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As a learning problem, reinforcement learning asks: how can an agent optimize its behavior by learning from
interactions with its environment? For example,  how does a baby plover learn to survive in its environment,
simply by hopping around in it? Or again, how does a newcomer to London �nd her way around, just by using a
map and a bit of trial-and-error? As a research program, reinforcement learning refers to a branch of computer
science, together with associated interdisciplinary approaches, that analyzes formal versions of this question and
develops computational solutions to it (Dayan & Abbott, 2001; Montague, 2007; Glimcher and Fehr, 2013).
Finally, reinforcement learning methods are the suites of computational algorithms that aim to solve the learning
problem (Sutton and Barto 1998, 2018).

Over the past �fty years, the interrelated problem, program and methods have had a signi�cant impact on the
development of arti�cial intelligence and empirical scienti�c inquiry. This is at least in part because, while
reinforcement learning methods are roughly normative in nature - that is, they characterize optimal methods for
learning from the environment - they also successfully predict and explain a wide range of empirical �ndings and
applications across the natural sciences, most notably in neuroscience, psychology, psychiatry, and economics, or
the so-called ‘the decision sciences.’1 Increasingly, non-computational or conceptual approaches have also taken
up the framework to play an explanatory role in theorizing, including in some cases in the philosophical
literature (Schroeder 2004; Huebner, 2012, 2015; Arpaly & Schroeder 2014; Colombo 2014; Colombo &
Wright 2017; Railton 2017a, 2017b, [xxxx] 2018, 2020, 2021).

This plurality of analyses, �ndings, and theories is, at a minimum, a sign of reinforcement learning’s theoretical
productivity (Kitcher 1982, 35-48). However, philosophical engagement with it remains  limited, especially as
compared with, say, the predictive processing research program (Hohwy, 2013; Clark, 2013, 2015; Metzinger &
Wiese, 2017), other areas of machine learning (e.g., Buckner, 2019), and computer science more broadly
construed (Haugeland, 1997; Cummins, 2000; Copeland & Proudfoot, 2006). This lack of engagement is
regrettable. There are key theoretical points of convergence between reinforcement learning and philosophy,
especially in the philosophy of mind, as well as real prospects for productive, bidirectional collaborations
between the two �elds.

In this opinionated review, I aim to draw attention to some of the contributions reinforcement learning can
make to philosophical inquiry, and particularly to questions in the philosophy of mind.2 I speci�cally highlight

2 Given this focus on the philosophy of mind, it is worth highlighting some signi�cant approaches that the review does not
cover. These include the relationship between reinforcement learning and the philosophy of arti�cial intelligence,

1 These approaches are both e�ective and tractable means of generating good behavior, which is highly desirable in the
design of arti�cial intelligence.



reinforcement learning’s foundational emphasis on the role of reward in agent learning; I appeal to some of the
contributions reinforcement learning has made to the decision sciences as a kind of stepping stone between the
basic machine learning framework and more traditional, philosophical folk psychological views on the other. In
particular, I canvass two ways in which the proposed nature and workings of reward may help advance our
understanding of perception and motivation, respectively.

For precision, I make several assumptions about the nature of reinforcement learning and its instantiation in
minds like ours. I sketch these assumptions, together with their relationship to other versions of reinforcement
learning, in Section 2. In Section 3, I review contributions of reinforcement learning methods to advancements
across the decision sciences. In Section 4, I show how principles from reinforcement learning can shape
philosophical debates regarding the nature of perception and characterizations of desire. I brie�y conclude in
Section 5.

2. Foundations and assumptions

As a general approach, the reinforcement learning framework makes certain foundational and technical
assumptions, with speci�c versions of the framework commiting to some assumptions while suspending or
relaxing others.3 Here, I sketch what I call the ‘reinforcement learning and decision-making’ (RLDM)
framework, which draws on  assumptions made in both machine learning and computational neuroscience.4

Speci�cally, in addition to assuming many of the somewhat more basic features of the framework, this version
assumes that reinforcement learning is, to some degree, meaningfully instantiated in the minds of biological
organisms. It also takes a particular - if minimal - view regarding the problem of ‘where rewards come from’ in
biological systems. Throughout, it will be useful to remember that this is just one - though perhaps particularly
philosophically useful - variant of the framework among many.

