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The probability of an infinite sequence of heads
Jeremy Gwiazda
Recently Timothy Williamson asked ‘How probable is an infinite sequence of heads?’
 I suggest, subject to refinement below, that the probability of an infinite sequence of heads, Prob(H(1…)), is [
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1/2, 1/4, 1/8, 1/16…
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], which is an infinitesimal.
 In general, let the probability of success through coin toss n be pn for n = 1, 2, 3…. For example, the probability of success through coin toss 3 is the probability of tossing heads on tosses 1, 2, and 3, which is 1/8. Then the probability of success on every n is [
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p1, p2, p3, p4…
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]. The probability of heads on tosses 2, 3, 4… is equivalent to assuming certain success on toss 1. This probability, Prob(H(2…)), is [
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1, 1/2, 1/4, 1/8…
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], which is 2 times Prob(H(1…)).


In addition to arguing that Prob(H(2…)) = 2 * Prob(H(1…)), Williamson also argues that Prob(H(1…)) = Prob(H(2…)), which together shows that these probabilities must equal 0.
 The argument that Prob(H(1…)) = Prob(H(2…)) hinges on the claim that there is a bijection between {1, 2, 3…} and {2, 3, 4…}, in other words, that the two sets have the same size. Yet subset can be used instead of bijection to determine relative sizes of infinite sets. That is, if A is a proper subset of B, then B has more members than A.
 I believe that using subset to determine relative infinite sizes yields meaningful, intuitive results (discussed below), thus providing good reason to reject the standard Cantorian use of bijection in this setting, and thereby reject the claim that Prob(H(1…)) = Prob(H(2…)). There are more integers greater than 0 than there are integers greater than 1, and thus a person is less likely to toss heads on tosses 1, 2, 3… than on tosses 2, 3, 4…. That is, Prob(H(2…)) = 2 * Prob(H(1…)), each a nonzero infinitesimal.

Contrary to Williamson’s claim that ‘the probability that a coin comes up heads on every toss does not depend on when one starts tossing’,
 time matters a great deal, as time determines the mapping which determines the subset relation. Simultaneous events, in this case coin tosses, are mapped to each other. Thus if person 2 begins tossing a coin one toss after person 1, and they toss simultaneously from that point on, then person 2’s probability of success is [
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1, 1/2, 1/4, 1/8…
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], twice person 1’s. Of course, subset need not hold between two sets; given sets A and B, neither may be a subset of other. Perhaps one person tosses a coin each even second and one tosses on the odds. Also, people need not toss coins at the same rate. We need a more general framework than simply mapping simultaneous events to each other.
To this end, imagine an absolute, universal clock that begins at 1 and ticks on in discrete steps, 1, 2, 3…. If a person does nothing at step n, the chance of success is certain, that is pn =  pn-1, or, if n = 1 then p1 = 1. If a person performs an action with a success of probability p at step n, then pn = pn-1 * p, or, if n = 1 then p1 = p. The person’s chance of success through all steps of the clock is given by [
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p1, p2, p3, p4…
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]. Thus the refinement to the claim in the second sentence that Prob(H(1…)) = [
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1/2, 1/4, 1/8, 1/16…
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] is that this is true assuming that a toss is performed at every step of the clock. The probability of success for a person who sits out the first step of the clock is [
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1, 1/2, 1/4, 1/8…
[image: image14.wmf]ñ

], as above. Imagine that person 3 tosses a coin only on the odd numbered steps of the clock. Person 3’s probability of success is [
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1/2, 1/2, 1/4, 1/4, 1/8, 1/8…
[image: image16.wmf]ñ

]. One last example: imagine that person 4 rolls a four-sided die and success is rolling a 4. If person 4 rolls at every step of the clock, the probability of success is [
[image: image17.wmf]á

1/4, 1/16, 1/64, 1/256…
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], which is less than the probability of success of the coin, Prob(H(1…)) = [
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1/2, 1/4, 1/8, 1/16…
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]. If, however, person 4* rolls on every odd step of the clock, then the probability of success is [
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1/4, 1/4, 1/16, 1/16, 1/64, 1/64…
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], which is equal to, or very close to,
 Prob(H(1…)).
I believe that these examples yield meaningful and intuitively correct results. Person 4*, who rolls a four-sided die at half the rate of person 1, who tosses a coin, should have the same (or very nearly the same) probability of success. In addition, this framework gives correct results for finite cases. For example, the probability of tossing three heads is [
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1/2, 1/4, 1/8, 1/8, 1/8, 1/8…
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], which is identified with (equals) 1/8. The probability is 1/8 no matter at which steps of the clock the three tosses occur, e.g., [
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1, 1, 1/2, 1/2, 1/2, 1/4, 1/8, 1/8, 1/8, 1/8…
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] also equals 1/8. Yielding intuitive results and naturally extending finite cases are, I believe, two good reasons to accept the universal clock framework, and thus accept that Prob(H(2…)) = 2 * Prob(H(1…)) and reject the claim that Prob(H(2…)) = Prob(H(1…)).
Those who strongly believe in the standard Cantorian view, specifically those who accept bijection as the only correct way to judge relative sizes of infinite sets, may not be persuaded by my argument. Williamson writes, ‘Cantor showed that some natural, apparently compelling forms of reasoning fail for infinite sets.’
 Using subset to judge relative sizes of infinite sets is an example of such reasoning; it may be time to reexamine whether such natural, compelling reasoning truly fails. Tossing a coin more often than a competitor, or beginning earlier, may indeed hurt one’s chance of success against that competitor.
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� Williamson 2007: 173.


� See Goldblatt 1998: 27.


� I write ‘2’ for ease of reading, which in the hyperreals is [� EMBED Equation.3  ���2, 2, 2, 2…� EMBED Equation.3  ���].


� Williamson 2007: 176.


� See, e.g., Benci and Di Nasso 2003: 51; also Mayberry 2000: 61.


� Williamson 2007: 175.


� Depending on the ultrafilter.


� Williamson 2007: 179.
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