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1. Introduction 

In his original introduction to Mind Design, John Haugeland observes that “an ‘experiment’ in mind design is
more often an e�ort to build something and make it work, than to observe and analyze what already exists”
(Chapter 2, this volume). But what happens when such an experiment in mind design succeeds in a way and to a
degree that few could have predicted? And more to the point, how do we take on the implications of such
successes when they challenge central features of how we understand the mind? 

These are the circumstances that we �nd ourselves in with respect to developments in reinforcement learning.
Over the past twenty-�ve years, reinforcement learning has had a tremendous impact on the development of
arti�cial intelligence and has been a major driver in advancements in the so-called ‘decision sciences’—
computational neuroscience, neuroscience, psychology, psychiatry, and economics. But even as we continue to
advance the notion of reward maximization as a general solution to the problem of arti�cial intelligence (Silver,
Singh, Precup, & Sutton, 2021), we have not yet embraced the full implications of reinforcement learning,
together with the accompanying reward-prediction hypothesis, for our conceptions of the mind. That is, we
continue to think of the mind as some form of a thinking machine (“thinking, intellect,” (Haugeland, Chapter
2, this volume), where such thinking is best understood as some type of computation— ecumenically including
neural networks, deep learning, genetic algorithms, and so on.   
 
I propose that the successes and contributions of reinforcement learning urge us to see the mind in a new light,
namely, to recognize that the mind is fundamentally evaluative in nature. There are weaker and stronger versions
of this thesis. 

The weaker version, which I commit to here, proposes that the mind is, at a fundamental level, in the business of
evaluating states of a�airs as better or worse. This version is additive in nature: it says that, in addition to
performing computations over representations of  descriptive matters of fact, the mind also performs
computations over representations of those facts as better or worse. But even merely recognizing this heretofore1

missing piece of the puzzle transforms our understanding of many central aspects of our cognitive experience.

The stronger version, which I explore but ultimately don’t subscribe to, makes a revisionary rather than an
additive claim: it proposes that the mind is at bottom evaluative in nature. This is to say that the mind’s
evaluative processes are conceptually prior to its perceptual, cognitive, or motor processes. In this sense, the
strong thesis is a type of grand unifying theory for understanding the mind. Notably, the strong version is related

1Of course, many approaches in the philosophy of mind and cognitive science posit what we might call ‘compound states,’
such as desires, that may be similarly evaluative. But it’s consistent with such views that evaluative compound states are
outliers - that “other stu�” - and overshadowed by traditional descriptive computations and belief-like states and processes.
The weaker thesis makes a stronger claim, in that it posits widespread evaluative processing at a fundamental level and,
notably, where evaluative processing modulates even belief-like states and processes. Thanks to Murray Shanahan for
pressing me on this point.
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to but distinct from the so-called ‘reward is enough’ hypothesis, which suggests that reward maximization is
su�cient to “drive behavior that exhibits most if not all abilities that are studied in natural and arti�cial
intelligence” (Silver, Singh, Precup, & Sutton, 2021, 1). 

Even without the stronger version, reinforcement learning points us to the idea that, as living organisms, we not
only continually experience the world, but experience it as better and worse. As Haugeland (1979, 619) puts it,
the problem with classical computers is that they “don’t give a damn.” Montague (2006, 19) similarly suggests
that the central di�erence between computers (as we have more traditionally conceived of them) and brains is
that the latter use evolved, e�cient computations that “care— or more precisely, [that] have a way to care.” In
my view, these notions of ‘giving a damn’ or ‘caring’ are basically right: minds assess with respect to some goals, i.e.,
they ‘care’ about how things are going with respect to those goals, be they as central as survival or as mundane as
getting co�ee.

Still, we need a much more systematic way of working out of what this actually means.  Moreover, if we do in
fact experience the world in this way— that is, evaluatively— then this will have important implications for
understanding how many of our cognitive capacities function,  e.g., why perception and attention select as they
do, and, equally, why these capacities break down as they do, e.g., how Major Depressive Disorder may involve
both  a reduction in the primary sensitivity to rewards and an individual’s reduced ability to learn from reward
(Huys, Pizzagalli, Bogdan, & Dayan, 2013). This is the work I aim to do here. 

I build my argument out over stages. For precision, I make several assumptions about the nature of
reinforcement learning and its instantiation in minds like ours. I sketch these assumptions, together with their
relationship to other versions of reinforcement learning, in Section 2. I then o�er a brief survey of some of the
empirical evidence suggesting that the reinforcement learning paradigm captures something important about
biological minds like ours. 

In Section 3, I get more speci�c about what that ‘something important’ is. I do so by characterizing the nature of
valuation in the mind, defending the function of valuation as guiding selection and providing evidence for the
ubiquity of valuation as selection across a wide range of ‘low-’ and ‘high-level’ human psychological capacities. 

In Section 4,  I defend the weak version of the evaluative thesis.  I sketch what we might expect from a strictly
‘thinking’ mind on the one hand, and from a thinking, evaluative mind on the other, and I suggest that we �nd
plenty of evidence for the latter in a variety of cognitive capacities. 

In Section 5, I consider the strong thesis, mapping out how an argument for it might go. I suggest it is a thesis
well worth bearing in mind, particularly as we continue to make advancements in arti�cial intelligence.
Nonetheless, I suggest that we presently lack the necessary evidence to subscribe to it wholesale and raise some
challenges for securing it going forward. 

In Section 6, I brie�y conclude by addressing what Haugeland calls the common complaint regarding arti�cial
intelligence. According to Haugeland, the complaint suggests that arti�cial intelligence “pays scant attention to
feelings, emotions, ego, imagination, moods, consciousness’” (this volume, p. x). I show how by adopting an
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evaluative account, we can not only illuminate core aspects of minds like ours, but equally appeal to powerful,
computational frameworks to design many (though not all) of the features Haugeland refers to into arti�cial
agents. 

To start, let’s look at the narrow end of the argumentative wedge, namely, with a basic sketch of reinforcement
learning. 

