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1. INTRODUCTION

Solvability eliminates the problem of coordinating on a specific Nash
equilibrium of a strategic game and, therefore, constitutes a very
desirable, albeit rare property. Hence it is of interest to study the
effect of a new solution concept on solvability. The purpose of this
note is to investigate how the introduction of non-additive probab-
ilities affects the solvability of strategic games. In many cases, it
turns out, solvability of games is destroyed, if one allows for non-
additive probabilities. Although strict dominance is preserved, dom-
inance solvability is not. A noteworthy exception are two-by-two
constant-sum games.

The introduction of non-additive probabilities into game theory
is motivated by three facts: First and foremost, recent advances in
decision theory and the desire to assess the relevance of this progress
for game theory. Second, the promise of novel or original explana-
tions of certain phenomena. Third, a possible uneasiness with the
traditional concept of a Nash equilibrium in mixed strategies.

The development of decision models with non-additive probabil-
ities originated from casual empiricism as well as laboratory experi-
ments suggesting that revealed preferences frequently fail to fit into
the expected utility framework. The assumption of expected utility
maximization is the combination of two assumptions:

1. Uncertainty can be described asrisk , i.e. by means of lotteries
(probability distributions, additive probability measures) over
uncertain outcomes.
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2. Agents maximize alinear functional on lotteries.

Keeping 1 and giving up 2 allows fornon-linear functionals on lot-
teries. See Machina (1982), references therein, and followers thereof.
See also Quiggin’s (1982) anticipated utility model and its derivat-
ives, known as expected utility models with rank dependent prob-
abilities. Abolishing 1, while maintaining a modified version of 2,
leads tonon-additive probabilities à la Gilboa and Schmeidler (Gil-
boa, 1987; Schmeidler, 1989).

Novel decision theories may have meritper se, but for econom-
ists and game theorists, the litmus test lies in economic and game
theoretical applications of these models. In that judgement, the au-
thor agrees with and follows up on Dow and Werlang (1994) and
Eichberger and Kelsey (2000) whose work is similarly motivated.1

In their papers as in the present note, uncertainty is modelled by
means ofcapacities, i.e. non-additive probability measures in the
sense of Gilboa and Schmeidler. Both Dow and Werlang (1994) and
Eichberger and Kelsey (2000) investigate “Nash equilibria under
uncertainty”, meaning Nash equilibria in capacities rather than Nash
equilibria in pure or mixed strategies. Some of the contributions of
Eichberger and Kelsey (2000) will be discussed in Section 3. Dow
and Werlang (1994) show that the concept of Nash equilibrium in
capacities allows for a richer set of equilibrium predictions than
Nash equilibrium in mixed strategies. The more general equilibrium
concept can only add to the equilibrium set; it never eliminates any
of the traditional Nash equilibria. Thus the explanation of additional
phenomena is obtained at the expense of less specific predictions
and, therefore, is a mixed blessing. For good reason, the game the-
oretical literature on equilibrium refinements and equilibrium selec-
tion has expended considerable effort to progress in the opposite
direction: to reduce the set of eligible equilibrium outcomes.

After identification of a potential Pandora’s Box, getting more
knowledgeable about the contents of that box becomes a high prior-
ity task. Onedesideratum modestumis that adoption of the concept
of Nash equilibrium in capacities does not alter — or at least not
affect in an essential way — the equilibrium set of games tradi-
tionally deemed “solvable”, because there is no or little ambiguity
concerning conventional equilibrium outcomes or payoffs of these
games. Example 1 in Dow and Werlang (1994) is evidence to the
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contrary. That example has a unique Nash equilibrium in the con-
ventional sense which happens to be in pure strategies and can be
determined by iterative elimination of strictly dominated strategies.
Thus the example represents one of the rare cases of strict domin-
ance solvability. Nonetheless, there is an additional — significantly
different and intuitively appealing — Nash equilibrium in capa-
cities. It turns out that the capacities used in the new equilibrium
are “simple capacities”.2 Hence the more modest requirement: that
Nash equilibria in simple capacities should not add any outcomes
to the conventional equilibrium set: is not fulfilled either. It turns
out that even in finite two-person zero-sum games, Nash equilibria
in mixed strategies and Nash equilibria in simple capacities can
yield significantly different equilibrium predictions. Solvability in
the classical sense is lost. It remains an open question if solvability
is preserved for all finite two-person zero-sum games with a unique
pair of prudent strategies which happens to be a saddle-point, hence
coincides with the unique equilibrium point in mixed strategies.
For special subclasses of these games, the two-by-two games, an
affirmative answer will be given. We also establish that in order to
break up a finitely repeated Prisoners’ Dilemma, one has to resort
to non-simple capacities. It is further shown that strict dominance is
preserved. This result allows for non-simple capacities.

The relevant concepts are introduced in the next section. The res-
ults are presented and discussed in Section 3. Some related issues
are mentioned in the final section.

2. CONCEPTS

2.1. Non-Additive Probabilities (Capacities)

Let N be a finite set. Thecharacteristic function of a TU-game
with player set N is a mappingv : 2N −→ R with v(∅) = 0. A
characteristic functionv is called

0-normalized, if v({n}) = 0 for all n ∈ N .

