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Abstract

An agent often has a number of hypotheses, and
must choose among them based on observations,
or outcomes of experiments. Each of these obser-
vations can be viewed as providiegidenceor

or against various hypotheses. All the attempts to
formalize this intuition up to now have assumed
that associated with each hypotheaighere is

a likelihood functiony;,, which is a probabil-

ity measure that intuitively describes how likely
each observation is, conditional énbeing the
correct hypothesis. We consider an extension of
this framework where there is uncertainty as to
which of a number of likelihood functions is ap-
propriate, and discuss how one formal approach
to defining evidence, which views evidence as a
function from priors to posteriors, can be gener-
alized to accommodate this uncertainty.
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Now Charlie observes the coin land heads. What can he
say about the probability of the evemtsand B? If Charlie

has no prior probability oMl and B, then he can draw no
conclusions about their posterior probability; the probabil-
ity of A could be any number ifo, 1]. The same remains
true if the coin lands heads 100 times in a rdiv.

Clearly Charlie learns something from seeing 100 (or even
one) coin toss land heads. This has traditionally been mod-
eled in terms ofevidence the more times Charlie sees
heads, the more evidence he has for the coin being heads.
There have been a number of ways of modeling evidence
in the literature; see [Kyburg 1983] for an overview. All of
them make use of thigkelihood function More precisely,
they assume that for each hypothédsisf interest, there is

a probabilityu, (called a likelihood function) on the space
of possible observations. In the example above, if the coin
is tossed once, the two possible observations.asés and
tails. Clearlyua(heads) = 1/2 andup(heads) = 1. If

the coin is tossed 100 times, then there 26¥ possible
observations (sequences of coin tosses). Again.and

1p put obvious probabilities on this space. In particular, if
100heads is the observation of seeing 100 heads in a row,

An agent often has a number of hypotheses, and mudhen ra(100heads) = 1/2'% and 1 (100heads) = 1.
choose among them based on observations, or outcomes Most of the approaches compute the relative evidence of a
experiments. Each of these observations can be viewed &articular observationb for two hypotheses and B by
providing evidenceor or against various hypotheses. The comparingu.a(ob) andup(ob).

following simple example illustrates the situation.

Our goal in this paper is to understand what can be done
when an hypothesig does not determine a unique proba-

Example 1.1 Suppose that Alice and Bob each have apjjity ;,,,. To understand the issues that arise, consider the
coin. Alice’s coin is double-headed, Bob’s coin is fair. fo|lowing somewhat contrived variant of Example 1.1.
Charlie knows all of this. Alice and Bob give their coin

to some third party, Zoe, who chooses one of the coins, and

tosses it. Charlie is not privy to Zoe's choice, but gets togyample 1.2 Suppose that Alice has two coins, one that
see the outcome of the toss. Charlie is interested in tW@s gouble-headed and one that is biased 3/4 towards heads,
events (which are called hypotheses in this context): and chooses which one to give Zoe. Again, Zoe chooses
either Alice’s coin or Bob’s coin and tosses it. Charlie, who
knows the whole setup, sees the coin land heads. What does
this tell him about the likelihood that the coin tossed was
Alice’s? 1

A: the coin is Alice’s coin

B: the coin is Bob’s coin.



The problem is that now we do not have a probability  In Example 1.2, if we consider the three hypothedes

on observations corresponding to the coin being Alice’sA,, and B, then the weight of evidence fat; when Char-

coin, since Charlie does not know if Alice’s coin is double- lie sees heads i5/(1 + 3/4 + 1/2) = 4/9; similarly, the

headed or biasesl/4 towards heads. It seems that there isweight of evidence fotd, is 1/3 and the weight of ev-

an obvious solution to this problem. We simply split the idence forB is 2/9. Since weight of evidence acts like

hypothesis “the coin is Alice’s coin” into two hypotheses: a probability, it might then seem reasonable to take the
weight of evidence fo (the coin used was Alice’s coin)

A;: the coin is Alice’s coin and it is double-headed

Asy: the coin is Alice’s coin and it is the biased coin.

Now we can certainly apply standard techniques for com-

puting evidence to the three hypothesés A,, and B.
The question now is what do the answers tell us about th
evidence in favor of the coin being Alice’s coin?

