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Abstract

Jeffrey conditioning is said to provide a more general method of assimilating uncertain

evidence than Bayesian conditioning. We show that Jeffrey learning is merely a particular type

of Bayesian learning if we accept either of the following two observations:

– Learning comprises both probability kinematics and proposition kinematics.

– What can be updated is not the same as what can do the updating; the set of the latter

is richer than the set of the former.

We address the problem of commutativity and isolate commutativity from invariance upon

conditioning on conjunctions. We also present a disjunctive model of Bayesian learning which

suggests that Jeffrey conditioning is better understood as providing a method for incorporating

unspecified but certain evidence rather than providing a method for incorporating specific but

uncertain evidence. The results also generalize over many other subjective probability update

rules, such as those proposed by Field (1978) and Gallow (2014).

Keywords: Bayesian learning, Jeffrey conditioning, Gallow conditioning, commutativity, formal

epistemology.

1 Introduction

Jeffrey conditioning is a way of obtaining a new probability P2 from an old probability P1 and

from new probability values qi (qi ≥ 0,
∑

i qi = 1) pre-assigned to a partition {Ei}i, P1(Ei) > 0 by
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making use of the Jeffrey formula:

P2(H) =
∑
i

qi · P1(H|Ei). (1)

If we assume that in P2 an element E of the partition becomes certain (that is, if P2(E) = qE = 1)

the Jeffrey formula (1) reduces to the Bayes formula

P2(H) = P1(H|E), (2)

according to which the new probability P2 is obtained from P1 by (Bayesian) conditioning upon

an evidence E whose prior probability is non-zero P1(E) > 0.

On the basis that the Jeffrey formula subsumes the Bayes formula as a special case while it also

seems to allow for conditioning upon non-certain evidence it is frequently asserted in the literature

that Jeffrey conditioning provides a “more general method of assimilating uncertain evidence”

than Bayesian conditioning (Jeffrey; 1983, p. 171). Since the inference ostensibly proceeds from

a contrast between mathematical formulas to a contrast between accounts of learning it clearly

hinges on assumptions about how the mathematical formulas get incorporated into the respective

accounts of learning. We argue that, contrary to the intended conclusion, Jeffrey learning, as well

as many other models of learning (including that of Adams, Field (1978), Gallow (2014) etc.), can

be properly understood as a particular type of Bayesian learning, and Bayesian conditioning is able

to accommodate all these subjective belief revision schemes.

In its most basic form the mathematical structure Bayesianism uses to capture the evidential

reasoning of agents is a probability space. A probability space has two components: a space of

propositions L and a probability measure P defined on L. Correspondingly there are two ways in

which learning can be mathematically modeled in this basic framework:

(i) Probability kinematics tells us how assignments of probability can change.

(ii) Proposition kinematics tells us how the space of propositions can change.

To get a Bayesian account of learning one needs to specify how probability kinematics and propo-

sition kinematics works. The Bayes and the Jeffrey formulas address probability kinematics by

keeping the space of propositions L fixed. Neither of these formulas address proposition kinemat-

ics. In particular, they do not address the possibility of refining the space of propositions. Refining

the space of propositions – in other words, extending the probability space (see later) – can be
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interpreted as the agent learning new distinctions which she was not able to express before. Ex-

amples include the introduction of new terms to the language: probabilities of propositions which

do not make use of the newly introduced terms remain unchanged, but the agent will now be able

to formulate new propositions as well, on which in turn she may also be able to condition.

Section 2 shows that as long as one does not conflate a single component of Bayesian learning,

namely probability kinematics, with the whole Bayesian account of incorporating evidence, Jeffrey

learning can be properly understood as a particular type of Bayesian learning. Section 3 illustrates

the concepts through a simple example and explains why non-commutativity of Jeffrey updates is

not a problem after all.

Section 4 tackles probability kinematics itself. A mathematical model of updating subjective beliefs

in propositions on the basis of incoming evidence requires two representational elements:

(i) a set of propositions L,

(ii) a set of representations of evidences S on the basis of which the agent may update her

subjective beliefs in propositions L.

Section 4 argues that by adopting seemingly reasonable assumptions regarding L and S one can

again reach the conclusion that Jeffrey learning can be understood as a particular type of Bayesian

learning, even without taking proposition kinematics into account.

Section 5 takes a detour to show that agents who may be called non-maximal Bayesian face a

paradox of future dependence of conditioning on conjunctions; along the way we isolate two im-

portant desiderata regarding learning models that are often meshed together: commutativity and

invariance upon conditioning on conjunctions. Finally Section 6 proposes a disjunctive model of

Bayesian learning and comments on the irreversibility of Bayesian conditioning. All proofs are

delegated to the Appendix.

2 Probability and proposition kinematics

In what follows P1 and P2 are σ-additive probabilities defined on the same Boolean σ-algebra L

with unit element Ω. It is assumed throughout that the probability P1 is not trivial, i.e. there is

at least one element whose probability is neither zero nor unity in P1.
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Definition 2.1 We say that P2 can be obtained from P1 by Bayesian conditioning without exten-

sion if there exists an A ∈ L, P1(A) > 0 such that for all H ∈ L:

P2(H) = P1(H|A). (3)

Definition 2.2 We say that P2 can be obtained from P1 by (finite) Jeffrey conditioning without

extension if there exists a partition (with finitely many elements) {Ei}i of Ω with P1(Ei) > 0 and

qi ≥ 0,
∑

i qi = 1 such that for all H ∈ L:

P2(H) =
∑
i

qi · P1(H|Ei). (4)

As mentioned in the introduction, Jeffrey conditioning without extension is more general than

Bayesian conditioning without extension:

Proposition 2.1 If P2 can be obtained from P1 by Bayesian conditioning without extension, then

P2 can be obtained from P1 by finite Jeffrey conditioning without extension.

Counterexample 2.1 There is an example where P2 can be obtained from P1 by finite Jeffrey

conditioning without extension but where P2 can not be obtained from P1 by Bayesian conditioning

without extension.

We now also take into consideration proposition kinematics and allow for the possibility of refining

our space of propositions.

Definition 2.3 The probability space (Ω̃, L̃, P̃ ) is an extension of the probability space (Ω,L, P ) if

there exists a probability preserving injective Boolean algebra homomorphism ˜ from L to L̃.

Definition 2.4 We say that P2 can be obtained from P1 by Bayesian conditioning with extension

if there exists an extension (Ω̃, L̃, P̃1) of (Ω,L, P1) and an Â ∈ L̃, P̃1(Â) > 0 such that for all

H ∈ L:

P2(H) = P̃1(H̃|Â). (5)

Definition 2.5 We say that P2 can be obtained from P1 by (finite) Jeffrey conditioning with ex-

tension if there exists an extension (Ω̃, L̃, P̃1) of (Ω,L, P1), a partition (with finitely many elements)

{Êi}i of Ω̃ with P̃1(Êi) > 0 and qi ≥ 0,
∑

i qi = 1 such that for all H ∈ L:

P2(H) =
∑
i

qi · P̃1(H̃|Êi). (6)
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Proposition 2.2 If P2 can be obtained from P1 by finite Jeffrey conditioning without extension

then P2 can be obtained from P1 by Bayesian conditioning with extension.

