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Abstract

An agent often has a number of hypotheses, and
must choose among them based on observations,
or outcomes of experiments. Each of these obser-
vations can be viewed as providingevidencefor
or against various hypotheses. All the attempts to
formalize this intuition up to now have assumed
that associated with each hypothesish there is
a likelihood functionµh, which is a probabil-
ity measure that intuitively describes how likely
each observation is, conditional onh being the
correct hypothesis. We consider an extension of
this framework where there is uncertainty as to
which of a number of likelihood functions is ap-
propriate, and discuss how one formal approach
to defining evidence, which views evidence as a
function from priors to posteriors, can be gener-
alized to accommodate this uncertainty.

1 Introduction

An agent often has a number of hypotheses, and must
choose among them based on observations, or outcomes of
experiments. Each of these observations can be viewed as
providingevidencefor or against various hypotheses. The
following simple example illustrates the situation.

Example 1.1 Suppose that Alice and Bob each have a
coin. Alice’s coin is double-headed, Bob’s coin is fair.
Charlie knows all of this. Alice and Bob give their coin
to some third party, Zoe, who chooses one of the coins, and
tosses it. Charlie is not privy to Zoe’s choice, but gets to
see the outcome of the toss. Charlie is interested in two
events (which are called hypotheses in this context):

A: the coin is Alice’s coin

B: the coin is Bob’s coin.

Now Charlie observes the coin land heads. What can he
say about the probability of the eventsA andB? If Charlie
has no prior probability onA andB, then he can draw no
conclusions about their posterior probability; the probabil-
ity of A could be any number in[0, 1]. The same remains
true if the coin lands heads 100 times in a row.

Clearly Charlie learns something from seeing 100 (or even
one) coin toss land heads. This has traditionally been mod-
eled in terms ofevidence: the more times Charlie sees
heads, the more evidence he has for the coin being heads.
There have been a number of ways of modeling evidence
in the literature; see [Kyburg 1983] for an overview. All of
them make use of thelikelihood function. More precisely,
they assume that for each hypothesish of interest, there is
a probabilityµh (called a likelihood function) on the space
of possible observations. In the example above, if the coin
is tossed once, the two possible observations areheads and
tails. ClearlyµA(heads) = 1/2 andµB(heads) = 1. If
the coin is tossed 100 times, then there are2100 possible
observations (sequences of coin tosses). Again,µA and
µB put obvious probabilities on this space. In particular, if
100heads is the observation of seeing 100 heads in a row,
then µA(100heads) = 1/2100 and µB(100heads) = 1.
Most of the approaches compute the relative evidence of a
particular observationob for two hypothesesA andB by
comparingµA(ob) andµB(ob).

Our goal in this paper is to understand what can be done
when an hypothesish does not determine a unique proba-
bility µh. To understand the issues that arise, consider the
following somewhat contrived variant of Example 1.1.

Example 1.2 Suppose that Alice has two coins, one that
is double-headed and one that is biased 3/4 towards heads,
and chooses which one to give Zoe. Again, Zoe chooses
either Alice’s coin or Bob’s coin and tosses it. Charlie, who
knows the whole setup, sees the coin land heads. What does
this tell him about the likelihood that the coin tossed was
Alice’s?



The problem is that now we do not have a probabilityµA

on observations corresponding to the coin being Alice’s
coin, since Charlie does not know if Alice’s coin is double-
headed or biased3/4 towards heads. It seems that there is
an obvious solution to this problem. We simply split the
hypothesis “the coin is Alice’s coin” into two hypotheses:

A1: the coin is Alice’s coin and it is double-headed

A2: the coin is Alice’s coin and it is the biased coin.

Now we can certainly apply standard techniques for com-
puting evidence to the three hypothesesA1, A2, andB.
The question now is what do the answers tell us about the
evidence in favor of the coin being Alice’s coin?

Situations like that in Example 1.2 arise frequently. For ex-
ample, consider a robot equipped with an unreliable sensor
for navigation. This sensor returns the distance to the wall
in front of the robot, with some known error. For simplic-
ity, suppose that distances are measured in integral units
0, 1, 2, . . . , and that if the wall is at distancem, then the
sensor will return a reading ofm− 1 with probability1/4,
a reading ofm with probability1/2, and a reading ofm+1
with probability1/4. Suppose the robot wants to stop if it
is exactly close to the wall, where “close” is interpreted
as being within 3 units of the wall, and go forward if it is
farther than 3 units. So again, we have two hypotheses of
interest. However, while for each specific distancem we
have a probabilityµm on sensor readings, we do not have
a probability on sensor readings corresponding to the hy-
pothesisfar: “the robot is farther than 3 from the wall”.
While standard techniques will certainly give us the weight
of evidence of a particular sensor reading for the hypothe-
sis “the robot is distancem from the wall”, it is not clear
what the weight of evidence should be for the hypothesis
far.