Situations like that in Example 1.2 arise frequently. For ex-
ample, consider a robot equipped with an unreliable sens
for navigation. This sensor returns the distance to the wal
in front of the robot, with some known error. For simplic-

ity, suppose that distances are measured in integral unig

0,1,2,..., and that if the wall is at distance, then the
sensor will return a reading of — 1 with probability 1 /4,
areading ofn with probability1/2, and a reading af. + 1
with probability 1/4. Suppose the robot wants to stop if it
is exactly close to the wall, where “close” is interpreted
as being within 3 units of the wall, and go forward if it is
farther than 3 units. So again, we have two hypotheses
interest. However, while for each specific distameeve
have a probability:,,, on sensor readings, we do not have
a probability on sensor readings corresponding to the h
pothesisfar: “the robot is farther than 3 from the wall”.
While standard techniques will certainly give us the weight
of evidence of a particular sensor reading for the hypothe
sis “the robot is distance: from the wall”, it is not clear

what the weight of evidence should be for the hypothesis

far.

To examine the problem carefully, we consider one partic

ular approach for determining the weight of evidence, due

to Shafer [1982], which is a generalization of a method ad
vocated by Good [1950]. Let an evidence sp&cepnsist
of a setH of possible hypotheses, a $&tof observations,
and a probability.;, on observations for eadh € H. We
take the weight of evidence for hypothegigrovided by
observatiorvd in evidence spacé, denotedwvg (0b, h), to
be
_ Hn(obd)

Zh’eH pon (0b)”
It is easy to see thabe(0b,-) acts like a probability on
H, inthat}, , we(ob,h) = 1. With this definition,
it is easy to compute the weight of evidence for Alice’s
coin when Charlie sees heads in Example 1.2/ and
the weight of evidence when Charlie sees 100 heads i
2100 /(2100 1 1), As expected, the more often Charlie sees
heads, the more evidence he has in favor of the coin bein
double-headed (provided that he does not see tails).

we(ob, h)

to be4/9 + 1/3 = 7/9. (Indeed, this approach was im-

plicitly suggested in our earlier paper [Halpern and Pucella
2003a].) But is this reasonable? A first hint that it might
not be is the observation that the weight of evidence for
A is higher in this case than it is in the case where Alice

gertainly had a double-headed coin.

To analyze this issue, we need an independent way of
understanding what evidence is telling us. As observed
by Halpern and Fagin [1992], weight of evidence can be

Qfiewed as a function from priors to posteriors. That is,

biven a prior on hypotheses, we can combine the prior with
the weight of evidence to get the posterior. In particular,
Pthere are two hypotheses, sé&§ and H-, the weight of
evidence forH, is «, and the prior probability of{; is 3,
then the posterior probability dff; (that is, the probability

of H; in light of the evidence) is

of
af+(1-a)(l-p)

O{'hus, for example, by deciding to perform an action when

the weight of evidence foA is 2/3 (i.e., after Charlie has
seen the coin land heads once), Charlie is assured that, if
the prior probability ofA is at least .01, then the posterior
probability of A is at leas®/11; similarly, after Charlie has
seen 100 heads, if the prior probability 4fis at least01,

then the posterior probability of is at leas2!%0 /(2100 4

99).

But now consider the situation in Example 1.2. Again, sup-
pose that the prior probability ofl is at least .01. Can

e conclude that the posterior probability dfis at least
01(7/9)/(.01(7/9) + .99(2/9)) = 7/205? As we show,
we cannot. The calculatiof3) /(a8 + (1 — a)(1 — 3))

is appropriate only when there are two hypotheses. If the
hypothesest; and A, have priorso; andas and weights

of evidences; and g, then the posterior probability oA

is

A

1581 + aof3a
ar1fr +afe+ (1 —ay —az)(l— B — B2)’

which is in general quite different from

(1 + a2)(B1 + ()
(1 +a2)(B1 + B2) + (1 — a1 —az)(1 =51 — f2)

Moreover, it is easy to show thatff;, > (3, (as is the case
ﬁere), then the posterior of is somewhere in the interval

asfo o1

L—ag)(1=02) arfr + (1 —a)(1—51)]°

E{azﬂz +(



That is, we get a lower bound on the posterior by acting asvhere’ and O are as above, and is alikelihood map-
if the only possible hypotheses a#e and B, and we get  ping, which assigns to every hypothegiss H a probabil-
an upper bound by acting as if the only possible hypotheseisy measureu(h) = uy,. (For simplicity, we often writeuy,
areA; andB. for u(h), when the former is clear from context.)