1-normalized, if v(N) = 1.

monotone, if v(X) 6 v(Y ) for X ⊆ Y ⊆ N .
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convexor supermodular, ifv(X)+ v(Y ) 6 v(X ∪ Y)+ v(X ∩ Y)
for anyX, Y ⊆ N .

concaveor submodular, ifv(X)+ v(Y ) > v(X ∪ Y)+ v(X ∩ Y)
for anyX, Y ⊆ N .

superadditive, if v(X)+ v(Y ) 6 v(X ∪ Y)
for any disjointX, Y ⊆ N .

subadditive, if v(X)+ v(Y ) > v(X ∪ Y)
for any disjointX, Y ⊆ N .

additive or inessential, if v(X) =∑n∈X v({n}) for all X ⊆ N .

A non-additive probabilitity measure, capacityor fuzzy meas-
ure on N is a monotone and 1-normalized characteristic function
v. In decision theory and game theory, convexity of capacities is
often assumed and interpreted as uncertainty aversion. All other
terms and properties appear in cooperative game theory as well as
the mathematical literature on capacities. See Denneberg (1994a,b)
for the latter. Additive capacities are the traditional additive prob-
ability measures.3 Besides common formal definitions, I — like the
literature at large — had been unaware of too many trades of ideas
between cooperative game theory and the theory of capacities. One
exception is Rosenmüller (1982) who refers to Rosenmüller and
Weidner (1973, 1974). Another exception is Hendon et al. (1994)
where explicit use is made of results from cooperative game theory.
Intriguingly enough, I learnt from Peter Wakker that he [Wakker
(1987)] has devised and utilized algorithms to translate results from
the theory of decisions under uncertainty into theorems in the theory
of cooperative games and vice versa.

2.2. Leading Examples

Here we present the leading examples of capacities. These include
the two extreme cases, additive capacities on the one hand and com-
plete ignorance on the other hand. Simple capacities are convex
combinations of the extreme cases.

1. Any additive probability measureπ on N is a capacity. It
satisfies the convexity condition with equality. We reserve the
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symbolsπ ,σ , and τ for additive probability measures alias
additive capacities alias mixed strategies.

2. “Complete ignorance”can be expressed by means of the ca-
pacity ω on N attaining valuesω(N) = 1 andω(X) = 0
for X ⊆ N,X 6= N . Throughout this paper, the symbolω is
reserved for capacities describing complete ignorance.

3. A simple capacityvc,π onN is a convex combination of an
additive capacityπ (given weightc) and the complete ignor-
ance capacityω (weighted with 1− c). I.e. c ∈ [0, 1] and
vc,π = c · π + (1− c) · ω or
vc,π(X) = c · π(X)+ (1− c) · ω(X) for all X ⊆ N .
The weightc can be readily interpreted asdegree of confid-
enceand the weight 1− c can be interpreted asdegree of
uncertainty aversion. In the sequel, the notationv[c, π ] will
often prove convenient.

2.3. Nash Equilibria in Capacities

The definition of a Nash equilibrium in capacities presupposes that
two more concepts are well defined:

• The support of a capacityv, denotedsuppv.
• The integral or expected value of a function
f :N −→ R with respect to a capacityv,
denoted

∫
f dv or

∫
f (n)v(dn).

Let us assume for the moment that both supports and integrals with
respect to capacities are well defined. Let us consider a finite 2-
player game in normal form

0 = (I ;N1, N2; u1, u2)

with player setI = {1, 2}, pure strategy setsN1 andN2 and payoff
functionsu1 andu2. Only the case|N1| > 2, |N2| > 2 is of interest.
For i ∈ I , let −i denotei’s opponent, the only other player inI .
Further let fori ∈ I ,

• Ci denote the set of capacities onNi;
• SCi denote the set of simple capacities onNi;
• Mi denote the set of mixed strategies onNi.
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For i ∈ I , v−i ∈ C−i, andai ∈ Ni, put

Ui(ai, v−i) ≡
∫
ui(ai, · )dv−i,

the expected payoff fori from playingai , if the other player−i is
believed to behave in an uncertain way described byv−i. This view
extends the Harsanyi–Aumann interpretation of mixed strategies as
beliefs rather than actual randomizations to the case of capacities.
Aumann (1987) considers “randomness as an expression of ignor-
ance”. He refers to Harsanyi (1973) as “the first to break away from
the idea of explicit randomization”.