To examine the problem carefully, we consider one partic-
ular approach for determining the weight of evidence, due
to Shafer [1982], which is a generalization of a method ad-
vocated by Good [1950]. Let an evidence spaceE consist
of a setH of possible hypotheses, a setO of observations,
and a probabilityµh on observations for eachh ∈ H. We
take the weight of evidence for hypothesish provided by
observationob in evidence spaceE , denotedwE(ob, h), to
be

wE(ob, h) =
µh(ob)∑

h′∈H µh′(ob)
.

It is easy to see thatwE(ob, ·) acts like a probability on
H, in that

∑
h∈H wE(ob, h) = 1. With this definition,

it is easy to compute the weight of evidence for Alice’s
coin when Charlie sees heads in Example 1.1 is2/3, and
the weight of evidence when Charlie sees 100 heads is
2100/(2100 + 1). As expected, the more often Charlie sees
heads, the more evidence he has in favor of the coin being
double-headed (provided that he does not see tails).

In Example 1.2, if we consider the three hypothesesA1,
A2, andB, then the weight of evidence forA1 when Char-
lie sees heads is1/(1 + 3/4 + 1/2) = 4/9; similarly, the
weight of evidence forA2 is 1/3 and the weight of ev-
idence forB is 2/9. Since weight of evidence acts like
a probability, it might then seem reasonable to take the
weight of evidence forA (the coin used was Alice’s coin)
to be4/9 + 1/3 = 7/9. (Indeed, this approach was im-
plicitly suggested in our earlier paper [Halpern and Pucella
2003a].) But is this reasonable? A first hint that it might
not be is the observation that the weight of evidence for
A is higher in this case than it is in the case where Alice
certainly had a double-headed coin.

To analyze this issue, we need an independent way of
understanding what evidence is telling us. As observed
by Halpern and Fagin [1992], weight of evidence can be
viewed as a function from priors to posteriors. That is,
given a prior on hypotheses, we can combine the prior with
the weight of evidence to get the posterior. In particular,
if there are two hypotheses, sayH1 andH2, the weight of
evidence forH1 is α, and the prior probability ofH1 is β,
then the posterior probability ofH1 (that is, the probability
of H1 in light of the evidence) is

αβ

αβ + (1− α)(1− β)
.

Thus, for example, by deciding to perform an action when
the weight of evidence forA is 2/3 (i.e., after Charlie has
seen the coin land heads once), Charlie is assured that, if
the prior probability ofA is at least .01, then the posterior
probability ofA is at least2/11; similarly, after Charlie has
seen 100 heads, if the prior probability ofA is at least.01,
then the posterior probability ofA is at least2100/(2100 +
99).

But now consider the situation in Example 1.2. Again, sup-
pose that the prior probability ofA is at least .01. Can
we conclude that the posterior probability ofA is at least
.01(7/9)/(.01(7/9) + .99(2/9)) = 7/205? As we show,
we cannot. The calculation(αβ)/(αβ + (1 − α)(1 − β))
is appropriate only when there are two hypotheses. If the
hypothesesA1 andA2 have priorsα1 andα2 and weights
of evidenceβ1 andβ2, then the posterior probability ofA
is

α1β1 + α2β2

α1β1 + α2β2 + (1− α1 − α2)(1− β1 − β2)
,

which is in general quite different from

(α1 + α2)(β1 + β2)
(α1 + α2)(β1 + β2) + (1− α1 − α2)(1− β1 − β2)

.

Moreover, it is easy to show that ifβ1 > β2 (as is the case
here), then the posterior ofA is somewhere in the interval[

α2β2

α2β2 + (1− α2)(1− β2)
,

α1β1

α1β1 + (1− α1)(1− β1)

]
.



That is, we get a lower bound on the posterior by acting as
if the only possible hypotheses areA2 andB, and we get
an upper bound by acting as if the only possible hypotheses
areA1 andB.