In this paper, we generalize this observation by providing &or an evidence spaég the weight of evidence for hypoth-
general approach to dealing with weight of evidence wheresish € H provided by observationb, writtenwg (0b, h),
the likelihood function is unknown. In the special caseis
when the likelihood function is known, our approach re- _ pn(ob)

X ) we(ob, h) = . Q)
duces to Shafer's approach. Roughly speaking, the idea > her Mu(0D)
is to consider all possible evidence spaces consistent wi

the information. The intuition is that one of them is the __ *~ .=\~ thad _, .5, pn(0b) = 0. Intuitively, this

right one, but the agent trying to ascribe a weight of V" means that the observatioi is impossible. In the litera-

dence does not know which. For example, in Example 1.2 . o . :
the evidence space either involves hypotheisés, B} or ture on evidence itis typ!cglly assumed that this case never
arises. More precisely, it is assumed that all observations

hypotheseg A, B}: either Alice’s first coin is used or Al- . . )

T .. . gre possible, so that for every observatign there is an

ice’s second coin is used. We can then compute the weig : M
ypothesish such thatu,(ob) > 0. For simplicity, we

of evidence for Alice’s coin being used with respect to each

. o : . {nake the same assumption here. (We remark that in some
evidence space. This gives us a range of possible weights = .~ " . ) : .
application domains this assumption holds because of the

of evidence, which can be used for decision making in &

) tructure of the domain, without needing to be assumed ex-
way that seems most appropriate for the problem at hand . .
S . .~ plicitly; see [Halpern and Pucella 2003b] for an example.)
(by considering the max, the min, or some other function

of the range). The measurevs always lies between 0 and 1, with 1 in-

. . . dicating that the observation provides full evidence for the

The advantage of this approach is that it allows us to con; . . .
. . . hypothesis. Moreover, for each fixed observatignfor

sider cases where there are correlations between the like- .

which) >, 5, pn(ob) > 0,7, .4 we(ob, h) = 1, and thus

lihood functions. For example, suppose that, in the robo - : g .
; e weight of evidence¢ looks like a probability measure
example, the robot’s sensor was manufactured at one . : .
or eachob. While this has some useful technical conse-

two factories. The sensors at factory 1 are more reliable uences, one should not interptet as a probability mea-
than those of factory 2. Since the same sensor is used G} ' P y

all readings, the appropriate evidence space either uses esllll"e' Itis simply a way to assign a weight to hypotheses

. . . given observations, and, as we shall soon see, can be seen
likelihood functions corresponding to factory 1 sensors, 0 . o
as a way to update a prior probability on the hypotheses

all likelihood functions corresponding to factory 2 sensors.. . o posterior probability on those hypotheses, based on
The rest of this paper is organized as follows. In Section 2the observations made.
we review Shafer's approach to dealing with evidence. In
Section 3, we show how to extend it so as to deal with situExample 2.1 In Example 1.1, the se{ of hypotheses is
ation where the likelihood function is uncertain, and argue{ 4, B}; the setO of observations is simplheads, tails},
that our approach is reasonable. In Section 4, we considéhe possible outcomes of a coin toss. From the discussion
how to combine evidence in this setting. We conclude infollowing the description of the example, it follows theat
Section 5. The proofs of our technical results are deferre@ssigns the following likelihood functions to the hypothe-
to the full paper. ses: sincgu4 (heads) is the probability that the coin landed
heads if it is Alice’s coin (i.e., if it is double-headed), then
. . 1a(heads) = 1 andp 4 (tails) = 0. Similarly, g (heads
2 Evidence: A Review is t&e pro>bability that the CB)in lands heads if it is fai)r, o)
up(heads) = 1/2 andug(tails) = 1/2. This can be sum-
We briefly review the notion of evidence and its formal- marized by the following table:
ization by Shafer [1982], using some terminology from
[Halpern and Pucella 2003b]. ul| A B
heads | 1 1/2
tails | 0 1/2

tkfhe weight of evidencey¢ is not defined by (1) for an ob-

We start with a finite set{ of hypotheses, which we take

to be mutually exclusive and exhaustive; thus, exactly one
hypothesis holds at any given time. We also have a sgtqt
O of observationswhich can be understood as outcomes . .

