be made elsewhere. In this paper, we
shall limit ourselves to comparably long annealing times when the non-equilibrium
vacancies are already not important, but the stresses are still crucial. In this case, we
can treat ðNV : � Neq

V Þterm as negligible in Equations (18), (19) and exclude (20) from
our analysis. Consequently, problem reduces to
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@NA

@t
¼ � @

@x
�D�

Au
@NA

@x
þ NAX

D�
A

kT

@r
@x

þ NAt

� �
; (23)

@NB

@t
¼ � @

@x
�D�

Bu
@NB

@x
þ NBX

D�
B

kT

@r
@x

þ NBt

� �
; (24)

@r
@t

¼ �B

3

@t
@x

: (25)

Summation of (23) and (24) gives:

t ¼ ðD�
B � D�

AÞu
@NB

@x
� X
kT

½ð1� NBÞD�
A þ NBD

�
B�
@r
@x

þ kðtÞ (26)

In the closed system, due to the boundary conditions, k(t) equals zero. It is so in
the infinite diffusion couple whereat infinities (the left and right margins) the drift
velocity vanishes. Substitution of Equation (26) with zero constant into Equation (24)
gives

@NB

@t
¼ @

@x
ðNAD

�
A þ NBD

�
BÞu

@NB

@x

� �
� ðD�

B � D�
AÞ

@

@x
NBð1� NBÞ @ðrX=kTÞ

@x

� �
(27)

Taking spatial derivative of both parts of Equation (26) and substituting it into
right-hand side part of (25) one gets:

@ðrX=kTÞ
@t

¼ � BX
3kT

� �
@

@x
ðD�

B � D�
AÞu

@NB

@x

� �
þ BX

3kT

� �
@

@x
ðNAD

�
A þ NBD

�
BÞ

@ðrX=kTÞ
@x

� �
(28)

Equations (27) and (28) form a full set for description of intermixing and stress
evolution during interdiffusion when the non-equilibrium vacancy concentration is
negligible and the intrinsic components diffusivities are constant. Substitution of
solution, σ(t,x) and NB(t,x), into (26) gives a spatial distribution of drift velocities.

2.2. Analytical expressions

To have possibility of some analytical expressions, let us consider below the incremental
diffusion couples with small initial steps of composition,

NR
B � NL

B � ðNR
B þ NL

B Þ=2 (29)

In this case, the set (27)–(28) can be reduced to the system of two coupled linearized
equations for two non-dimensional functions: NB = NB(t, x) and Ψ = Ωσ(t, x)/kT, with
almost constant coefficients:

@NB

@t
¼ D11

@2NB

@x2
þ D12

@2W
@x2

(30)

@W
@t

¼ D21
@2NB

@x2
þ D22

@2W
@x2

(31)
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Here, interdiffusion matrix is:

D11 ¼ ðNAD�
B þ NBD�

AÞu; D12 ¼ �NANBðD�
B � D�

AÞ;
D21 ¼ � BX

3kT
ðD�

B � D�
AÞu; D22 ¼ BX

3kT
ðNAD

�
A þ NBD

�
BÞ

(32)

Interdiffusivity matrix has two eigenvalues that follow from the conditions
D(1) + D(2) = SpDik ≡ D11 + D22 and D(1)D(2) = det Dik ≡ D11D22 – D12D21:

Dð1Þ ¼ 1

2
SpDik þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSpDikÞ2 � 4 detDik

q� �
; Dð2Þ ¼ 1

2
SpDik �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSpDikÞ2 � 4 detDik

q� �
;

Dð1Þ [Dð2Þ

(33)
In analysed case:

SpDik ¼ D�
B NAuþ NB

BX 3kT
� �þ D�

A NBuþ NA
BX
3kT

� �
;

detDik ¼ BX
3kT

uD�
AD

�
B:

(34)

Set of parabolic equations within diffusion couple with constant coefficients can be
most simply solved by diagonalization of D-matrix, where Dik ¼

P2
n¼1

P2
m ain	

Dndnmð Þ a�1ð Þmk . It gives, in particular:

@

@x
NBðt; xÞ ¼ a11

@

@x
w1ðt; xÞ þ a12

@

@x
w2ðt; xÞ;