2. Program, concepts, and �ndings  2

2.1 Overview 

We can think of reinforcement learning as a research question, as a research program, and as a set of
computational tools. As a research question, sometimes called the ‘learning problem,’ reinforcement learning
asks how an agent can optimize its behavior by learning from interactions with its environment. For example, 
how does a baby plover learn the contours of its environment simply by hopping around in it? Or again, how
does a newcomer to London �nd her way around, just by using a map and a bit of trial-and-error? As a research
program, reinforcement learning refers to a branch of computer science, together with associated
interdisciplinary approaches, that analyzes formal versions of this question and develops computational
solutions to it (Dayan & Abbott, 2001; Glimcher & Fehr, 2013). Finally, reinforcement learning methods are the
suites of computational algorithms that aim to solve the aforementioned learning problem (Sutton & Barto,
2018). 

Notably, as a research program, the reinforcement learning framework makes certain foundational and technical
assumptions, with speci�c versions of the framework committing to some assumptions while suspending or
relaxing others. Here, I sketch what I call the ‘reinforcement learning and decision-making’ (RLDM)
framework, drawing on  assumptions made in both machine learning and computational neuroscience.3

Speci�cally, in addition to assuming many of the somewhat more basic features of the framework, this version
assumes that reinforcement learning is to some degree meaningfully instantiated in the minds of biological
organisms, and takes a particular if minimal view regarding the problem of specifying where rewards come from
in biological systems. Throughout, it will be useful to remember that this is just one— though one perhaps
particularly philosophically useful— variant of the framework among many. 

2.2 RLDM

Let’s start with the basic ingredients. In a reinforcement learning framework, we have an agent and an
environment. The agent is the learner or decision-maker in question, and it selects di�erent actions in its
environment, where actions can be understood as “any decisions we want to learn how to make,” including
mental actions (Sutton & Barto, 2018, 50). The environment refers to everything ‘outside’ of the agent, which
the agent cannot arbitrarily change but rather with which the agent interacts. The agent and the environment4

4 For example, in many cases, even parts of the agent’s body are considered to be a part of the environment.
3 Name adapted from Gęsiarz & Crockett (2015).
2 This section is indebted to Sutton & Barto (2018) and, especially, to Neil Rabinowitz.
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interact in the sense that the agent is presented with sensory information from the environment, and the agent
chooses di�erent actions within the environment (sometimes called a ‘state-action pair’); the environment is
then a�ected by these actions. Notably, the agent may not be able to observe the complete environment and may
have no prior knowledge of the environment’s dynamics.  In addition, the agent may, but by no means needs to,
build a model of the environment in order to choose actions in and learn from it. 
Crucially, one of the distinguishing features of the reinforcement learning framework is the role of reward.
Roughly, in reinforcement learning, the agent’s objective in the environment is to maximize the  cumulative
reward it receives over time, where rewards are passed from the environment to the agent. In their in�uential
text, Sutton and Barto call this framing the reward hypothesis, specifying, “all of what we mean by [an agent’s]
goals and purposes can be well thought of as the maximization of expected value of the cumulative sum of a
received scalar signal (called reward)” (2018, 53). That is, the agent’s objective is to maximize its yield of reward
as it acts in the world, and this objective is characterized by assigning a quantity of intrinsic desirability to each
state (or to taking each action in each state), known as the reward.5

This intrinsic desirability assigned to each state (or taking each action in each state), or reward, can be contrasted
with the notion of value, which captures the expected, discounted, sum of future reward associated with each
state (or each action in each state), conditional on a certain policy of action. We can elucidate the distinction
between reward and value further using an example adapted from Silver (2015). Imagine an agent in an
environment with a door. Upon arriving at the door for the �rst time, the agent receives a reward from the
environment. But this reward can also be used to assess how relatively good (valuable) individual states are
expected to be to the extent that, conditional on a certain action policy, they lead to the door and hence the
reward. Hence, an agent’s ongoing interactions with its environment enable it to continually revise the value
attributed to a given state or state-action pair conditional on a certain policy, upgrading or downgrading as
needed. This enables the agent to learn the most appropriate actions in the most appropriate states to maximize
cumulative reward over time, conditional on a certain policy, in spite of the fact that states (or state-action pairs)
can be of high value without being intrinsically worthwhile (i.e., rewarding). This partly helps explain why not6

every state in an environment needs to be directly rewarding in order for an agent to act appropriately within it. 

As a branch of machine learning, reinforcement learning represents the foregoing conceptual features in
computational terms. There are countless reinforcement learning algorithms, each with a distinctive
computational pro�le. For example, the temporal-difference learning algorithm represents a computationally
e�cient way of making predictions about reward in the future. One way to improve predictions over time is to
make a prediction about an actual outcome, compare the di�erence (or error) between the two, and then update
that prediction. To borrow an example from Sutton (1988, 10), one can make a prediction on Monday about
the weather on Saturday, wait until Saturday, and then update Monday’s prediction based on the di�erence
between Monday’s prediction and Saturday’s actual weather. The temporal di�erence approach does something

6 We can take the example of making and having co�ee to help illustrate the di�erence between a state of high expected value
that is nonetheless not technically rewarding. Although only drinking a cup of co�ee itself may be intrinsically worthwhile
(rewarding), and the grinding of the beans almost certainly is not, the state-action pair of grinding the co�ee is nonetheless
associated with expected value, as it is, conditional on a certain policy, a necessary step or state-action pair on the way to
having the co�ee.

5 Thanks to Neil Rabinowitz for this formulation.
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a little neater by updating its predictions throughout. That is, it is more akin to one making a prediction on
Monday about the weather on Saturday, but then comparing Monday’s prediction to Tuesday’s prediction
about Saturday and adjusting accordingly, and so on. For instance, if Monday’s prediction for Saturday is a 90%
chance of rain, but Tuesday’s prediction for Saturday is only a 60% chance, then the temporal di�erence
approach is to lower Monday’s prediction.  7

Notably, given that di�erent problem settings present di�erent challenges, there are myriad di�erent RL
algorithms in use today. These trade o� factors such as memory consumption, computation cost, data e�ciency,
and stability; some are useful for very small environments, and others are useful for very large environments;
some for discrete action spaces, and others for continuous ones. Thus,  ‘reinforcement learning’ refers to a8

general learning problem and a suite of computational algorithms, as well as to the branch of computer science
devoted to studying them, rather than to any token solution to the problem. 