of experiments that can be made. Finally, we assume that &€= ({4, B}, {heads, tails}, p).

for each hypothesia € H, there is a probability:;, (of- A straightforward computation shows that
ten called dikelihood function on the observations i®.  wg(heads, A) = 2/3 and wg(heads, B) = 1/3. In-
This is formalized as amevidence spacé€ = (H,O, u), tuitively, the coin landing heads provides more evidence




for the hypothesisd than the hypothesig. Similarly, 3 Evidence with Uncertain Likelihoods
w(tails, A) = 0 andw(tails, A) = 1. Thus, the coin

landing tail indicates that the coin must be fair. ThisIn Example 1.1, each of the two hypothestésand B de-
information can be represented by the following table: termines a likelihood function. However, in Example 1.2,
the hypothesisi does not determine a likelihood function.

we | A B By viewing it as the compound hypotheds!,, A5}, as
heads | 2/3 1/3 we did in the introduction, we can construct an evidence
tails | 0O 1 space with a sefA,, A,, B} of hypotheses. We then get

the following likelihood mappings:
|

yva Al A2 B
It is possible to interpret the weight functian as a pre- heads | 1 3/4 1/2
scription for how to update a prior probability on the hy- tails | 0 1/4 1/2
potheses into a posterior probability on those hypotheses
after having considered the observations made [Halper
and Fagin 1992]. There is a precise sense in whigltan

be viewed as a function that maps a prior probabijligyon

the hypothese®{ to a posterior probability:,, based on e can compute the following weights of evidence:
observingob, by applying Dempster's Rule of Combina-

aking

& = ({A1, Ay, B}, {heads, tails}, ),

tion [Shafer 1976]. That s, weg | Ay Ay B
heads | 4/9 1/3 2/9
tob = o B we(ob, ), ) tails | 0 1/3 2/3

If we are now given prior probabilities fod;, A,, and
B, we can easily use Proposition 2.2 to compute posterior
probabilities for each of these events, and then add the pos-

terior probabilities ofd; and A, to get a posterior proba-
g M h 1% h
= Zhe 1( ) 2( L) 3 bility for A.

Y onen b (hpz(h)”
But what if we are given only a prior probability,

(Strictly speaking,® is defined for set functions, that is, for A and B, and are not given probabilities fad;
functions with domaire’’. We have definedvs(0b,-) as  and A;? As observed in the introduction, if we define
a function with domair#{, but is is clear from (3) that this we (heads, A) = we (heads, A1) + we (heads, Az) = 7/9,
is all that is really necessary to computg® we(0b, ) in and then try to compute the posterior probability 4f
our case.) given that heads is observed by naively applying the equa-
Bayes’ Rule is the standard way of updating a prior prob-t(f(:1 anwzr(%zzzgjcf)n) 54)2 V;{/Za; gf a;ali(r:g% p?%’;ﬁ;igg nSWer.

ability based on an observatpn, b.Ut '.t |s.only appllcablem particular, the answer is not the posterior probability in
when we have a joint probability distribution on both the %eneral

hypotheses and the observations, something which we di
not assume we had. Dempster’'s Rule of Combination esfo make this concrete, suppose thgtA) = .01. Then,
sentially “simulates” the effects of Bayes’s rule. The rela-as observed in the introduction, a naive application of this
tionship between Dempster’s Rule and Bayes’ Rule is madequation suggests that the posterior probabilityAofs
precise by the following well-known theorem. 7/205. But suppose that in fagiy(4;) = « for some

a € [0,.01]. Then applying Proposition 2.2, we see
Proposition 2.2 [Halpern and Fagin 1992)et £ =  thatpupeads(A1) = a(4/9)/(a(4/9) + (.01 — )(1/3) +
(H, O, ) be an evidence space. Suppose fhat a prob-  .99(2/9) = 4a/(a + 2.01). It is easy to check that
ability onH x O such thatP(H x {0b}|{h} x O) = up(0b)  4a/(a + 2.01) = 7/205 iff @ = 1407/81300. That is,
forall h € H and all ob € O. Let g be the probabil- the naive application of the equation in Proposition 2.2 is
ity on ‘H induced by marginalizing®; that is, uo(h) =  correct only if we assume a particular (not terribly reason-
P({h} x O). Forob € O, letp,, = po S we(ob,-). Then  able) value for the prior probability of ;.
top(h) = P({h} x O|H x {ob}).