DEFINITION . A Nash Equilibrium under Knightian Uncer-
tainty or Nash Equilibrium in Capacities is a pair(v1, v2) ∈ C1×
C2 for which there exist respective supportssuppv1 and suppv2

such that fori ∈ I :

si ∈ suppvi H⇒ si ∈ argmax Ui(ai, v−i).
ai ∈ Ni

Notice that thevi merely reflect mutually consistent beliefs in ac-
cordance with the Harsanyi–Aumann interpretation of an equilib-
rium in mixed strategies. It is not required thatvi be a best response
againstv−i in any sense. The only requirement is that the support of
vi only contain best responses (in pure strategies) againstv−i . An
immediate consequence of this crucial detail is that one can replace
C1× C2 in the above definition

— by SC1×SC2 so as to define aNash Equilibrium in Simple
Capacitieswhich is a special case of a Nash equilibrium in capacit-
ies;

— by M1×M2 to define aNash Equilibrium in Mixed Strate-
gies which is also a Nash equilibrium in simple capacities and a
special case of a Nash equilibrium in capacities;

— by N1×N2 so as to define aNash Equilibrium in Pure
Strategieswhich corresponds to a degenerate case of a Nash equi-
librium in mixed strategies.

It remains to specify supports and integrals with regard to capacities.
To this end, letv be a capacity on the setN . Let⊂ denote proper set
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inclusion and c denote complements inN . There are at least three
plausible suggestions to generalize the uncontroversial concept of a
support for additive probability measures to a notion ofsupport for
arbitrary capacities.
1st DEF.:X ⊆ N is a support ofv, if v(X) = 1 andY ⊂ X implies
v(Y ) < 1.
2nd DEF.:X ⊆ N is a support ofv, if v(Xc)=0 andY ⊂ X implies
v(Y c) > 0.
3rd DEF.:X ⊆ N is the support ofv, if X = {n ∈ N |v({n}) > 0}.

For pragmatic reasons, Dow and Werlang (1994) have opted for
the second definition. With the first definition, the support might be
“too large”; in particular, their Example 3 of breaking down back-
ward induction seems to break down. For the sake of comparison
and unified treatment, Eichberger and Kelsey (2000) and I side with
them andadopt the 2nd definition of a support.

As for a suitable definition of
∫
f dv, the Choquet integral is

ubiquitous and appears to be universally accepted. I follow this com-
mon practice. To this end, letN be a finite set,v be a capacity onN ,
andf :N −→ R attain valuesx1 > x2 . . . > xK . SetT0 = ∅. For
k = 1, . . . , K, set
Qk = {n ∈ N | f (n) = xk} and
Tk = ⋃k

`=1Q` = {n ∈ N | f (n) > xk}. Then the Choquet
integral off with respect tov is defined as

∫
f dv =

K∑
k=1

xk · [v(Tk)− v(Tk−1)]

= v(TK) · xK +
K−1∑
k=1

v(Tk) · (xk − xk+1).

Notice that for an additivev, v(Tk) − v(Tk−1) = v(Qk) so that
one obtains ordinary integrals in the sense of Riemann or Lebesgue.
For axiomatizations of Choquet Expected Utility (CEU) see Gilboa
(1987), Schmeidler (1989), and Sarin and Wakker (1992). Hougaard
and Keiding (1996) provide an axiomatization of preferences repres-
ented by means of the Sugeno integral and conclude that the latter
is of limited use for decision theory and, consequently, for game
theory.
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2.4. Weak Convergence of Capacities

As is well known, the topology of weak convergence on the space of
Borel probability measures on a compact metric space renders the
space of Borel probability measures itself compact and metrizable
(Parthasarathy, 1967, Theorem 6.4). A suitable metric is the so-
called Prohorov metric (Billingsley, 1968, pp. 236–238). Here we
endow the space of capacities on a finite set with a natural distance
that induces the topology of weak convergence of capacities. The
distance allows to measure deviation from additivity. For simple ca-
pacities, the deviation from additivity is proportional to the degree
of uncertainty aversion [Fact 2]. Therefore, the new concept may
prove useful in the future, although the application it was meant for
is no longer in the paper.

For a finite setN with |N | > 1, we can extend the notion of weak
convergence fromM, the set of additive probability measures onN
to C, the set of capacities onN . Furthermore, letSC denote the set
of simple capacities onN andF the set of functionsf :N −→ R.
Next consider a sequencevt , t ∈ N, in C and a pointv ∈ C.

DEFINITION . The sequencevt , t ∈ N, is calledweakly conver-
gent tov, if

∫
f dvt −→

∫
f dv for all f ∈ F .

Since capacities are normalized, we can omit the valuesv(∅) = 0
andv(N) = 1 and identify a capacity with a vector inRN where
N = 2N \ {∅, N}. ThenC is a convex and compact subset ofRN+ .
With the canonical embedding,M is a closed convex subset ofC.
Let ‖ · ‖ denote the Euclidean norm inRN . This norm induces the
topology of weak convergence onC and, a fortiori, onM. Namely:

FACT 1. For a sequencevt , t ∈ N, in C andv ∈ C, vt is weakly
convergent tov if and only ifvt is norm convergent tov.

That norm convergence implies weak convergence follows imme-
diately from the definition of the Choquet integral and the fact that
norm convergence ofvt tov impliesvt(X) −→ v(X) for allX ⊆ N .
Conversely, letvt be weakly convergent tov. To establish norm
convergence, it suffices to show componentwise convergence, i.e.
vt(X) −→ v(X) for all X ∈ N . So letX ∈ N . Definef ∈ F by
f (n) = 1 for n ∈ X andf (n) = 0 for n 6∈ X. Then in the definition
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of the Choquet integral,K = 2, x1 = 1, x2 = 0. Consequently,∫
f dvt = 1 · [vt (X) − vt(∅)] + 0 · [vt(N) − vt(X)] = vt (X)

and similarly,
∫
f dv = v(X). Weak convergence ofvt to v implies∫

f dvt −→
∫
f dv. Hencevt(X) −→ v(X).

