Skip to main content
Log in

The Mathematical Intelligencer Flunks the Olympics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See further on circularity of Sergeyev’s definitions in footnote 5.

  2. The English word pathos is etymologically related to \(\pi \acute{\alpha }\theta o\varsigma \), passion.

  3. See our etymological comment in footnote 2.

  4. For each pair of complementary infinite subsets of \({\mathbb N}\), such a measure m “decides” in a coherent way which one is “negligible” (i.e., of measure 0) and which is “dominant” (measure 1).

  5. This point seems to have escaped Sergeyev, who claims it to be an advantage of the grossone system that the infinite numbers are found within \({\mathbb N}\), allegedly unlike nonstandard analysis; see Calude and Dinneen (2015, p. 95, note 3). Elsewhere Sergeyev claims that, on the contrary, ➀ is “the number of elements in \({\mathbb N}\)”, leading to a circularity already mentioned in footnote 1.

References

  • Avigad, J. (2005). Weak theories of nonstandard arithmetic and analysis. Reverse mathematics, Lecture notes in logic 21. La Jolla, CA: Association for Symbolic Logic.

    Google Scholar 

  • Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D., & Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904. http://www.ams.org/notices/201307/rnoti-p886 and arXiv:1306.5973

  • Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., & Shnider, S. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864. http://www.ams.org/notices/201408/rnoti-p848 and arxiv:1407.0233.

  • Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1), 50–67.

    Article  Google Scholar 

  • Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi:10.1007/s10699-011-9235-x.

    Article  Google Scholar 

  • Bradley, R., & Sandifer, C. (2009). Cauchy’s Cours d’analyse. An annotated translation. Sources and studies in the history of mathematics and physical sciences. New York: Springer.

    Google Scholar 

  • Calude, C., & Dinneen, M. (Eds). (2015). Unconventional Computation and Natural Computation. In 14th International Conference, UCNC 2015, Auckland, New Zealand August 30–September 3, 2015, Proceedings, Springer.

  • Dauben, J., Guicciardini, N., Lewis, A., Parshall, K., & Rice, A. (2015). Ivor Grattan–Guinness (June 23, 1941–December 12, 2014). Historia Mathematica, 42(4), 385–406.

    Article  Google Scholar 

  • Day, P. (2006). Review of “Sergeyev, Yaroslav D. ‘Mathematical foundations of the infinity computer’. Annales Universitatis Mariae Curie-Sklodowska. Sectio AI. Informatica, 4, 20–33”. http://www.ams.org/mathscinet-getitem?mr=2325643.

  • Goedel, K. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America (National Academy of Sciences), 24(12), 556–557.

    Article  Google Scholar 

  • Gutman, A., & Kutateladze, S. (2008). On the theory of the grossone [(Russian) Sibirskii Matematicheskii Zhurnal 49(5), 1054–1063; translation in]. Siberian Mathematical Journal, 49(5), 835–841.

    Article  Google Scholar 

  • Hamkins, J. D. (2015). http://mathoverflow.net/questions/226277/what-is-a-grossone.

  • Henson, C. W., Kaufmann, M., & Keisler, H. J. (1984). The strength of nonstandard methods in arithmetic. Journal of Symbolic Logic, 49(4), 1039–1058.

    Article  Google Scholar 

  • Henson, C. W., & Keisler, H. J. (1986). On the strength of nonstandard analysis. Journal of Symbolic Logic, 51(2), 377–386.

    Article  Google Scholar 

  • Hewitt, E. (1948). Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society, 64, 45–99.

    Article  Google Scholar 

  • Iudin, D., Sergeyev, Y., & Hayakawa, M. (2012). Interpretation of percolation in terms of infinity computations. Applied Mathematics and Computation, 218(16), 8099–8111.

    Article  Google Scholar 

  • Kanovei, V., Katz, K., Katz, M., & Schaps, M. (2015). Proofs and retributions, or: Why Sarah can’t take limits. Foundations of Science, 20(1), 1–25. doi:10.1007/s10699-013-9340-0 and http://www.ams.org/mathscinet-getitem?mr=3312498.

  • Kanovei, V., Katz, K., Katz, M., & Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51. doi:10.1007/s00283-015-9565-6 and arxiv:1506.02586.

  • Kanovei, V., Katz, M., & Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science, 18(2), 259–296.

    Article  Google Scholar 

  • Katz, K., & Katz, M. (2011). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica 56(2), 223–302. arxiv:1110.5456.

  • Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi:10.1007/s10699-011-9223-1 and arxiv:1104.0375.

  • Katz, M., & Kutateladze, S. (2015). Edward Nelson (1932–2014). The Review of Symbolic Logic, 8(3), 607–610. doi:10.1017/S1755020315000015 and arxiv:1506.01570.

  • Katz, M., & Leichtnam, E. (2013). Commuting and noncommuting infinitesimals. American Mathematical Monthly, 120(7), 631–641. doi:10.4169/amer.math.monthly.120.07.631 and arxiv:1304.0583.

  • Katz, M., & Sherry, D. (2012). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558. http://www.ams.org/notices/201211/rtx121101550p and arxiv:1211.7188.

  • Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625. doi:10.1007/s10670-012-9370-y and arxiv:1205.0174.