The RLDM version of reinforcement learning adds two assumptions to the basic reinforcement learning
framework. First, it assumes a relationship between reinforcement learning and the minds of biological creatures
like us. This assumption is by no means universally held: researchers in machine learning can pursue decades of
research and remain entirely agnostic regarding the role of reinforcement learning in biological agents. Similarly,
cognitive and comparative psychologists can study the nature of learning and behavior without any appeals to
the reinforcement learning framework. However, RLDM follows computational neuroscientists and other
decision scientists who suspect that reinforcement learning does, in fact, capture something special about minds
like ours. As Dayan and Niv (2008, p. 1) put it, reinforcement learning appears to o�er

More than just a computational, ‘approximate ideal learner’ theory for a�ective decision-making.
[Reinforcement learning] algorithms, such as the temporal di�erence (TD) learning rule, appear to be
directly instantiated in neural mechanisms, such as the phasic activity of dopamine neurons. That
[reinforcement learning] appears to be so transparently embedded has made it possible to use it in a
much more immediate way to make hypotheses about, and retrodictive and predictive interpretations
of, a wealth of behavioral and neural data collected in a huge range of paradigms and systems.

Notably, we are free to relax the condition that reinforcement learning is directly instantiated in the workings of
the brain. It is su�cient to say that reinforcement learning provides remarkably useful frameworks for thinking
about decision-making and selection in the mind. 

RLDM’s second assumption has to do with the subjective nature of reward. As noted above, in the basic
reinforcement learning framework, rewards are passed from the environment to the agent when an agent enters
certain states of the environment, or when the agent takes certain appropriate actions in certain appropriate
states. This external nature of reward is unproblematic in the context of machine learning because the reward is
simply designed by the researcher as a means of communicating what the researcher wants the arti�cial agent to
achieve. But things get thornier when we get to biological organisms, since it’s not clear where rewards would

8 Thanks to Neil Rabinowitz for this formulation.
7 For a more detailed discussion, see Sutton and Barto (2018, Chapter 6, and especially Example 6.1.).
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then come from. This question regarding the origin of reward in biology generates what Juechems and
Summer�eld call the paradox of reward. The issue is paradoxical, the authors contend, because, 

No external entity exists that can directly quantify the consequences of each action, like the points that
are awarded in a video game for completing levels or shooting monsters. Nor is it obvious that biological
systems have a dedicated channel for receipt of external rewards that is distinct from the classical senses.
Rather, rewards and punishments are sensory observations— the taste of an apple, the warmth of an
embrace— and so stimulus value must be inferred by the agent, not conferred by the world. In other
words, rewards must be intrinsic, not extrinsic” (2019, 837-838). 

Exactly how this conversion between sensory observations and assignments of intrinsic rewards occurs—
assuming that it occurs at all— remains the subject of lively theoretical debate. One possible explanation is that
minds like ours have evolved speci�c mechanisms that convert sensory observations into hedonic signals (e.g., see
Schultz, 2015). Another, complementary possibility is that, in addition to the evolved mechanisms for basic
rewards (e.g., food and water), human beings develop cognitive setpoints, akin to homeostatic setpoints, on
which reward amounts to a by-product of computing the distance to self-de�ned goals (e.g., such as getting
married or going to graduate school) (Juechems & Summer�eld, 2019). Here, RLDM again takes a minimal
approach, and merely assumes that minds like ours subpersonally assign subjective rewards to, e.g., sensory
observations, albeit indirectly; it remains provisionally agnostic about how this assignment takes place.

2.3 Substantiating the �rst assumption 

Finally, let’s explore the �rst assumption in more depth. In what sense does RLDM provide a distinctive,
interpretive lens for cognitive neuroscienti�c evidence? 
 
As gestured at above, arguably the most signi�cant connection is between RLDM and the reward system in the
mammalian brain. In the mid-1990s, theoretical and empirical work showed that the �ring of dopamine neurons
is closely described by the temporal di�erence learning algorithm (for narrative accounts of the discovery, see
Montague, 2006; Redish, 2013; see also, Colombo, 2014). That is, dopamine neurons �re when an organism
experiences a higher- or lower-than-expected value in association with a given state (Schultz, Dayan, &
Montague, 1997). This discovery provides the foundation for the so-called reward prediction error hypothesis of
dopamine neuron activity, which holds that “one of the functions of the phasic activity of dopamine-producing
neurons in mammals is to deliver an error signal between an old and a new estimate of expected future reward to
target areas through the brain” (Sutton & Barto, 2018, 381).  

This seminal �nding in turn led to the use of reinforcement learning methods to study the neuroscience of
vision (Hayhoe & Ballard, 2005; Hikosaka, 2000; Hickey et al., 2010), attention (Della Libera & Chelazzi, 2009;
Chelazzi et al., 2014; Anderson & Kim 2018), memory (Patil et al., 2017; Ergo, De Loof, & Verguts, 2020),
prospective memory (Krishnan & Shapiro, 1999; Katai et al., 2003; Kliegel et al.,  2005; Walter & Meier, 2014),
cognitive control (Savine & Braver, 2010; Botvinick & Braver, 2014; Chiew & Braver, 2014; Cubillo, Makwana,
& Hare, 2019) , and above all, decision-making (Sutton and Barto, 2018; Dayan and Niv 2008; Rangel,
Camerer, & Montague, 2008; Dayan 2011; Glimcher & Fehr, 2013). 
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For example, a systematic body of evidence now indicates that the reward system guides visual �xation and
saccadic eye movement, i.e., what we look at, when, and in what order (Liao & Anderson, 2020). Similarly,
reward guides what we do or don’t attend to more precisely than do either location or salience (Anderson &
Kim, 2018). Conversely, de�cits and disruptions (e.g., by addictive substances) to the reward system are not only
implicated in diseases such as Parkinson’s and Tourette’s, but also in a range of psychiatric disorders, including
depression (Huys, Daw, & Dayan, 2015) and addiction (Hyman, 2005; Redish, Jensen, & Johnson, 2008;
Redish, 2013). Arguably, methods from reinforcement learning thus represent an important and, to date,
under-utilized framework for elucidating the nature and mechanisms underlying selection between competing
states of a�airs across a range of ‘low’- as well as ‘high-level’ kinds of cognitive processing. 