For arbitraryv ∈ C, deviation from additivity can be measured
by dist(v,M). Obviously, dist(σ,M) = 0 for σ ∈ M. SinceM
is compact and convex, there exists for eachv ∈ C a uniqueσ ∈
M with dist(v, σ ) = dist(v,M). Specifically, for a simple capacity
vc,π = c ·π+(1−c)·ω, dist(vc,π , π) = ‖π−vc,π‖ = ‖π−c ·π‖ =
(1−c)·‖π‖. As a rule, however,π is not the point inM that is closest
to c · π or vc,π . Rather, withm = minσ∈M ‖σ‖:
FACT 2. dist(vc,π ,M) = (1− c) ·m for vc,π ∈ SC.

That is the distance of a simple capacity from the set of additive
probability measures is proportional to the degree of uncertainty
aversion. To see this, writeσ = (σk)k∈N , whenσ ∈ M is treated
as a|N |-dimensional probability vector. Then consider the problem
minσ∈M ‖σ − c · π‖2 which amounts to

min
σ∈RN+

∑
X∈N

(∑
k∈X

(σk − c · πk)
)2

subject to
∑
k∈N

σk = 1.

The first order conditions are∑
X3k

∑
x∈X

(σx − c · πx) = λ for all k.

Therefore, the unique solution is

σ = (1− c) · τ + c · π
whereτ = (1/|N |, 1/|N |, . . . , 1/|N |) is the probability vector that
solves the problem minσ∈M ‖σ‖2. Consequently,

dist(vc,π ,M) = dist(c · π,M) = ‖σ − c · π‖
= (1− c) · ‖τ‖ = (1− c) ·m.

So dist(vc,π ,M) = (1−c)·m as asserted. Finally, as asserted dist(c·
π,M) < (1− c) · ‖π‖, except whenπ = τ .
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The question remains if one can say anything beyond Fact 2. For
an arbitrary capacityν, one can define thedegree of ambiguity,

α(ν) = max
X∈N [1− (ν(X)+ ν(N \X))].

For simple capacities, this is simply the degree of uncertainty aver-
sion. Let us consider the norm〈·〉 onRN given by

〈v〉 = max
X∈N |v(X)| + |v(N \X)|

for v ∈ RN and denote the corresponding distance by DIST. Then
for anyσ ∈M, ν ∈ C andX ∈ N ,

1− (ν(X)+ ν(N \X)) = σ(X)+ σ(N \X)
− (ν(X)+ ν(N \X))
6 |(σ − ν)(X)| + |(σ − ν)(N \X)|,

henceα(ν) 6 DIST (ν,M). Since all norms onRN are equivalent,
there exists aρ > 0 with α(ν) 6 ρ · dist(ν,M) for all ν ∈ C.

3. RESULTS

Since Nash equilibria in mixed strategies are particular Nash equi-
libria under uncertainty, existence is not an issue. The problem is
rather a mega-multiplicity of Nash equilibria in capacities. This holds
even true, when attention is restricted to Nash equilibria in simple
capacities!

3.1. Restriction to Simple Capacities

For the remainder of this note, except in subsection 3.5, only simple
capacities will be considered. This restriction strengthens our neg-
ative findings in subsection 3.3 and weakens our positive results in
subsection 3.4 whereas our findings in subsections 3.5 and 3.6 are
not affected by it. We continue to work with a finite 2-person game
in normal form0. As observed before, a Nash equilibrium in simple
capacities is in fact a particular Nash equilibrium in capacities. One
of the virtues of a simple capacityvi[ci, πi] ∈ SCi is that it has a
unique support, denotedsuppvi[ci, πi], except possibly forci = 0.
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More specifically, for definitions 2 and 3,suppvi[ci, πi] = suppπi,
if ci > 0. If ci = 0, each of the singletons{ai}, ai ∈ Ni, is a support
of vi[ci, πi] = ωi according to our (second) definition.4 Another
potential advantage of simple capacities is that one can easily define
the product of simple capacities and a Nash equilibrium in simple
capacities for games with more than two players. An additional vir-
tue of a simple capacityvi[ci, πi] is convexity.5 Finally, integrals
w.r.t. a simple capacity assume a special form, namely

Ui(ai, v−i[c−i , π−i]) =c−i
∫
ui(ai, ·)dπ−i

+ (1−c−i) · min
s−i∈N−i

ui(ai, s−i). (1)

Inspection of the proof of the Theorem in Dow and Werlang (1994)
reveals that in general, there exists a continuum of Nash equilibria
in simple capacities for a game0.

PROPOSITION 1.For any(c1, c2)∈[0, 1]×[0, 1], there exists
(π1, π2)∈M1×M2 such that(v1[c1, π1], v2[c2, π2]) constitutes a
Nash equilibrium in simple capacities.