Let’s start with the basics. In a reinforcement learning framework, we have an agent and an environment. The
agent is the learner or decision-maker in question, and selects di�erent actions in its environment, where actions
can be understood as “any decisions we want to learn how to make” (Sutton & Barto, 2018, 50). The
environment refers to everything ‘outside’ of the agent, which the agent cannot arbitrarily change but rather that
the agent interacts with.5 The agent and the environment interact in the sense that the agent is presented with
sensory information from the environment, and the agent chooses di�erent actions within the environment,
where the environment is a�ected by these actions. Here, choosing a given action within a given state is
sometimes called a ‘state-action pair.’ Notably, the agent may not be able to observe the complete environment
and may not have prior knowledge of the environment dynamics.  In addition, the agent may (but by no means

5 For example, in many cases, even parts of the agent’s body are considered to be a part of the environment.

4 Name adapted from Gęsiarz & Crockett (2015).

3 This section is indebted to Sutton & Barto (2018) and, especially, to Neil Rabinowitz.

understood as a topic roughly independent from the philosophy of mind (e.g., Bostrom, 2017), as well as  historical and
foundational (philosophy of science) approaches to reinforcement learning (Colombo, 2014, in prep).
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needs to) build a model of the environment in order to choose actions in and learn from it (for further
discussion of models, see Section 3, below).

Crucially, one of the distinguishing features of the reinforcement learning framework is the role of reward.
Roughly, in reinforcement learning, the agent’s objective in the environment is to maximize the  cumulative
reward it receives over time, where rewards are passed from the environment to the agent (for more on this, see
below). In their in�uential text, Sutton and Barto call this framing the reward hypothesis, specifying, “all of what
we mean by [an agent’s] goals and purposes can be well thought of as the maximization of expected value of the
cumulative sum of a received scalar signal (called reward)” (2018, 53). That is, the agent’s objective is to
maximize its yield of reward as it acts in the world, and this objective is characterized by assigning a quantity of
intrinsic desirability to each state (or to taking each action in each state), known as the reward.6

This intrinsic desirability assigned to each state (or taking each action in each state), or reward, can be contrasted
with the notion of expected value, which captures the expected, discounted, future sum of reward associated
with each state (or each action in each state), conditional on a certain policy of action. Here, ‘policy’ refers  to
the function that determines what actions to perform given a set of observations and  history. We can elucidate
the distinction between reward and expected value further using an example from Silver (2015). Imagine an
agent in an environment with a wall. Upon arriving at the wall for the �rst time, the agent receives a reward from
the environment. But this reward can also be used to assess how relatively good (valuable) individual states are
expected to be to the extent that, conditional on a certain action policy, they lead to the wall and hence the
reward. Hence, an agent’s ongoing interactions with its environment enable it to continually revise the expected
value it attributes to a given state or state-action pair conditional on a certain policy, upgrading or downgrading
as needed. And this enables the agent to learn the most appropriate actions in the most appropriate states in
order to maximize cumulative reward over time, conditional on a certain policy, in spite of the fact that states (or
state-action pairs) can be of high expected value without being intrinsically worthwhile (rewarding).7 This partly
helps explain why not every state in an environment needs to be directly rewarding in order for an agent to act
appropriately within it.

As a branch of machine learning, reinforcement learning represents the foregoing conceptual features in
computational terms. There are countless reinforcement learning algorithms, or processes for learning e�ective
policies, each with a distinctive computational pro�le. For example, the temporal-difference learning algorithm
represents a computationally e�cient way of making predictions about reward in the future. One (non-TD)
way to improve predictions over time is to make a prediction about an actual outcome, compare the di�erence

7 We can take the example of making and having co�ee to help illustrate the di�erence between a state of high expected
value that is nonetheless not technically rewarding. Although only drinking a cup of co�ee itself may be intrinsically
worthwhile (rewarding), and the grinding of the beans almost certainly is not, the state-action pair of grinding the co�ee is
nonetheless associated with expected value, as it is, conditional on a certain policy, a necessary step or state-action pair on the
way to having the co�ee.