In this paper, we generalize this observation by providing a
general approach to dealing with weight of evidence when
the likelihood function is unknown. In the special case
when the likelihood function is known, our approach re-
duces to Shafer’s approach. Roughly speaking, the idea
is to consider all possible evidence spaces consistent with
the information. The intuition is that one of them is the
right one, but the agent trying to ascribe a weight of evi-
dence does not know which. For example, in Example 1.2,
the evidence space either involves hypotheses{A1, B} or
hypotheses{A2, B}: either Alice’s first coin is used or Al-
ice’s second coin is used. We can then compute the weight
of evidence for Alice’s coin being used with respect to each
evidence space. This gives us a range of possible weights
of evidence, which can be used for decision making in a
way that seems most appropriate for the problem at hand
(by considering the max, the min, or some other function
of the range).

The advantage of this approach is that it allows us to con-
sider cases where there are correlations between the like-
lihood functions. For example, suppose that, in the robot
example, the robot’s sensor was manufactured at one of
two factories. The sensors at factory 1 are more reliable
than those of factory 2. Since the same sensor is used for
all readings, the appropriate evidence space either uses all
likelihood functions corresponding to factory 1 sensors, or
all likelihood functions corresponding to factory 2 sensors.

The rest of this paper is organized as follows. In Section 2,
we review Shafer’s approach to dealing with evidence. In
Section 3, we show how to extend it so as to deal with situ-
ation where the likelihood function is uncertain, and argue
that our approach is reasonable. In Section 4, we consider
how to combine evidence in this setting. We conclude in
Section 5. The proofs of our technical results are deferred
to the full paper.

2 Evidence: A Review

We briefly review the notion of evidence and its formal-
ization by Shafer [1982], using some terminology from
[Halpern and Pucella 2003b].

We start with a finite setH of hypotheses, which we take
to be mutually exclusive and exhaustive; thus, exactly one
hypothesis holds at any given time. We also have a set
O of observations, which can be understood as outcomes
of experiments that can be made. Finally, we assume that
for each hypothesish ∈ H, there is a probabilityµh (of-
ten called alikelihood function) on the observations inO.
This is formalized as anevidence spaceE = (H,O,µ),

whereH andO are as above, andµ is a likelihood map-
ping, which assigns to every hypothesish ∈ H a probabil-
ity measureµ(h) = µh. (For simplicity, we often writeµh

for µ(h), when the former is clear from context.)

For an evidence spaceE , the weight of evidence for hypoth-
esish ∈ H provided by observationob, writtenwE(ob, h),
is

wE(ob, h) =
µh(ob)∑

h′∈H µh′(ob)
. (1)

The weight of evidencewE is not defined by (1) for an ob-
servationob such that

∑
h∈H µh(ob) = 0. Intuitively, this

means that the observationob is impossible. In the litera-
ture on evidence it is typically assumed that this case never
arises. More precisely, it is assumed that all observations
are possible, so that for every observationob, there is an
hypothesish such thatµh(ob) > 0. For simplicity, we
make the same assumption here. (We remark that in some
application domains this assumption holds because of the
structure of the domain, without needing to be assumed ex-
plicitly; see [Halpern and Pucella 2003b] for an example.)

The measurewE always lies between 0 and 1, with 1 in-
dicating that the observation provides full evidence for the
hypothesis. Moreover, for each fixed observationob for
which

∑
h∈H µh(ob) > 0,

∑
h∈H wE(ob, h) = 1, and thus

the weight of evidencewE looks like a probability measure
for eachob. While this has some useful technical conse-
quences, one should not interpretwE as a probability mea-
sure. It is simply a way to assign a weight to hypotheses
given observations, and, as we shall soon see, can be seen
as a way to update a prior probability on the hypotheses
into a posterior probability on those hypotheses, based on
the observations made.

Example 2.1 In Example 1.1, the setH of hypotheses is
{A,B}; the setO of observations is simply{heads, tails},
the possible outcomes of a coin toss. From the discussion
following the description of the example, it follows thatµ
assigns the following likelihood functions to the hypothe-
ses: sinceµA(heads) is the probability that the coin landed
heads if it is Alice’s coin (i.e., if it is double-headed), then
µA(heads) = 1 andµA(tails) = 0. Similarly, µB(heads)
is the probability that the coin lands heads if it is fair, so
µB(heads) = 1/2 andµB(tails) = 1/2. This can be sum-
marized by the following table:

µ A B
heads 1 1/2
tails 0 1/2

Let
E = ({A,B}, {heads, tails},µ).