where® combines two probability distributions cH to
get a new probability distribution oH as follows:

(1 @ p2)(H)

We now present one approach to dealing with the problem,

In other words, when we do have a joint probability on and argue that itis reasonable.

the hypotheses and observations, then Dempster’s Rule @fefine ageneralized evidence spate be a tupleG =
Combination gives us the same result as a straightforwar{*, O, A), whereA is a finite set of likelihood mappings.
application of Bayes’ Rule. Note for future reference that we can associate with the



generalized evidence spage= (H, O, A) the setS(G) =  Let Ext(po) consist of all priors ori’ that extend.,. Re-
{(H,0, ) | p € A} of evidence spaces. Thus, given a call that given a seP of probability measures, tHewer
generalized evidence spage we can define thgeneral-  probability P..(U) of a setU isinf{u(U) | u € P} and its
ized weight of evidenceg to be the se{we : £ € S(G)}  upper probabilityP*(U) is sup{u(U) | p € P} [Halpern
of weights of evidence. We often treat; as a set-valued 2003].

function, writingwg (ob, h) for {w(ob, h) | w € wg}.

Just as we can combine a prior with the weight of evidencerpOSition 3.2 Let& = (W', O, u) be arefinement of the
P 9 neralized evidence spae= (H, O, A) via g. For all

S : . e
to get a poster_lor in a standard evidence spaces, _glvengab c ®andallh € H, we have
generalized evidence space, we can combine a prior wit
a generalized weight of evidence to get a set of posteri- .
ors. Given a prior probability.g on a setH of hypotheses (Puo.on)"(h)
and a generalized weight of evideneg, letP,,, ,, be the {ut, ® we(ob,-) | uh € Ext(uo)Y (g~ ()
set of posterior probabilities di corresponding to an ob-

servationob and prioruo, computed according to Proposi- and

tion 2.2:

Pro,ob = {110 ® w(ob,-) | w e wg}. 4) (Ppuo,ob)«(h) =

, _ {1 @ we (0b, ) | uo € Eat(po)}« (g~ ().
Example 3.1 The generalized evidence space for Exam-

le 1.2, where Alice’s coin is unknown, is . . .
P In other words, if we consider the sets of posteriors ob-

G = ({A, B}, {heads, tails}, {py, o }), tained by either (1) updating a prior probability by the
lized weight of evidence of an observatioior
where iy (A) = pay, po(A) = pia,, andpuy (B) = FEEHE . . .
11,(B) :1 4up. Thus, thegfirst likelihood map;;ing corre- (2)_ updating the set of priors ex_tendlpg by the weight of
sponds to Alice’s coin being double-headed, and the secvidence of the same observatiorfirthe bounds on those
ond corresponds to Alice’s coin being biasﬁﬂ towards WO sets are the same. Therefore, this proposition shows

heads. Themg = {w:,ws}, wherew, (heads, A) = 2/3 that, given a generalized evidence spgcdf there an ev-
o (heads A) o ?,)/5 e it () _ o then idence spac€ that refines it, then the weight of evidence

Pruosheads (A) = {22 201 wg gives us essent_ially the same infor_matiom@s But _is

’ o2’ actl there always an evidence spatthat refines a generalized
We have now given two approaches for capturing the sitevidence space? That is, can we always understand a gen-
uation in Example 1.2. The first involves refining the seteralized weight of evidence in terms of a refinement? As
of hypotheses —that is, replacing the hypothesisy 4,  we now show, we cannot always do this.