6 Thanks to Neil Rabinowitz for this formulation.
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(or error) between the two, and then update that prediction. To borrow an example from Sutton (1988, 10), one
can make a prediction on Monday about the weather on Saturday, wait until Saturday, and then update
Monday’s prediction based on the di�erence between Monday’s prediction and Saturday’s actual weather. The
temporal di�erence approach does something a little neater by updating its predictions throughout. That is, it is
more akin to one making a prediction on Monday about the weather on Saturday, but then comparing
Monday’s prediction to Tuesday’s prediction about Saturday and adjusting accordingly, and so on. For instance,
if Monday’s prediction for Saturday is a 90% chance of rain, but Tuesday’s prediction for Saturday is only a 60%
chance, then the temporal di�erence approach is to lower Monday’s prediction.8

Notably, given that di�erent problem settings present di�erent challenges, there are myriad di�erent RL
algorithms in use today. These trade o� factors such as memory consumption, computation cost, data e�ciency,
and stability; some are useful for very small environments and others for very large; some for discrete action
spaces, and others for continuous ones.9 Thus, ‘reinforcement learning’ refers to a general learning problem and
a suite of computational algorithms, as well as to the branch of computer science devoted to studying them,
rather than to any token solution to the problem.10

The RLDM version of reinforcement learning adds two assumptions to the basic reinforcement learning
framework. First, it assumes a relationship between reinforcement learning and the minds of biological creatures
like us. This assumption is by no means universally held: machine learners can pursue decades of research and
remain entirely agnostic regarding the role of reinforcement learning in biological agents. Similarly, cognitive
and comparative psychologists can study the nature of learning and behavior without any appeals to the
reinforcement learning framework. However, RLDM follows computational neuroscientists and other decision
scientists who suspect that reinforcement learning does, in fact, capture something special about minds like
ours. As Dayan and Niv (2008, p. 1) put it, reinforcement learning appears to o�er “more than just a
computational, ‘approximate ideal learner’ theory for a�ective decision-making. [Reinforcement learning]
algorithms, such as the temporal di�erence (TD) learning rule, appear to be directly instantiated in neural

10 Very brie�y, deep reinforcement learning combines the foregoing group of methods with a second, general computational
framework known as deep learning (for an excellent overview of the integration between the two systems and its
applications in neuroscience research, to which this subsection is indebted, see Botvnick, Wang, Dabney, Miller, &
Kurth-Nelson, 2020). Deep learning systems are often characterized in architectural terms, namely, as groups of arti�cial
neurons connected with arti�cial synapses (for a philosophical introduction to these networks, see Buckner, 2019). Like
neurons, these units transmit scalar values based on their inputs, weighted by the relative strength of their connection
(Goodfellow et al., 2016). Following Botvinick et al. (2020, 605), then, the resulting combination of deep reinforcement
learning can be de�ned as “any system that solves an RL problem (i.e., maximizes long-term reward), using representations
that are themselves learned by a deep neural network (rather than stipulated by a designer.)” For example, a deep
reinforcement learning system was able to develop superhuman play in the game Go by combining supervised learning of
human games of Go and reinforcement learning that was used to improve the foregoing policy by having the system play
itself (Silver et al., 2016; see also Silver et al., 2017; Silver et al., 2018).

