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Abstract

The Borel-Kolmogorov Paradox is typically taken to highlight a tension between our intu-
ition that certain conditional probabilities with respect to probability zero conditioning events
are well defined and the mathematical definition of conditional probability by Bayes’ formula,
which looses its meaning when the conditioning event has probability zero. We argue in this
paper that the theory of conditional expectations is the proper mathematical device to condi-
tionalize, and this theory allows conditionalization with respect to probability zero events. The
conditional probabilities on probability zero events in the Borel-Kolmogorov Paradox also can
be calculated using conditional expectations. The alleged clash arising from the fact that one
obtains different values for the conditional probabilities on probability zero events depending on
what conditional expectation one uses to calculate them is resolved by showing that the different
conditional probabilities obtained using different conditional expectations cannot be interpreted
as calculating in different parametrizations of the conditional probabilities of the same event
with respect to the same conditioning conditions. We conclude that there is no clash between
the correct intuition about what the conditional probabilities with respect to probability zero
events are and the technically proper concept of conditionalization via conditional expectations
— the Borel-Kolmogorov Paradox is just a pseudo-paradox.
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“The concepts of conditional probability and expected value with respect to a o-field underlie

much of modem probability theory. The difficulty in understanding these ideas has to do not
with mathematical detail so much as with probabilistic meaning..." [2][p. 427]



1 The Borel-Kolmogorov Paradox and the main claim
of the paper

Suppose we choose a point randomly with respect to the distribution given by the uniform
measure on the surface of the unit sphere in three dimension. What is the conditional probability
that a randomly chosen point is on an arc of a great circle on the sphere on condition that the
point lies on that great circle? Since a great circle has measure zero in the surface measure on the
sphere, the Bayes’ formula cannot be used to calculate the conditional probability in question.
On the other hand one has the intuition that the conditional probability of the randomly chosen
point lying on an arc is well defined and is proportional to the length of the arc. This tension
between the “ratio analysis" (Bayes’ formula) of conditional probability and our intuition is
known as the Borel-Kolmogorov Paradox. The tension seems to be aggravated by the fact that
different attempts to replace the Bayes’ formula by other, apparently reasonable, methods to
calculate the conditional probability in question lead to different values.

The Borel-Kolmogorov Paradox has been discussed both in mathematical works on proba-
bility theory proper [16][p. 50-51], [2][p. 441], [5][p.- 203], [28], [29], [30][p. 65], [35], and in
the literature on philosophy of probability [4][p. 100-104], [10], [14][p. 470], [13], [23], [32], [34].
One can discern two main attitudes towards the Borel-Kolmogorov Paradox: a radical and a
conservative.

According to radical views, the Borel-Kolmogorov Paradox poses a serious threat for the
standard measure theoretic formalism of probability theory, in which conditional probability
is a defined concept, and this is regarded as justification for attempts at axiomatizations of
probability theory in which the conditional probability is taken as the primitive rather than a
defined notion [10], [12], [38], Such axiomatizations have been given by Popper [25], [26], [27],
and Rényi [31] (see [18] for a recent analysis of Rényi’s and Popper’s approach).

According to “conservative" papers the Borel-Kolmogorov Paradox just makes explicit an
insufficiency in naive conditioning that can be avoided within the measure theoretic framework
by formulating the problem of conditioning properly and carefully. Once this is done, the Borel-
Kolmogorov Paradox is resolved. Kolmogorov himself took this latter position [16][p. 50-51].
Billingsley [2][p. 441], Proschan and Presnell [28][p. 249] and Rao [29][p. 441] write about the
Borel-Kolmogorov Paradox in the same spirit (Proschan and Presnell call the Borel-Kolmogorov
Paradox the “equivalent event fallacy").

The present paper falls into the conservative group: We claim that the Borel-Kolmogorov
Paradox is in perfect harmony with measure theoretic probability theory. In contrast to the
conservative papers, we also give however a detailed account of why and how the paradox
disappears naturally from the Borel-Kolmogorov Paradox if one treats the Paradox rigorously
in the spirit of measure theoretic probability theory. We also aim at making explicit the reasons
why one may have the (fallacious) intuition that the uniform length measure on the arc is the
conditional probability on a great circle.

Specifically: we will argue that conditional probabilities with respect to probability zero
events can be defined and treated in a consistent and intuitively entirely satisfactory manner if
one uses the theory of conditional expectations as the conditioning device. We will show that one
can obtain the “intuitively correct" uniform distribution on great circles by choosing a suitable
conditional expectation. We also show how one can obtain a different, non-uniform conditional
probability on a great circle using a different conditional expectation. The alleged clash arising
from the fact that one obtains different values for the conditional probabilities on a great circle
depending on what conditional expectation one uses to calculate them is resolved on the basis
of the proper understanding of what conditionalization is; in particular, it will be shown that
the different conditional probabilities obtained using different conditional expectations cannot
be interpreted as calculating in different parametrizations of the conditional probabilities of the
same event with respect to the same conditioning conditions.

We will conclude that there is nothing paradoxical in the Borel-Kolmogorov Paradox; hence,
although one might in principle have good reasons to develop an axiomatization of probabil-
ity based on the concept of conditional probability as primitive notion, the Borel-Kolmogorov



Paradox is not one of them.

The structure of the paper is the following. Section 2 is a concise review of the notion of
conditional expectation and the concept of conditional probability defined via conditional expec-
tations. Section 3 describes the conditional expectation in the case when the set of elementary
events are the points of the two dimensional unit square with the Lebesgue measure on the
square giving the probabilities and when the conditioning Boolean subalgebra is the o-field gen-
erated by the one-dimensional slices of the square. This example is a simplified version of the
Borel-Kolmogorov situation without the technical complication resulting from the non-trivial
geometry of the sphere; hence the main idea of how one should treat conditional probabilities in
the Borel-Kolmogorov situation in terms of conditional expectations can be illustrated on this
example with a minimal amount of technicality. Section 4 calculates the “intuitively correct"
uniform conditional distribution on a great circle by choosing a particular o-field in the Borel-
Kolmogorov situation. Section 5 calculates the “intuitively problematic" conditional distribution
on great circles that are meridian circles with respect to fixed North and South Poles by using
conditional expectations defined by the o-field determined by all these meridian circles. Sec-
tion 6 shows that these different distributions do not stand in contradiction; in particular, it is
shown that they cannot, hence should not, be considered as conditional probabilities obtained
via different parametrization of the same event with respect to the same conditioning conditions.
Section 7 attempts to display the possible roots of the fallacious intuition that only the uniform
distribution on great circles is the correct conditional probability. We close the paper by some
general comments and specific remarks on Kolmogorov’s resolution of the paradox (section 8).

2 Conditional expectation and conditioning

We fix some notation that will be used throughout the paper. (X,S,p) denotes a probability
measure space: X is the set of elementary events, S is a Boolean algebra of some subsets of X,
p is a probability measure on S.

Given (X, S, p), the set of p-integrable functions is denoted by £'(X,S,p); elements of this
function space are the integrable random variables. The characteristic (indicator) functions
xa of the sets A € S are in £(X,S,p) for all A. The probability measure p defines a linear
functional ¢, on £*(X,S,p) given by the integral:

bo(f) = /X fdp  feLX,S.p) (1)

The map f +— || f |l1 = ¢p(|f]) defines a seminorm || - ||; on £*(X,S,p) (only a seminorm
because in the function space £'(X,S,p) functions differing on p-probability zero sets are not
identified). The linear functional ¢, is continuous in the seminorm || - ||1.

For more details on the above notions (and other mathematical concepts used here without
definition) see the standard references for the measure theoretic probability theory [17], [2], [33],
[3]. Section 19 in [2] discusses further properties of the function space £!(X,S,p).