gndAg—an_d using a sta_ndard e_vidence space. The secor]_det G be a generalized evidence spd@é, O, A). Note
involves using a generalized evidence space. How do the%at if £ refinesg then, roughly speaking, the likelihood

compare? mappings inA consist of all possible ways of combining

To make this precise, we need to first define what a refinethe likelihood functions corresponding to the hypotheses in

ment is. We say that the evidence sp&g#, O, ') re-  H. We now formalize this property. A se of likelihood

fines oris a refinement ofthe generalized evidence space mappings isuncorrelatedif there exist sets of probability

(H,0,A) via g if ¢ : H' — H is a surjection such measure®, for each € ‘H such that

thatp € A if and only if, for all h € H, there exists

someh’ € g~'(h) such thatu(h) = p/(K'). Thatis, A= T] Pn="{r|nh) eP,foralheH}.

taking P, = {p'(®’) | ¥ € g~ '(h)}, we must have heH

A = [],cn Pr. Intuitively, the hypothesid € H is re-

fined to the set of hypothesjs! (h) C H’; moreover, each

likelihood functionu(h) in a likelihood mappings € A

is the likelihood functionu’(h’) for some hypothesi#’

refining h. We say thaiG refines, or is a refinement of, Observe that iff H’, O, u') refines(H, O, A) via g, then

& it G refines€ via some surjectiory. For example, the (H, O, A) is uncorrelated since, as observed abave-

evidence spac€ at the beginning of this section (corre- [],_,, Pn, whereP;, = {p/(h') | b’ € g~*(h)}. Not only

sponding to Example 1.2) is a refinement of the generalis every refinement uncorrelated, but every uncorrelated ev-

ized evidence spacg in Example 3.1 via the surjection idence space can be viewed as a refinement.

g:{A1,As, B} — {A, B} that maps4; and A, to A and

Bto B. A prior uj, onH' extendsa prior o on H if for all Proposition 3.3 Let G be a generalized evidence space.

h, There exists an evidence spatéhat refines; if and only
wolg™t(h)) = wo(h). if G is uncorrelated.

(We sayA is correlatedif it is not uncorrelated.) A gen-
eralized evidence spag¢@t, O, A) is uncorrelated ifA is
uncorrelated.



Thus, if a situation can be modeled using an uncorrelatedhus, if have an uncorrelated generalized evidence space
generalized evidence space, then it can also be modeled lwith two hypotheses, we can compute the bounds on the
refining the set of hypotheses and using a simple evidencgosteriorsP,,, ., in terms of upper and lower weights of
space. The uncorrelated case has a further advantage. elfidence using Proposition 3.4(a), which consists of equal-
leads to simple formula for calculating the posterior in theities in that case. Moreover, we can compute the upper
special case that there are only two hypotheses (which iand lower weights of evidence using Proposition 3.4(b). As
the case that has been considered most often in the literare now show, the inequalities in Proposition 3.4(a) can be
ture, often to the exclusion of other cases). strict if there are more than two hypotheses.

Given a generalized evidence spgce: (1,0, A)andthe  Example 3.5 Let H = {D, E, F} andO = {X,Y}, and
corresponding generalized weight of evidengg we can  consider the two probability measurgs and -, where
defineupperandlowerweights of evidence, determined by pi(X) = 1/3 andps(X) = 2/3. LetG = (H,0,A),
the maximum and minimum values in the range, somewhajhereA — {p | (h) € {1, 2} }. Clearly,A is uncorre-
analogous to the notions of upper and lower probability.|ated. Lety, be the uniform prior o, so thaty (D) =
Define theupper weight of evidence functiafy by taking 1o(E) = po(F) = 1/3. Using Proposition 3.4(b), we can

wg(ob, h) = sup{w(ob,h) | w € wg}.

Similarly, define thdower weight of evidence functian,
by taking

wg(ob, h) = inf{w(ob,h) | w € wg}.

compute that the upper and lower weights of evidence are
as given in the following tables:

we | D E F w, | D E F
X [ 12 12 12 X | 1/5 1/5 1/5
Y |1/2 1/2 1/2 Y |1/5 1/5 1/5

The uniform measure is the identity fes, and there-

These upper and lower weights of evidence can be used fore ;o ® w(ob,-) = w(ob,-). It follows thatP,, x =
compute the bounds on the posteriors obtained by updatingw(x.) | w € wg}. Hence,(P,, x)*(D) = 1/2 and
a prior probability via the generalized weight of evidence(puo’x)*(p) = 1/5. But the right-hand sides of (5) and

of an observation, in the case whefés uncorrelated, and

when there are two hypotheses.