A straightforward computation shows that
wE(heads, A) = 2/3 and wE(heads, B) = 1/3. In-
tuitively, the coin landing heads provides more evidence



for the hypothesisA than the hypothesisB. Similarly,
w(tails, A) = 0 and w(tails, A) = 1. Thus, the coin
landing tail indicates that the coin must be fair. This
information can be represented by the following table:

wE A B
heads 2/3 1/3
tails 0 1

It is possible to interpret the weight functionw as a pre-
scription for how to update a prior probability on the hy-
potheses into a posterior probability on those hypotheses,
after having considered the observations made [Halpern
and Fagin 1992]. There is a precise sense in whichwE can
be viewed as a function that maps a prior probabilityµ0 on
the hypothesesH to a posterior probabilityµob based on
observingob, by applying Dempster’s Rule of Combina-
tion [Shafer 1976]. That is,

µob = µ0 ⊕ wE(ob, ·), (2)

where⊕ combines two probability distributions onH to
get a new probability distribution onH as follows:

(µ1 ⊕ µ2)(H) =
∑

h∈H µ1(h)µ2(h)∑
h∈H µ1(h)µ2(h)

. (3)

(Strictly speaking,⊕ is defined for set functions, that is,
functions with domain2H. We have definedwE(ob, ·) as
a function with domainH, but is is clear from (3) that this
is all that is really necessary to computeµ0 ⊕ wE(ob, ·) in
our case.)

Bayes’ Rule is the standard way of updating a prior prob-
ability based on an observation, but it is only applicable
when we have a joint probability distribution on both the
hypotheses and the observations, something which we did
not assume we had. Dempster’s Rule of Combination es-
sentially “simulates” the effects of Bayes’s rule. The rela-
tionship between Dempster’s Rule and Bayes’ Rule is made
precise by the following well-known theorem.

Proposition 2.2 [Halpern and Fagin 1992]Let E =
(H,O,µ) be an evidence space. Suppose thatP is a prob-
ability onH×O such thatP (H×{ob}|{h}×O) = µh(ob)
for all h ∈ H and all ob ∈ O. Let µ0 be the probabil-
ity on H induced by marginalizingP ; that is, µ0(h) =
P ({h}×O). For ob ∈ O, let µob = µ0 ⊕wE(ob, ·). Then
µob(h) = P ({h} × O|H × {ob}).

In other words, when we do have a joint probability on
the hypotheses and observations, then Dempster’s Rule of
Combination gives us the same result as a straightforward
application of Bayes’ Rule.

3 Evidence with Uncertain Likelihoods

In Example 1.1, each of the two hypothesesA andB de-
termines a likelihood function. However, in Example 1.2,
the hypothesisA does not determine a likelihood function.
By viewing it as the compound hypothesis{A1, A2}, as
we did in the introduction, we can construct an evidence
space with a set{A1, A2, B} of hypotheses. We then get
the following likelihood mappingµ:

µ A1 A2 B
heads 1 3/4 1/2
tails 0 1/4 1/2

Taking

E = ({A1, A2, B}, {heads, tails},µ),

we can compute the following weights of evidence:

wE A1 A2 B
heads 4/9 1/3 2/9
tails 0 1/3 2/3

If we are now given prior probabilities forA1, A2, and
B, we can easily use Proposition 2.2 to compute posterior
probabilities for each of these events, and then add the pos-
terior probabilities ofA1 andA2 to get a posterior proba-
bility for A.

But what if we are given only a prior probabilityµ0

for A and B, and are not given probabilities forA1

and A2? As observed in the introduction, if we define
wE(heads, A) = wE(heads, A1) + wE(heads, A2) = 7/9,
and then try to compute the posterior probability ofA
given that heads is observed by naively applying the equa-
tion in Proposition 2.2, that is, taking byµheads(A) =
(µ0 ⊕ wE(heads, ·))(A), we get an inappropriate answer.
In particular, the answer is not the posterior probability in
general.

To make this concrete, suppose thatµ0(A) = .01. Then,
as observed in the introduction, a naive application of this
equation suggests that the posterior probability ofA is
7/205. But suppose that in factµ0(A1) = α for some
α ∈ [0, .01]. Then applying Proposition 2.2, we see
that µheads(A1) = α(4/9)/(α(4/9) + (.01 − α)(1/3) +
.99(2/9) = 4α/(α + 2.01). It is easy to check that
4α/(α + 2.01) = 7/205 iff α = 1407/81300. That is,
the naive application of the equation in Proposition 2.2 is
correct only if we assume a particular (not terribly reason-
able) value for the prior probability ofA1.