2.1 Conditional expectation illustrated on the simplest case

Let (X, S, p) be a probability space and assume A € S is such that p(A), p(A*) # 0. When one
conditionalizes with respect to A using the Bayes’ rule

_p(BNA)

one also (tacitly) conditionalizes on A because the number

p(BNAY)

p(BlAY) = PUES



also is well defined. Thus, one always conditionalizes not just on the single event A but on the
four-element Boolean subalgebra A of S:

A={0,A4, A" X} (4)

One can keep track of both of the conditional probabilities (2)-(3) by defining a map T that
assigns to the characteristic function xp of B € § another function T'x g defined by

. p(BNnA) p(BNAY)
Txs = 2(A) XA+ (AL XaL (5)

T takes its value in £'(X, A, pa), where p4 is the restriction of p to A. Since £L'(X,S,p) is the

closure of the linear combinations of characteristic functions, 7" can be extended linearly from

the characteristic functions of £'(X,S,p) to the whole £'(X,S,p). Denote the extension by
The upshot: The conditionalizations (2)-(3) defined by the Bayes’ rule define a linear map

ECA): LYX, 8, p) = LYNX, A pa) (6)

The function &(-|.A) has the following properties:
(i) For all f € £L*(X,S,p), the &(f|A) is A-measurable.
(ii) &(-|.A) preserves the integration:

/Z (f| A)dpa = / fdp  VZeA (1)

Definition 1. &(-|.A) is called the A-conditional expectation from £*(X,S,p) to L (X, A, pa).

Note that the .A-conditional expectation &(-|.A) is a map between function spaces, not a proba-
bility measure and not the expectation value of any random variable. These latter concepts can
be easily recovered from T', see below.

2.2 Conditionalization as Bayesian statistical inference illustrated
on the simplest case

We argue in this subsection that the proper way of viewing the standard conditionalization
(i.e. Bayes’ formula) is to interpret it as (a special case of) Bayesian statistical inference, and
that to treat general Bayesian statistical inference, conditional expectations are an indispensable
concept.

Let (X,S,p) be a probability space and A € S such that p(A) # 0. The conditional proba-
bility p(B|A) given by Bayes’ rule defines another probability measure p’ on S:

oy e _p(BNA)
p (B) =p(B|A) = A

VBeS (8)
The conditional probability measure p’ obviously has the feature that its restriction to the
Boolean subalgebra A = {f), A, A*, X} has specific values on A and A*:

pA) = 1 )
P(AY) = 0 (10)

Thus the values p’(B) of the conditional probability measure p’ on elements B € S, B ¢ A given
by (8) can be viewed as values of the extension to S of the probability measure on .4 that takes
on the specific values (9)-(10) on A. To formulate this differently: the definition of conditional
probability by Bayes’ rule is an answer to the question: If a probability measure is given on A
that has the values (9)-(10), what is its extension from A to §? This is a particular case of the



problem of statistical inference: One can replace the prescribed specific values (9)-(10) by more
general ones and ask the same question: Suppose one is given a probability measure p/, on A:

Pa(Ad) = 7a (11)
p;\(AJ‘) = ryq1=1-—ra (12)

What is the extension p’ of p/y from A to S? Formulated differently: what are the conditional
probabilities p’(B) of events B € S, B ¢ A on condition that the probabilities p'(A) of events
A € A are fixed and are equal to p/4(A)? This is the problem of statistical inference.

In general, there is no unique answer to this question, there exist many extensions. Bayesian
statistical inference, which is based on the standard notion of conditional probability given by
Bayes’ formula, is one particular answer. This answer presupposes a background probability
measure p on S with respect to which the conditional probabilities p’(B) are inferred from p'4.
To formulate the Bayesian answer properly, one has to re-formulate the question of statistical
inference in terms of functional analysis as follows: let ¢4 be the continuous linear functional
on L*(X, A, pa) determined by ps (cf. equation (1)).

Problem of statistical inference: Given the continuous linear functional ¢’y on £'(X, A, p4),
what is the extension of ¢4 from £ (X, A, p.4) to a continuous linear functional ¢’ on £'(X, S, p)?

The Bayesian answer:

Definition 2 (Bayesian inference — elementary case). Let the extension ¢’ be'

O'(f) = ¢u(E(flA)  VfeLX,S,p) (13)

where &(-|.A) is the A-conditional expectation from £*(X,S,p) to L}(X, A, pa).

Remark 1. The above stipulation of Bayesian statistical inference contains the usual Bayesian
conditioning of a probability measure: If in (11)-(12) we demand (9)-(10); i.e. that ra = 1,
741 = 0, then for characteristic functions xz € £}(X,S,p), B € S, we have:

P(B) = ¢(xs) (14)
- ¢:4((§7(XB|A)):/)(§(XB|A)dpfA (15)
= [ e HE a0
- %/Xudpg+p(ﬁ+fsﬂ/xxﬂdpg (17)
= %M( )+p(f(+f1;)pi4(.4l) (18)
B %\ﬁ%g/ (19)
- % _ (20)

So the Bayesian answer given in terms of the conditional expectation to the general question
of statistical inference covers the case when the probability measure p’y defined on the small
Boolean subalgebra A of S takes on arbitrary values — not just the extreme values p/s (A) = 1
and p/4(A*) = 0. The notion of conditional expectation is indispensable to cover this general
case of Bayesian statistical inference.

1One has to show/argue that this definition yields what it is supposed to — see the general case in section 2.4.



2.3 Conditional expectation — the general case

One can generalize the notion of conditional expectation by replacing the four-element Boolean
algebra A generated by a single element A (see eq. (4)) by an arbitrary Boolean subalgebra A
of S:

Definition 3. Let (X, S,p) be a probability space, A be a Boolean subalgebra of S, and pa be
the restriction of p to A. A map

g("A) £1(X7S7p) _>‘C1(X7A7PA) (21)
is called an A-conditional expectation from £'(X, S, p) to L' (X, A, p.4) if (i) and (ii) below hold:
(i) For all f € £L'(X,S,p), the &(f|A) is A-measurable.

(ii) &(-|.A) preserves the integration on elements of A:
/ E(f1A)Ydpa = / fdp  VZeA. (22)
z z

It is not obvious that such a map &(-|.A) exists but the Radon-Nykodim theorem entails that
it always does:

Proposition 1 ([2] p. 445; [3] Theorem 10.1.5). Given any (X, S, p) and any Boolean subalgebra
A of §, a conditional expectation &(-|.A) from £'(X,S,p) to L' (X, A, pa) exists.

Note that uniqueness is not part of the claim in Proposition 1, and for good reason: the
conditional expectation is only unique up to measure zero:

Proposition 2 (|2] Theorem 16.10 and p. 445; [3] p. 339). If &'(:|.A) is another conditional
expectation then for any f € £'(X,S,p) the two L-functions &(f|.A) and &'(f|.A) are equal up
to a p-probability zero set.

Different conditional expectations equal up to measure zero are called versions of the condi-
tional expectation. The claims in the next proposition are to be understood as “up to measure
zero".

Proposition 3 ([2] Section 34). A conditional expectation has the following properties:
(i) &€(:]A) is a linear map.

(if) &(-].A) is a projection:
E(E(FIAIA) = E(flA) Ve LY(X,Sp) (23)

Remark 2. If A is generated by a countably infinite set {A4; };ew of pairwise orthogonal elements
from S such that p(A;) # 0 (¢ = 1,...), then the conditional expectation (21) can be given
explicitly on the characteristic functions £'(X, S, p) by a formula that is the complete analogue
of (5):

&(xsA) = ZmeA x4, VBES (24)

However, for a general A the condltlonal expectation cannot be given explicitly, its existence
is the corollary of the Radon-Nykodim theorem, which is a non-constructive, pure existence
theorem. Note also that (24) is not defined for events A; that have zero probability. For
such events the undefined % can be replaced by any number — this is the phenomenon
of the conditional expectation being defined up to a probability zero set (Proposition 2) in
the particular case when the Boolean subalgebra A is generated by a countably infinite set of
pairwise orthogonal elements.

