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Abstract In this paper, I present a puzzle involving special relativity and the

random selection of real numbers. In a manner to be specified, darts thrown later hit

reals further into a fixed well-ordering than darts thrown earlier. Special relativity is

then invoked to create a puzzle. I consider four ways of responding to this puzzle

which, I suggest, fail. I then propose a resolution to the puzzle, which relies on the

distinction between the potential infinite and the actual infinite. I suggest that certain

structures, such as a well-ordering of the reals, or the natural numbers, are examples

of the potential infinite, whereas infinite integers in a nonstandard model of arith-

metic are examples of the actual infinite.

Let us throw darts at [0, 1]. We work in ZFC and assume the continuum hypothesis,

CH. Then let \ be a well-ordering of [0, 1] of length @1. There is a well-ordering

because we are working in ZFC. There is a well-ordering of length @1 because we

are assuming CH. Throughout this paper, any reference to order refers to this fixed

well-ordering. Then throw a dart at [0, 1] and let r1 be the real hit by this first dart.

Note that the set of reals less than or equal to r1, being countable, is of Lebesgue

measure zero, and so the set of reals greater than r1 is of measure one. Thus with

probability one1 we find that r2 [ r1, where r2 is the real hit by a second dart thrown

at [0, 1]. Put loosely, r2 hits a real greater than r1 in the well-ordering because that is

where almost all of the reals are. And as we continue to throw darts, the reals hit by

J. Gwiazda (&)

Department of Philosophy, Lehman College, 250 Bedford Park Boulevard West,

Bronx, NY 10468, USA

e-mail: jgwiazda@gc.cuny.edu

1 I discuss potential problems with this notion of probability below.
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the darts move further into the well-ordering. Darts thrown later hit reals further into

the well-ordering than darts thrown earlier.2

This reasoning, though it seems correct, has puzzling consequences. Indeed a

consideration of special relativity leads to the following puzzle. Imagine two darts,

d1 and d2, and two observers, O1 and O2. The two darts are thrown. Due to relative

motion, in O1’s frame of reference d1 lands first, hitting r1. In O2’s frame of

reference d2 lands first, hitting r2. With probability one O1 finds that r1 \ r2 because

r1 landed first. With probability one O2 finds that r2 \ r1 because r2 landed first.3 But

it cannot be the case that r1 \ r2 and r2 \ r1. How should we respond to this puzzle?

First, we could reject CH or some axiom of ZFC (most likely the axiom of

choice). Besides the drastic nature of this response, it fails for another reason,

namely, a similar puzzle can be created without using either CH or ZFC. I (Gwiazda

2006) considered two random4 selections from the positive integers, and noted that

random selections from the positive integers get larger through time. Let m be the

first positive integer selected. Then, as there are only finitely many positive integers

less than or equal to m, the probability of a second selection’s being less than or

equal to m is either 0 or infinitesimal.5 That is, a second selection from the positive

integers is almost certainly larger than the first selection, m. Special relativity is then

invoked to create a puzzle. Given that this similar puzzle can be created in the

absence of ZFC and CH, rejecting either of them based on the puzzle above would

be unwarranted. I suggest that the puzzle is more problematic in the uncountable

case presented above than in the countable case. One way to respond to the puzzle in

the countable case is to deny that there can be uniform selection from a countable

set such as the positive integers, as it is well known that countable additivity fails.

This response is not available for the puzzle involving selections from the

uncountable set [0, 1]. That is, there is a clear response available in the countable

case, which is not available in the case where the selections are from [0, 1].

Having suggested that rejecting ZFC or CH is not sensible, are any other responses

available? A second potential response simply forbids any discussion of time and

random selections. Many people are drawn to this response; those who see

mathematics as a timeless, unchanging realm often wish to forbid sullying

2 Chris Freiling (1986, p. 190) presents ‘‘a simple ‘philosophical’ proof of the negation of Cantor’s

continuum hypothesis (CH).’’ He imagines that two darts are sequentially thrown at [0, 1]. A crucial

assumption that Freiling (pp. 192, 199) makes is that ‘‘…the real number line does not really know which

dart was thrown first or second…’’ and again ‘‘[t]he real number line cannot tell the order of the darts.’’