@

@x

B

kT
rðt; xÞ

� �
¼ a21

@

@x
w1ðt; xÞ þ a22

@

@x
w2ðt; xÞ;

(35)

where

a11 ¼ 1; a12 ¼ Dð2Þ � D22

D21
;

a21 ¼ Dð1Þ � D11

D12
; a22 ¼ 1:

(36)

The right-hand side terms in Equation (35) characterize two modes of interdiffusion:

Faster mode:
@

@x
w1ðt; xÞ ¼ w1R � w1Lffiffiffiffiffiffiffiffiffiffiffiffiffi

pDð1Þt
p exp � x2

4Dð1Þt

� �
; (37)

Slower mode:
@

@x
w2ðt; xÞ ¼ w2R � w2Lffiffiffiffiffiffiffiffiffiffiffiffiffi

pDð2Þt
p exp � x2

4Dð2Þt

� �
: (38)

We are interested here in the interaction (interplay) between the stress and concentration
gradients. Initial step of stress is zero, initial step of composition is fixed,
DNB ¼ NR

B � NL
B . Thus, the steps of faster and slower modes are easily found as

Dw1 ¼ a�1
11 DNB þ a�1

12 DðXr=kTÞ ¼ a�1
11 DNB þ 0 ¼ a22

det aik
DNB;

Dw2 ¼ a�1
21 DNB þ a�1

22 DðXr=kTÞ ¼ a�1
21 DNB þ 0 ¼ � a21

det aik
DNB:

(39)
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Now, we can compare the two terms – concentration gradient and stress gradient terms
– in the expression for drift velocity. Let us find the ratio of actual drift velocity (with
account of arising stress gradients) with Darken expression for drift velocity (no stress):

t
tDarken

¼
D�

B � D�
A

� �
u
@NB

@x
� X

NAD�
A þ NBD�

B

kT

@r
@x

ðD�
B � D�

AÞu
@NB

@x

¼ 1� X
kT

ðNAD�
A þ NBD�

BÞ
@r
@x

ðD�
B � D�

AÞu
@NB

@x

: (40)

Let us consider the case when the difference between backstress-mediated compensation
and drift-mediated compensation is most pronounced, for example, when diffusivities of
the components considerably differ. For example, let component A be much slower than
B:D�

A\\D�
B. In such a case

Dð1Þ ffi D�
B NAuþ NB

BX
3kT

� �

 Dð2Þ ffi D�

Au

NA
u 	 3kT
BX

þ NB

(41)

If, additionally, BXNB=ð3kTuNAÞ 
 1 (which is typical for metallic solutions), thenffiffiffiffiffiffiffiffi
Dð1Þ

Dð2Þ

r
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
B

u
D�

A

D�
B

s
� 1 (42)

a12 ¼ ðDð2Þ � D22Þ=D21 ffi NB=u;

a21 ¼ ðDð1Þ � D11Þ=D12 ffi �BX=ð3kTNAÞ;
(43)

Dw2=Dw1 ¼ �a21=a11 ¼ BX=ð3kTNAÞ (44)

Then, long but elementary algebra gives:

tðt; xÞ � 1

NA

ffiffiffiffiffiffiffiffi
Dð1Þ

pt

r
exp � x2

4Dð1Þt

� �
� 3kT

BX

ffiffiffiffiffiffiffiffi
Dð2Þ

pt

r
exp � x2

4Dð2Þt

� �
; (45)

t
tDarken

¼
1þ NB

NA

BX
kTu

1þ NB

NA

BX
3kT u

ffiffiffiffiffiffiffiffi
Dð1Þ

Dð2Þ

r
exp � x2

4t

1

Dð2Þ �
1

Dð1Þ

� �� � : (46)

Since second diffusion eigenvalue is much smaller, one obtains finally:

t
tDarken

¼
1þ NB

NA

BX
3kTu

1þ NB

NA

BX
3kTu

ffiffiffiffiffiffiffiffi
Dð1Þ

Dð2Þ

r
exp � x2

4Dð2Þt

� � : (47)

Equations (45) and (47) allow to examine the regions formed within the diffusion
couple.
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3. Results

Analysis of Equations (45) and (47) allows distinguishing three spatial regions:

Internal zone: jxj\
ffiffiffiffiffiffiffiffiffiffi
Dð2Þt

p
ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D�
Aut=NB

p
. In this ‘internal zone’ in the vicinity of the

Matano interface, the drift velocity is almost constant upon spatial coordinate and, of
course, inversely proportional to the square root of time: t ffi

ffiffiffiffiffiffiffiffi
Dð1Þ

p
=ðNA

ffiffiffiffiffi
pt

p Þ. Actual
drift velocity is much slower than the pure Darken case: t=tDarken ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2Þ=Dð1Þp

� 1:

Transient zone:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�

Aut=NB

p ffi
ffiffiffiffiffiffiffiffiffiffi
Dð2Þt

p
� jxj �

ffiffiffiffiffiffiffiffiffiffi
Dð1Þt

p
ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BXD�
BNBt=ð3kTÞ

p
in which

the drift velocity drops with increasing distance from the Matano interface:

tðt; xÞ ffi 1
NA

ffiffiffiffiffiffi
Dð1Þ
pt

q
exp � x2

4Dð1Þt

� �
. Ratio of actual drift velocity to the pure Darken case is

given by: t=tDarken ffi 1þ BX
3kTu

NB
NA
:

External zone: jxj[
ffiffiffiffiffiffiffiffiffiffi
Dð1Þt

p
ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BXD�
BNBt=ð3kTÞ

p
. Diffusion zone is only approaching.

In Figures 1–3, the concentration, drift velocity and stress distribution profiles found by
analytical solution, Equations (35)–(45), are shown. Profiles were calculated with the
assumption of the constant coefficients of diffusion matrix.

In Figures 4–6, the profiles calculated from numeric solution without assumption of
constant coefficients of diffusion matrix are shown.

The internal and transient subzones are seen in the drift velocity and the normalized
stress profiles of the finite diffusion couple. These sections are linked to the fast and
slow diffusing component. The simplified assumption of the constant coefficients of the
diffusion matrix results in the symmetry of the interdiffusion process, Figures 1–3. Con-
trary, more representative numerical computations based on Equation (32) shows strong
asymmetry due to the composition dependence of the diffusion matrix coefficients,
Figures 4–6. The qualitative agreement between analytical solution and numerical one
can be seen. Nevertheless, the simplified assumptions in the analytical solution result in
misrepresentative acceleration of the interdiffusion process.

Figure 1. The concentration profiles in the finite diffusion couple. Constant coefficients of diffusion
matrix are assumed.
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During the interdiffusion process, the stress effect does not vanish, Figures 3, 5 and
6. The comparison of the components distribution, Figures 4, shows that backstress
effect retards the interdiffusion process.

Figure 2. The drift velocity profile in the finite diffusion couple. Constant coefficients of diffusion
matrix are assumed.

Figure 3. The normalized stress profile in the finite diffusion couple. Constant coefficients of
diffusion matrix are assumed.
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4. Summary

The presented analysis of the interdiffusion process based on the Darken method and
generalized diffusion potential to include the non-equilibrium vacancy concentration
and the backstress effects.

(1) The internal and transient subzones are formed during interdiffusion in planar
diffusion couples; these sections are linked to the fast and slow diffusing
component.

Figure 4. The concentration profiles in the finite diffusion couple. Coefficients of diffusion matrix
depend on composition, Equation (32).

Figure 5. The drift velocity profiles in the finite diffusion couple. Coefficients of diffusion matrix
depend on composition, Equation (32).
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(2) The numerical computations show strong asymmetry of the process due to the
composition dependence of the diffusion matrix coefficients.

(3) The qualitative agreement between analytical solution and numerical one was
shown. The simplified assumptions in the analytical solution result in misrepre-
sentative acceleration of the interdiffusion process.

(4) During the whole interdiffusion process, the stress effect does not vanish. This
backstress effect retards the interdiffusion process.

(5) The non-equilibrium vacancy distribution influences the interdiffusion process
only at the initial stages of interdiffusion in massive diffusion couples when the
diffusion zone width is about or less than the vacancy mean migration length.

(6) When the comparably long annealing times are calculated, the non-equilibrium
vacancies are not important, but the stresses are still crucial.

(7) The presented methodology can be extended to include three and more
component alloys as well as different atomic volumes of the components and
concentration-dependent intrinsic diffusivities.
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