Remark 3. The conditional expectations can be thought of as an averaging or course graining
process: if the Boolean subalgebra A is generated by the disjunct elements Ay, where A € A are
parameters in an arbitrary index set (not necessarily countable), in which case A are atoms
in the generated Boolean algebra A, then the .A-measurability condition on the .A-conditional
expectation entails that £(f|.A) is a constant function on every Ax. This constant value on Ay
is the averaged, course-grained value of f on Ax. (The event Ay might very well not be an atom
in S, and so f can vary on elements and subsets of Ajy.)



2.4 Bayesian statistical inference and conditional expectation —
general case

Problem of statistical inference — general formulation: Let (X, S,p) be a probability space,

A be a Boolean subalgebra of S. Assume that ¢’y is a || - ||i-continuous linear functional on
LY(X, A, pa) determined by a probability measure p’4 given on A via integral (cf. equation (1)).
What is the extension ¢’ of ¢4 from £'(X, A,pa) to a || - ||1-continuous linear functional on
LMX,S,p)?

The Bayesian answer:

Definition 4 (Bayesian statistical inference). Let the extension ¢’ be

O'(f) = ¢u(&(FIA)  VfeLN(X,S,p) (25)
where &(:|.A) is the A-conditional expectation from £'(X,S,p) to L(X, A, pa).

Note that because &(-|.A) is a projection operator on £*(X,S,p) (Proposition 3), ¢’ is indeed
an extension of ¢y, and because &(-|A) is || - ||1-continuous, the extension ¢ also is || - ||1-
continuous.

The notion of conditional probability of an event obtains as a special case of Bayesian statis-
tical inference so defined:

Definition 5. If B € S then its (A, p/y)-conditional probability p’(B) is the expectation value
of its characteristic function xp computed using the formula (25) containing the A-conditional
expectation:
P'(B) = ¢'(xs) = ¢a(E(x5]A)) (26)
Comments on the definition of conditional probability:

1. Note that there is no restriction in this general definition of conditional probability on the
conditioning subalgebra A, nor on the values the conditional measure p/4 and the uncondi-
tional measure p can have on this algebra A; in particular some elements of the conditioning
algebra A can have zero unconditional probability. Thus, in principle, Definition 5 of condi-
tional probability covers such cases and one can have conditional probabilities with respect
to probability zero conditioning events.

2. If the Boolean subalgebra A is generated by a single element A, and if element A has non-
zero unconditional probability, p(A) # 0, and if the conditional measure is assumed to take
value 1 on A, p/4(A) # 0, then the conditional probability measure p’ is the normalized
restriction of the unconditional measure p to A; i.e. in this special case the conditional
probability is given by the Bayes’ rule (see Remark 1). But this special case is not only
extremely special but also deceptive because it conceals the true content and conceptual
structure of conditionalization: that conditional probabilities depend sensitively on three
conditions (variables):

(i) The conditioning Boolean subalgebra A.
(ii) The probability measure p’y defined on .A.
(iii) The conditional expectation E£(-|.A).
3. Putting Z = X in the defining property (ii) of the conditional expectation (equation (22))
and remembering that p4 is the restriction of p to A, we obtain:

/X (sl A)dp = /X xsdp = p(B) @7)

This requirement should be familiar: equation (27) is the “theorem of total probability".
This becomes more transparent if one sees how it holds when A is the a Boolean algebra
generated by a countable partition A; (¢ = 1,2,...) such that p(A;) # 0 for every . In this
case we have (cf. Remark 2)

£oeld) = 30 PIES (28)



So we can calculate

/Xff(XBIA)dp = L;medp (29)
= ZP(LZLA” /X Xa;dp (30)
_ Zp BmA (4) (31)
= Zp (BN A;) (32)

= p(B) (33)

Remark 4. The dependence of the conditional probability p’(B) on the conditional expectation
&(-|A) and that the theorem of total probability holds for the conditional expectation entail that
the expected value of the conditional probabilities with respect to the unconditioned probability
measure are equal to the unconditional probabilities. In other words: through the definition of
conditional expectation it is part of the definition of conditional probability that the background
probability p(B) of B is obtainable from the conditional probability: Suppose p4 is such that
for some A € A we have p/s(A) = 1 and p/4(A*) = 0. Then, using eq. (27) in passing from (35)
to (36) below, and referring to Fubini’s theorem [2][p. 233] to justify passing from (34) to (35),
for any B € S we have

/X & (& (x]4))dp

/ &(xslA) dpA)dp (34)

Al
[ (] stram)as (35)
/X ( / xpdp ) dps = /X p(B)dpla (36)

p(B) /X dply = p(B) /X xadpls (37)

p(B)pla(A) (38)
= p(B) (39)

This shows that the unconditional (background) probability p(B) of any event B € S can be
obtained from from the (A, p/4)-conditional probabilities ¢'(&(xr5|.A)). This feature of the con-
ditional probability lies at the heart of explaining why the “counterintuitive" nature of some
conditional probabilities computed in the Borel-Kolmogorov Paradox are in fact entirely in har-
mony with intuition (see section 7).

To sum up: Conditional probabilities are probabilities given by a probability measure that
has prescribed values on a Boolean subalgebra of random events — under the additional constraint
that the expected value of the conditional probabilities with respect to the unconditioned proba-
bility measure are equal to the unconditional probabilities. This is what conditional probabilities
are.

3 Conditional probabilities on probability zero events
on the unit square calculated using conditional expecta-
tions

In this section we illustrate the notion of conditional expectation and conditional probabilities
with respect to probability zero events defined in terms of conditional expectation by describing
a simple example that is regarded in probability theory as paradigmatic.



Let (X, S, p) be the probability space with X = [0, 1] x [0, 1] the unit square in two dimension,
S the Borel measurable sets of [0, 1] x [0, 1] and p the Lebesgue measure on S. Let C' = [0,1] x {z}
be any horizontal slice of the square at number z € [0,1] and B = b x {z} be a Borel set of
the square with b a Borel set in the slice (see the Fig. 1). What is the conditional probability

Figure 1: The Borel-Kolmogorov Paradox situation on the unit square

of B on condition C? This question is the perfect analogue of the question asked in the Borel-
Kolmogorov Paradox: the square replaces the sphere, C' corresponds to a great circle and B
to the arch on the circle. Furthermore, one may have the intuition that the answer to the
question is determined: the conditional probability of B on condition C should be equal to the
length I(b) (one-dimensional Lebesgue measure) of b. But the ratio analysis does not provide
this answer because C has measure zero in the Lebesgue measure on the square. We have the
square version of the Borel-Kolmogorov situation if we assume that the probability space on the
square represents choosing a point randomly on the square.