9 Thanks to Neil Rabinowitz for this formulation.

8 For a more detailed discussion, see Sutton and Barto (2018, Chapter 6, and especially Example 6.1.).
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mechanisms, such as the phasic activity of dopamine neurons. That [reinforcement learning] appears to be so
transparently embedded has made it possible to use it in a much more immediate way to make hypotheses about,
and retrodictive and predictive interpretations of, a wealth of behavioral and neural data collected in a huge
range of paradigms and systems.” However, we are free to relax the condition that reinforcement learning is
directly instantiated in the workings of the brain. It is su�cient to say that reinforcement learning provides
remarkably useful frameworks for thinking about decision-making and selection in the mind.

RLDM’s second assumption has to do with the nature of reward. As noted above, in the basic reinforcement
learning framework, rewards are passed from the environment to the agent when an agent enters certain states of
the environment, or when the agent takes certain appropriate actions in certain appropriate states. This external
nature of reward is unproblematic in the context of machine learning, because the reward is simply designed by
the researcher as a means of communicating what the researcher wants the arti�cial agent to achieve. But things
get thornier when we get to biological organisms, since it’s not clear where rewards would then come from. This
question regarding the origin of reward in biology generates what Juechems and Summer�eld call the paradox of
reward. The issue is paradoxical, the authors contend, because

No external entity exists that can directly quantify the consequences of each action, like the points that
are awarded in a video game for completing levels or shooting monsters. Nor is it obvious that biological
systems have a dedicated channel for receipt of external rewards that is distinct from the classical senses.
Rather, rewards and punishments are sensory observations – the taste of an apple, the warmth of an
embrace – and so stimulus value must be inferred by the agent, not conferred by the world. In other
words, rewards must be intrinsic, not extrinsic” (2019, 837-838).

Exactly how this conversion between sensory observations and assignments of intrinsic rewards occurs -
assuming that it occurs at all - remains the subject of lively theoretical debate. One possible explanation is that
minds like ours have evolved speci�c mechanisms that convert sensory observations into hedonic signals (e.g., see
Schultz, 2015). Another, complementary possibility is that, in addition to the evolved mechanisms for basic
rewards (e.g., food and water), human beings develop cognitive setpoints, akin to homeostatic setpoints, on
which reward amounts to a by-product of computing the distance to self-de�ned goals  (e.g., such as getting
married or going to graduate school) (Juechems & Summer�eld, 2019). Here, RLDM again takes a minimal
approach, and merely assumes that minds like ours subpersonally assign subjective rewards to sensory
observations; it remains provisionally agnostic about how this assignment takes place.

3.  Contributions to the decision sciences

As noted at the outset, there are important points of contact between formal, normative reinforcement learning
algorithms and the decision sciences, which, when considered, could in turn have appreciable implications for
core issues in the philosophy of mind. We can now turn to what Dayan and Niv above called the “wealth of
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behavioral and neural data” understood and interpreted against the backdrop of RLDM, with an emphasis on
cognitive neuroscienti�c approaches.

As gestured at above, arguably the most signi�cant connection is between RLDM and the reward system in the
mammalian brain. In the mid-1990s, theoretical and empirical work showed that the �ring of dopamine neurons
is closely described by the temporal di�erence learning algorithm (for narrative accounts of the discovery, see
Montague, 2007; Redish, 2013; see also, Colombo, 2014). That is, dopamine neurons �re when an organism
experiences a higher- or lower-than-expected value in association with a given state (Schultz, Dayan, and
Montague 1997).  This seminal �nding in turn led to the use of reinforcement learning methods to study the
neuroscience of vision (Hayhoe and Ballard, 2005; Hikosaka 2000; Hickey et al. 2010), attention (Della Libera
& Chelazzi 2009; Chelazzi et al. 2014; Anderson & Kim 2018), memory (Patil et al., 2017; Ergo, De Loof, &
Verguts, 2020), prospective memory (Krishnan & Shapiro, 1999; Katai et al., 2003; Kliegel et al.,  2005; Walter &
Meier, 2014), cognitive control (Savine & Braver, 2010; Botvinick & Braver, 2014; Chiew & Braver, 2014;
Cubillo, Makwana, & Hare, 2019) , and above all, decision-making (Sutton and Barto, 2018; Dayan and Niv
2008, Rangel et al. 2008, Dayan 2011, Glimcher & Fehr 2013).