When we say there’s something special about RLDM, then, proponents tend to point to one or both of the
following considerations. First, reinforcement learning algorithms successfully predict and characterize the
workings of the reward system; by contrast, other approaches, including predictive processing (see Clark, this
volume), often provide merely retrodictive explanations of known phenomena. 

Second, the reward system appears to play an outsized role in a range of cognitive capacities, from sensation
through to economic choice. The question is, what’s the best way of characterizing this role of reward and value
in the mind, from a philosophical point of view?  

3. Valuation

3.1 Overview 

In principle, the role of reward can be characterized at multiple levels of explanation and across multiple,
co-dependent theoretical domains, including in computational terms, cellular and systems neuroscienti�c terms,
cognitive neuroscienti�c and neuroeconomic terms, and psychological and behavioral terms (Hochstein, 2016).
For instance, as discussed above, we can capture the role of reward and value in computational terms using
methods from reinforcement learning (for an overview, see Sutton & Barto, 2018; though see also hybrid
approaches, such as that put forward in Gershman, 2015). Or again, following the Schultz, Dayan, & Montague
(1997) discovery, we can characterize reward and value in cellular and system neuroscienti�c terms, both in
terms of dopaminergic functioning as well as in terms of the more general, system-level neural analyses of the
reward system in the brain. At a ‘higher’ level still, we can characterize reward and value in cognitive
neuroscienti�c and neuroeconomics terms, drawing on behavioral experiments and fMRI data, and using
constructs such as ‘decision-making,’ ‘motivation,’ and ‘willingness-to-pay.’ And so on. 

In what follows, I characterize the role of reward and value in the mind at roughly a ‘conceptual’ level of
explanation, i.e., at a coarseness of grain typical in the philosophy of mind. Accordingly, my argument also
broadens out at this stage, moving from the speci�cs of RLDM and associated empirical evidence to a more
traditional, philosophical characterization— namely, to characterize a cognitive process I’ll call valuation. This is
essential for future work in the philosophy of mind, e.g., to enable us to distinguish and understand the
relationship between, say, valuation and the philosophical folk psychological notion of desire (for work in this
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spirit, see Schroeder, 2004; Arpaly & Schroeder, 2014 ), or again, to enable us distinguish and understand the
relationship between, valuation and the various notions of affect, mood, and emotion (for a philosophical
discussion of emotion see, e.g., Scarantino & de Sousa, 2021).

In this way, the resulting characterization of valuation in some cases complements and in some cases revises the
traditional conceptual machinery used to describe and understand the mind and minds like ours.

3.2 Characterising valuation 

Recall from the previous section that in basic reinforcement learning, reward is some quantity assigned to
represent the intrinsic desirability to each state (or to taking each action in each state). Further, this intrinsic
desirability assigned to each state (or taking each action in each state), or reward, can be contrasted with the
notion of value, which captures the expected, discounted, sum of future reward associated with each state (or
each action in each state), conditional on a certain policy of action. So, while co�ee is intrinsically rewarding for
me in the morning, grinding co�ee or getting milk is not— but these latter states are nonetheless valuable to the
degree that, conditional on my action policy, they lead me to my cup of co�ee.

Recall in addition that, according to RLDM, the reward hypothesis captures something special about the mind,
namely, the substantial role of the reward system in the mammalian brain, where the reward system is itself
implicated in a wide range of ‘low-’ and ‘high-level’ cognitive capacities.

I argue that if both of these claims are right, then we can use RLDM and the corresponding empirical evidence
to revise our philosophical understanding of what the mind is doing, how it is going about it, and what this kind
of processing is for.

Let’s start with the ‘what.’ Very simply, I argue, the mind engages in valuation. Informally, I take this to mean 
that the mind continually attributes reward and value to a  range of sensations, perceptions, actions and so on -
essentially forming a kind of evaluative layer over the features of its experience. 

In more technical terms, I argue that valuation refers to the subpersonal attribution of goal- and
context-dependent subjective reward and value to internal and external stimuli. Valuation is subpersonal in the
sense that it demarcates a causal rather than an intentional mechanism (Dennett, 1969; Drayson, 2014). This is
key: the mind routinely, mechanistically assess states of a�airs as better or worse. Further, it is goal- and9

context-dependent in the sense that what is rewarding or valuable depends on what the agent is trying to do, and
when and where the agent is trying to do it. For example, if my goal is to wake up and have a productive day,
then drinking a cup of co�ee �rst thing in the morning is valuable. But if my goal is to rest and get a good night’s
sleep, then drinking a cup of co�ee late at night is not. It is subjective in the sense that what is considered
rewarding and/or valuable is agent-relative; while this author �nds co�ee rewarding, many individuals do not.
And the term stimuli here is intended as a broad catchall: reward and value can be attributed to external objects

9 This subpersonal process very likely plays a role in our personal-level experiences of ‘value,’ ‘valuing,’ and ‘values,’ e.g., see
foregoing discussion of willingness-to-pay. But the focus throughout the remainder of this paper will be on the nature and
workings of the subpersonal process.
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(commodities), states,  state-action pairs, and action policies, but also to internal states of a�airs, such as
experiences, feelings, and moods. 