Application of conditionalization via conditional expectation to this situation is the following.
Consider the o-algebra A C S generated by the sets of form [0,1] x A with A a Borel subset of
[0,1]. Note that A contains the slices [0, 1] X {z} where z is a number in [0, 1]; these sets have
measure zero in the Lebesgue measure on the square. Then the A-conditional expectation

E(C|A): £1([0,1] x [0,1],8,p) — L£([0,1] x [0,1], A, pa) (40)

exists, and an elementary calculation shows that the defining conditions (i) and (ii) in Definition
3 hold for the &(:|.A) given explicitly by:

&(flA)(z,y) :/0 fla,y)dz  V(z,y) €[0,1] x [0,1] (41)

Inserting the characteristic function xp of B = b x {z} in the place of f in eq. (41) one obtains
for all (z,y) € [0,1] x [0,1]:

1
Sl @) = [ xxiey(e)ds (42)

0

_ I(v), if y==
o { 0, if y#£z2 (43)
If p/4 is the probability measure on the Boolean algebra A such that

Pa(C) = pa([0,1]x {z}) =1 (44)
PalCh) = pal([0,1)x {z})7) =0 (45)

then, by the definition of Bayesian statistical inference, the (A, p/4)-conditional probability p’(bx
{#})) of B on condition C' = [0,1] x {z}, i.e. on condition that p/4([0,1] x {z}) = 1 can be



calculated using (42):

Pbx{z}) = palEXpxiz3A) (46)
= (o] & (Xox 21]A)dpa (47)
— o (48)

This is in complete agreement with intuition: Given any one dimensional slice C' = [0,1] x {z}
at point z across the square, the (A, p/4)-conditional probability of the subset b of that slice on
condition that we are on that slice (p/4(C) = 1) is proportional to the length of the subset b.
This result is obtained using the technique of conditional expectation with respect to a Boolean
subalgebra A some elements of which have probability zero. This is regarded as a classic example
of conditioning with respect to probability zero events [2][p. 432].

The phenomenon of the conditional expectation being determined only up to a probability
zero set also can be illustrated on this example. We know that conditional expectations are
defined up to measure zero only (Proposition 2). Thus, the conditional expectation £(-|.A)
defined by (41) is just one wversion of the conditional expectation determined by the Boolean
algebra A. Another version & (-|.A) of the A-conditional expectation can be obtained by choosing
a particular zo € [0,1] and defining &,(-|.A) by

é"(f)(m’y)7 lf y#ZO
i p(@) f(@,y)dz, it y =2

where p is a probability density function for a probability measure g on [0,1] (with respect to
the Lebesgue measure on [0,1]). Computing the conditional probability p’(b x {20}) along the
lines of (46)-(48) using the &;(:|.A) version of the A-conditional expectation one obtains

p(bx{z0}) = PalEa(Xoxiz1lA)) (50)

/ 81 (o o0y | AV de (51)
[0,1]x[0,1]

Eo(FlA) (,y) = { (19)

/bp(x)dx (52)
q(b) (33)

Thus, given A and any, fized, one dimensional slice of the square, one obtains different values for
the conditional probability of Borel subsets of that slice depending on which version of the A-
conditional expectation one uses to calculate it. Using the “canonical" version given by (41) one
obtains the value proportional to the length, using the g-version &;(-|.A) given by (49) one obtains
the value ¢(b). Fixing the o-field alone does not determine any of these two versions, or indeed
any of an uncountable number of other versions, in harmony with the conditional expectation
being undetermined up to a measure zero set. But then what singles out the canonical version?

Having a look at the definition of &(-|.A) (equation (49)), one realizes that it is the particular
mathematical structure of the situation that makes that definition possible and thus singles out
the canonical version: the set of elementary events of the probability space on the unit square
has the form of product [0,1] x [0, 1], and one can perform a partial integral with respect to one
variable in the product probability space. These two conditions together with the specific form
and location of the o-field in the product structure determine not only a conditional expectation
that yields the “proportional-to-the-length" value I(b) on all slices except for sets of slices that
have measure zero in the two dimensional Lebesgue measure but a version that yields the right
conditional probabilities on every slice.

The crucial role of the product structure in the existence of the canonical version of the
conditional expectation can also be seen if one realizes that the reasoning involving equations
(40)-(48) remain valid without any change if one replaces (i) the unit square with the Lebesgue
measure on it by any product space (X1 x X2,81 ® Sz, p1 X p2), and (ii) the Boolean algebra A
by a Boolean algebra generated by elements of the form X; x B (B € Sz2). Hence, even if the
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component probability spaces (X1,S81,p1) and (X2, S2,p2) in the product have finite Boolean
algebras (and consequently so does the product space), and even if some events in the component
algebras have probability zero, the analogue of the canonical conditional expectation (40) exists
and yields probabilities conditional on probability zero events via the analogue of equation (48),
although it is very clear that conditional expectations are genuinely undetermined on probability
zero events in finite probability spaces.

The canonical version of the conditional expectation is however privileged in the sense that
the conditional probabilities on probability zero events on sets of slices having non-zero measure
must be equal to the one given by the canonical version. That is to say, one cannot change
the conditional probabilities I(b) on more than a measure zero set of slices — this would be
incompatible with having a uniform measure on the square.

4 Intuitively correct conditional probabilities with re-
spect to probability zero events in the Borel-Kolmogorov
Paradox obtained using conditional expectations

Consider now the probability space (5, B(S),p) on the unit sphere S in three dimension with
the surface measure p on the Borel sets B(S) on S. Choose a great circle C on S. We wish to
calculate the conditional probability of an arc b on condition that the arc is on the great circle
C. One can calculate this conditional probability following exactly the steps used to calculate
the conditional probability of the subset b of a slice of the square on condition that b is on that
slice. The only difference is in the slight complication due to the non-trivial geometry of the
sphere.

One can introduce Cartesian (x,y, z) and polar (r, ¢,0) coordinates in such a way that the
center of the sphere is the (0,0,0) point in the (z,y,2) coordinate system and the z axis is
perpendicular to the plane of the chosen circle (see figures 2 and 3). Then

x = rsinfcos¢ (54)
= rsinfsing¢ (55)
z = rcosf (56)

The sphere S and the chosen great circle C' can be identified with the sets

S = {(¢,0) : ¢ €]0,27],0 € [0,7]} = [0,27] x [0, 7] (57)
C = {(¢,7/2) : ¢ €]0,27]} =[0,27] x {m/2} (58)

The (normalized) surface area element of the unit sphere in the polar coordinate system is
1 sin 6dpdo (59)
4

Let O be the Boolean algebra generated by the circles ¢ on the sphere plane of which is parallel
to that of the chosen great circle C. If ¢ is at latitude 6. (see figure 3), then

c=A{(¢,0.) : ¢ €[0,2n]} =[0,27] x {0} (60)

O is a Boolean subalgebra of the Borel sets of the sphere, and there exist the O-conditional
expectation Eo(+|O)
Eo(-|0): L1(S,B(S),p) = L(S,0,po) (61)

It is elementary to verify that £(-|O) is given by

£(10)(6.0) = - [ F(0.0)sin a0 (62)
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is a version of the O-conditional expectation. Let x g be the characteristic function of an arc b
specified by the angles ¢1 and ¢ specifying its endpoints on the great circle C:

B = [¢1,¢2] x {7/2} (63)
We have
£0l0)@0) = 1 [ xe(6.0)simas (64)
_ L[ (f2—n), if O=m/2
B E{ 0, if 0#m/2 (65)

If p, is the probability measure on the sphere taking value 1 on the great circle C' and value
0 on its complement C*, then the (O, pp)-conditional probability p’(B) of the arc B can be
computed easily using (64)

P(B) = dolxs)= / £(x510)dpl (66)

P2 — ¢1

= o (67)
That is to say, the (O, py)-conditional probability p’(B) of the arc B is proportional to the length
of the arc. Thus, just like in case of the square, choosing a suitable Boolean subalgebra of the
Borel sets of the sphere, and using the device of conditional expectations defined by the chosen
subalgebra, one can obtain the sought after conditional probabilities with respect to probability
zero events in the Borel-Kolmogorov situation, and the calculated conditional probabilities are
the “intuitively correct" ones. What is the problem then?