Proposition 2.2 is a consequence of a slight generalization of Theorem 2.1 of the seminal paper of

Diaconis and Zabell (1982) whose implications would probably have been better appreciated if their

Theorem 2.2 emphasized more clearly the reliance on non-finite partitions (see Counterexample 2.3

and Corollary 4.2 for further details). The converse of Proposition 2.2 does not hold:

Counterexample 2.2 There is an example where P2 can be obtained from P1 by Bayesian con-

ditioning with extension, but P2 can not be obtained from P1 by finite Jeffrey conditioning without

extension.

However when extension is allowed on both ends the two notions of conditioning have the same

power:

Proposition 2.3 P2 can be obtained from P1 by finite Jeffrey conditioning with extension if and

only if P2 can be obtained from P1 by Bayesian conditioning with extension.

It is not just mathematically justified to talk about elements of the refined spaces of Proposition 2.2

and 2.3 as ‘propositions’. For instance when L is generated by taking the smallest Boolean σ-algebra

of a set of propositions of a formal language it is clear from the proofs that an L̃ generated after

the addition of a logically independent proposition can form the basis of the required extension.

Proposition 2.2 shows that an agent can always refine her space of propositions in such a way

that her Jeffrey conditioning corresponds to a Bayesian conditioning upon a proposition Â from

the refined space. This includes the elements of the partition: qi = P2(Ei) = P̃1(Ẽi|Â) for all

i = 1, ..., n. From this we can see that Bayesian learning can adequately accommodate Jeffrey

learning and there is no need for any new form of ‘input law’ or experience-representing structure

such as the one sought by Field (1978). (Field’s proposal have been criticized on other grounds, see

i.e. Garber (1980).) The new information, the “Bayesian factor” can simply come in the form of

a proposition like Â and the agent learns how to update her other propositions via basic Bayesian

conditioning upon such Â.

Analogues of Proposition 2.2 can also be obtained for updating rules other than Jeffrey’s, such those

of Field (1978) and Gallow (2014). Hence we can also think of these alternative update rules as being

adequately accounted for by Bayesian conditioning, albeit we may need to do the conditioning upon
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Figure 1: A uniform probability space with three atoms O1, O2, O3 and two element partitions E = {E,¬E} =

{{O1, O2}, O3}, F = {F,¬F} = {O1, {O2, O3}}.

a proposition from an extended space. Analogues of Proposition 2.3 also immediately follow when

the alternative update rule reduces to Bayesian conditioning with a suitable choice of parameters.

See Proposition 4.1 and Corollary 4.1 for details.

The condition that the partition is finite in Proposition 2.2 is necessary:

Counterexample 2.3 There is an example where P2 can be obtained from P1 by (non-finite)

Jeffrey conditioning without extension, but P2 can not be obtained from P1 by Bayesian conditioning

with extension.

The counterexample shows that Jeffrey conditioning can not be obtained in general as Bayesian

conditioning if we allow the partition of propositions whose new probability we set by hand to be

non-finite. Proposition 4.2 and Corollary 4.2 however shows that in a precise approximate sense

Bayesian conditioning is still capable of capturing non-finite Jeffrey conditioning. (It would be

possible but cumbersome to formulate an analogue of Corollary 4.2 in the framework of this section

and hence omitted.)

3 The problem of commutativity

We illustrate the claims of the previous section with a simple example. Let E be the proposition

that “It is going to rain” and F be the proposition that “RoboCop is going to get wet”, and suppose

that both Alice and Bob initially maintains that the chance of raining is 2/3, the chance of RoboCop

getting wet given that it rains is 1/2, and the chance of RoboCop getting wet given that it does not

rain is 0. As one can quickly check this information can be represented in a uniform probability

space with three atoms O1 = E ∧ F , O2 = E ∧ ¬F , and O3 = ¬E ∧ ¬F . (See Figure 1.)
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With Jeffrey conditioning order-dependence or non-commutativity of successive updates is a well

known concern (see for instance Döring (1999)). Suppose that Alice first Jeffrey conditions P to

P E with partition E and corresponding probability values qi and then she performs on P E a second

Jeffrey conditioning with partition F and corresponding probability values rj to get PFE . Bob

performs Jeffrey conditionings on the same partitions and probability values, but does so in the

reverse order: first he Jeffrey conditions P to PF with partition F and values rj , and then he

Jeffrey conditions PF to P EF with partition E and values qi. It turns out that unless E and F are

so-called Jeffrey independent with respect to P , qi, and rj (see Theorem 3.2 of Diaconis and Zabell

(1982)) the result depends on the order in which Alice and Bob updates: PFE 6= P EF .

Thus the order in which Jeffrey conditionings happen does in general matter. On the other hand

it seems reasonable to maintain that the order in which different pieces of evidence arrive should

not matter in the resulting change of subjective beliefs. So non-commutativity is a problem if one

wants to think of the partition and the associated new probability values of the Jeffrey formula as

direct representations of the evidence that is supposed to be incorporated by the agent.

For a concrete example let’s assume that in the first step Alice decreases her belief in the coming

rain (E) to 1/2 and in the second step she increases her belief in RoboCop getting wet (F ) to 1/2,

while in the first step Bob increases his belief in RoboCop getting wet to 1/2 and in the second

step he decreases his belief in the coming rain to 1/2. It is easy to check (see Figure 2) that the

corresponding Jeffrey updates do not commute, i.e. PFE(O1) = 1/2 while P EF (O1) = 1/3, and

hence Alice and Bob end up with different beliefs.

According to the intended interpretation Alice first learns that a specific proposition, namely that

it is going to rain, has a chance 1/2. But how does this happen? Alice may look out in the

window and see that the sky is clear; or she may gather this information from the barometer

in her room; or she may hear about it from a radio broadcast. From the mere fact that Alice

alters her beliefs in the coming rain to 1/2 we do not get a definite answer to the question which

among these possible causes prompts Alice to alter her beliefs, nevertheless something does. In the

spirit of Proposition 2.2 we can conceive of the actual causal influence on Alice as Alice learning a

proposition (potentially from a refined probability space) with certainty.

Suppose now that we know the actual influences: Alice first decreases her belief in the coming rain

to 1/2 due to seeing that the sky is relatively clear, and second she increases her belief in RoboCop

getting wet to 1/2 due to seeing that RoboCop’s umbrella has holes. Meanwhile Bob first increases
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Figure 2: Illustration of successive Jeffrey conditionings. Alice and Bob Jeffrey conditions on the same partitions

with the same new probability values but in a different order. P E(E) = P EF (E) = 1/2 and PF (F ) = PFE(F ) = 1/2.