We now present one approach to dealing with the problem,
and argue that it is reasonable.

Define ageneralized evidence spaceto be a tupleG =
(H,O,∆), where∆ is a finite set of likelihood mappings.
Note for future reference that we can associate with the



generalized evidence spaceG = (H,O,∆) the setS(G) =
{(H,O,µ) | µ ∈ ∆} of evidence spaces. Thus, given a
generalized evidence spaceG, we can define thegeneral-
ized weight of evidencewG to be the set{wE : E ∈ S(G)}
of weights of evidence. We often treatwG as a set-valued
function, writingwG(ob, h) for {w(ob, h) | w ∈ wG}.

Just as we can combine a prior with the weight of evidence
to get a posterior in a standard evidence spaces, given a
generalized evidence space, we can combine a prior with
a generalized weight of evidence to get a set of posteri-
ors. Given a prior probabilityµ0 on a setH of hypotheses
and a generalized weight of evidencewG , letPµ0,ob be the
set of posterior probabilities onH corresponding to an ob-
servationob and priorµ0, computed according to Proposi-
tion 2.2:

Pµ0,ob = {µ0 ⊕ w(ob, ·) | w ∈ wG}. (4)

Example 3.1 The generalized evidence space for Exam-
ple 1.2, where Alice’s coin is unknown, is

G = ({A,B}, {heads, tails}, {µ1,µ2}),

where µ1(A) = µA1 , µ2(A) = µA2 , and µ1(B) =
µ2(B) = µB . Thus, the first likelihood mapping corre-
sponds to Alice’s coin being double-headed, and the sec-
ond corresponds to Alice’s coin being biased3/4 towards
heads. ThenwG = {w1, w2}, wherew1(heads, A) = 2/3
and w2(heads, A) = 3/5. Thus, if µ0(A) = α, then
Pµ0,heads(A) = { 3α

α+2 , 2α
α+1}.

We have now given two approaches for capturing the sit-
uation in Example 1.2. The first involves refining the set
of hypotheses —that is, replacing the hypothesisA by A1

andA2—and using a standard evidence space. The second
involves using a generalized evidence space. How do they
compare?

To make this precise, we need to first define what a refine-
ment is. We say that the evidence space(H′,O,µ′) re-
fines, or is a refinement of, the generalized evidence space
(H,O,∆) via g if g : H′ → H is a surjection such
that µ ∈ ∆ if and only if, for all h ∈ H, there exists
someh′ ∈ g−1(h) such thatµ(h) = µ′(h′). That is,
taking Ph = {µ′(h′) | h′ ∈ g−1(h)}, we must have
∆ =

∏
h∈H Ph. Intuitively, the hypothesish ∈ H is re-

fined to the set of hypothesisg−1(h) ⊆ H′; moreover, each
likelihood functionµ(h) in a likelihood mappingµ ∈ ∆
is the likelihood functionµ′(h′) for some hypothesish′

refining h. We say thatG refines, or is a refinement of,
E if G refinesE via some surjectiong. For example, the
evidence spaceE at the beginning of this section (corre-
sponding to Example 1.2) is a refinement of the general-
ized evidence spaceG in Example 3.1 via the surjection
g : {A1, A2, B} → {A,B} that mapsA1 andA2 to A and
B to B. A prior µ′0 onH′ extendsa priorµ0 onH if for all
h,

µ′0(g
−1(h)) = µ0(h).

Let Ext(µ0) consist of all priors onH′ that extendµ0. Re-
call that given a setP of probability measures, thelower
probabilityP∗(U) of a setU is inf{µ(U) | µ ∈ P} and its
upper probabilityP∗(U) is sup{µ(U) | µ ∈ P} [Halpern
2003].

Proposition 3.2 LetE = (H′,O,µ) be a refinement of the
generalized evidence spaceG = (H,O,∆) via g. For all
ob ∈ O and allh ∈ H, we have

(Pµ0,ob)∗(h) =

{µ′0 ⊕ wE(ob, ·) | µ′0 ∈ Ext(µ0)}∗(g−1(h))

and

(Pµ0,ob)∗(h) =

{µ′0 ⊕ wE(ob, ·) | µ′0 ∈ Ext(µ0)}∗(g−1(h)).