For example, a systematic body of evidence now indicates that the reward system guides visual �xation and
saccadic eye movement, i.e., what we look at, when, and in what order (Liao & Anderson, 2020). Similarly,
reward guides what we do or don’t attend to - more precisely than do either location or salience (Anderson and
Kim, 2018). Conversely, de�cits and disruptions (e.g., by addictive substances) to the reward system are not only
implicated in diseases such as Parkinson’s and Tourette’s, but also in a range of psychiatric disorders, including
depression (Huys, Daw, & Dayan, 2015) and addiction (Hyman, 2005; Redish, Jensen, & Johnson, 2008;
Redish, 2013). Arguably, methods from reinforcement learning thus represent an important - and, to date,
under-utilized - framework for elucidating the nature and mechanisms underlying selection between competing
states of a�airs across a range of ‘low’- as well as ‘high-level’ kinds of cognitive processing.

Equally rich cross-pollination exists between methods in RLDM and the �eld of neuroeconomics (for an
engaging discussion on the relationship between the two, especially regarding the slightly orthogonal uses of key
concepts as ‘reward’ and ‘value,’ see Padoa-Schioppa & Schoenbaum, 2015). Unlike in neo-classical economics,
where value is mainly taken to be a theoretical construct, (that is, where economic choice is accounted for as if
the choosing subject maximized an internal value function), the core idea in neuroeconomics is that the brain
actually assigns subjective values to various choice alternatives, such that value acts as a ‘common currency’ for
choosing between prima facie incommensurable alternatives. Hence, the study of neuroeconomics can roughly
be described as e�orts to understand the calculation of value across competing alternatives. By extension, a key
theoretical virtue of neuroeconomic approaches lies in their ability to measure the subjective values associated
with various decision factors, notably factors such as delay, risk, loss aversion, cognitive e�ort, social
considerations, and normative considerations, together with their underlying neural mechanisms (see Westbrook
& Braver 2015 for a review).
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Speci�cally, a standard strategy asks participants to choose between alternative o�ers, uses these choices to infer
the subjective value of each alternative (consistent with standard economic principles), and then measures these
values against participants’ neural signals (for a review, see Padoa- Schioppa 2011). For example, the subjective
value of larger economic o�ers is systematically reduced when paired with increasingly demanding tasks, such
that subjective e�ort can be quanti�ed in terms of cost (Westbrook, Kestner, & Braver, 2013). Findings such as
these have, in turn, enabled us to localize subjective valuation in the brain, and even to show that the subjective
costs of cognitive e�ort are represented by domain-general valuation mechanisms in the brain (Westbrooke,
Lamichhane, & Braver, 2019). Reinforcement learning methods and, by extension, neuroeconomic paradigms
thus provide a signi�cant avenue for philosophers interested in moving beyond introspection and self-report to
more systematic and quanti�able methods for studying certain capacities in the brain (signi�cant issues
concerning our cognitive taxonomies notwithstanding).

There are also substantial interactions between RLDM and animal  learning (for an excellent extended review,
see Sutton and Barto, 2018, Chapter 14). Foundationally, a relatively small number of algorithms o�er
principled explanations of learning phenomena such as classical and instrumental conditioning, delayed
reinforcement,  Kamin blocking, extinction, and cognitive maps. The di�ering contours of several key
reinforcement learning algorithms have also directly and indirectly been used to distinguish between decision
systems,  most notably between the Pavlovian,  habit-based, and goal-directed decision systems, and their
interplay in decision-making, in human as well as non-human animal decision-making (Kable & Glimcher,
2009; Dolan & Dayan, 2013).