We see that Jeffrey conditioning is not commutative: PFE 6= P EF , i.e. PFE(O1) = 1/2 while P EF (O1) = 1/3.

his beliefs in RoboCop getting wet to 1/2 due to seeing that RoboCop’s umbrella has holes, and

second he decreases his belief in the coming rain to 1/2 due to seeing that the sky is relatively clear.

How it is possible that they arrive to different beliefs, even though they saw “the same things”?

We argue that the intuition expressed by Osherson (2002) for why these Jeffrey updates do not

(and should not be expected to) commute can be made precise and generalized: Alice and Bob

could not have seen the same sky and the same umbrella holes. To illustrate consider an extension

our probability space with 14 atoms; for simplicity we omit the tildes from above the extended

probabilities. With

{ω1, ω2, ω3, ω4, ω5} corresponding to O1,

{ω6, ω7, ω8, ω9, ω10} corresponding to O2,

{ω11, ω12, ω13, ω14} corresponding to O3,

and their probabilities given by Figure 3, the smallest probability space containing {ωi}14i=1 is an

extension of our original probability space.

As one can easily verify (see Figure 3 and Figure 4 for details) we can obtain the P E , PFE , PF ,

and P EF Jeffrey updated probabilities of Alice and Bob from P by Bayesian conditioning with this
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Figure 3: The extended probability space with definitions of various elements.

extension. In other words there exist AE , AFE , AF , AEF in our extended probability space such

that for all H in the original probability space we have1

P E(H) = PAE (H) (7)

PFE(H) = P EAFE (H) (8)

PF (H) = PAF (H) (9)

P EF (H) = PFAEF (H). (10)

Thus AE is a possible representation of the evidence that Alice learns with certainty in the first step

and AFE is a possible representation of the evidence that Alice learns with certainty in the second

step. Similarly AF is a possible representation of the evidence that Bob learns with certainty in

the first step and AEF is a possible representation of the evidence that Bob learns with certainty

in the second step.

The example also shows why the Jeffrey updates fail to commute: the Bayesian factors that induce

the change of subjective beliefs are not the same when the update happens in different order, that

is AE 6= AEF and AF 6= AFE . (And as one could also check, PAE 6= PAEF and PAF 6= PAFE

neither.) Thus if both Alice and Bob revised their beliefs in the chance of rain by consulting the

1In the calculations we assumed that probabilities of the elements of the extended space that do not belong to

the original space are determined by their respective Bayesian conditionings; for a related discussion on maximal

Bayesian learning rules see the end of Section 4 and Section 5.
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Figure 4: Various probabilities of O1, O2, O3 assuming that the learning rules are maximal Bayesian.

cloudiness of the sky they could not have seen the same clouds; i.e. the sky Alice saw must have

had more clouds than the one Bob saw. This is also indicated by the fact that Bob performed a

larger revision of belief in the chance of rain (from 3/4 to 1/2) on the basis of his experience than

Alice performed (from 2/3 to 1/2) on the basis of hers.

This non-identifiability of the Bayesian factors that induce non-commutative Jeffrey conditionings

does not hinge crucially upon the specific extension and upon the specific propositions in the

extension we considered. Note first that successively Bayesian conditioning on factors with which

we obtained their respective Jeffrey conditionings do commute as expected: for all H in the original

probability space

PFE(H) = PAE (H|AFE) = PAFE (H|AE), (11)

P EF (H) = PAF (H|AEF ) = PAEF (H|AF ). (12)

More importantly by conditioning on the conjunction of these Bayesian factors we also obtain the

result of the successive Jeffrey conditioning in our example: for all H in the original probability

space

PFE(H) = PAE∧AFE (H) (13)

P EF (H) = PAF∧AEF (H). (14)
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If AE equalled AEF and AF equalled AFE then property (13)-(14) would entail PFE(H) = P EF (H)

for all H in the original probability space, contradicting non-commutativity.

Along the same lines, when we have any example of finite Jeffrey conditionings that do not commute,

and when we have any extension with any Bayesian factors satisfying (7)-(10) that have the property

(13)-(14), these Bayesian factors can not be pairwise identified. Thus Alice and Bob could not have

experienced the same pairs of things, no matter what their experience was.

This result also naturally generalizes to the update rules of Field, Gallow etc. Section 5 is going to

shed light on the perplexing entré property (13)-(14) made in this discussion.

4 The updating and the updated

One who has reservations about embracing both aspects of probabilistic learning (probability kine-

matics and proposition kinematics) may consider the following reformulation of the results more

illuminating.

As we mentioned in the introduction we can conceptually distinguish between

(i) a set of propositions L, and

(ii) a set of representations of evidences S on the basis of which the agent may update her

subjective beliefs in propositions L.

The basic Bayesian approach equates these two elements: L = S. This representational choice is,

however, rather restrictive. Learning the truth of a proposition may clearly count as evidence for

updating subjective beliefs in other propositions; however not all evidence on the basis of which

subjective beliefs in propositions can be updated need to come in the form of a proposition. In

other words, it seems reasonable to assume that L forms a part of S, however there are reasons to

assume that S also contains many more elements that are lying outside of L. (Cf. the discussion

in Chapter 11.2 of Jeffrey (1983).)

One can interpret S in different ways. S could be entailed by a detailed physical-psychological

theory of the agent and her possible interactions with her environment. Alternatively, S could also

represent the set of physically possible worlds. Either way it is reasonable to assume that S is much

richer than the set of propositions of a language that the agent is able to formulate.

Definition 4.1 Let us call a triple (L,S, P ) a learning frame if there exists a P̄ probability measure

on L such that (S, P ) is an extension of (L, P̄ ).
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The archetypical example of a learning frame is when L is a sub-algebra of S, P is a probability

measure on S, and P̄ = P|L. Thus when H ∈ L then also H ∈ S, and we can simply write P (H)

instead of P̄ (H). In the spirit of this example in this section we are going to simplify notation: we

assume that the homomorphism ˜ between L and S is fixed; when H ∈ L then we identify H with

H̃ and simply write H ∈ S (instead of writing H̃ ∈ S); conversely when H ∈ S and there exists an

H̄ ∈ L such that H = ˜̄H then we identify H with H̄ and simply write H ∈ L and P (H) instead of

P̄ (H̄) etc.

Definition 4.2 A learning frame (L,S, P ) is

– basic if L = S.

– regular if

• P is non-atomic on S: for any A ∈ S with P (A) 6= 0 there exists a B ∈ S, B ⊆ A,

P (B) 6= 0 such that P (B) < P (A).

• P is atomic on L: for any A ∈ L with P (A) 6= 0 there exists a B ∈ L, B ⊆ A,

P (B) 6= 0 such that for all C ∈ L, C ( B: P (C) = 0.