In other words, if we consider the sets of posteriors ob-
tained by either (1) updating a prior probabilityµ0 by the
generalized weight of evidence of an observation inG or
(2) updating the set of priors extendingµ0 by the weight of
evidence of the same observation inE , the bounds on those
two sets are the same. Therefore, this proposition shows
that, given a generalized evidence spaceG, if there an ev-
idence spaceE that refines it, then the weight of evidence
wG gives us essentially the same information aswE . But is
there always an evidence spaceE that refines a generalized
evidence space? That is, can we always understand a gen-
eralized weight of evidence in terms of a refinement? As
we now show, we cannot always do this.

Let G be a generalized evidence space(H,O,∆). Note
that if E refinesG then, roughly speaking, the likelihood
mappings in∆ consist of all possible ways of combining
the likelihood functions corresponding to the hypotheses in
H. We now formalize this property. A set∆ of likelihood
mappings isuncorrelatedif there exist sets of probability
measuresPh for eachh ∈ H such that

∆ =
∏
h∈H

Ph = {µ | µ(h) ∈ Ph for all h ∈ H}.

(We say∆ is correlatedif it is not uncorrelated.) A gen-
eralized evidence space(H,O,∆) is uncorrelated if∆ is
uncorrelated.

Observe that if(H′,O,µ′) refines(H,O,∆) via g, then
(H,O,∆) is uncorrelated since, as observed above,∆ =∏

h∈H Ph, wherePh = {µ′(h′) | h′ ∈ g−1(h)}. Not only
is every refinement uncorrelated, but every uncorrelated ev-
idence space can be viewed as a refinement.

Proposition 3.3 Let G be a generalized evidence space.
There exists an evidence spaceE that refinesG if and only
if G is uncorrelated.



Thus, if a situation can be modeled using an uncorrelated
generalized evidence space, then it can also be modeled by
refining the set of hypotheses and using a simple evidence
space. The uncorrelated case has a further advantage. It
leads to simple formula for calculating the posterior in the
special case that there are only two hypotheses (which is
the case that has been considered most often in the litera-
ture, often to the exclusion of other cases).

Given a generalized evidence spaceG = (H,O,∆) and the
corresponding generalized weight of evidencewG , we can
defineupperandlowerweights of evidence, determined by
the maximum and minimum values in the range, somewhat
analogous to the notions of upper and lower probability.
Define theupper weight of evidence functionwG by taking

wG(ob, h) = sup{w(ob, h) | w ∈ wG}.

Similarly, define thelower weight of evidence functionwG
by taking

wG(ob, h) = inf{w(ob, h) | w ∈ wG}.

These upper and lower weights of evidence can be used to
compute the bounds on the posteriors obtained by updating
a prior probability via the generalized weight of evidence
of an observation, in the case whereG is uncorrelated, and
when there are two hypotheses.

Proposition 3.4 Let G = (H,O,∆) be an uncorrelated
generalized evidence space.

(a) The following inequalities hold:

(Pµ0,ob)∗(h) ≤
wG(ob, h)µ0(h)

wG(ob, h)µ0(h) +
∑

h′ 6=h

wG(ob, h′)µ0(h′)
; (5)

(Pµ0,ob)∗(h) ≥
wG(ob, h)µ0(h)

wG(ob, h)µ0(h) +
∑

h′ 6=h

wG(ob, h′)µ0(h′)
. (6)

If |H| = 2, we get equalities in(5) and (6).

(b) The following equalities hold:

wG(ob, h) =
(Ph)∗(ob)

(Ph)∗(ob) +
∑

h′ 6=h

(Ph′)∗(ob)
;

wG(ob, h) =
(Ph)∗(ob)

(Ph)∗(ob) +
∑

h′ 6=h

(Ph′)∗(ob)
,

wherePh = {µ(h) | µ ∈ ∆}, for all h ∈ H.

Thus, if have an uncorrelated generalized evidence space
with two hypotheses, we can compute the bounds on the
posteriorsPµ0,ob in terms of upper and lower weights of
evidence using Proposition 3.4(a), which consists of equal-
ities in that case. Moreover, we can compute the upper
and lower weights of evidence using Proposition 3.4(b). As
we now show, the inequalities in Proposition 3.4(a) can be
strict if there are more than two hypotheses.