In terms of the ‘how,’ valuation is realized in a number of complementary ways. One important way is through
the retroactive attribution of value to states that lead to reward in subsequent states. Recall the task of walking to
a nearby door in the previous section. Upon arriving at the door for the �rst time and therefore receiving or
experiencing the reward, there occurs a subpersonal, retroactive attribution of value to the antecedent states that
then led to the reward. That is, there occurs a subpersonal, retroactive attribution of value to the penultimate
state, derived from the reward associated with arriving at the ‘ultimate’ state, i.e., the door. This retroactive
attribution in turn continues to feed backwards, i.e., there occurs the subpersonal, retroactive attribution to the
antepenultimate state, and so on. In this way, ongoing interactions continue to revise the value attributed to a
given state or state-action pair, upgrading or downgrading as needed. For instance, if the baby plover �nds a new
trove of bugs, the value of a certain path leading to the beach can increase. But values can also be computed ‘on
the �y’ (Balleine & Dickinson, 1998; see more recently Langdon, Sharpe, Schoenbaum, & Niv, 2018),  relative to
features of context  (e.g., Hunter & Daw, 2021), and with respect to imagined or expected future states (Gagne
& Dayan, 2021; Russek, Momennejad, Botvinick, Gershman, & Daw, 2021).  For instance, if the newcomer to
London is traveling from Green Park to Russell Square and Holborn Station is under renovation, the value of
taking the blue line decreases.

Here, the main idea is that the mind continually assesses and reassesses states of a�airs as better or worse,
constructing and casting, to put things in fairly �gurative terms, a kind of evaluative fabric over its states and
experiences.

3.3 Valuation as selection

But it’s the ‘what for’ of valuation that is of most interest (as these things tend to go).

The function of valuation in minds like ours, I argue, is to solve for what I call the selection problem, or the
problem of selecting between one or more competing alternatives. The selection problem can be described in
general terms, insofar as the mind must continually select what to compute, what to sense, what to perceive, what
to attend to, what to choose (as an action in the world), and so on. Technically characterized examples of the
selection problem include selecting between multiple action controllers (Daw et al., 2005), the problem of
perceptual decision-making (Gold & Shadlen, 2007), and the problem of action-based decision-making
(Glimcher, 2011). Crucially, as the span of these examples should illustrate, the selection problem occurs
ubiquitously in the mind. It occurs at every major stage of mental processing, from sensation and computation
to action, and at every level of description of mental processing, from the sub-personal to the personal.

A central, underappreciated upshot of the RLDM’s experiment in mind design, I argue, is that the mind selects
between available computations, sensations, perceptions and so on conditional on attributions of reward and
value.
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To illustrate, consider the unlikely phenomenon of binocular rivalry. Binocular rivalry occurs when one
stimulus is shown to one eye at the same time as a di�erent stimulus is shown to the other. The resulting
experience is of the two images alternating back and forth; perceptual dominance in binocular rivalry refers to
one of the two images appearing �rst, or for a longer period of time during the overall duration of the experience
of alternation.  Notably, both rewarded stimuli and rewarded percepts result in perceptual dominance; that is,
participants are more likely to perceive stimuli and percepts associated with a reward (Balcetis, Dunning, &
Granot, 2012; Wilbertz, Van Slooten, & Sterzer, 2014; Marx & Einhauser, 2015; Haas, 2021). Moreover, a
complementary phenomenon occurs for punished percepts: participants experience perceptual dominance for
the non-punished percept in the pair, suggesting that the reward or punishment is not simply additional
information taken into consideration by Bayes-like predictive processing, as a predictive processing view might
suggest (Wilbertz, Van Slooten, & Sterzer, 2014). In this way, the selection of the perceptually dominant percept is
directly conditional on the attribution of reward and value in the binocular rivalry paradigm, i.e., on valuation.
Participants tend to perceive the most rewarded or valuable stimulus or percept. Hence, when it comes to the
cognitive task of selecting ‘what to perceive,’ valuation plays a driving role.

But valuation doesn’t just play a driving role in perception. Rather, when I say that the mind is fundamentally
evaluative in nature, I mean that we sense, perceive, and attend to the features of our environment conditional on
our distributions of reward and value attribution, as when we attend to rewarded rather than salient or
location-based percepts (Anderson and Kim, 2018).  We remember, remember to remember (remember
prospectively) conditional on reward (for a useful review, see Walter & Meier, 2014). We allocate our cognitive
resources (in cognitive control) conditional on our distributions of reward and value attributions, as shown by
the expected value of control account of cognitive control (Musslick, Shenhav, Botvinick, & Cohen, 2015).  And
we decide, choose, and plan our future actions conditional on our distributions of reward and value attributions,
as when prior reward experience determines a participant’s willingness-to-pay in everyday economic transactions
(Plassman, O’Doherty, & Rangel, 2007).

Conversely, when the reward system is impaired, for example, through cell death in the basal ganglia
(Parkinson’s) or due to allostatic shift (substance addiction), there are direct, corresponding de�cits in selection:
e.g., in motor tremors, mood disorders, and executive dysfunction in Parkinson’s disease, and e.g., in cravings,
impaired control, and continued use in spite of overwhelmingly negative consequences in substance addiction
(for extended discussions, see Redish, 2004; Redish, Jensen, & Johnson, 2008). And so on. 

To emphasize, I do not argue that selection is  synonymous with valuation. But selection is conditional on
valuation: we select or avoid what we learn is better or worse over a life-long course of iteration.  Moreover,10

10 It is worth emphasizing that valuation needn’t be ‘online’ in order to guide selection. On the contrary, as in the foregoing
example of retroactive attribution, selection can and often is informed by past reward and value attributions. And this
‘carried over’ feature of valuation as selection in turn has important implications for the nature of self-regulation and
control, insofar as it implies that at least in many cases, we do not have direct, intrapsychic control over our motivational
states (see Haas, in prep). Thanks to Neil Rabinowitz for pressing me on this point.
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valuation is deployed and redeployed across a range of selection problems in the mind, including selection in
sensation, perception, attention, and cognition generally.11

Hence, where I suggested above that the reward system "in�uences” or is “implicated in” a range of cognitive
processing, I can now be much more speci�c: valuation guides selection across the range of mental processing
that occurs in minds like ours.

4. The weaker thesis 

What, then, of the evaluative thesis, or the view that the mind is fundamentally evaluative in nature? 