Roughly, the Pavlovian system produces basic, stimulus-driven behavioral responses.11 These behaviors are not
learned, and they do not appear to be controlled by the animal at all. Rather, they are most likely the products of
a lengthy evolutionary history, which has selected for a range of automatic, appropriate responses in the face of
appetitive or aversive stimuli (Macintosh 1983). These unconditioned responses include both outcome-speci�c
responses, such as in�exibly licking water, and more open-ended, valence-dependent responses, such as generally
approaching something rewarding. Both classes of response are characteristically recalcitrant to changes in
outcome, as when chickens will continue to peck at a feeder that will not dispense any seeds over hundreds of
trials (Macintosh, 1983; Huys et al. 2011, 2012).

The habit-based decision system, often associated with model-free learning, akin to trial-and-error learning (e.g.,
Daw et al., 2005), produces instrumental responses by choosing actions based on their previously learned
expected values in di�erent contexts. For example, a button-press that has previously resulted in a reward is a
good state-action pair, while a button-press that has previously resulted in a punishment is a bad state-action

11 Notably, this sense of the word ‘Pavlovian’ should not be confused with its everyday usage, i.e., in reference to the
conditioned response. In psychology, attention is paid to Pavlov’s discovery of the bell as the conditioned stimulus and its
learned association with the unconditioned response, the salivating. But for the purposes of RLDM, it is really the
relationship between the unconditioned stimulus (i.e., the food) and the unconditioned response (i.e., the salivating) that is
of interest (for an interesting discussion of how these two interpretive traditions view Pavlovian learning di�erently, see
Rescorla 1988).
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pair. However, unlike the foregoing Pavlovian system, the model free system is not “hardwired,” and does
gradually update.

The goal-directed decision system, often associated with model-based learning, or methods that explicitly use
models and planning (e.g., Daw et al., 2005), uses a forward-looking model to represent possible actions,
outcomes, and associated expected values. Decision-making using such a model is often achieved by traversing a
decision tree. Each node in the tree represents a possible choice; the model-based system can then “search”
through the decision tree to �nd the branch with the highest total expected value. For example, a chess player
may represent three upcoming moves in a game of chess, with each possible move further branching into a wide
range of subsequent moves. To win, the player seeks to �nd the best possible sequence of moves overall. Such
modeling enables the agent to both plan future sequences of actions, as well as to generalise to new situations
(although for failures in future representations, see, e.g., Redish,  Jensen, & Johnson, 2008).

Of course, the connections between reinforcement learning, neuroscience, neuroeconomics, and psychology
extend well beyond what is described here. The aim here is not to catalogue these intersecting bodies of literature
here in a comprehensive way. Rather, my goal is to highlight the two rich, intersecting frameworks. To
complement this, the next section o�ers three substantive illustrations of how principles from reinforcement
learning are already being taken up in philosophically-oriented inquiry, speci�cally, in discussions of perception
and the nature of desire, respectively. In both cases, the notion of reward - as introduced in reinforcement
learning, but taken up and in some cases adapted in the decision sciences - plays a guiding, explanatory role.

4. Reward in perception and desire

4.1. Perception

In addition to its contributions to the decision sciences, RLDM has recently begun to inform philosophical
approaches to the study of perception and, in particular, philosophical approaches to the study of binocular
rivalry. Binocular rivalry occurs when one stimulus is shown to one eye at the same time as a di�erent stimulus is
shown to the other. The resulting experience is of the two images alternating back and forth. For example, if one
eye is shown an image of a face and the other eye is shown an image of a house, then, rather than seeing the face
and the house superimposed over one another, the experience is of seeing a face, then a house, and so on.
Perceptual dominance in binocular rivalry refers to one of the two images appearing �rst, or for a longer period
of time during the overall duration of the experience of alternation. Since binocular rivalry is a case of perception
clearly not representing 'what's going on out there,’ it constitutes an important test case for theories that aim to
explain why we have particular perceptual states at particular times.
To try and explain the puzzling nature of binocular rivalry, Jakob Hohwy and colleagues (2008) propose a
predictive processing approach that recast the phenomenon in terms of Bayesian inference. Brie�y, Hohwy and
colleagues propose to explain binocular rivalry in terms of priors, likelihoods, and prediction errors. For
example, they suggest that the perceiver experiences a house or a face, say,  because face-and-house combined has a
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much lower prior than do either face or house: it is a priori improbable that what is being seen is really a
face-and-house, and interactions with the environment that could have induced a prior for such a hypothesis are
unlikely. Thus, as long as the low prior o�sets the likelihood advantage for face-and-house over face or house,
face-and-house will not be selected over either face or house. Similarly, they propose that alternation between the
percepts occurs because the expectation for either face or house only explains half of the stimuli. As a result, face,
say, results in a strong prediction error signaling house, and so on. Since no single expectation combines a high
prior and high likelihood, alternation between the two hypotheses results. The approach is widely cited across
the cognitive sciences as an illustration of predictive coding’s ubiquity in the brain, as well as its explanatory
power as a general theory of the mind (e.g., for a review, see Clark (2013) for a prominent discussion; see also
Metzinger & Wiese, 2017).

