Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T04:59:05.564Z Has data issue: false hasContentIssue false

Compositionality in visual perception

Published online by Cambridge University Press:  28 September 2023

Alon Hafri
Affiliation:
Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA. alon@udel.edu; https://pal.lingcogsci.udel.edu/
E. J. Green
Affiliation:
Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA, USA. ejgr@mit.edu; https://sites.google.com/site/greenedwinj/
Chaz Firestone
Affiliation:
Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA. chaz@jhu.edu; https://perception.jhu.edu/

Abstract

Quilty-Dunn et al.'s wide-ranging defense of the Language of Thought Hypothesis (LoTH) argues that vision traffics in abstract, structured representational formats. We agree: Vision, like language, is compositional – just as words compose into phrases, many visual representations contain discrete constituents that combine in systematic ways. Here, we amass evidence extending this proposal, and explore its implications for how vision interfaces with the rest of the mind.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amir, O., Biederman, I., & Hayworth, K. J. (2012). Sensitivity to nonaccidental properties across various shape dimensions. Vision Research, 62, 3543.CrossRefGoogle ScholarPubMed
Ayzenberg, V., Kamps, F. S., Dilks, D. D., & Lourenco, S. F. (2022). Skeletal representations of shape in the human visual cortex. Neuropsychologia, 164, 108092.CrossRefGoogle ScholarPubMed
Ayzenberg, V., & Lourenco, S. F. (2019). Skeletal descriptions of shape provide unique perceptual information for object recognition. Scientific Reports, 9, 113.CrossRefGoogle ScholarPubMed
Ayzenberg, V., & Lourenco, S. F. (2022). Perception of an object's global shape is best described by a model of skeletal structure in human infants. eLife, 11, e74943.CrossRefGoogle Scholar
Block, N. (2023). The border between seeing and thinking. Oxford University Press.CrossRefGoogle Scholar
Burge, T. (2022). Perception: First form of mind. Oxford University Press.CrossRefGoogle Scholar
Cacciamani, L., Ayars, A. A., & Peterson, M. A. (2014). Spatially rearranged object parts can facilitate perception of intact whole objects. Frontiers in Psychology, 5, 482.CrossRefGoogle ScholarPubMed
Camp, E. (2018). Why maps are not propositional. In Grzankowski, A. & Montague, M. (Eds.), Non-propositional intentionality (pp. 1945). Oxford University Press.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford University Press.CrossRefGoogle Scholar
Cavanagh, P. (2021). The language of vision. Perception, 50, 195215.CrossRefGoogle ScholarPubMed
Dretske, F. I. (1981). Knowledge and the flow of information. MIT Press.Google Scholar
Feldman, J., & Singh, M. (2006). Bayesian estimation of the shape skeleton. Proceedings of the National Academy of Sciences of the United States of America, 103, 1801418019.CrossRefGoogle ScholarPubMed
Firestone, C., & Scholl, B. J. (2014). “Please tap the shape, anywhere you like”: Shape skeletons in human vision revealed by an exceedingly simple measure. Psychological Science, 25, 377386.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. MIT Press.CrossRefGoogle Scholar
Green, E. J. (2017). A layered view of shape perception. The British Journal for the Philosophy of Science, 68, 355387.CrossRefGoogle Scholar
Green, E. J. (2019). On the perception of structure. Noûs, 53, 564592.CrossRefGoogle Scholar
Green, E. J. (2022). The puzzle of cross-modal shape experience. Noûs, 56, 867896.CrossRefGoogle Scholar
Hafri, A., Bonner, M. F., Landau, B., & Firestone, C. (2020). A phone in a basket looks like a knife in a cup: Role-filler independence in visual processing. PsyArXiv. https://psyarxiv.com/jx4ygCrossRefGoogle Scholar
Hafri, A., & Firestone, C. (2021). The perception of relations. Trends in Cognitive Sciences, 25, 475492.CrossRefGoogle ScholarPubMed