At the outset, I suggested that on the weaker version of the view, the mind encompasses both thinking and
evaluation. That is, according to the weaker thesis, the mind does something like ‘see’ two competing stimuli in
binocular rivalry, and ‘perceive’ only one of those stimuli at a time, resulting in the signature perceptual
experience of perceptual alternation. In a standard case, we might also say than an individual could go on to
draw on this perception to form beliefs, draw inferences, and perform all the other kinds of cognitive tasks that
are typically associated with, as Haugeland put it, (“thinking, intellect,” (Haugeland, Chapter 2, this volume), or
as others put it, “intelligence.”

But, on the weaker version of the evaluative thesis, the mind also does something else, without which it would
not be the mind it is— namely, it continually assesses things as better or worse, conditional on certain goals and
aspects of the environment, in the ways described above, i.e., subpersonally, through various forms of
attribution, in a two-place relation, and so on. 

In this sense, the weaker thesis doesn’t exactly try to unseat the traditional conception of thinking mind but
rather complements it by describing a fundamental cognitive process that has heretofore been relatively
overlooked.  

I defend the weaker thesis on three grounds.

First, evidence bears out the positive features of the view. A survey of mature, textbook neuroscience suggests
that the reward system is indeed implicated in basic biophysical processes such as eating, drinking, and
reproduction; in basic cognitive processes such as working memory, executive functioning and time estimation;
and, crucially,  in all learned behaviors, ranging from learning-based sensory processing through planning,
strategizing, and second-order preference-formation (for a concise review, see Arias-Carrión, Stamelou,
Murillo-Rodríguez, Menéndez-González, & Pöppel, 2010; for extended discussions, see Glimcher & Fehr,
2013). Equally, the reward system is implicated in the kinds of ‘sophisticated’ cognitive processes that are often of
interest to philosophers, including in emotional responding, social preference formation, speech and language

11 And has been for millions of years: see, e.g., the role of reinforcement signaling in Drosophila (Waddell, 2013; see also
Haas & Klein, 2020). Though this is beyond the scope of the current paper, valuation appears to be a highly conserved
cognitive process.
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processing (see especially Simonyan, Horwitz, & Jarvis, 2012; and also Ripolles et al., 2014; McNamara &
Durso, 2018), and generalization. 

Second, predictions made by the weaker thesis are better supported than predictions made by competing
theoretical accounts, e.g., by accounts in the predictive processing space or accounts emphasizing the role of
emotions in our cognitive processes. Returning to the example of binocular rivalry o�ers a good example of the
former comparison. The weaker thesis predicts that rewards (and negative rewards, i.e., punishments) should
in�uence perceptual dominance in binocular rivalry; predictive processing accounts make no such prediction,
and in fact struggle to explain this type of �nding post hoc. But as noted above, reward modulates perceptual
dominance in binocular rivalry (Haas, 2021). 

An example of the latter type of comparison might involve competing explanations of psychopathy. The weaker
thesis proposes that psychopathy is a disorder of valuation, perhaps involving an inability to predict negative
outcomes, and/or an inability to update appropriately following negative experiences (E.g., see Oba, Katahira, &
Ohira, 2021). By contrast, on an account of psychopathy emphasizing emotions, individuals with psychopathic
traits fundamentally su�er from a disorder of empathy, or the ability to respond appropriately to emotional
stimuli (Hare, 1998; Soderstrom, 2003; Blair, 2007; Brook & Kosson, 2013; Domes, Hollerbach, Vohs, Mokros,
& Habermeyer, 2013; Blair, 2018). Accordingly, the former but not the latter account predicts that individuals
with psychopathic traits will exhibit de�cits in basic economic decision-making. Here, some evidence seems to
bear out the weaker thesis: controlling for other de�cits, psychopaths appear to perform signi�cantly worse on
the Iowa Gambling Task (Mahmut, Homewood, & Stevenson, 2008) as well as on other types of risky
decision-making (e.g., Takahashi, Takagishi, Nishinaka, Makin, & Fukui, 2014).
 
Third, deficits in the reward system corroborate the view. Here, standard cases again emerge in the
computational and cognitive neuroscienti�c literature, including regarding the aforementioned Parkinson’s and
Tourette’s diseases, as well as diseases such as Major Depressive Disorder and di�erent categories of substance
addiction. Take the case of prospective memory, or the ability to ‘remember to remember.’ I suggested above
that, like so many of our cognitive capacities, prospective memory  is conditional on valuation; we are more
likely to ‘remember to remember’ something in the future when it’s associated with a reward. For example,
participants show higher prospective memory performance for tasks that were associated with a monetary
reward as compared to those that were not (Krishnan and Shapiro, 1999).  By extension, consistent with the
weaker thesis, we would expect to see deficits on prospective memory tasks among individuals with Parkinson’s
disease. The reasoning goes like this: prospective memory is conditional on valuation, valuation by realized in
the reward system in the brain, and the reward system is compromised in Parkison’s disease. Hence, we should
expect de�cits on prospective memory tasks among individuals with Parkinson’s. 

And this is indeed what we �nd. Individuals with Parkinson’s  exhibit impairment in several core stages of
prospective memory, most notably when it comes to the phases of intention formation and intention initiation
(Katai et al., 2003; Kliegel et al.,  2005; Kliegel, Altgassen, Hering, & Rose, 2011; Pirogovsky, Woods, Filoteo, &
Gilbert, 2012; Ramanan & Kumar, 2013; D’Iorio, et al., 2019; Coundouris et al., 2020; though see Zabberoni,
Carlesimo, Peppe, Caltagirone, & Costa, 2017; Kinsella, Pike, Cavuoto, & Lee, 2018). Analogous arguments
propose that impaired reward valuation, i.e., the dysfunctional underestimation, downgrading, or failure to
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update regarding rewards in individual with Major Depressive Disorder (Takamura et al., 2017; Rupprechter,
Stankevicius, Huys, Steele, & Seriès, 2018; Rupprechter, Stankevicius, Huys, Seriès, & Steele, 2021) may explain
why this demographic also exhibit systematic de�cits in prospective memory tasks (Altgassen, Kliegel, & Martin,
2009; Chen, Zhou, Cui, & Chen, 2013; Li, Weinborn, Loft, & Maybery, 2013; McFarland & Vasterling, 2018).
And so on. The basic structure of this second kind of argument, then, is to identify a cognitive capacity
modulated by valuation; identify a disease that either upregulates or downregulates valuation (via the reward
system) and then determine whether, as predicted by the weaker thesis, individuals with the relevant disorder
also exhibit de�cits on the corresponding cognitive capacity.