Given the mega-multiplicity of equilibria suggested by Propos-
ition 1, the question is whether the differences are just “nominal”
or rather “real”. After all, the capacityvi[ci, πi] constituting part of
an equilibrium is merely a belief held by player−i about strategies
played by playeri. As for strategies actually played, this could be
any pair(a1, a2) ∈ suppv1[c1, π1] × suppv2[c2, π2]. Therefore,
as far as equilibrium predictions are concerned,suppv1[c1, π1] and
suppv2[c2, π2] are the relevant components.

3.2. Solvable Games

Traditionally, a non-generic subclass of games has been distinguished
as “solvable”, because they allow concise equilibrium predictions.

DEFINITION . A finite 2-player game0 is calledsolvable, if:
(a) If (σ 1, σ 2) and(π1, π2) are Nash equilibria in mixed strategies

of 0, then(σ 1, π2) and(π1, σ 2) are also Nash equilibria in
mixed strategies of0.
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(b) If (σ 1, σ 2) and (π1, π2) are two Nash equilibria in mixed
strategies of0, then they both yield the same equilibrium
expected payoff pair.

The interchangeability condition (a) is tantamount to the original
definition of solvability in Nash (1951). Thepayoff equivalence
condition (b) is an additional requirement, reinforcing the idea that
in a solvable game a player may pick, without harm, any mixed
strategy that is part of a Nash equilibrium. Solvability in this more
stringent sense is satisfied by every game with a unique Nash equi-
librium in mixed strategies. It is also satisfied by each 2-player zero-
sum game. Condition (a) implies another condition which is some-
times listed as part of the definition of solvability and can be used
to detect violations of solvability, namely existence of non-empty
subsetsS1 of N1 andS2 of N2 such that:

(c) If (σ 1, σ 2) ∈ M1 × M2 is a Nash equilibrium in mixed
strategies of0, thensuppσ i ⊆ Si for i ∈ I .

(d) There is a Nash equilibrium in mixed strategies of0, (σ 1, σ 2)

∈M1×M2 with suppσ i = Si for i ∈ I .
The concept ofdominance solvabilityforwarded by Moulin (1979)
requires that successive (iterated) elimination of dominated strategies
leads to a non-empty subset ofE of N1 × N2. E consists of Nash
equilibria of0 and within the setE, the analogues of the solvability
conditions (a) and (b) hold true.

3.3. Loss of Solvability

The appeal of solvable games rests on the fact that in these games,
the inherent coordination problem associated with the concept of
Nash equilibrium is absent. Since Dow and Werlang show that, in
general, the concept of Nash equilibrium in (simple) capacities al-
lows for a richer set of equilibrium predictions than Nash equilib-
rium in mixed strategies, the question arises if solvability is pre-
served as one passes from the set of Nash equilibria in mixed strategies
to the potentially larger set of Nash equilibria in simple capacities.
Viewed from a new angle, Example 1 of Dow and Werlang (1994)
presents a game0 with the following properties. First of all,0 has a
unique Nash equilibrium in mixed strategies which can be determ-
ined through iterative elimination of strictly dominated strategies
and, consequently, is a Nash equilibrium in pure strategies, i.e. of
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the form(s1, s2) ∈ N1 × N2. Hence0 is solvable and dominance
solvable withSi = {si} for i = 1, 2. Secondly, there is another
Nash equilibrium in simple capacities,(v1[c1, π1], v2[c2, π2]) with
suppv1[c1, π1] ∩ S1 = ∅, t1 ∈ suppv1[c1, π1] not a best response
againsts2, and different equilibrium payoffs. Thus solvability is lost
in that the interchangeability condition (a) as well as the payoff equi-
valence condition (b) are violated. Let us reproduce that example
with the focus on solvability.

EXAMPLE 1. The players are row player 1 with strategy setN1 =
{u, d} and column player 2 with strategy setN2 = {a, b}. In the
bi-matrix listing the payoffs (Figure 1), the first component in each
field refers to player 1 whereas the second component refers to player
2. The numberα is positive. The numberε is supposed to be very
small while positive. All that matters for our purposes is that 0<
ε < 1 holds.

Figure 1.

Sinceb is a strictly dominated strategy for player 2, it is elimin-
ated in the first step. Againsta, d is strictly dominated byu and elim-
inated in the second step. Hence the game’s unique Nash equililib-
rium in pure and mixed strategies(s1, s2) = (u, a) is reached after
two rounds of elimination of strictly dominated strategies. So the
game is both solvable and dominance solvable. The corresponding
supports areS1 = {u}, S2 = {a}.

Yet the game is no longer solvable when beliefs can assume the
form of simple capacities. Namely, letδ1

d ∈M1 denote the unit mass
ond andδ2

a ∈M2 denote the unit mass ona. Setv2∗ = v2[1−ε, δ2
a].