Freiling argues: [0, 1] cannot tell the order of the darts, along with other assumptions, proves not CH. In

this paper, I argue: if CH, then [0, 1] can tell the order of the darts. And so we can respond to Freiling’s

argument by defending CH and accepting that [0, 1] can tell the order of the darts. Of course, I go on to

create a puzzle if [0, 1] can tell the order of the darts. But I still suggest that [0, 1] can tell the order of the

darts.
3 To make the example work in terms of the relative motion, it may be necessary to employ two

‘dartboards’, that is, two copies of [0, 1], and have one dart thrown at each. The conclusion (puzzle) still

follows.
4 ‘Random’ means that any single positive integer has the same chance of selection as any other, from

which it follows that the chance of selecting a fixed positive integer is either 0 or infinitesimal.
5 Due to finite additivity and the fact that each singleton’s chance of selection is either 0 or infinitesimal,

as noted in footnote 4.
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mathematics with any temporal considerations. And yet this reply is again too drastic

and, also, ad hoc. Unless there are other compelling reasons, in addition to this puzzle,

to forbid discussion of time and mathematics, enacting such a strong restriction to

respond to this puzzle does not make sense. Note that it seems logically possible (it is

not obviously logically impossible) that there exists a possible world where people can

throw darts at [0, 1] and find that exactly one real is hit.

Third, we could argue that a consideration of the measure involved provides a

way out of the puzzle. However, there appears to be consensus in the literature that

the Lebesgue measure provides the proper notion of probability in this context.

Freiling (1986, p. 193) defends the position that ‘‘Lebesgue measure zero does …
have a strong justification for being the correct extension of countable’’ in the

context of selecting a real in [0, 1] via a random dart. He continues, ‘‘So the reason a

random dart will miss a predetermined countable set is not because a countable set

has cardinality less than the reals, but because a countable set is null, i.e., it has

Lebesgue measure 0.’’ Brown (2004, p. 1135) writes, ‘‘The measure of any

countable set is 0. So, according to standard probability theory, the probability of

landing on a point [in a countable set] is 0. While logically possible, this sort of

thing is almost never the case.’’6 Norton (2004, p. 1147) also discusses the link

between measure and probability in some detail, eventually writing, ‘‘Let us say that

the ‘dart principle’ assures us that there is a probability zero of choosing a real from

a measure-zero set.’’ Given this consensus, I do not think that a consideration of the

measure involved resolves the puzzle. Finally, and as discussed in reply to the first

objection, since a similar puzzle arises in the countable case, and since a

consideration of measure does not dissolve that countable puzzle, this provides

some evidence that the measure is not the way to resolve this puzzle.

A fourth way to resolve the puzzle would be to argue that selections do not get

larger through time. As discussed in footnote 2, Freiling (1986, p. 192) writes that

‘‘the real number line does not really know which dart was thrown first or

second….’’ I have suggested that the real number line does know the order of the

darts. Imagine that a first dart is thrown on Monday, selecting a real in the well-

ordering. A second dart will be thrown on Friday. It is currently Wednesday, and we

must choose which dart will hit a real further into the well-ordering. Following the

reasoning in the first paragraph, it seems that we must choose the second dart

thrown on Friday.7

Before concluding, let me discuss what I believe the puzzle shows. I do not

believe that special relativity is playing a crucial role. Rather, the oddity of the

puzzle comes from the fact that selections grow through time, and special relativity

is simply used to highlight this oddity. Indeed, I believe that selections do grow

6 In reply to the worry that events of probability 0 can occur, it may also be helpful to think of repeated

trials. That is, imagine running the experiment (involving two darts throws and special relativity) many

times, e.g., 100. One player must win a minimum of 50 trials (in the case where each player wins 50

trials). It would be odd to suggest that, in repeated trials, an event of probability 0 occurs half of the time.
7 To my knowledge, Norton (2004, pp. 1147–1148) comes closest in the literature to endorsing the

position that darts get larger through time. Norton does not couch his discussion in temporal terms.