Finally, a common feature of all three sets of reasons should by this stage have become clear: namely, that kind of
evidence is inductive in nature, which is to say that each piece catalogs a confirming instance of the weaker thesis.
Saying ‘valuation is ubiquitous in the mind’ is akin to saying ‘lots and lots of swans are white.’ This means that
the weaker thesis can be disconfirmed - namely, by uncovering a meaningful number of instances where cognitive
selection is clearly not, at least in part, underwritten by valuational processes. But this is in fact precisely why I
defend the weaker thesis. The normative principles originating in RLDM, together with evidence from the
decision sciences, enable us to make a principled but nonetheless fundamentally empirical claim about a certain
process in the mind - where this claim already brings with it signi�cant high-level implications for understanding
the workings of the mind.

By contrast, these same principles and evidence, to my mind, will struggle to bear out  something conceptually
stronger, including a universal claim regarding the role of valuation in the mind, which I discuss next.

5. The stronger thesis 

Whereas the weaker thesis holds that valuation is empirically ubiquitous in the mind, the stronger thesis
proposes that the mind is at bottom evaluative in nature.

There are a couple of ways of understanding the stronger thesis. It can mean that valuation as selection guides all
cognitive selection in the mind, such that valuation amounts to grand unifying theory for exploring the nature of
the mind. This is the stronger, universal version of the weaker thesis. And it can mean that valuation is
ontologically prior to and thus conceptually necessary for understanding the mind’s perceptual, cognitive, and
motor processes. We can call the former claim the scope commitment and the latter the priority commitment.

Prima facie, one might assume that a proponent of both RLDM and valuation would by extension directly
subscribe to one or both of these commitments. As we will see, they may hold some theoretical advantages over
the weaker thesis. They are also nominally more in line with the prominent ‘Reward is Enough’ hypothesis
(Silver, Singh, Precup, & Sutton, 2021). Nonetheless, I don’t commit to either.

So, why not go whole hog and defend the stronger version of the evaluative view? Let’s start with the scope
commitment.

5.1 The scope commitment  

13



As its name suggests, the scope commitment is a supercharged version of the weaker thesis. Whereas the weaker
thesis holds that valuation is ubiquitous in the mind, the scope commitment holds that valuation lies at the heart
of all cognitive capacities. Hence, where the weaker thesis suggests that  ‘lots of swans are white,’ the scope
commitment rounds up to claim that ‘all swans are white,’ period. 

So formulated, the central challenge with the scope commitment should quickly become obvious: the scope
commitment requires defending a universal claim, and no amount of evidence will get us there, as there’s always
the possibility of an untested counterexample somewhere. The scope commitment is just too easily falsi�ed.12

Moreover, it simply doesn’t strike me as likely that valuation underwrites everything of interest in the mind. The
evolved mind is a messy artefact, and at a bare minimum, we can expect ‘spandrel’ capacities that don’t rely on
valuation in any interesting sense. I can get plenty of mileage out of the weaker thesis without needing to extend
it to the logical limit.

This leaves us with the priority commitment.

5.2 The priority commitment 

The priority commitment is trickier to deal with. The priority commitment makes an ontological claim about
the mind,  analogous to action-�rst theories in cognitive science, namely, suggesting that our ‘thinking’ processes
are conditional on our evaluative processes (for a review of action-�rst theories, see Briscoe & Grush, 2020). That
is, we have the memories, beliefs and so on that we do in virtue of our assessments of better or worse.

To take a concrete example of this kind of theorizing, one might argue that the normative function of episodic
memory is not to encode a past event ‘as it actually happened,’ but rather to encode a past event in light of what
it might be useful for an agent to remember  - and by extension, do - in the future.  

Adopting the priority commitment enables us to make top down rather than inductive predictions regarding
the workings of various cognitive capacities. For instance, to continue with the case of episodic memory,
adopting the scope commitment can help us make predictions about what will and won’t be remembered, or
why individuals experience �ashbulb memories (if indeed they do). On the priority commitment, �ashbulb
memories may contain such an impressive level of detail because, following a traumatic event, it is not clear
which features of the preceding event are most relevant to future action, such that ‘all’ of them are carried
forward for future learning. This interpretation draws a close connection between �ashbulb memories and the
more general credit  assignment problem in reinforcement learning, or the problem of determining which
actions lead or led to a given outcome (Minsky, 1961; Sutton & Barto, 2018). 

12 Thanks to Carl Craver for helping me drill down on this point.

14



This kind of hypothesis generation is certainly appealing. It’s also pretty tempting to defend the priority of
valuation as a way of counteracting the standard emphases placed on computation (and predictive processing!)
in the philosophical and cognitive scienti�c literatures. Still, I stop short of doing so, for two reasons.

First, where the scope commitment is too easily falsi�ed, the priority commitment is, conversely, unfalsi�able. If
I can describe any cognitive or behavioral phenomenon of interest in terms of the maximization of reward, it
becomes more di�cult to test the hypothesis.

Second, ‘grand unifying’ theories of mind encourage us to recast broad swathes of empirical evidence into a
single explanatory framework. However, the resulting explanations are sometimes less than illuminating.
Moreover, surely some explanatory richness is lost if everything about the mind is ultimately, say, ‘imagination,’
‘attention,’ or ‘prediction-error minimization.’ In some cases, these kinds of theories even run the risk of
discounting evidence that is at odds with their theoretical commitments (Haas, 2021).

There’s no reason to expect that the priority commitment would avoid such a fate. To try and keep to a
�ne-grained and falsi�able view, I thus stick with the weaker thesis.