Example 3.5 Let H = {D,E, F} andO = {X, Y }, and
consider the two probability measuresµ1 andµ2, where
µ1(X) = 1/3 andµ2(X) = 2/3. Let G = (H,O,∆),
where∆ = {µ | µ(h) ∈ {µ1, µ2}}. Clearly,∆ is uncorre-
lated. Letµ0 be the uniform prior onH, so thatµ0(D) =
µ0(E) = µ0(F ) = 1/3. Using Proposition 3.4(b), we can
compute that the upper and lower weights of evidence are
as given in the following tables:

wE D E F
X 1/2 1/2 1/2
Y 1/2 1/2 1/2

wE D E F
X 1/5 1/5 1/5
Y 1/5 1/5 1/5

The uniform measure is the identity for⊕, and there-
fore µ0 ⊕ w(ob, ·) = w(ob, ·). It follows thatPµ0,X =
{w(X, ·) | w ∈ wG}. Hence,(Pµ0,X)∗(D) = 1/2 and
(Pµ0,X)∗(D) = 1/5. But the right-hand sides of (5) and
(6) are5/9 and 1/6, respectively, and similarly for hy-
pothesesE andF . Thus, in this case, the inequalities in
Proposition 3.4(a) are strict.

While uncorrelated generalized evidence spaces are cer-
tainly of interest, correlated spaces arise in natural settings.
To see this, first consider the following somewhat contrived
example.

Example 3.6 Consider the following variant of Exam-
ple 1.2. Alice has two coins, one that is double-headed and
one that is biased 3/4 towards heads, and chooses which
one to give Zoe. Bob also has two coins, one that is fair
and one that is biased 2/3 towards tails, and chooses which
one to give Zoe. Zoe chooses one of the two coins she was
given and tosses it. The hypotheses are{A,B} and the ob-
servations are{heads, tails}, as in Example 1.2. The like-
lihood functionµ1 for Alice’s double-headed coin is given
by µ1(heads) = 1, while the likelihood functionµ2 for Al-
ice’s biased coin is given byµ2(heads) = 3/4. Similarly,
the likelihood functionµ3 for Bob’s fair coin is given by
µ3(heads) = 1/2, and the likelihood functionµ4 for Bob’s
biased coin is given byµ4(heads) = 1/3.

If Alice and Bob each make their choice of which coin to
give Zoe independently, we can use the following general-
ized evidence space to model the situation:

G1 = ({A,B}, {heads, tails},∆1),

where

∆1 = {(µ1, µ3), (µ1, µ4), (µ2, µ3), (µ2, µ4)}.



Clearly,∆1 is uncorrelated, since it is equal to{µ1, µ2} ×
{µ3, µ4}.

On the other hand, suppose that Alice and Bob agree be-
forehand that either Alice gives Zoe her double-headed
coin and Bob gives Zoe his fair coin, or Alice gives Zoe
her biased coin and Bob gives Zoe his biased coin. This
situation can be modeled using the following generalized
evidence space:

G2 = ({A,B}, {heads, tails},∆2),

where
∆2 = {(µ1, µ3), (µ2, µ4)}.

Here, note that∆2 is a correlated set of likelihood map-
pings.

While this example is artificial, the example in the intro-
duction, where the robot’s sensors could have come from
either factory 1 or factory 2, is a perhaps more realistic case
where correlated evidence spaces arise. The key point here
is that these examples show that we need to go beyond just
refining hypotheses to capture a situation.

4 Combining Evidence

An important property of Shafer’s [1982] representation of
evidence is that it is possible to combine the weight of ev-
idence of independent observations to obtain the weight of
evidence of a sequence of observations. The purpose of
this section is to show that our framework enjoys a simi-
lar property, but, rather unsurprisingly, new subtleties arise
due to the presence of uncertainty. For simplicity, in this
section we concentrate exclusively on combining the evi-
dence of a sequence of two observations; the general case
follows in a straightforward way.

Recall how combining evidence is handled in Shafer’s ap-
proach. LetE = (H,O,µ) be an evidence space. We de-
fine the likelihood functionsµh on pairs of observations, by
takingµh(〈ob1, ob2〉) = µh(ob1)µh(ob2). In other words,
the probability of observing a particular sequence of obser-
vations givenh is the product of the probability of making
each observation in the sequence. Thus, we are implicitly
assuming that the observations are independent. It is well
known (see, for example, [Halpern and Fagin 1992, Theo-
rem 4.3]) that Dempster’s Rule of Combination can be used
to combine evidence; that is,

wE(〈ob1, ob2〉, ·) = wE(ob1, ·)⊕ wE(ob2, ·).

If we let µ0 be a prior probability on the hypotheses, and
µ〈ob1,ob2〉 be the probability on the hypotheses after ob-
servingob1 andob2, we can verify that

µ〈ob1,ob2〉 = µ0 ⊕ wE(〈ob1, ob2〉, ·).