One obtains
U1(u, v2∗) = (1− ε) · 10+ ε · (−10) = 10− 20ε,
U1(d, v2∗) = 10− ε > U1(u, v2∗),
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U2(δ1
d, a) > U

2(δ1
d, b), and

suppδ1
d = {d}, suppv2[1− ε, δ2

a] = {a}.
Moreover,U1(d, v2∗) = u1(d, a) < u1(u, a). Therefore, as asserted
earlier,

(i) (δ1
d, v

2∗) is an additional Nash equilibrium in simple capacities
of 0;

(ii) suppδ1
d ∩ S1 = ∅;

(iii) d or δ1
d is not a best response againsta;

(iv) for player 1, both the expected payoffU1(d, v2∗) and the ac-
tual payoffu1(d, a) in the additional equilibrium are less than
the payoffu1(u, a) in the original equilibrium(u, a).

Example 1 illustrates how the introduction of simple capacities as
possible beliefs can affect the solvability of finite two-person games
in normal form. From the very beginning of game theory, finite two-
person zero-sum games have been regarded as the quintessential
solvable games. It turns out that even solvability of these games
can be affected by the introduction of simple capacities as possible
beliefs. This is demonstrated by

EXAMPLE 2. The players are row player 1 with strategy setN1 =
{u,m, d} and column player 2 with strategy setN2 = {L,M,R}.
In the bi-matrix listing the payoffs (Figure 2), the first component in
each field refers to player 1 whereas the second component refers
to player 2. The large numbers in the payoff matrix are chosen
to render the argument extremely transparent. They also serve to
illustrate that the boundse1 ande2 in Proposition 2 can be large.

Figure 2.
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In this game, the uniqueprudent strategy pair is (d, R) which,
however, isnot a saddle point. The unique Nash equilibrium in
mixed strategies of this game is(σ 1, σ 2) with σ 1 given by the prob-
ability vector(σ 1(u), σ 1(m), σ 1(d)) = (1/2, 1/2, 0) andσ 2 given
by the probability vector(σ 2(L), σ 2(M), σ 2(R)) = (1/2, 1/2, 0).
The expected equilibrium payoff pair is(0, 0) and the equilibrium
supports areS1 = {u,m} andS2 = {L,M}.

Now letδ1
d ∈M1 denote the unit mass ond andδ2

R ∈M2 denote
the unit mass onR. Let c1, c2 ∈ (0, 1) and consider
v1∗ = v1[c1, δ1

d],
v2∗ = v2[c2, δ2

R].
Then:
U1(u, v2∗) = c2− (1− c2) · 233,
U1(m, v2∗) = c2− (1− c2) · 233,
U1(d, v2∗) = c2− (1− c2).

Henced is the unique best response againstv2∗ andsuppv1∗ = {d}.
Furthermore,
U2(v1∗, L) = c1− (1− c1) · 233,
U2(v1∗,M) = c1− (1− c1) · 233,
U2(v1∗, R) = −1.

HenceR is the unique best reponse againstv1∗, provided−1 >

c1− (1− c1) ·233 or 233−1> c1(233+1). Now for c1 6 1−2−32,
233−1> c1(233+1)where 2−32 ≈ 2.3·10−10. Moreover,suppv2∗ ={R}. Therefore, there existsc1 very close to 1 such that(v1∗, v2∗) con-
stitutes a Nash equilibrium in simple capacities. The corresponding
supports satisfysuppvi∗ ∩Si = ∅ for i = 1, 2. The expected payoffs
are (2c2 − 1,−1) and the actual payoffs are(1,−1) in contrast
with the mixed strategy equilibrium payoff pair(0, 0). Furthermore,
(σ 1, v2∗) and(v1∗, σ 2) are not Nash equilibria in simple capacities.
Thus once again, solvability has been lost in a significant way: The
counter-parts of (a) and (b) are violated.

3.4. Preservation of Solvability

Eichberger and Kelsey (2000; Proposition 4.1) show that, for low
degrees of confidencec1 andc2, Nash equilibria in simple capacities
induce maxmin (prudent) play. In the present context, this amounts
to the following:
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PROPOSITION 2.There existe1, e2 ∈ (0, 1] such that:
If (v1, v2) = (v1[c1, π1], v2[c2, π2]) is any equilibrium in simple
capacities with(π1, π2) ∈ M1 ×M2 and (c1, c2) ∈ [0, e1] ×
[0, e2] for i = 1, 2, then fori ∈ I :

si ∈ argmax
ai∈Ni

Ui(ai, v−i) H⇒ si ∈ argmax
ai∈Ni

min
s−i∈N−i

ui(ai, s−i).

In Example 2,c2 can be chosen anywhere in[0, 1) while e1 =
1 − 2−32 will do. So Example 2 conforms to Proposition 2 with
largee1 ande2. What is more important, a change in equilibrium
supports andequilibrium payoffs can be observed so that classical
solvability does not persist, once simple capacities are admitted as
equilibrium beliefs. It remains to be seen if solvability is preserved
for finite two-person zero-sum games with a unique pair of prudent
strategies which happens to be a saddle-point, hence coincides with
the unique equilibrium point in mixed strategies. A partial answer is
obtained as a corollary to Proposition 5.1 in Eichberger and Kelsey
(2000). Some more notation is helpful for presenting their result.