z

Figure 2: Polar coordinates

5 Conditional probability with respect to probability
zero events in the Borel-Kolmogorov situation depends
on the conditioning algebra

The alleged problem is that the conditional probabilities so obtained depend on the Boolean
algebra O: if, instead of O, one takes the Boolean subalgebra M generated by the great circles

12



Figure 3: Parallel circles generating Boolean algebra O

that intersect C' at the same two points (“meridian circles" with respect to North and South
Poles), then the (M, py,)-conditional probability of the arc B will be different from the (O, p)-
conditional probability of the arc B: One can calculate these (M, p/,)-conditional probabilities
of B following exactly the steps in the preceding section 4 which led to the (O, py)-conditional
probabilities: Choose a great circle C' that in the introduced polar coordinates is given by

{(0,0) : 6 €[0,2n]} = {0} x [0, 27] (68)

That is to say: C is the meridian circle at longitude 0 (see figure 4). Let M be the Boolean
algebra generated by all the meridian circles ¢, which are given by:

c={(¢,0) : 0€]0,2n]} = {oc} x [0, 27] (69)

where ¢. is the longitude of meridian circle c¢. There exist then the M-conditional expectation

E(-IM)

E(IM): £1(S,B(S),p) = L (S, M, par) (70)
One can verify that a version of £(:| M) is given by
L[ .
E(fIM)(9.6) = — f(,0) sin0df (71)
0

Let x B be the characteristic function of an arc b specified by the angles 6, and 65 of its endpoints
on the great circle C:

B = {0} x [01,02] (72)
We have
27
E(xslM)(¢,0) = ﬁ /O x5(,0) sin 0do (73)
1 (cosf1 —cosbz), if ¢=0
B E{O, if ¢#0 (74)

If p/y4 is the probability measure on the Boolean algebra M taking value 1 on the great circle C
and value 0 on its complement C, then the (M, p/()-conditional probability p’(B) of the arc

13



B can be calculated easily by using (73):

P(B) = dhlxs)= /S E(xs| M)dply, (75)

cos 1 — cosbs
2

Clearly, the (M, py()-conditional (76) and (O, p)-conditional (67) probabilities are different.

Note that, just like in case of the square, both the O-conditional and the M-conditional
expectation are only determined only up to probability zero events, and the definitions (62) and
(71) yield specific versions of the respective conditional expectations. These versions are singled
out, again, by the fact that the sphere and the circles on it have a Cartesian product structure
and thus one can perform partial integrals.

(76)

Remark 5. The O-conditional expectation (62) can be used to calculate the O-conditional
probability on any circle ¢ (60) parallel to the great circle C' specified by (58): the calculation
following the steps (63)-(67) results in a uniform distribution on any circle ¢. Similarly: the
M-conditional expectation (71) can be used to calculate the M-conditional probability on any
meridian circle Cs replacing the great circle C' specified by (68). Repeating the steps (72)-(76)
one obtains the M-conditional distribution (76) on Ch;.

Given a great circle C' one could of course consider the four element Boolean subalgebra A
containing C, its complement, the empty set and the whole sphere, and compute the (A, p/4)-
conditional probability of an arc on C', using the A-conditional expectation. Since A is generated
by a countable set of disjoint elements, we know (Remark 2) what form the .A-conditional expec-
tation has in this case, and we also know that since C' has measure zero in the surface measure of
the sphere, the value of the A-conditional expectation on C' is left undetermined. Thus we can
take any value we regard as “intuitively correct", and choose the corresponding version of the
A-conditional expectation. Thus conditionalizing using the theory of conditional expectations
can accommodate any value of conditional probability on a probability zero event, including
the “intuitively correct" uniform conditional probability. But this conditional probability is not
determined in the theory of conditionalization by choosing the conditioning algebra to be A and
by the stipulation that the probability on the sphere is given by the uniform measure. We will
explain in section 7 why one may have the wrong intuition that it is.

North Pole

South Pole

Figure 4: Meridian circles generating Boolean algebra M
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6 Is dependence of conditional probability on the con-
ditioning algebra paradoxical?

One finds in the literature two types of worries concerning the (M, py,)-conditional and (O, py,)-
conditional probabilities. One is what we call, using Howson’s terminology [13|[p. 8], the
Description-Relativity Worry, the other is that the (M, p/y,)-conditional probability is counter-
intuitive. These two worries form the heart of the Borel-Kolmogorov Paradox. In this section
we will show that the Description-Relativity Worry rests on a misinterpretation of what the
difference between the (M, p/y,)-conditional and (O, p, )-conditional probabilities signify, and in
section 7 we will argue that the (M, p/y,)-conditional probabilities are not counterintuitive.

The Description-Relativity Worry is the concern that when it comes to calculate any prob-
ability, conditional probabilities included, it should not matter how the random events involved
are described: what specific parameters are used to refer to random events and what coordinate
system is used to fix a particular notation in which probabilistic calculations are carried out
should be a matter of convention, not affecting the values of probabilities. In what follows we
use the general term “labeling" to refer to any description, parametrization, coordinatization etc.
of random events. The Description-Relativity Worry is then that the (M, p/y,)-conditional and
(O, po)-conditional probabilities violate what one can call “Labeling Irrelevance": the norm that
values of probabilities should not depend on labeling. This is a very important principle, which is
crucial in probabilistic modeling: its violation is not compatible with an objective interpretation
of probability (this is argued in detail in [9], where it is shown that Bertrand’s Paradox does not
entail violation of Labeling Irrelevance). Subjective interpretations of probability are a different
matter: a subject’s degrees of beliefs might depend on particular labeling of random events,
as Rescorla argues [32]. We do not wish to discuss this situation, see the end of section 7 for
some brief comments. In any case, it is obviously important to know whether the Description-
Relativity Worry is indeed justified in connection with the difference of the (M, p'y()-conditional
and (O, py)-conditional probabilities. We claim it is not.

Rescorla derives the conditional probabilities (67) and (76) using the technique of calculating
conditional probability density functions (pdf’s) rather than specifying the two Boolean algebras
O and M explicitly and calculating the respective conditional expectations. Having done this,
Rescorla expresses the Description-Relativity Worry thus:

“... conditional probability density is not invariant under coordinate transforma-

tion. Standard techniques for computing conditional pdfs yield different solutions,
depending upon our choice of coordinates. Apparently, then, the coordinate system
through which I describe a null event impacts how I should condition on the null
event. This dependence upon a coordinate system looks paradoxical. Since the null
event remains the same, shouldn’t I obtain the same answer either way?"

132][p. 10]

Myrvold, after reproducing the conditional probabilities (67) and (76) also in terms of pdf’s,
interprets the situation similarly, saying “... we have different conditional distributions depending
on how we describe the circle." [23][p. 14]

Viewing the difference between the (M, p/y,)-conditional (76) and (O, py)-conditional (67)
probabilities as violation of Labeling Irrelevance is however a misinterpretation of the phe-
nomenon. This becomes transparent when one specifies more carefully what “coordinate trans-
formation", “different descriptions" or “re-labeling" of random events are.