5.3 ‘Reward is enough’  13

Finally, let me draw out a few points of comparison between the evaluative thesis explored in this paper and the
prominent and somewhat controversial ‘reward is enough’ (RIE) hypothesis (Silver, Singh, Precup, & Sutton,
2021). RIE holds that reward maximization is enough to “drive behavior that exhibits most if not all abilities that
are studied in natural and arti�cial intelligence” (Silver, Singh, Precup, & Sutton, 2021, 1, added emphasis
mine). Here, reward is understood in the sense put forward by the basic reinforcement learning framework
introduced in Section 2.

Like the stronger thesis, RIE can be understood as involving a couple of di�erent claims. First, RIE can be
understood as the epistemological claim that reward maximization is enough to understand many - if not all -
features of intelligence. Implicit in this claim is that reward maximization provides better and richer explanations
than other rival scienti�c theories do. Second, RIE makes the ontological claim that intelligent processes just are
reward maximization processes, where “intelligence, and its associated abilities, can be understood as subserving
the maximization of reward by an agent acting in its environment” (Silver, Singh, Precup, & Sutton, 2021, 5).
And third, RIE makes that causal claim that reward maximization is su�cient to drive the kinds of abilities we
associate with behavior, such as gathering nuts or playing Go. According to this last claim, the forms of
intelligence “implicitly emerge” through and as a direct result of the process of reward maximization. By
extension, the authors contend, “a good reward-maximizing agent, in the service of achieving its goal, could
implicitly yield all the abilities associated with intelligence that have been considered in natural and arti�cial
intelligence” (Silver, Singh, Precup, & Sutton, 2021, 5).

13 Thanks to Sean and Legassick and Hado van Hasselt for helpful discussions of the REI thesis.
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What is the relationship between the evaluative thesis and RIE? At least on their face, the stronger thesis’s
priority commitment and RIE’s epistemological claim appear consistent: the role of reward provides a uni�ed
and valuable way of understanding the mind and the nature of intelligence.

But the evaluative thesis and REI come apart on the ontological and causal fronts. At the end of the day, even
the stronger thesis amounts to a pair of claims about the function and scope of a cognitive process in the mind. By
contrast, RIE suggests that all intelligence processing is an expression or byproduct of reward maximization where,
at bottom, the pursuit of reward drives the emergence of all other kinds of intelligence. These start to look like
two very di�erent kinds of arguments.

This being said, one softening feature of RIE is that it makes a pragmatic bet regarding the role of reward
maximization in generating diverse forms of intelligence in arti�cial agents. That is, the authors of RIE propose
that pure reinforcement learning frameworks will be su�cient to arrive at arti�cial general intelligence, without
the need for handcrafting or pre-training. The authors acknowledge, 

We do not o�er any theoretical guarantee on the sample e�ciency of the reinforcement learning agent.
Indeed, the rate at and degree to which abilities emerge will depend upon the speci�c environment,
learning algorithm, and inductive biases; furthermore one may construct arti�cial environments in
which learning will fail. Instead, we conjecture that the solution strategy of learning to maximize reward
via interaction will be ‘enough’ for intelligence, and its associated abilities, to emerge in practice (Silver,
Singh, Precup, & Sutton, 2021, 10).

In this sense, by adopting a kind of maker’s approach (Craver, 2021), RIE is at least indirectly falsi�able through
e�orts to leverage reward maximization to design arti�cial intelligence.14

6.  Conclusion 

At the outset of this chapter, I proposed that RLDM is an instance of mind design so successful that we have
not quite �gured out what to do with it yet. I further argued that, in light of this success, we should move
beyond characterizing the mind as exhaustively constituted by “thinking, intellect,” as Haugeland originally put
it, and begin to recognize its fundamentally evaluative nature. At the same time, I’ve sought to distinguish my
view, which some philosophers may take to be remarkably strong, from even stronger views, which are more in
line with views held by some in the machine learning and reinforcement learning literatures. 

By way of conclusion, I want to brie�y address what Haugeland called the common complaint about arti�cial
intelligence, namely, that it cannot or may never achieve the rich interiority of everyday life, including “feelings,
emotions, ego, imagination, moods, consciousness - the whole ‘phenomenology’ of an inner life. No matter how
smart the machines become, there’s still ‘nobody home’” (this volume, p. x). Haugeland’s characterisation is
reminiscent of the traditional dichotomized conception of the mind: namely, of understanding the mind in

14 Thanks to Neil Rabinowitz for pressing me on this point.
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terms of ‘thinking’ and, well, ‘everything else’ - even if the ‘everything else’ includes a lot of the important
processes.

The notion of valuation - normatively rich, empirically substantiated - allows us to put pressure on this type of
traditional, dichotomized view. At a minimum, it challenges the idea that we can in good scienti�c conscience
continue to group together phenomena as disparate as emotions, consciousness, and ego under the heading of
‘phenomenology.’ As noted above, with a notion of valuation in place, we can, for instance, start to work out the
relationship and di�erences between valuation and the various philosophical theories of emotion, or the role of
valuation in driving instances of imagination (Gershman, Zhou, & Kommers, 2017). Moreover, without in any
way diminishing the ‘thinking’ or ‘computational’ mind, valuation brings with it new avenues for revising our
extant philosophical and psychological cognitive taxonomies (Janssen, Klein, & Slors, 2017).

More broadly, the notion of valuation challenges our assumptions regarding which aspects of mind can or
cannot be quanti�ed - and thereby understood in properly scienti�c terms. For example, in their discussion of
“intelligence” and “intelligent” processes, Silver and colleagues (2021) largely appeal to features of the
conventionally thinking mind such as perception, language, and generalization. But what the foregoing
discussion should show is that we can  also appeal to the normative principles of RLDM to better decompose
and understand those allegedly more ‘qualitative’ aspects of the mind such as valuation - and, by extension, our
personal-level capacities such motivation, cognitive control, choice, and moral cognition.

We should also carry these insights forward into our ongoing e�orts at mind design. That is, as we make
advancements toward more sophisticated arti�cial and arti�cial general intelligence, we can enrich our
understanding of the kinds of mental capacities that we can and should include in these e�orts - and we should
move past the idea of designing only ‘thinking’ machines in the traditional sense.
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