For i ∈ I , ai, bi ∈ Ni , we sayai dominatesor topsbi and write
ai>bi, if
ui(ai, s−i) > ui(bi, s−i) for all s−i ∈ N−i and
ui(ai, s−i) > ui(bi, s−i) for somes−i ∈ N−i .

For i ∈ I , we defineDi ⊆ Ni by

Di ≡ {bi ∈ Ni |ai>bi for someai ∈ Ni}
andV i : Ni −→ R by

V i(ai) ≡ min
s−i∈N−i

ui(ai, s−i).

V i is calledseparating, if it is injective (1:1).6 Di is the set of
dominated strategies of playeri.

PROPOSITION 3 (Eichberger & Kelsey).SupposeV 1 andV 2 are
separating. If(v1, v2) = (v1[c1, π1], v2[c2, π2]) is any equilibrium
in simple capacities with(π1, π2) ∈ M1 × M2 and (c1, c2) ∈
(0, 1)2, then fori ∈ I :

si ∈ suppvi H⇒ si 6∈ Di.
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Among other things, Proposition 3 implies that in a finitely re-
peated Prisoners’ Dilemma game, a Nash equilibrium in simple ca-
pacities does not yield cooperation in early stages of the game. Dow
and Werlang’s (1994) Example 3 exhibits cooperation in the first
stage of a twice repeated Prisoners’ Dilemma game. This effect
occurs in a Nash equilibrium in capacities that resorts to complex
capacities. Yet this outcome cannot be achieved if beliefs are re-
stricted to simple capacities. In contrast, preliminary results by Dow,
Orioli, and Werlang (1996) indicate that the introduction of simple
capacities can alter the outcome of a centipede game to the effect
that backward induction breaks down. Remarkably, the backward
induction outcome is restored when the first mover is sufficiently
uncertainty averse: To any given high enough uncertainty aversion
of the first mover corresponds a unique Nash equilibrium in simple
capacities in which the first mover takes the amount on the table
immediately.

As a direct consequence of Proposition 3, one obtains

COROLLARY 1. Let0 be a finite two-person zero-sum game. Sup-
poseV 1 andV 2 are separating and for the unique maximizersa1∗
and a2∗ of V 1 and V 2, respectively, the following two conditions
hold:

(i) (a1∗, a2∗) is a saddle point of0.
(ii) Di = Ni \ {ai∗} for i ∈ I .

Then for any Nash equilibrium in simple capacities of0,
(v1, v2) = (v1[c1, π1], v2[c2, π2]) with (π1, π2) ∈ M1 ×M2 and
(c1, c2) ∈ (0, 1]2:

suppv1 = {a1∗} andsuppv2 = {a2∗}.
Condition (i) guarantees that the unique maxmin (prudent) strategy
pair(a1∗, a2∗) constitutes the only Nash equilibrium in mixed strategies
of 0. Condition (ii) renders Proposition 3 immediately applicable.
Hence, under further restrictions on finite two-person zero-sum games,
solvability is preserved when beliefs assume the form of simple
capacities.
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Figure 3.

3.5. Preservation of Strict Dominance

As pointed out by one of the referees, strict dominance is preserved
when beliefs become non-additive and even non-simple. Intriguingly
enough, this does not imply that dominance solvability is preserved
as evidenced by Example 1.

PROPOSITION 4.Let ai∗ ∈ Ni be a strictly dominant strategy for
player i. ThenU(ai∗, v−i) > U(ai, v−i) for all ai 6= ai∗ andv−i ∈
C−i.

Proof.Since strategy sets are finite, there exists1 > 0 such that
ui(ai∗, a−i) > 1 + ui(ai, a−i) for all ai 6= ai∗ anda−i ∈ N−i .
Hence, for allai 6= ai∗ andv−i ∈ C−i,

U(ai∗, v−i) =
∫
ui(ai∗, ·)dv−i >

∫
[1+ ui(ai, ·)]dv−i

= 1+
∫
ui(ai , ·)dv−i > U(ai, v−i).

2

3.6. 2× 2 Zero-Sum Games

In the very special instance of 2×2 zero-sum games, an exhaustive
case by case study is possible which will demonstrate that solvabil-
ity (in a somewhat wider sense) persists in these games. Such a game
has player setI = {1, 2}. Each player has action setNi = {Ci,Di}
and the payoff bi-matrix can be assumed to be of the form of Figure
3.

SupposeV 1 andV 2 are separating and have unique maximizers
a1∗ anda2∗, respectively. Furthermore, suppose that(a1∗, a2∗) is a saddle
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Figure 4.

point (the saddle point) of this game. Without loss of generality,
assume(a1∗, a2∗) = (D1, D2). There are, up to symmetry, three pro-
totypes of games with these properties. The ordinal preferences for
the three prototypes (1) – (3) are depicted in Figure 4. (An arrow in-
dicates a unique best response. A dashed line indicates indifference.
A fat dot locates the saddle point.)
Prototype (1): Since playeri has strictly dominant strategyDi,
his equilibrium strategies are of the formvi = vi[ci, δiDi] with
corresponding support{Di}. Essentially, solvability is preserved.
Prototype (2): Since player 2 has strictly dominant strategyD2,
his equilibrium strategies are of the formv2 = v2[c2, δ2

D2] with
corresponding support{D2}.