However, RLDM provides a hint that something may be missing from the predictive coding explanation
([xxxx], 2021). This is because, if reward plays a signi�cant role in saccadic eye movement and visual �xation, it is
reasonable to expect that it will also play a role in perceptual experience. And this is indeed what we �nd.
Consistent with RLDM - but not predictive processing - when the stimulus or percepts are rewarded, this
produces perceptual dominance.That is, participants are more likely to perceptually experience rewarded
stimuli and rewarded percepts (Balcetis, Dunning, & Granot, 2012; Wilbertz, Van Slooten, & Sterzer, 2014;
Marx & Einhauser, 2015). Moreover, a complementary phenomenon occurs for punished percepts: participants
experience perceptual dominance for the non-punished percept in the pair, suggesting that the reward or
punishment is not simply additional information taken into consideration by Bayes-like predictive processing, as
a predictive processing view might suggest (Wilbertz, Van Slooten, & Sterzer, 2014)).

According to traditional conceptions, perceptual systems are exclusively thought to produce roughly veridical
representations of distal stimuli, i.e., where the function of perception is to “get the world right” (Hohwy 2013,
p. 2) and capture “what’s going on out there” (Friston 2018, p. 1019) ([xxxx], 2021). By contrast,
acknowledging the role of reward in binocular rivalry and, by extension, in perception more broadly, challenges
the commitment to exclusive veridicality. There is thus more to perception than just information; perception
produces representations conditional on certain goals. In this way, taking up an RLDM lens opens the way to
characterizing perceptual systems as generating representations of distal stimuli for the purposes of action.

4.2 Desire

In addition to discussions in perception, principles from reinforcement learning are also making an impact on
philosophical debates regarding the nature of desire. In the context of philosophical folk psychology, desire is
broadly understood as a mental state associated with wanting, motivation, and action.12 But exactly how desire is
de�ned depends on the theory of desire one subscribes to. For example, on an action-based theory of desire, for

12 Here, philosophical folk psychology speci�cally refers to philosophical theories describing human behaviors in terms of
mental states such as intentions, beliefs, and desires. For a detailed discussion of philosophical folk psychology, speci�cally
in relation to naturalism in philosophy, see [xxxx] (2020).
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an organism to desire p is for the organism to be disposed to act so as to bring about p (Smith, 1994). These
theories have the advantage of being relatively straightforward, and of capturing many of the features commonly
associated with everyday descriptions of desire. But they face a number of explanatory challenges, including
capturing the di�erence between goodness and desire, explaining why people act out of duty, desires regarding
the past, and so on (Schroeder, 2004).

One notable solution for dealing with these challenges has been the Reward-based Theory of Desire (Schroeder,
2004; Schroeder and Arpaly, 2014). Drawing on evidence from computational neuroscience, the reward-based
theory of desire contends that, “just as H2O is the unfamiliar essence of water, so… states of the reward system
are the unfamiliar essence of desire” (Schroeder and Arpaly 2014, p. 187). Speci�cally, the view holds that “to
have an intrinsic (positive) desire that P is to use the capacity to perceptually or cognitively represent that P to
constitute P as a reward,” and that “to be averse to it being the case that P is to use the capacity to perceptually or
cognitively represent that P to constitute P as a punishment” (Schroeder, 2004, p. 131). Here, the perceptual or
cognitive representations are cashed out in cellular and systems neuroscienti�c terms, with a special emphasis
placed on the functioning of the dopaminergic system in the brain. Hence, the theory preserves the traditional,
philosophical folk psychological notion of desire, but speci�es it in contemporary computational and empirical
terms.