Instead he uses the terms ‘‘direct property’’ and ‘‘inverse property,’’ but the point seems very much the

same.
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through time, and I believe that this ‘‘oddity’’ is demonstrating something

interesting about the distinction between the potential and the actual infinite. The

potential infinite is given over time and is capable of increase beyond any finite

value. There may be a sense in which it is undetermined and variable. The actual
infinite, by contrast, is present at one time, fixed, determined, and constant. Aristotle

is most commonly associated with the potential infinite; Cantor with the actual

infinite. Moore (2001, p. 39) discusses Aristotle’s position on the infinite, writing,

‘‘If something is potentially infinite … then it is not even possible for it to be

actually infinite.’’ Hallett (1988, p. 7) discusses Cantor’s position on the infinite, and

argues that a key principle of Cantor’s thought was ‘‘Cantor’s principle of actual

infinity, or the domain principle: Any potential infinity presupposes a corresponding

actual infinity.’’ A simple question arises: Who was correct, Aristotle or Cantor? I

believe that the considerations above provide evidence that Aristotle was correct

when it comes to certain structures, such as a well-ordering of the reals (under the

assumptions made above), or the natural numbers. These structures are potentially

infinite, not actually infinite. How do the considerations above support this position?

Because if something is actually infinite, that is, if it is fixed, determinate, constant,

and present all at once, then random selections from it would not get larger through

time. If something is actually infinite, then selections do not grow through time. So

by the contrapositive, if selections grow through time, then we are dealing with a

potential infinity. Because selections grow through time, a well-ordering of the reals

is not an actual infinity. Similarly the natural numbers are not an actual infinity. Any

random selection, from either structure, is singularly and preposterously low,

(almost) certain to be bested by subsequent selections. In this sense, random

selections from a potential infinity are problematic, because any selection is biased

towards the ‘‘front end’’ of the potential infinity. An interesting question that then

arises is: Are there any examples of actual infinities? I believe that there are. An

infinite integer in a nonstandard model of arithmetic is an example of the actual

infinite. Note that random selections from an infinite integer do not progress through

time, but rather ‘‘bounce around,’’ just as random selections from a finite integer do.

And so I suggest that Cantor was wrong in claiming that x is an actual infinity.

Rather it is an example of the potential infinite, as Aristotle held. But Aristotle was

wrong in suggesting that there is no actual infinite. There is, where infinite integers

are an example. I also believe that such infinite integers are the correct extension of

the concept of finite, natural number into the infinite, and so for example, when one

says, ‘‘I performed infinitely many actions,’’ this should mean infinitely many in the

sense of an infinite integer.8 At this point a difficult question arises. I have suggested

8 I believe that recognizing this correct conception of infinite number dissolves many paradoxes of the

infinite, not only the puzzle presented in this paper. For example, consider Thomson’s Lamp (Thomson

1954). If a lamp button is pressed infinitely many times, and if ‘‘infinitely many’’ is an infinite integer in a

nonstandard model of arithmetic, then there is no paradox. Any infinite integer is either even or odd. If the

button was pressed an even number of times, then the lamp is in its starting state. If the button was pressed

an odd number of times, then the lamp is in the opposite state from its starting state. But why, it may be

asked, can’t we ask about button presses of the structure x, that is, a super-task as presently conceived?

Simply put, because x is only potentially infinite—it is never complete and actual; it is impossible to

complete a task of structure x. See Gwiazda’s (2012a) ‘‘A Proof of the Impossibility of Completing

Infinitely Many Tasks’’ for an argument to this conclusion.
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that x is a potential infinity. I have also suggested that an infinite integer is an actual

infinity. And yet, an infinite integer is comprised of nothing but x’s and x*’s. How

can it be that many potential infinities are able to comprise an actual infinity? The

answer to this question lies beyond the scope of this paper, but see (Gwiazda 2012b)

for one possible answer to this question. We live in a Cantorian age, which is simply

to say that most philosophers and mathematicians accept the positions of Cantor.

The challenge, then, for those who reject my non-Cantorian position outlined above,

is to find a way out of the puzzle.

We began by throwing darts at the reals and quickly ran into the following

problem. It seems that darts must hit reals further into a fixed well-ordering as time

passes. But the passage of time (the order of events, e.g., darts landing) need not be

the same for all observers. As argued above, this leads to the conclusion that two

observers find that r1 \ r2 and r2 \ r1. How is this puzzle best resolved?
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