Assume that (X,S,p) and (X’,S’,p’) are probability spaces. Then (X’,S’) can be viewed
as a re-labeled copy of (X,S) if there exists a bijection f between X and X’ such that both f
and its inverse f~! are measurable: the inverse image under f of every A’ € S’ is in S, and
the inverse image under the inverse function f~! of every A € S is in S’. The function f is
then called a re-labeling. Note that without the double-measurability condition the function f
cannot be considered a re-labeling because if the inverse function f~' were not measurable, then
some elements in & would be “lost" when passing via f from (X,S) to (X’,8’): there would
then exist an A € S such that f[A] = {f(z): 2z € A} € 8. Similarly: if f were not measurable,
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then there would be an element A’ € 8’ that refers to some general random event that is part of
the phenomenon (X’,S’,p) is a model of, but f~'[A] = {f~*(2') : 2’ € A’} € S, hence under
the re-labeling f that random event would be lost in the model (X,S,p). In this case the two
probability theories (X,S,p) and (X', S’,p’) obviously could not be regarded as models of the
same random phenomenon with the only difference that random events are differently labeled
in them. Because of the double measurability condition on re-labeling f, a re-labeling gives rise
to a Boolean algebra isomorphism hy between S and S’ (hy is the inverse image function of the
inverse function f~! of f).

Recall that if f is a re-labeling between X and X', and f and f~! also preserve p and p’,
respectively, in the sense that (77)-(78) below hold

P (fl[AD) = p(A) forall AeS (77)
p(f'A]) = p(A)  forall A'eS (78)

then the probability spaces (X,S,p) and (X', S’,p’) are called isomorphic as probability spaces
and f is a (measure theoretic) isomorphism [1|[p. 3]. It is obvious that a re-labeling need not be
a measure theoretic isomorphism in general. Less obvious is that a re-labeling is not necessarily
a measure theoretic isomorphism even if the probability measures are very special; possibly so
special that one expects re-labelings to be isomorphisms: this happens when p and p’ are both
Haar measures. This lies at the heart of Bertrand’s Paradox, see [9] for details.

Labeling Irrelevance can now be expressed by the claim that when describing a phenomenon
probabilistically, we can choose either the (X,S) or the (X', S’) labeling of random events as
long as there is a re-labeling f between X and X’. Indeed: nothing can prevent us choosing
either from elements of (X,8) or from elements of (X’,S’) when we wish to refer to random
events, and if we choose (X,S), then we can specify a probability measure p on S such that
the probability space (X,S,p) is a good model of the phenomenon. Choosing the probability
p'[A] = p(f'[A]) on (X', S") makes (X', S’,p’) also a good model of the phenomenon and
(X,8,p) and (X', S’,p’) will be isomorphic as probability spaces with respect to f. In short
Labeling Irrelevance, the conventionality of labeling of random events in probabilistic modeling,
is expressed by the claim that measure theoretically isomorphic probability spaces can be used
to describe the same random phenomenon.

An example of re-labeling is passing from the Cartesian coordinates to the polar coordinates
when describing the sphere and its Borel subsets: the transformation (54)-56) is a double mea-
surable bijection. Any point and any Borel subset on the sphere can be expressed either in the
(z,y, z) coordinates or in the (r, ¢, 0) coordinates.

It should now be clear that the difference between the (M, py)-conditional (76) and (O, py )-
conditional (67) probabilities is not a case of violation of Labeling Irrelevance: the two conditional
probabilities cannot be considered as conditional probabilities of the same event with respect
to the same conditioning conditions in different “co-ordinatizations" (labelings): When one
calculates the conditional probabilities of an event A € S in a different, “primed" labeling (in
&'), then the conditioning conditions also have to be considered in the primed labeling, otherwise
the conditioning is not with respect to the same conditions. Thus if A is a Boolean subalgebra
of S and one computes the .A-conditional expectation in (X,S,p) and the corresponding A-
conditional probabilities of A, then to obtain the conditional probabilities of the same event in
the primed labeling with respect to the same conditioning conditions, calculated in (X', S’,p’),
one has to use the hy(A)-conditional expectation in (X',8’,p’) to calculate the conditional
probabilities of hy(A). Here hy is the Boolean algebra isomorphism between S and S’ determined
by the re-labeling f. The restriction of hy to A is a Boolean algebra isomorphism between .4 and
hs(A) and so the A-conditional probability of A and the .A’-conditional probability of A" can
be regarded as the conditional probability of the same event in different labeling with respect
to the same conditions in different labeling only if there exists a Boolean algebra isomorphism
h between A and A’ such that h(A4) = A’

There exists however no Boolean algebra isomorphism between the Boolean algebra O gen-
erated by the circles parallel to the great circle and the Boolean algebra M generated by the
meridian circles such that if C' is the great circle in O then h(C) is a great (meridian) circle in
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M. This can be seen by a simple indirect proof: Assume the contrary, i.e. that h is an O —» M
Boolean algebra isomorphism, C' is the great circle in O, and h(C) is a great circle in M. The
circles ¢ in O parallel to the great circle C' are the atoms of O and these are the only atoms in
O. The atomic structure of a Boolean algebra is preserved under isomorphism, so h(c) are the
(only) atoms in M. Since the two element set { North Pole, South Pole} is an atom in M, there
is a ¢g € O such that h(co) = {North Pole, South Pole}; furthermore c¢o # C because h(C) is
assumed to be a great circle. We have C'N ¢ = 0 for any circle ¢ € O parallel to C and different
from C, in particular C' N ¢o = (), which entails (h being an isomorphism)

0 = h(CnNeco) (79)
= h(C)Nh(co) = h(C) N {North Pole, South Pole} (80)
= {North Pole, South Pole} (81)

(the last equation holding because h(C) was assumed to be a great circle in M, and all meridian
circles contain both the South and the North Poles). Since (79)-(81) is a contradiction, no such
isomorphism exists.

In fact, more is true: there exists no isomorphism between the subalgebras @ and M at all.
To see this, let s = (¢o,60) be a point on the sphere such that (g # 0,7). We claim that the
following are true:

(i) If s € A € O, then the whole circle {(¢,00) : ¢ € [0,27]} parallel to the equator must be
a subset of A.

(ii) If s € B € M, then the meridian circle {(¢o,60) : 6 € [0, 7]} has to be a subset of B.

(i) and (ii) can be proved by induction: the statements obviously hold for the generator elements
of the algebras O and M, and it is not hard to see that (i) and (ii) remain true under taking
arbitrary unions, meets and complement. (ii) entails that the intersection of two non-disjoint
elements A, B € M must contain the set { North Pole, South Pole} (which belongs to M). In
other words, there is an element C # () in M (namely C = {North Pole, South Pole}) such
that for any two sets A,B € M, if AN B # (), then C C AN B. The same does not hold in
O: Let A = {co,,co,} and B = {cp,,co,} be two sets of parallel circles with latitudes 61,62
and 05. Then AN B = {cg,}. Taking two similar sets A" and B’ of parallel circles one has
ANB = {Cg/l} and clearly co, = Co, need not hold, and this prevents the existence of an
Boolean algebra isomorphism between O and M.

The non-isomorphism of O and M entails that the O-conditional and M-conditional prob-
abilities computed using the O- and M-conditional expectations are different in general, not
just for the special events that are represented by subsets of great circles. But those differ-
ences, and also the difference between the (M, py()-conditional (76) and (O, p( )-conditional
(67) probabilities, do not indicate a paradoxical dependence of conditional probabilities of the
same event with respect to the same conditioning conditions in different co-ordinatization but
a sensitive dependence of conditional probabilities of the same event on different conditioning
Boolean subalgebras with respect to which conditional probabilities are defined in terms of con-
ditional expectations. This latter dependence is however not only not paradoxical but entirely
natural and expected once the concept of conditional probability is defined properly in terms of
conditional expectations.

7 Why one may think that only the uniform condi-
tional probability on a great circle in the Borel-Kolmogorov
Paradox is correct

The conclusion of the previous section already indicates what we would like to formulate here

explicitly: Both the (O, py)-conditional and the (M, p/y)-conditional distributions on the great
circle are intuitively correct — when one has the correct concept of conditionalization in mind.
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To see this and to understand why one might have the intuition that only the uniform probabil-
ity on any great circle is the intuitively correct conditional probability, one has to draw a clear
distinction between (i) probability theory taken in itself as part of pure mathematics and (ii)
probability theory as mathematical model of some phenomena (application of probability the-
ory). The importance of these distinctions were emphasized in [9], where conceptual confusions
resulting from disregarding them is analyzed from the perspective of another alleged paradox
involving probability theory (Bertrand’s Paradox).