The Reward Theory of Desire (RTD) is able to account for many of the standard explanatory desiderata,
including the distinction between positive and negative desires (valence), the strength of desire, the acquisition
and extinction of desires, and the nature of feeling and desires regarding the past - though notable not
instrumental desire. For example, the traditional approach to explaining desire strength is to cash it out in terms
of the strength of a disposition to act. By contrast, Schroeder argues, “strong desires cause powerful behavioral
tendencies in human beings because, all else being equal, they generate  powerful reward signals, and powerful
reward signals have a powerful impact upon the motor striatum, and the motor striatum, in turn, has a powerful
impact on movement” (2004, 139). By extension, strong desires have a stronger in�uence on movement than
weak desires. Expanding on this view, Schroeder and Arpaly argue that “the reward system causes what desires
cause,” namely, actions, feelings, and cognitions (2014, 137-142).

Notably, however, in virtue of its appeal only to the construct of reward, RTD characterizes only intrinsic desire.
As Schroeder (2004, p. 132) observes,

This is a theory of intrinsic desire. That is, it is a theory of what it is to desire, say, that my father be
happy, that my favorite team win the tournament, that I not smell the odors from the cat litter, and so
on: to desire things for their own sakes. It is not a theory of what it is to desire things merely as a means
to some end, not a theory of desiring to take the bus today in order to bene�t the environment, say, or
of desiring to smell the cat litter in order to determine how urgently it needs cleaning [...] It is not the
aim of RTD to say what instrumental desire is. Intrinsic desire will be desire enough.
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As a close theoretical alternative, I have defended the Valuational Theory of Desire (VTD) ([xxxx], in prep).
Whereas reward theory characterizes desire in terms of a single-place relation, i.e., by identifying desires with
reward, the valuation theory holds that desire is best expressed as a two-place relation, namely, in terms of both
reward and expected value, as characterized above (Section 2). Hence, VTD holds that

For an organism to desire that P is for it to subpersonally attribute a subjective reward or expected value
to P.

For example, for an agent to desire to drink a cup of co�ee is for that agent to subpersonally attribute subjective
reward or expected value to drinking a cup of co�ee.

Like its reward-based alternative, the valuation-based view can account for the core features of desire, including
the valence and strength of desire, the acquisition and extinction of desires, and �eeting as well past desires.
However, because it accommodates both reward and expected value - that is, by appealing to the comprehensive
computational foundations of reinforcement learning, rather than to the narrower neuroscienti�c
characterization of the so-called ‘reward’ system - the valuation-based view can account for both intrinsic and
instrumental desires, whereas its reward counterpart can only explain the former.

Building on these kinds of views, it may be the case that we should eventually replace the philosophical folk
psychological notion of desire with the technical notions of reward and expected value. The advantage of doing
so will be that, rather than nesting the technical notions of reward and punishment within the more familiar
philosophical notion of desire, these notions instead play an explicit role in resolving puzzles and debates in the
philosophy of action, such as those regarding weakness of the will, synchronic self-control, and attributions of
blameworthiness in the context of addiction ([xxxx], 2018, 2020). That is, by substituting the notion of desire
with the technical notions of reward and expected value, we will be able to draw on these notions’ explanatory
power directly in order to address our philosophical concerns.

Conclusion

This opinionated review has sought to provide one roadmap for philosophers hoping to engage with the
principles and �ndings associated with RLDM, particularly the central notions of reward and values, as
highlighted in the foregoing philosophical discussion of perception and desire.
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