Proposition 3.4 Let G = (H,O,A) be an uncorrelated

generalized evidence space.
(a) The following inequalities hold:

(Puo.ob)™(h) <
EQ(Oba h),u'()(h)

Do (b, Mo (h) + 5 wg(ob, Wmo(h)’ O
h'Zh
(Pro.on)s () >
wg(0b, h)po(h) ©

wg(ob, h)po(h) + 3 Wg(ob, h)po(')’
h'#h

If |H| = 2, we get equalities i§5) and (6).
(b) The following equalities hold:

(Pn)"(0b) .
(Pr)*(0b) + 3= (Pi)«(0b)’
h'#h
(Pn)+(0b)

(Pr)«(0b) + > (Pnr)*(0b)’
R'#h

wg(ob, h) =

wg(ob, h) =

wherePy, = {u(h) | p € A}, forall h € H.

(6) are5/9 and 1/6, respectively, and similarly for hy-
potheses” and F'. Thus, in this case, the inequalities in
Proposition 3.4(a) are stricl

While uncorrelated generalized evidence spaces are cer-
tainly of interest, correlated spaces arise in natural settings.
To see this, first consider the following somewhat contrived
example.

Example 3.6 Consider the following variant of Exam-
ple 1.2. Alice has two coins, one that is double-headed and
one that is biased 3/4 towards heads, and chooses which
one to give Zoe. Bob also has two coins, one that is fair
and one that is biased 2/3 towards tails, and chooses which
one to give Zoe. Zoe chooses one of the two coins she was
given and tosses it. The hypothesesfafe B} and the ob-
servations aré heads, tails}, as in Example 1.2. The like-
lihood functiony; for Alice’s double-headed coin is given

by 1 (heads) = 1, while the likelihood functionus, for Al-

ice’s biased coin is given bys(heads) = 3/4. Similarly,

the likelihood functionus for Bob's fair coin is given by
us(heads) = 1/2, and the likelihood functiop, for Bob’s
biased coin is given by (heads) = 1/3.

If Alice and Bob each make their choice of which coin to
give Zoe independently, we can use the following general-
ized evidence space to model the situation:

G1 = ({A, B}, {heads, tails}, A1),
where

Ay = {(p1, p3), (1, pa)s (p2s p13), (p2; f1a) }-



Clearly, A, is uncorrelated, since it is equal {@1, 12} % Here we are assuming that exactly one hypothesis holds,
{13, e} and it holds each time we make an observation. That is, if

On the other hand, suppose that Alice and Bob agree b?Ez_oe picks the double-headed coin, she uses it for both coin

forehand that either Alice gives Zoe her double-heade 0SSES.

coin ?”d Bob .gives Zoe hi§ fair coin, or Alice g“’e_s Zoe. Example 4.1 Recall Example 2.1, where Alice just has a

hgr bl_ased coin and Bob gives Zoe his b"'_’lsed coin. ,Th' ouble-headed coin and Bob just has a fair coin. Suppose
sﬂgatlon can be modeled using the following generalize hat Zoe, after being given the coins and choosing one of
evidence space: them, tosses it twice, and it lands heads both times. It is

Gs = ({A, BY, {heads, tails}, Ay), straightforward to compute that

h weg A B
where (heads, heads) | 4/5 1/5
Az = {(m1: 1s), (2, pra) - (heads, tails) | 0 1

Here, note that\, is a correlated set of likelihood map- <tail§’> heads) | 0 1
pings. 1 (tails, tails) | 0 1