  • Kauffman, L., & Lins, S. (1994). Temperley-Lieb recoupling theory and invariants of 3-manifolds. Annals of mathematics studies (Vol. 134). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kauffman, L. (2015a). Infinite computations and the generic finite. Applied Mathematics and Computation, 255, 25–35.

    Article  Google Scholar 

  • Kauffman, L. (2015b). MathOverflow answer. http://mathoverflow.net/questions/226277/what-is-a-grossone.

  • Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach (2nd ed.). Prindle, Weber & Schimidt, Boston. http://www.math.wisc.edu/~keisler/calc.html.

  • Kreinovich, V. (2003). Review of “Sergeyev, Yaroslav D. Arithmetic of infinity. Edizioni Orizzonti Meridionali, Cosenza, 2003”. http://www.ams.org/mathscinet-getitem?mr=2050876.

  • Kreisel, G. (1969). Axiomatizations of nonstandard analysis that are conservative extensions of formal systems for classical standard analysis. Applications of model theory to algebra, analysis, and probability (International Symposium, Pasadena, CA, 1967) (pp. 93–106) Holt, Rinehart and Winston, New York.

  • Kutateladze, S. (2011). Letter to the Editor. On the Grossone and the infinity computer. Newsletter of the European Mathematical Society, 79, 60. https://www.ems-ph.org/journals/newsletter/pdf/2011-03-79.

  • Lolli, G. (2015). Metamathematical investigations on the theory of Grossone. Applied Mathematics and Computation, 255, 3–14.

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.

  • Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.

    Article  Google Scholar 

  • Robinson, A. (1961). Non-standard analysis. Nederl Akad Wetensch Proceedings Series A 64 = Indagationes Mathematicae, 23, 432–440 [reprinted in Selected Works, see item (Robinson 1979), pp. 3–11]

  • Lightstone, A., & Robinson, A. (1975). Nonarchimedean fields and asymptotic expansions. North-Holland Mathematical Library (Vol. 13). Amsterdam-Oxford: North-Holland Publishing Co., New York: American Elsevier Publishing Co., Inc.

  • Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Körner. Yale University Press, New Haven, CT.

  • Sergeyev, Y. (2003). Arithmetic of infinity. Cosenza: Edizioni Orizzonti Meridionali.

    Google Scholar 

  • Sergeyev, Y. (2007). Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons and Fractals, 33, 50–75.

    Article  Google Scholar 

  • Sergeyev, Y. (2013). Solving ordinary differential equations on the infinity computer by working with infinitesimals numerically. Applied Mathematics and Computation, 219(22), 10668–10681.

    Article  Google Scholar 

  • Sergeyev, Y. (2015a). The Olympic medals ranks, lexicographic ordering, and numerical infinities. The Mathematical Intelligencer, 37(2), 4–8.

    Article  Google Scholar 

  • Sergeyev, Y. (2015b). Keynote address, Las Vegas. http://www.world-academy-of-science.org/worldcomp15/ws/keynotes/keynote_sergeyev.

  • Sergeyev, Y. (2015c). Letter to the editor. The Mathematical Intelligencer, 37(4), 2–3.

    Article  Google Scholar 

  • Sergeyev, Y. (2016). The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Communications in Nonlinear Science and Numerical Simulation, 31(1–3), 21–29.

    Article  Google Scholar 

  • Shamseddine, K. (2015). Analysis on the Levi-Civita field and computational applications. Applied Mathematics and Computation, 255, 44–57.

    Article  Google Scholar 

  • Skolem, T. (1933). Über die Unmöglichkeit einer vollständigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems. Norsk Mat. Forenings Skr., II. Series No. 1/12, pp. 73–82.

  • Skolem, T. (1934). Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, 23, 150–161.

    Article  Google Scholar 

  • Skolem, T. (1955). Peano’s axioms and models of arithmetic. Mathematical interpretation of formal systems (pp. 1–14). Amsterdam: North-Holland Publishing.

  • Tall, D. (1979). The calculus of Leibniz–An alternative modern approach. Mathematical Intelligencer, 2(1), 54–55.

    Article  Google Scholar 

  • Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate studies in mathematics (Vol. 153). Providence, RI: American Mathematical Society.

    Book  Google Scholar 

  • Tarski, A. (1930). Une contribution à la théorie de la mesure. Fundamenta Mathematicae, 15, 42–50.

    Article  Google Scholar 

  • Vakil, N. (2012). Interpreting Sergeyev’s numerical methodology within a hyperreal number system. http://vixra.org/abs/1209.0070.

  • Zlatoš, P. (2009). Review of (Gutman & Kutateladze 2008). http://www.ams.org/mathscinet-getitem?mr=2469053.

Download references

Acknowledgments

We are grateful to Rob Ely for helpful suggestions. We thank the anonymous referee for Foundations of Science for helpful comments. M. Katz was partially funded by the Israel Science Foundation Grant No. 1517/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutman, A.E., Katz, M.G., Kudryk, T.S. et al. The Mathematical Intelligencer Flunks the Olympics. Found Sci 22, 539–555 (2017). https://doi.org/10.1007/s10699-016-9485-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-016-9485-8

Keywords

Navigation