7.1 Probability theory as pure mathematics

Probability theory taken in itself and defined by the Kolmogorovian axioms is part of pure math-
ematics, a branch of measure theory. A mathematical statement, claim, inference, is therefore
probabilistic only if it can be stated in terms of measure theoretical concepts, i.e. in terms of
Boolean algebras and additive measures on Boolean algebras, and not probabilistic if more is
needed to formulate them.

Consider now the Borel-Paradox situation in itself, as part of pure mathematics. Then the
question is why one may think that the uniform length measure on a great circle is determined
probabilistically by the surface measure on the sphere. One reason, we claim, is that when
one thinks about the relation of the length measure and the surface measure, one might not
distinguish carefully between the length measure being determined probabilistically (via condi-
tionalization) and being determined by some mathematical condition. By the length measure
“being determined probabilistically" we mean it being deducible from the surface measure re-
ferring only to measure theoretic concepts. Thus we may think correctly that the uniform
distribution on the meridian and the surface measure are related in a very tight, natural way,
but we might not realize that the link is not probabilistic.

This happens for instance when one “feels intuitively" that the rotational symmetry of the
Borel-Kolmogorov situation singles out the uniform probability on a great circle as the only one
that “matches" the uniform measure on the sphere [23|[section 3.2]. This feeling is justified in
the sense that it can be translated into precise mathematical terms: The uniform measure on a
great circle is singled out indeed as the (unique) measure that is invariant with respect to the
natural “subgroup" of rotations (in the plane of the circle) of the full group of rotations in the
three dimensional space, with respect to which the surface measure is invariant. The important
point to realize however is that this link between the surface measure and the measure on the
circle is non-probabilistic, it cannot be stated in measure theoretic terms only: one needs the
theory of (topological) groups to obtain the length measure this way.? Requiring the conditional
probability to possess the symmetry amounts therefore to imposing an extra condition on it in
order to make it definite, as Myrvold points out [23].

Another tight link can be established between the uniform measure on the sphere and the
uniform length measure on a great circle if we think of the sphere, of the great circle and of
their relation not group theoretically but geometrically: regarding a great circle as a closed one-

2There are some mathematical subtleties involved in how this can be done: The two-dimensional sphere possesses a
symmetry represented by the topological group SO(3) of rotations in the three dimensional Euclidean space (although
the sphere itself cannot be considered as a topological group, see [20] and references there). If by “uniform measure on
the sphere" we mean the o-additive Lebesgue measure, then this can be defined as the unique measure on the sphere
which is invariant with respect to the action of SO(3) on the sphere. While this seems intuitively obvious, it is in fact a
non-trivial mathematical theorem having a non-trivial proof; furthermore, it is an open problem whether the o-additive
uniform Borel measure on the sphere also is the unique measure invariant with respect to SO(3) [15]. Any great circle
also possesses a symmetry represented by the group SO(2) of rotations in the two dimensional plane of the circle; in
fact the circle can be identified with the group SO(2) itself. SO(2) is a compact topological group and can be thought
of as a “subgroup" of SO(3), although, strictly speaking SO(2) is not a subgroup of SO(3): the group SO(3) is the set
of 3x3 matrices having unit determinant, SO(2) is the set of 2x2 matrices having unit determinant, thus these groups
have different unit elements es and es, respectively. But SO(2) can be embedded into SO(3) by an injective group
homomorphism h; elements of the form e3 - h(g) in SO(3), with g € SO(2) form a subgroup. Since on every compact
topological group there exists a unique group invariant normalized measure, the so-called Haar measure, there exists
a unique rotational invariant measure on SO(2) — this is the length measure on the circle. Standard references for the
Haar measure are [24] and [11][Chapter XI.], for a more recent presentation see [6])
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dimensional differentiable submanifold of the sphere viewed as a two dimensional differentiable
manifold embedded in three dimension, the uniform measure on both the great circle and the
sphere can be obtained from the Lebesgue measure in three dimension in a canonical manner via
standard techniques in differential geometry [21][sections 3.1, 5.3-5.4]. Again, this link between
the uniform measures on the sphere and on a great circle is very natural but cannot be regarded
as probabilistic because concepts of differential geometry are crucial and indispensable in it and
these concepts are not purely measure theoretic.

7.2 Probability theory as mathematical model

Like other mathematical theories, probability theory also can be used to describe phenomena. In
such applications of probability theory, the random events A in S are related to other entities, and
the truth conditions of the statement p(A) = r have to be specified. In an application, probability
theory thus becomes a mathematical model of a certain phenomenon. The phenomenon itself
can be either mathematical or non-mathematical. A specific probability space is a good model of
a phenomenon if the statements p(A) = r are indeed true (in the sense of the specified condition
that is part of the model).

When one looks at the Borel-Kolmogorov Paradox from the perspective of the concept of
application so described, one has to ask what the sphere with the uniform distribution on it
is a probabilistic model of; i.e. what the phenomenon is that the probabilistic model describes
and how precisely the mathematical theory is related to the phenomenon in question. There
are several conceivable scenarios here. Somewhat surprisingly, the papers discussing the Borel-
Kolmogorov Paradox typically do not specify any.®> This is unfortunate because without knowing
what precisely the probability space is a model of, it is impossible to assess whether certain
intuitions about the probabilistic model are correct or not.

A possible scenario, which is probably closest to how the Borel-Kolmogorov situation is
tacitly interpreted in the literature, is the following. It is assumed that a specific mathematical
algorithm yields points on the surface of the two dimensional unit sphere in the three dimensional
FEuclidean space. The uniform probability measure on the sphere can then be thought of as a
model of generating points on the sphere in the sense of relative frequencies: Running the
algorithm N times one can compute the number (A, N) of the generated points falling in a
Borel set A of the sphere, and one can also compute the limit of the ratio w as N — oo. If
the limit exists and is proportional to the measure of the set A in the surface measure for any
Borel set A, then the sphere with the uniform surface measure is a good probabilistic model of
the point generating algorithm. Note that since generating points on the two dimensional sphere
(more generally: on the N-dimensional sphere) with uniform distribution is important in Monte
Carlo simulations run on computers, the problem of which algorithms produce such points has
been studied extensively and several such algorithms have been found [22], [36], [19], [37]; see
also [8][p. 29-33].

Viewed from the perspective of this application, both the (O, py )-conditional and the (M, py,)-
conditional distributions on great circles are intuitively correct: Given the concept of conditional
probability defined by conditional expectation (section 2.4), the full claim about the (O, p))-
conditional probabilities is: Given the Boolean algebra O, the (conditional) probability measure
on all circles in O (which are all parallel to a great circle C' on the sphere) is the uniform
probability on the circles (Remark 5). Since conditional probabilities are required to satisfy the
theorem of total probability by definition, the major content of this claim is that if we “add
up" the conditional probabilities on these circles, then we obtain the uniform measure on the
surface (Remark 4). Thus, if we wish to generate points on the surface of the sphere using some
mathematical algorithm, then if the points are generated in such a way that their distribution
is uniform on all circles in O (i.e. uniform in the longitude variable ¢) then the distribution of
the generated points will be uniform on the surface of the sphere. This is intuitively correct:
the circles are all parallel, they are all disjoint, their lengths contribute equally to the surface
measure.