Example of a regular learning frame: let Ω contain countably many sentences of a language, let L

be the smallest Boolean σ-algebra containing elements of Ω, and let P̄ be a probability measure

on L. There always exists an extension (S, P ) of (L, P̄ ) such that P is non-atomic on S. Then

(L,S, P ) is a regular learning frame. Also, whenever (L,S, P ) is a regular learning frame and

P (A) 6= 0 for an A ∈ S then (L,S, PA) is also a regular learning frame.

Definition 4.3 A learning rule is a mapping between learning frames.

A learning rule (L,S, P1) 7→ (L,S, P2) is

– Bayesian if there exists an A ∈ S such that for all H ∈ L:

P2(H) = P1(H|A).

– (finite) Jeffrey if there exists a (finite) partition {Ei}i, Ei ∈ S, P1(Ei) > 0 and qi ≥ 0,∑
i qi = 1 such that for all H ∈ L:

P2(H) =
∑
i

qi · P1(H|Ei).
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– (finite) Gallow 1 if there exists a (finite) partition {Ti}i, Ti ∈ S, P1(Ti) > 0, Ei ∈ S, P1(TiEi) > 0 such

that for all H ∈ L:

P2(H) =
∑
i

P1(H|TiEi) · P (Ti).

– (finite) Gallow 2 if there exists a (finite) partition {Ti}i, Ti ∈ S, P1(Ti) > 0, Ei ∈ S, P1(TiEi) > 0,

∆i > 0 such that for all H ∈ L:

P2(H) =
∑
i

P1(H|TiEi) · P (Ti) ·∆i.

– Field if there exists a finite partition {Ei}2
n

i=1, Ei ∈ S, P1(Ei) > 0, and 0 < qi < 1,
∑2n

i=1 qi = 1 such that

for all H ∈ L:

P2(H) =

∑2n

i=1 e
αi · P1(HEi)∑2n

i=1 e
αi · P1(Ei)

where αi = 1
2n

∏2n

j=1
P2(Ei)
P1(Ei)

/
P2(Ej)

P1(Ej)
for all i = 1, ..., 2n.

A few more technical concepts relating to learning rules:

Definition 4.4 A learning rule (L,S, P1) 7→ (L,S, P2) is

– basic if (L,S, P1) is basic.

– regular if (L,S, P1) is regular.

– conservative if supp(P2) ⊆ supp(P1).

– bounded if there exists a number α ≥ 1 such that for all H ∈ L:

P2(H) ≤ α · P1(H). (15)

Every bounded learning rule is clearly conservative, but the converse is not true.

One can show the following:

Proposition 4.1 Every bounded regular learning rule is Bayesian.

Corollary 4.1 A regular learning rule is

• Bayesian if and only if it is finite Jeffrey,

• Bayesian if and only if it is finite Gallow 1,

• Bayesian if and only if it is finite Gallow 2,

• Bayesian if it is Field.
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Under the assumptions Corollary 4.1 shows that we don’t need to continue extending our space ad

indefiniendum if we want to recover any arbitrary finite Jeffrey conditioning on L as a Bayesian

conditioning, since a single set of representations of evidences can contain all the Bayesian factors

needed for recovering any finite Jeffrey conditioning on L.

The same set of representations of evidences is also rich enough to account for non-finite Jeffrey

conditionings in an approximate sense, as we are now going to show.

Definition 4.5 A learning rule (L,S, P1) 7→ (L,S, P2) is approximate Bayesian if for all i ∈ N

there exists a subset Li ⊆ L, P1(
∨

H∈Li H)→ 0 as i→∞, and an Ai ∈ S such that

• for all H ∈ L\Li:

P2(H) = P1(H|Ai),

• Li+1 ⊆ Li, Ai+1 ⊆ Ai.

Every approximate Bayesian learning rule is Bayesian (as can be seen by setting Li = ∅), but the

converse does not hold.

Proposition 4.2 Every conservative regular learning rule is approximate Bayesian.

Corollary 4.2 If a regular learning rule is either

• Jeffrey,

• Gallow 1,

• Gallow 2,

• Field,

then it is approximate Bayesian.

Proposition 4.2 and Corollary 4.2 indicates that the limitation of Bayesian conditioning versus non-

finite Jeffrey conditioning stems not from the relative weakness of Bayesian conditioning as a means

of updating probabilities, but from the lack of an appropriate account of Bayesian conditioning on

sets of measure zero. One can think of Definition 4.5 as providing such an account.2

2Mathematically a result similar to the extension-based version of Proposition 4.2 can be reached by an alternative

approach that allows for conditioning propositions upon elements that belong to a set of elements of an extended space

(allowing that different propositions get conditioned on different elements from the set). Such approach was proposed

by Z. Gyenis and M. Rédei during the first workshop of the Budapest-Krakow Research Group on Probability,
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Note that in the definition of a Bayesian, Jeffrey (Gallow, Field etc.) learning rules we only required

the probability updates to work in a certain way for all H ∈ L, and we stayed silent about how

these learning rules should update the probability for other G ∈ S \ L. When learning rules follow

the same probability update formulas for all G ∈ S \L as they do for all H ∈ L, we may call them

maximal, i.e. maximal Bayesian, maximal Jeffrey, etc.

If (L,S, P ) can assumed to be regular Corollary 4.1 suggests the following model of Bayesian

learning: the agent always updates her subjective beliefs in propositions L by conditioning on

an Â ∈ S that she learns with certainty. Now, if what indeed triggers the change in the agent’s

subjective beliefs is learning Â with certainty, then it seems reasonable to require the “true” learning

rule to be maximal Bayesian, that is, to require that the agent updates her probabilities of all

elements in S by conditioning on Â. From this it follows, however, that the same learning rule

can in general only be Jeffrey, but not maximal Jeffrey (in the non-trivial sense that excludes the

case when the maximal Jeffrey rule is also maximal Bayesian, that is when we Jeffrey condition on

partition with an event with posterior probability one).

5 Are not maximal Bayesian learning rules viable?

Are not maximal Bayesian learning rules viable? For instance, is it reasonable to assume that

an agent’s subjective belief revisions are occasionally best modeled by a (non-trivially) maximal

Jeffrey learning rule?

The argument we gave in Section 4 against the viability of maximal Jeffrey learning rules – that is,

against learning rules that update all elements of S via Jeffrey conditioning – is based on accepting

Bayesian conditioning as the “true” background evidence assimilating procedure. One could insist,

however, that maximal Jeffrey learnings do indeed happen. In the rest of this section we show that

regular learning rules that are not maximal Bayesian yield some paradoxical consequences.

We return to our example from Section 3. We consider the same original space, the same extended

space, and same elements in the extended space, but for the updated probabilities we assume that

they are maximal Jeffrey, that is on all elements of the extended space their values are determined

Causality and Determinism in 2014. However the learning model that could motivate that mathematical result does

not seem to me well motivated. (The manuscript is being developed under the provisional title How much can a

Bayesian agent learn?)
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Figure 5: Various probabilities of O1, O2, O3 assuming that the learning rules are maximal Jeffrey.

by their respective Jeffrey conditioning. We signal this difference by underlining the updated

probabilities.