Hafri, A., Gleitman, L. R., Landau, B., & Trueswell, J. C. (2023). Where word and world meet: Language and vision share an abstract representation of symmetry. Journal of Experimental Psychology: General, 152, 509527.CrossRefGoogle ScholarPubMed
Hafri, A., Trueswell, J. C., & Epstein, R. A. (2017). Neural representations of observed actions generalize across static and dynamic visual input. The Journal of Neuroscience, 37, 30563071.CrossRefGoogle ScholarPubMed
Hafri, A., Trueswell, J. C., & Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. Cognition, 175, 3652.CrossRefGoogle ScholarPubMed
Hung, C. C., Carlson, E. T., & Connor, C. E. (2012). Medial axis shape coding in macaque inferotemporal cortex. Neuron, 74, 10991113.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. Oxford University Press.CrossRefGoogle Scholar
Kovács, I., & Julesz, B. (1994). Perceptual sensitivity maps within globally defined visual shapes. Nature, 370, 644646.CrossRefGoogle ScholarPubMed
Lescroart, M. D., & Biederman, I. (2013). Cortical representation of medial axis structure. Cerebral Cortex, 23, 629637.CrossRefGoogle ScholarPubMed
Lovett, A., & Franconeri, S. L. (2017). Topological relations between objects are categorically coded. Psychological Science, 28, 14081418.CrossRefGoogle ScholarPubMed
Lowet, A. S., Firestone, C., & Scholl, B. J. (2018). Seeing structure: Shape skeletons modulate perceived similarity. Attention, Perception, & Psychophysics, 80, 12781289.CrossRefGoogle ScholarPubMed
Mandelbaum, E., Dunham, Y., Feiman, R., Firestone, C., Green, E. J., Harris, D., … Quilty-Dunn, J. (2022). Problems and mysteries of the many languages of thought. Cognitive Science, 46, e13225.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.Google Scholar
Psotka, J. (1978). Perceptual processes that may create stick figures and balance. Journal of Experimental Psychology: Human Perception and Performance, 4, 101111.Google ScholarPubMed
Quilty-Dunn, J. (2020). Concepts and predication from perception to cognition. Philosophical Issues, 30, 273292.CrossRefGoogle Scholar
Quilty-Dunn, J., & Green, E. J. (2023). Perceptual attribution and perceptual reference. Philosophy and Phenomenological Research, 106, 273298. doi: 10.1111/phpr.12847.CrossRefGoogle Scholar
Rissman, L., & Majid, A. (2019). Thematic roles: Core knowledge or linguistic construct? Psychonomic Bulletin & Review, 26, 18501869.CrossRefGoogle ScholarPubMed
Strickland, B. (2017). Language reflects “core” cognition: A new theory about the origin of cross-linguistic regularities. Cognitive Science, 41, 70101.CrossRefGoogle ScholarPubMed
Sun, Z., & Firestone, C. (2022a). Beautiful on the inside: Aesthetic preferences and the skeletal complexity of shapes. Perception, 51, 904918.CrossRefGoogle ScholarPubMed
Sun, Z., & Firestone, C. (2022b). Seeing and speaking: How verbal “description length” encodes visual complexity. Journal of Experimental Psychology: General, 151, 8296.CrossRefGoogle ScholarPubMed
Van Tonder, G. J., Lyons, M. J., & Ejima, Y. (2002). Visual structure of a Japanese Zen garden. Nature, 419, 359360.CrossRefGoogle ScholarPubMed
Wilder, J., Feldman, J., & Singh, M. (2011). Superordinate shape classification using natural shape statistics. Cognition, 119, 325340.CrossRefGoogle ScholarPubMed
Wilder, J., Feldman, J., & Singh, M. (2016). The role of shape complexity in the detection of closed contours. Vision Research, 126, 220231.CrossRefGoogle ScholarPubMed
Wurm, M. F., & Lingnau, A. (2015). Decoding actions at different levels of abstraction. Journal of Neuroscience, 35, 77277735.CrossRefGoogle ScholarPubMed
Yousif, S. R. (2022). Redundancy and reducibility in the formats of spatial representations. Perspectives on Psychological Science, 17, 17781793.CrossRefGoogle ScholarPubMed