3Rescorla’s paper [32] being an exception, see the end of this section.
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The full claim about the (M, py()-conditional probabilities is: Given the Boolean algebra
M of all meridian circles (which all share the same North and South poles), the conditional
probability measure on all meridian circles in M is the probability measure given by the density
function cos# on the meridian circles, where 6 is the latitude variable on every meridian circle
(Remark 5). Just as in the case of (O, p,)-conditional probabilities, the major content of this
claim is that if we “add up" the conditional probabilities on these meridian circles, then we
obtain the uniform measure on the surface (Remark 4). Thus, suppose points are generated on
the surface of the sphere by some mathematical algorithm. If the points are generated in such
a way that their distribution is given by the density cos € on all meridian circles in M, then the
distribution of the generated points will be uniform on the surface of the sphere. To formulate
this negatively: If we choose a generating algorithm that produces points on all meridian circles
according to the uniform distribution in the latitude variable 6, then the points will not be
uniformly distributed on the sphere — simply because the meridian circles are positioned on the
sphere in a very specific way: unlike the parallel, disjoint circles in O, the meridian circles are not
disjoint: they all have the same North and South Poles in common, which entails that they are
“crammed" around the poles. Hence, if the points are generated uniformly in 6 on all meridian
circles, then more points are generated closer to the poles, and thus the points generated this
way will accumulate more around the poles. This makes perfect intuitive sense and can in fact
be illustrated by computer simulation [39].

That the A-conditional expectation and hence the (A, ¢'4)-conditional probability distribu-
tion on a single, fized great circle C is undetermined if A is the four element Boolean algebra
consisting of C, its complement, the empty set and the the whole sphere, also is correct intu-
itively: the sphere with its uniform surface measure can be a perfectly good probabilistic model
of the behavior of the mathematical algorithm in the sense described, together with any behavior
of the algorithm on the fized, single great circle C' — precisely because C is measure zero in the
surface measure. In other words, saying that the surface measure is a good probabilistic model
of the algorithm simply does not contain enough information to infer probabilistically that the
algorithm behaves in any particular way on the specified great circle C'. Furthermore, it is clear
that this behavior cannot be found out via any a priori reasoning (such as some form of Principle
of Indifference for instance). One just would have to look at the specific algorithm generating
the points on the sphere and see what distribution it generates on that particular C. Whatever
this distribution is, it can however be accommodated as conditional probability using the theory
of conditional expectations by taking the appropriate version of the A-conditional expectation.

One also can envisage a scenario in which the sphere with its uniform measure is the model not
of objective frequencies but of subjective degrees of beliefs (credences). Rescorla’s recent paper
[32] analyzes the Borel-Kolmogorov Paradox from this perspective. Rescorla’s main claim is
that “The Borel-Kolmogorov paradox is a Fregean ‘paradox of identity’.” [32][p. 16] In harmony
with this, Rescorla embraces [32][p. 14| the conditional probabilities’ sensitive dependence on
the conditioning o-field as a sign of subjective degrees of beliefs’ dependence on how the events
are represented to the agent. In his view this dependence is not irrational because

“Credences are rationally sensitive to the way that one represents an event, so it
is not surprising that different conditional probabilities arise when one represents the
conditioning event differently." [32][p. 16]

An assessment of Rescorla’s proposal would require going into the details of the Fregean paradox
of identity, together with an explication of the nature of credences and with an elaboration of the
relation of credences to probability theory, which we cannot undertake here. But we agree with
Rescorla’s general methodological stand: that the analysis of the Borel-Kolmogorov Paradox
should take into account how one interprets probability [32][p. 14] (in our terminology: what
the application of probability theory is). The application described in this section is under the
objective, frequency interpretation, which Rescorla leaves for others to analyze [32][p. 14]. We
have seen that under this interpretation of probability both the (O, py)-conditional and the
(M, p/\q)-conditional distributions on the great circle are intuitively correct. Thus, although for
reasons different from his, we also agree with Rescorla that “... the Borel-Kolmogorov paradox
is not remotely paradoxical." [32][p. 17]
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8 Closing comments

The Borel-Kolmogorov Paradox was formulated by Borel in 1909, at a time, when the concep-
tual foundations of probability theory were not yet entirely clear. In particular, the notion of
conditional probability was then restricted to the Bayes’ rule, which is a very special and limited
concept, not revealing the real conceptual structure of conditionalization. It was only as a result
of Kolmogorov’s work that the abstract conceptual structure of probability theory and of condi-
tionalization became clarified. Kolmogorov’s work was the result of a long development (see [7]
for the major conceptual steps in the history of rigorous probability theory), and its significance
is not just that it is the natural end of a long development but that it is the beginning of a new
phase of probability theory: Kolmogorov’s work established a link between probability theory
and functional analysis. This opened the way for developing probabilistic concepts that are in-
dispensable in probabilistic modeling of certain phenomena (martingales, stochastic processes).
The notion of conditional expectation is crucial in this further development in probability theory.

The starting point of our analysis of the Borel-Kolmogorov Paradox in this paper was adopt-
ing the Kolmogorovian view, which is standard in today’s probability theory: that the suitable
technical device of conditionalization is the concept of conditional expectation. The main goal
of the theory of conditional expectations

« is the systematic development of a notion of conditional probability that

covers conditioning with respect to events of probability 0. This is accomplished by
conditioning with respect to collections of events — that is, with respect to o-fields."
[2][p. 432].

The concept of conditional expectation with respect to a o-field was developed by Kolmogorov
[16] soon after the main tool for it, the Radon-Nikodym theorem, had been found in 1930,
and Kolmogorov’s resolution of the Borel Paradox is also based on the idea of emphasizing
conditioning with respect to o-fields:

“|The Borel Paradox| shows that the concept of a conditional probability with
regard to an isolated given hypothesis whose probability equals 0 is inadmissible.
For we can obtain a probability distribution [...] on the meridian circle only if we
regard this circle as an element of a decomposition of the entire spherical surface into
meridian circles with the given poles."

[16][p. 51]

Kolmogorov’s wording of his resolution of the Borel-Kolmogorov Paradox is slightly misleading
however because it makes the impression that only by taking the Boolean algebra M generated
by meridian circles and calculating the conditional probabilities using the conditional expectation
this Boolean algebra defines (obtaining this way the non-uniform distribution on meridian circles)
will yield a conditional probability on a great circle that is intuitively correct. We have seen
however that one also can take the Boolean algebra O generated by circles parallel to a given great
circle and compute the corresponding conditional probabilities. Doing this, one obtains different
but intuitively not less correct conditional probabilities. It does not makes sense to ask “Which
one of the Boolean algebras M and O define the ‘correct’ conditional probabilities?" The algebras
M and O represent different conditioning circumstances and the conditional probabilities they
lead to are answers to different questions — not different answers to the same question. In certain
applications M, in certain other applications O might represent some circumstances that are
described correctly by the corresponding conditional probabilities. This is an advantage, showing
the flexibility of probability theory in modeling phenomena. Thus worries about the dependence
of conditional probabilities on the conditioning algebras seem to us to be misguided. There is
no “absolute" notion of conditional probability — conditional probabilities are truly conditional:
they depend on a full set of conditions, i.e. on a Boolean subalgebra. This is so also when one
uses Bayes’ rule to calculate conditional probabilities; in this specific case the dependence of
the conditional probability on the full four element Boolean subalgebra generated by the single
conditioning random event featuring in Bayes’ rule is just not quite transparent.

Thus, under close and careful scrutiny, the “paradox" in the Borel-Kolmogorov Paradox evap-
orates: There is no clash between the correct intuition about what the conditional probabilities
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with respect to probability zero events are and the technically proper concept of conditionaliza-
tion via conditional expectation.
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