It turns out (see Figure 3 and Figure 5 for details) that we can obtain the P E , PFE , PF , and P EF

Jeffrey updated probabilities of Alice and Bob from P by Bayesian conditioning with the same

extension. For the same AE , AFE , AF ∈ L, and for a new element AEF we have, for all H in the

original space:

P E(H) = PAE (H) (16)

PFE(H) = P EAFE (H) (17)

PF (H) = PAF (H) (18)

P EF (H) = PF
AEF

(H). (19)

(We needed to replace AEF with another element AEF because P EF (H) does not equal PFAEF (H).)

All seems well. However the example also shows that something strange is going on. We can obtain

P E from P by conditioning on AE , we can obtain PFE from P E by conditioning on AFE , and so

it seems natural to assume that we can obtain PFE from P by conditioning on the conjunction

AE ∧AFE . In other words, similarly to the maximal Bayesian case, one could expect that for all H

in the original space:

PFE(H) = PAE∧AFE (H) (20)
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and similarly

P EF (H) = PAF∧AEF (H) (21)

holds, where i.e. (20) is ostensibly derived as

PFE(H) = P EAFE (H) = P E(H|AFE) =
P E(H ∧AFE)
P E(AFE)

(22)

=
PAE (H ∧AFE)
PAE (A

FE)
=
P (H ∧AFE |AE)
P (AFE |AE)

=

P (H∧AFE∧AE)
P (AE)

P (AFE∧AE)
P (AE)

(23)

=
P (H ∧AFE ∧AE)
P (AFE ∧AE)

= P (H|AE ∧AFE) = PAE∧AFE (H) (24)

by using (17) for the first and (16) for the fourth equality. (16) however can not be applied for the

fourth equality as it was only guaranteed by our construction for elements of the original space, of

which AFE is not a member.

As it happens (20) does hold in our example, but its counterpart, (21) does not: i.e. P EF (O1) = 1/3

while PAF∧AEF (O1) = 3/20!3

Thus even though successively Bayesian conditioning on factors with which we can obtain their

respective Jeffrey conditionings do commute as expected, it is not guaranteed that by conditioning

on the conjunction of these Bayesian factors we can obtain the result of successive Jeffrey condi-

tionings when the learning rule is not maximal Bayesian! Commutativity (11) and invariance upon

conditioning on conjunctions (20) are thus separate properties: when the set of things that we can

update are the same as the set of things that can do the updating they both hold, but the latter

does not necessarily follow from the former when these two sets of things do not coincide. Commu-

tativity captures the idea that it shouldn’t matter whether we receive AE first and AFE second or

we receive AFE first and AE second. But it also shouldn’t matter whether we receive AE and AFE

successively or at the same time (meaning that we receive their conjunction AE ∧ AFE), which is

what invariance upon conditioning on conjunctions expresses. Commutativity and invariance upon

conditioning on conjunctions are often meshed together since they both hold in the basic Bayesian

model, but they express different, albeit equally important desiderata about learning models.

The appearance of failure of invariance upon conditioning on conjunctions can be alleviated to

some degree:

3There does exist an A∗ ∈ L – depicted in Figure 3 – such that for all H in the original space:

P EF (H) = PA∗(H), (25)

but A∗ 6= AF ∧AEF .
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Proposition 5.1 Let (L,S, P0) be a regular learning frame, for all k = 1, ..., N let {Ek
1 , ..., E

k
nk
} be

a finite partition of S, for all i = 1, ..., nk let P0(E
k
i ) > 0, qki ≥ 0,

∑nk
i=1 q

k
i = 1, and let (L,S, Pk)

be regular learning frames such that for all H ∈ S:

Pk(H) =

nk∑
i=1

qki · Pk−1(H|Ek
i ).

Then for all k = 1, ..., N there exists an Ak ∈ S such that for all H ∈ L:

Pk(H) = Pk−1(H|Ak), (26)

and for which

Pk(H) = P0(H|
k∧

i=1

Ai). (27)

Even thought Proposition 5.1 shows that we can always obtain successive maximal finite Jeffrey

conditionings by successive Bayesian conditionings on factors in a way that by conditioning on the

conjunction of these factors we can also obtain the result of the successive maximal finite Jeffrey

conditionings, there is something deeply disturbing in the construction that is required to achieve

this: in order to determine a Bayesian factor at stage k we need to have already determined all other

Bayesian factors that will follow after stage k. Thus if we want to reconstruct successive maximal

finite Jeffrey conditionings as Bayesian conditionings with retaining invariance upon conditioning on

conjunctions then we need to require the agent to have foresight in what other Jeffrey conditionings

she will perform in the future. This problem may be labeled as the paradox of future dependence

of conditioning on conjunctions for non-maximal Bayesian learning rules.

The paradox of future dependence of conditioning on conjunctions can only be avoided when the

regular learning rule is maximal Bayesian; in this case invariance upon conditioning on conjunctions

is also automatically satisfied. (In the maximal Bayesian case there is no future dependence since

then condition (33) in the proof of Proposition 5.1 is satisfied by all elements of S, not just those

of the form H ∧
∧N

i=k+1Ai, and hence there is no dependence on what Ai, i = k + 1, ..., N are.)

6 A disjunctive model of Bayesian learning

One may insist that there are cases when the agent only learns new probability values qi on a

partition E and updates her subjective beliefs without learning anything with certainty. Taken

literally the existence of such cases does not strike me plausible. Even if the agent receives the new
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information i.e. on a slip of paper, there have been a change in the interaction of the agent and

the physical world which can be modeled by the agent learning something with certainty, i.e. that

she had the experience of reading this-and-that on a slip of paper. If S is rich enough to represent

such physical interactions and experiences then successive Bayesian conditioning on elements of S

remains an adequate model of updating subjective beliefs.

This is not to say that we shouldn’t want to model situations in which either the proper source

of information – the specific Â ∈ S which represents the physical interaction that triggers the

change of beliefs – is uninteresting for the agent, or in which it is impractical or unfeasible or

uninteresting to construct the detailed physical-psychological theory that models the information

interactions of the agent. There are clearly many pragmatic reasons why we may want to rely

on restricted models that do not take these details into account. These pragmatic concerns can

however be accommodated without giving up Bayesian conditioning as the core model of subjective

belief revision. We can easily incorporate into the Bayesian model the lack of specification of the

Â ∈ S that triggers the change of beliefs by tracking not only the single conditional probability

distribution that is conditioned on Â but a set of conditional probability distributions that are

conditioned on elements of S which lead to the same updated probability on L as does Â.