Here we are assuming that exactly one hypothesis holds,
and it holds each time we make an observation. That is, if
Zoe picks the double-headed coin, she uses it for both coin
tosses.

Example 4.1 Recall Example 2.1, where Alice just has a
double-headed coin and Bob just has a fair coin. Suppose
that Zoe, after being given the coins and choosing one of
them, tosses it twice, and it lands heads both times. It is
straightforward to compute that

wE A B
〈heads, heads〉 4/5 1/5
〈heads, tails〉 0 1
〈tails, heads〉 0 1
〈tails, tails〉 0 1

Not surprisingly, if either of the observations istails, the
coin cannot be Alice’s. In the case where the observations
are〈heads, heads〉, the evidence for the coin being Alice’s
(that is, double-headed) is greater than if a single heads is
observed, since from Example 2.1,wE(heads, A) = 2/3.
This agrees with our intuition that seeing two heads in a
row provides more evidence for a coin to be double-headed
than if a single heads is observed.

How should we combine evidence for a sequence of ob-
servations when we have a generalized evidence space?
That depends on how we interpret the assumption that the
“same” hypothesis holds for each observation. In a gener-
alized evidence space, we have possibly many likelihood
functions for each hypothesis. The real issue is whether
we use the same likelihood function each time we evaluate
an observation, or whether we can use a different likelihood
function associated with that hypothesis. The following ex-
amples show that this distinction can be critical.

Example 4.2 Consider Example 1.2 again, where Alice
has two coins (one double-headed, one biased toward
heads), and Bob has a fair coin. Alice chooses a coin and
gives it to Zoe; Bob gives his coin to Zoe. As we observed,
there are two likelihood functions in this case, which we
called w1 and w2; w1 corresponds to Alice’s coin being
double-headed, andw2 corresponds to the coin being bi-
ased3/4 towards heads. Suppose that Zoe tosses the coin
twice. Since she is tossing the same coin, it seems most
appropriate to consider the generalized weight of evidence

{w′ | w′(〈ob1, ob2〉, ·) = wi(ob1, ·)⊕ wi(ob2, ·),
i ∈ {1, 2}}.

On the other hand, suppose Zoe first chooses whether she
will always use Alice’s or Bob’s coin. If she chooses Bob,
then she obviously uses his coin for both tosses. If she
chooses Alice, before each toss, she asks Alice for a coin
and tosses it; however, she does not have to use the same



coin of Alice’s for each toss. Now the likelihood function
associated with each observation can change. Thus, the
appropriate generalized weight of evidence is

{w′ | w′(〈ob1, ob2〉, ·) = wi(ob1, ·)⊕ wj(ob2, ·),
i, j ∈ {1, 2}}.

Fundamentally, combining evidence in generalized evi-
dence spaces relies on Dempster’s rule of combination, just
like in Shafer’s approach. However, as Example 4.2 shows,
the exact details depends on our understanding of the ex-
periment. While the first approach used in Example 4.2
seems more appropriate in most cases that we could think
of, we suspect that there will be cases where something like
the second approach may be appropriate.

5 Conclusion

In the literature on evidence, it is generally assumed that
there is a single likelihood function associated with each
hypothesis. There are natural examples, however, which
violate this assumption. While it may appear that a sim-
ple step of refining the set of hypotheses allows us to use
standard techniques, we have shown that this approach can
lead to counterintuitive results when evidence is used as
a basis for making decisions. To solve this problem, we
proposed a generalization of a popular approach to rep-
resenting evidence. This generalization behaves correctly
under updating, and gives the same bounds on the posterior
probability as that obtained by refining the set of hypothe-
ses when there is no correlation between the various likeli-
hood functions for the hypotheses. As we show, this is the
one situation where we can identify a generalized evidence
space with the space obtained by refining the hypotheses.
One advantage of our approach is that we can also reason
about situations where the likelihood functions are corre-
lated, something that cannot be done by refining the set of
hypotheses.

We have also looked at how to combine evidence in a gen-
eralized evidence space. While the basic ideas from stan-
dard evidence spaces carry over, that is, the combination
is essentially obtained using Dempster’s rule of combina-
tion, the exact details of how this combination should be
performed depend on the specifics of how the likelihood
functions change for each observation. A more detailed dy-
namic model would be helpful in understanding the combi-
nation of evidence in a generalized evidence space setting;
we leave this exploration for future work.
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