Not surprisingly, if either of the observationsiils, the

While this example is artificial, the example in the intro- . . .
. \ coin cannot be Alice’s. In the case where the observations
duction, where the robot’s sensors could have come from

either factory 1 or factory 2, is a perhaps more realistic casare<h€ad5’ heads), the evidence for the coin being Alice's
Y ye P P that is, double-headed) is greater than if a single heads is

yvhere correlated evidence spaces arise. The key point h_e0 served, since from Example 2k (heads, A) — 2/3.
is that these examples show that we need to go beyond just : : o . .
is agrees with our intuition that seeing two heads in a

refining hypotheses to capture a situation. row provides more evidence for a coin to be double-headed

than if a single heads is observell.
4 Combining Evidence

How should we combine evidence for a sequence of ob-
An important property of Shafer's [1982] representation ofServations when we have a generalized evidence space?
evidence is that it is possible to combine the weight of ev-That depends on how we interpret the assumption that the
idence of independent observations to obtain the weight ofsame” hypothesis holds for each observation. In a gener-
evidence of a sequence of observations. The purpose @ized evidence space, we have possibly many likelihood
this section is to show that our framework enjoys a simi-functions for each hypothesis. The real issue is whether
lar property, but, rather unsurprisingly, new subtleties ariseVe use the same likelihood function each time we evaluate
due to the presence of uncertainty. For simplicity, in this@n observation, or whether we can use a different likelihood
section we concentrate exclusively on combining the evifunction associated with that hypothesis. The following ex-
dence of a sequence of two observations; the general cad@ples show that this distinction can be critical.

follows in a straightforward way.
J Y Example 4.2 Consider Example 1.2 again, where Alice

Recall how combining evidence is handled in Shafer’s apPhas two coins (One double-headed, one biased toward
proach. Let = (H, O, u) be an evidence space. We de- heads), and Bob has a fair coin. Alice chooses a coin and
fine the likelihood functionﬁh on pairs of observations, by gives it to Zoe; Bob gives his coin to Zoe. As we observed,
taking i, ((0b1, 0b2)) = pn(ob1)un(obz). Inotherwords,  there are two likelihood functions in this case, which we
the probability of observing a particular sequence of obsercalled w, and wsy; w; corresponds to Alice’s coin being
vations given is the product of the probability of making double-headed, and, corresponds to the coin being bi-
each observation in the sequence. Thus, we are |mp|lC|t|ﬁsed3/4 towards heads. Suppose that Zoe tosses the coin
assuming that the observations are independent. It is wefjyice. Since she is tossing the same coin, it seems most
known (see, for example, [Halpern and Fagin 1992, Theogppropriate to consider the generalized weight of evidence
rem 4.3]) that Dempster’s Rule of Combination can be used

to combine evidence; that is, {w' | w'({0by, 0bs), ) = w;(0b1,-) & w;(obs, ),
) 1,2}}.
we ((0b1, 0b2), ) = we(oby, ) B we(oba, ). 1€ {1,2}}

If we let o be a prior probability on the hypotheses, andOn the other hand, suppose Zoe first chooses whether she
I4(oby,0b,) D€ the probability on the hypotheses after ob-will always use Alice’s or Bob’s coin. If she chooses Bob,
servingob; andobs, we can verify that then she obviously uses his coin for both tosses. If she
chooses Alice, before each toss, she asks Alice for a coin
H(oby,0bs) = Ho @ we((0b1, 0ba), -). and tosses it; however, she does not have to use the same



coin of Alice’s for each toss. Now the likelihood function Initiative (MURI) program administered by the ONR under
associated with each observation can change. Thus, thgrants NO0014-01-1-0795 and N00014-04-1-0725, and by

appropriate generalized weight of evidence is AFOSR under grant F49620-02-1-0101. The second author
was also supported in part by AFOSR grants F49620-00-1-
{w" [ w'({0b1, 0b2), ") = wi(ob1,") & w;(obs, "), 0198 and F49620-03-1-0156, National Science Foundation
i,7 € {1,2}}. Grants 9703470 and 0430161, and ONR Grant N00014-01-

1 1-0968.
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one situation where we can identify a generalized evidence
space with the space obtained by refining the hypotheses.
One advantage of our approach is that we can also reason
about situations where the likelihood functions are corre-
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We have also looked at how to combine evidence in a gen-
eralized evidence space. While the basic ideas from stan-
dard evidence spaces carry over, that is, the combination
is essentially obtained using Dempster’s rule of combina-
tion, the exact details of how this combination should be
performed depend on the specifics of how the likelihood
functions change for each observation. A more detailed dy-
namic model would be helpful in understanding the combi-
nation of evidence in a generalized evidence space setting;
we leave this exploration for future work.
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