This suggests the following disjunctive model of Bayesian learning. Initially the agent’s subjective

beliefs about propositions are represented by a probability space (L, P̄ ) where P̄ in non-atomic on

L. A detailed physical-psychological theory that models the information interactions of the agent

would assigns to (L, P̄ ) an extension (S, P ) so that (L,S, P ) is a regular learning frame; we do not

know the details of how this extension is obtained, but it is sufficient to assume that it exists. The

agent’s subjective beliefs at any later stage n are then going to be represented by a triple (L,S,Pn)

where Pn is a set of probability measures defined on S which all agree with the same PLn probability

measure defined on L, where PL0 = P̄ . Suppose that the agent’s beliefs on L change from PLn to

PLn+1 such that these probabilities satisfy condition (15). (This change of beliefs may be due to,

say, Bayesian, Jeffrey, Gallow, Field etc. sort of conditioning upon a proposition(-partition).) Then

Pn+1 = {P ′ : ∃Pn ∈ Pn, ∃A ∈ S : ∀G ∈ S : P ′(G) = Pn(G|A)

and ∀H ∈ L : P ′(H) = PLn+1(H)}.

This disjunctive model is based purely on Bayesian conditioning yet is able to accommodate a host of

other proposed models of subjective belief revision, including Jeffrey conditioning. It assumes that
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changes in the subjective probability of propositions is always triggered by learning a Bayesian

factor with certainty – and so we should think of such Bayesian factors, and not of Jeffrey’s

partition-value pairs, as representations of incoming evidence –, but it assumes lack of specificity

of this Bayesian factor by working with a set of probability distributions that are induced by all

possible suitable factors. Thus according to the disjunctive model Jeffrey conditioning is better

understood as providing a method for incorporating unspecified but certain evidence rather than

providing a method for incorporating specific but uncertain evidence.

Departing from the disjunctive model we close this section with a note on the ostensibly problematic

irreversibility of Bayesian conditioning. Jeffrey conditioning is often touted as superior to Bayesian

conditioning since it has the advantage of being reversible: mistakes can be erased (Jeffrey; 1983,

p. 172). Indeed an agent should be able to revert a change of belief in a proposition that was

triggered by having a specific experience, for her change of belief in the proposition may also

depend on background assumptions that influence how said specific experience gets evaluated, and

these background assumptions themselves may later change in a way that annuls the effect of said

specific experience. Our account respects this requirement: any mistakes that can be erased on L

by Jeffrey or Gallow conditioning can also be erased by an appropriate Bayesian conditioning on

an element of S. (Cf. with the criticism Weisberg (2009) mounts against conditionalization on the

basis of not being holistic and with the claim of Gallow (2014) that his proposed update rule does

abide holism.) However sans memory loss we should not expect the agent to be able to erase the

fact that she had the specific experience itself. Thus it is an advantage of our account that both

the facts of committing and erasing a mistake gets recorded in changes of probability on S.

Conditioning on a specific A ∈ L is indeed irreversible in L. However one wonders how serious

this problem is. Typically one wants to think of elements of L as propositions of a language, i.e.

statements of scientific theories. Sans divine intervention no agent is going to learn directly such

scientific statements, but only confirm or disconfirm them via observation and experimentation. If

we accept the ethos that confirmation and disconfirmation of scientific statements via observation

is never absolutely certain, and if we think of S as containing, among else, the set of representations

of observations via which the agents can confirm and disconfirm propositions in L, then any mistake

that the agent can commit during her quest to confirm or disconfirm statements of scientific theories

can always be erased. And that should be sufficient.
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Appendix

Proof of Proposition 2.1. If P2 can be obtained from P1 by Bayesian conditioning without extension then there

exists an A ∈ L, P1(A) > 0 such that for all H ∈ L we have P2(H) = P1(H|A). If P1(A) = 1 then choose an arbitrary

E ∈ L, 0 < P (E) < 1 and note that P2(H) = P1(H|A) = P1(H) = P1(E) ·P1(H|E)+P1(¬E) · (H|¬E) and thus P2 is

obtained by finite Jeffrey conditioning from P1 without extension using partition {E,¬E} and q1 = 1− q2 = P1(E).

If P1(A) 6= 1 then P2(H) = P1(H|A) = 1 ·P1(H|A) + 0 ·P1(H|¬A), which shows that P2 is obtained from P1 by finite

Jeffrey conditioning without extension using partition {A,¬A} and setting q1 = 1− q2 = 1. �

Proof of Counterexample 2.1. Let L = {∅, a, b, {a, b}}, P1(a) = 1 − P1(b) = 0.5, P2(a) = 1 − P2(b) = 0.3, then

P2 can be obtained from P1 by finite Jeffrey conditioning without extension by setting E = {a} but P2 can not be

obtained from P1 by Bayesian conditioning without extension, as it can be quickly checked. �

The following is a generalization of Theorem 2.1 of Diaconis and Zabell (1982) that covers probability spaces whose

base is not necessarily countable (the proof is essentially the same):

Lemma 1 P2 can be obtained from P1 by Bayesian conditioning with extension if and only if there exists a number

α ≥ 1 such that

P2(H) ≤ α · P1(H) (28)

for all H ∈ L.

Proof of Lemma 1. If P2 can be obtained from P1 by Bayesian conditioning with extension then there exists an

extension (Ω̃, L̃, P̃1) of (Ω,L, P1) and an Â ∈ L̃, P̃1(Â) > 0 such that for all H ∈ L: P2(H) = P̃1(H̃|Â). Then for any

H ∈ L:

P2(H) = P̃1(H̃|Â) ≤ 1

P̃1(Â)
· P̃1(H), (29)

which shows that (28) holds with α = 1

P̃1(Â)
.

On the converse suppose that (28) holds with α ≥ 1. If α = 1 then for all H ∈ L: P2(H) = P1(H) and hence the

proposition is obvious with setting Â = Ω. If α > 1 then define

P3(H) =
α

α− 1
P1(H)− 1

α− 1
P2(H) (30)

for all H ∈ L. P3 is a probability on (Ω,L) and P1 = 1
α
P2 + (1− 1

α
)P3.

Let L̃ = L×{a, b}. L̃ is a σ-algebra that contains elements of the form Ĥ = (H1, a)∨(H2, b) for some H1, H2 ∈ L. The

homomorphism ˜ identifies an element H ∈ L with H̃ = (H, a)∨(H, b) ∈ L̃. Define P̃1(Ĥ) = 1
α
P2(H1)+(1− 1

α
)P3(H2)

for all H1, H2 ∈ L, Ĥ = (H1, a) ∨ (H2, b), and let Â = (Ω, a). Then P̃1 is a probability on L̃ and for an arbitrary
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H ∈ L we have P̃1(H̃|Â) = P̃1((H, a) ∨ (H, b)|(Ω, a)) = P̃1((H,a))

P̃1((Ω,a))
= 1/α

1/α
· P2(H) = P2(H). Hence P2 can be obtained

from P1 by Bayesian conditioning on Â with extension (Ω̃, L̃, P̃1). �

Proof of Proposition 2.2. Suppose P2 can be obtained from P1 by finite Jeffrey conditioning without extension,

and thus let {Ei}ni=1 be a finite partition with P1(Ei) > 0, let P2(Ei) ≥ 0,
∑n
i=1 P2(Ei) = 1, and let P2 be defined

by the Jeffrey formula (1). To show that P2 can be obtained from P1 by Bayesian conditioning with extension it is

sufficient to show the existence of a number α ≥ 1 such that

α · P1(H) ≥ P2(H) =

n∑
i=1

P2(Ei) · P1(H|Ei) (31)

for all H ∈ L, according to Lemma 1. Let α = max{2,
∑n
i=1

P2(Ei)
P1(Ei)

}. If P1(H) > 0 then α ≥
∑n
i=1

P2(Ei)
P1(Ei)

·P1(Ei|H) =∑n
i=1

P2(Ei)
P1(H)

· P1(H|Ei) and hence α · P1(H) ≥
∑n
i=1 P2(Ei) · P1(H|Ei) = P2(H). If P1(H) = 0 then P2(H) = 0, and

so we can conclude that for all H ∈ L: α · P1(H) ≥ P2(H). �

Proof of Counterexample 2.2. Let Ω = {ω1, ω2, ...} be countable, let P1(ωi) = 1
2i

, let Ω̃ = Ω × {a, b} and

ω̃i = (ωi, a) ∨ (ωi, b), let P̃1((ωi, a)) = 1
2i
P1(ωi) = 1

4i
, let Â =

∨
i(ωi, a), and let P2(H) = P̃1(H̃|Â) for all H ∈ L.

Suppose that P2 can be obtained from P1 by (finite or not finite) Jeffrey conditioning without extension with partition

{Ei}i, P1(Ei) > 0. It follows that for all ωj ∈ Ω there needs to be an element Ei of this partition such that ωj ∈ Ei

and
P2(ωj)

P1(ωj)
=
P2(Ei)

P1(Ei)
(32)

(see Theorem 2.2 of Diaconis and Zabell (1982)). Note that P2(ωj) = P̃1((ωj , a)∨ (ωj , b)|
∨
k(ωk, a)) =

P̃1((ωj ,a))

P̃1(
∨
k(ωk,a))

=

1∑
k

1
4k

· 1
2j
P1(ωj) = 3 · 1

2j
P1(ωj). Thus

P2(ωj)

P1(ωj)
= 3 · 1

2j
, which is different for every j ∈ N, it follows from (32)

that the {Ei}i partition contains countably many elements. Hence P2 can not be obtained from P1 by finite Jeffrey

conditioning without extension. �

Proof of Proposition 2.3. Suppose first that P2 can be obtained from P1 by Bayesian conditioning with extension,

and thus that there exists an extension (Ω̃, L̃, P̃1) of (Ω,L, P1) and an Â ∈ L̃, P̃1(Â) > 0 such that for all H ∈ L:

P2(H) = P̃1(H̃|Â).

If P̃1(Â) = 1 then choose an arbitrary Ê ∈ L̃, 0 < P̃1(Ê) < 1 and note that P2(H) = P̃1(H̃|Â) = P̃1(H̃) = P̃1(Ê) ·

P̃1(H̃|Ê) + P̃1(¬Ê) · (H̃|¬Ê) and thus P2 is obtained from P1 by finite Jeffrey conditioning with extension (Ω̃, L̃, P̃1)

using partition {Ê,¬Ê} and q1 = 1−q2 = P̃1(Ê). If P̃1(Â) 6= 1 then P2(H) = P̃1(H̃|Â) = 1 · P̃1(H̃|Â)+0 · P̃1(H̃|¬Â),

which shows that P2 is obtained from P1 by finite Jeffrey conditioning with extension (Ω̃, L̃, P̃1) using partition

{Â,¬Â} and setting q1 = 1− q2 = 1.

Suppose second that P2 can be obtained from P1 by finite Jeffrey conditioning with extension, and thus that there

exists an extension (Ω̃, L̃, P̃1) of (Ω,L, P1), a partition {Êi}ni=1 of Ω̃ with P̃1(Êi) > 0 and qi ≥ 0,
∑n
i=1 qi = 1 such

that for all H ∈ L: P2(H) =
∑n
i=1 qi · P̃1(H̃|Êi). For an arbitrary Ĥ ∈ L̃ define P̃2(Ĥ) =

∑n
i=1 qi · P̃1(Ĥ|Êi), and

repeat the proof of Proposition 2.2 applied to P̃1 and P̃2. �

Proof of Counterexample 2.3. Let Ω = {ω1, ω2, ...} be countable, let P1(ω1) = 5
6
, P1(ωi) = 1

3i
for i > 1,

P2(ωi) = 1
2i

for i ≥ 1. Let Ei = ωi and let P2 be defined by the Jeffrey formula (1).

P (Ek|ωj) = 1 if k = j and P (Ek|ωj) = 0 otherwise, and thus
∑
i
P2(Ei)
P1(Ei)

· P1(Ei|ωj) =
P2(Ej)

P1(Ej)
= (3/2)j which goes to

infinity as j →∞. Thus there is no constant α ≥ 1 such that condition (28) holds for all ωj ∈ Ω, and hence P2 can

not be obtained from P1 by Bayesian conditioning with extension. �
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Proof of Proposition 4.1. Assume that a regular learning rule is bounded, that is there exists an α ≥ 1 such

that for all H ∈ L condition (15) holds. We need to show that there exists an A ∈ S such that for all H ∈ L:

P2(H) = P1(H|A).

When α = 1 and hence P2(H) = P1(H) the proof is trivial by setting A to be the unit element of S.

Suppose that (15) holds with α > 1. Since P1 is atomic on L there exists a set of at most countably many pairwise

disjoint Oi ∈ L which have the property that P1(Oi) > 0 but for all C ∈ L, C ( Oi: P1(C) = 0. Every H ∈ L

can be obtained as H =
∨
i∈IH

Oi ∨ H0 where IH is the set of indexes i such that Oi ⊆ H and where for H0 ∈ L:

P1(H0) = 0.

Since due to condition (15) P1(Oi) ≥ 1
α
· P2(Oi) for all Oi, and since P1 is non-atomic on S, for all Oi there

exist an Ai ⊆ Oi, Ai ∈ S such that P1(Ai) = 1
α
· P2(Oi). Let A =

∨
iAi. Then for an arbitrary H ∈ L we have

P1(H|A) = 1
P1(

∨
i Ai)
·P1((

∨
i∈IH

Oi∨H0)∧(
∨
iAi)) = 1

1/α
·P1(

∨
i∈IH

Ai) = 1
1/α
·
∑
i∈IH

P1(Ai) = 1/α
1/α
·
∑
i∈IH

P2(Oi) =

P2(
∨
i∈IH

Oi) = P2(H). �

Proof of Corollary 4.1. The → directions from Bayesian follows immediately from the fact that with the right

choice of parameters finite Jeffrey, finite Gallow 1 and finite Gallow 2 reduces to conditioning (c.f. proof of Proposition

2.1).

To ← directions to Bayesian follows from that finite Jeffrey, finite Gallow 1, finite Gallow 2, and Field learning rules

are bounded (we showed this for finite Jeffrey in the proof of Proposition 2.2, the rest are analogous.) �

Proof of Proposition 4.2. Let our learning rule (L,S, P1) 7→ (L,S, P2) be conservative and regular. Since then P1

is atomic on L there exists a set of at most countably many pairwise disjoint Oi ∈ L which have the property that

P1(Oi) > 0 but for all C ∈ L, C ( Oi: P1(C) = 0. Every H ∈ L can be obtained as H =
∨
i∈IH

Oi ∨H0 where IH is

the set of indexes i such that Oi ⊆ H and where for H0 ∈ L: P1(H0) = 0. Let O = {Oi}i.

For every α > 1 let Oα = {O ∈ O : P2(O) ≤ α · P1(O)}, Oεα = O\Oα, Lεα = {H ∈ L : H =
∨
O∈Oεα

O}, and let

εα = P1(
∨
O∈Oεα

O) = P1(
∨
H∈Lεα

H). Since by conservativeness if P2(O) > 0 then P1(O) > 0, for any O ∈ O there

exists a large enough α∗ so that O ∈ Oα for every α > α∗, and thus it is clear that εα → 0 as α→∞.

Let us fix now an α > 1. There exists a large enough β > α such that
1−P2(

∨
O∈Oα O)

β
≤ P1(

∨
O∈Oεα

O). Since P1 is

non-atomic on S there exists an Aεα ⊆
∨
O∈Oεα

O, Aεα ∈ S such that P1(Aεα) =
1−P2(

∨
O∈Oα O)

β
. Also, since for all

O ∈ Oα: P1(O) ≥ 1
α
· P2(O) and hence P1(O) ≥ 1

β
· P2(O), for all O ∈ Oα there exist an AO ⊆ O, AO ∈ S such that

P1(AO) = 1
β
· P2(O).

Let Aα = (
∨
O∈Oα AO) ∨ Aεα , then P1(Aα) = P1((

∨
O∈Oα AO) ∨ Aεα) =

∑
O∈Oα P1(AO) + P1(Aεα) =

∑
O∈Oα

1
β
·

P2(O) +
1−P2(

∨
O∈Oα O)

β
= 1

β
· P2(

∨
O∈Oα O) +

1−P2(
∨
O∈Oα O)

β
= 1

β
.

Then for an arbitrary H ∈ L\Lεα (H =
∨
i∈IH

Oi ∨ H0 with Oi ∈ Oα for i ∈ IH) we have P1(H|Aα) = 1
P1(Aα)

·

P1((
∨
i∈IH

Oi ∨H0) ∧ ((
∨
O∈Oα AO) ∨Aεα)) = 1

1/β
· P1(

∨
i∈IH

AOi) = 1
1/β
·
∑
i∈IH

P1(AOi) = 1/β
1/β
·
∑
i∈IH

P2(Oi) =

P2(
∨
i∈IH

Oi) = P2(H).

Finally note that in the construction Aα and Lεα can be chosen such that Aα∗ ⊆ Aα and Lεα∗ ⊆ Lεα whenever

α∗ ≥ α. �

Proof of Corollary 4.2. This follows from Proposition 4.2 and the fact that Jeffrey, Gallow 1, Gallow 2 and Field

learning rules are conservative. �

Proof of Proposition 5.1. We only need to show that the proof of Proposition 4.1 can be carried out so that
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the resulting set of Aks respect condition (27) for all k = 1, ..., N and for all H ∈ L. For this it is sufficient (and

necessary) to guarantee that for all H ∈ L all
?
= holds as equality in

PN (H) = PN−1(H|AN ) =
PN−1(H ∧AN )

PN−1(AN )

?
=

PN−2(H ∧AN |AN−1)

PN−2(AN |AN−1)
=
PN−2(H ∧AN ∧AN−1)

PN−2(AN ∧AN−1)

?
=

PN−3(H ∧AN ∧AN−1|AN−2)

PN−2(AN ∧AN−1|AN−2)
=
PN−3(H ∧AN ∧AN−1 ∧AN−2)

PN−2(AN ∧AN−1 ∧AN−2)

?
= ...

?
=

P1(H ∧
∧N
i=3 Ai|A2)

P1(
∧N
i=3 Ai|A2)

=
P1(H ∧

∧N
i=2 Ai)

P1(
∧N
i=2 Ai)

?
=

P0(H ∧
∧N
i=2 Ai|A1)

P0(
∧N
i=2 Ai|A1)

=
P0(H ∧

∧N
i=1 Ai)

P0(
∧N
i=1 Ai)

= P0(H|
N∧
i=1

Ai).

For this latter it is sufficient to guarantee that

Pk(H ∧
N∧

i=k+1

Ai) = Pk−1(H ∧
N∧

i=k+1

Ai|Ak) ∀k = 1, ..., N − 1, ∀H ∈ L. (33)

(33) can be guaranteed as follows: first carry out the construction of AN that satisfies (26) with k = N by following

the proof of Proposition 4.1. Let then LN−1 be the smallest σ-algebra containing L and AN . PN−1 is also atomic

on LN−1 and thus we can carry out the construction of AN−1 ∈ S by following the proof of Proposition 4.1 so that

AN−1 satisfies

PN−1(G) = PN−2(G|AN−1)

for all G ∈ LN−1 (instead merely for all G ∈ L). Since any G ∈ LN−1 takes one of the three forms G = H ∧ AN ,

G = H ∧ ¬AN , or G = H for some H ∈ L, this way we guaranteed

PN−1(H ∧AN ) = PN−2(H ∧AN |AN−1)

for all H ∈ L.

Let then LN−2 be the smallest σ-algebra containing LN−1 and AN−1, repeat the procedure above to obtain AN−2 ∈ S

that satisfies

PN−2(G) = PN−3(G|AN−2)

for all G ∈ LN−2, thereby guaranteeing that

PN−2(H ∧AN ∧AN−1) = PN−3(H ∧AN ∧AN−1|AN−2)

for all H ∈ L etc. After N − 1 repetition we obtain the required set of AN , AN−1, ..., A1 ∈ S which satisfy condition

(33). �

Note that if in the proof of Proposition 5.1 we alter condition (33) with an appropriately chosen λk to

Pk(H ∧
N∧

i=k+1

Ai) = λk · Pk−1(H ∧
N∧

i=k+1

Ai|Ak) ∀k = 1, ..., N − 1, ∀H ∈ L

then this altered condition also becomes necessary for guaranteeing condition (27), and proceeding along such an

altered condition would still lead to dependence on future factors, as explained in the end of Section 5.
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