Since 0> b anda = c > 0, D1 is the unique best response
againstδ2

D2 and also unique best response againstω2. HenceD1 is
the unique best response against an equilibrium strategy of 2. Thus
1’s equilibrium strategies are of the formv1 = v1[c1, δ1

D1] with
corresponding support{D1}. Essentially, solvability is preserved.
Prototype (3): We getc > a andb = 0 from player 1’s payoffs and
b > a andc > 0 from player 2’s payoffs. Hence
c > 0= b > a and−c < 0= −b < −a.

Againstω2, the unique best response isD1.
Againstπ2, the unique best response isD1 — unlessπ2 = δ2

D2
in which caseC1 is also a best response. So

C1 is best response⇐⇒ v2 = δ2
D2.

It remains to be seen, ifδ2
D2 is a best response against anyv1 ∈ SC1

with C1 ∈ suppv1. Let us consider such av1, i.e.v1 = v1[c1, π1]
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with π1 6= δ1
D1. Setd1 = c1π1(C1). Then

Eu2[v1, C2] = d1 · (−a)+ (1− d1) · (−c)
and Eu2[v1, D2] = 0.

Therefore,D2 is best response⇔ d1 6 c
c−a . Hence ford1 6

c
c−a , (v1, δ2

D2) is an additional equilibrium withC1 ∈ suppv1.
Strictly speaking, solvability is lost. However, the additional equib-
libria are payoff equivalent to the original equilibrium(D1, D2),
with expected payoffs and actual payoffs equal to(0, 0). In that
sense, solvability is restored.

4. FINAL REMARKS

As the modelling device of non-additive probabilities gets trans-
planted from decision theory into game theory, new conceptual and
technical challenges appear. This paper points out tradeoffs between
additional explanations and solvability of games. Conflicting in-
terests of this sort are not new to game theory. The literature on
equilibrium selection and a host of refinements aims at narrowing
the solution set (fewer phenomena explained, more accurate predic-
tions). Examples of criteria employed are payoff dominance, risk
dominance, stability, robustness, evolutionary stability, forward in-
duction, backward induction, perfection, sequentiality, properness,
divineness, intuitiveness, renegotiation-proofness, stationarity, sym-
metry, cheap talk, and many others. Another strand of literature
allows for a broadening of the solution set (more phenomena ex-
plained, vaguer predictions). The expanded equilibrium concepts
allow for mixed strategies, correlated strategies, rationalizable sets,
curb sets, craziness, cheap talk again, and so forth and finally, non-
additive beliefs. On a priori grounds, one would not expect that play-
ers hold arbitrary beliefs. Future research should and, most likely,
will try to reconcile the two competing branches of game theoretical
investigation. Specifically, the concept of non-additive beliefs could
be investigated in conjunction with some of the standard equilibrium
refinement concepts. Rationalizability with non-additive beliefs is
explored in the working paper version of Ghirardato and Le Breton
(2000). Moreover, belief formation is a widely unexplored, urgent
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subject of inquiry, even in traditional game theory — despite recent
advances in the learning literature. Mukerji (1997) contributes to the
epistemic foundations of non-additive beliefs.

A novel issue in game theory that is absent from decision the-
ory, is the appropriate definition of the support of a capacity. This
issue deserves further scrutiny. Ryan (1988a,b) is concerned with
the previously overlooked problem of support expansion: Dempster-
Shafer updating can add states to the support. He forwards several
definitions of a support in addition to the ones given above. Another
crucial issue which arises in games with more than two players
and is absent from decision theory, is the appropriate definition of
a product capacity. Hendon et al. (1996) deal with the definition
of the product of two capacities in general and of two belief func-
tions in particular. Ghirardato (1997) addresses the definition of the
product of two capacities, the role of independence and the validity
of Fubini’s theorem. See also section 5 of Ben-Porath, Gilboa, and
Schmeidler (1997).

There are other pressing issues regarding game-theoretic models
with non-additive probabilities. But first, it should be emphasized
that the Choquet Expected Utility (CEU) theory of the current paper
is competing, both in decision and game theory, with the multiple
priors model of Gilboa and Schmeidler (1989). For further elabor-
ations on the latter, see Kelsey (1994). Recent decision theoretic
investigations by Klibanoff (1996b) and Nehring (1999) show dis-
cernible differences between the two competing approaches. Con-
temporary work in decision theory by Ghiaradato (1994b), Ghir-
ardato and Marinacci (1997), Mukerji (1997), and Nehring (1999)
wrestles with the proper definition of ambiguity, ambiguity aversion
and revealed unambiguous events, e.g. Most of the earlier literat-
ure on decisions under uncertainty is summarized in Camerer and
Weber (1992) and Kelsey and Quiggin (1992).

It should not be surprising then that the definition of a Nash equi-
librium in capacities given here and its variations found elsewhere
do not encompass all relevant game theoretical models with non-
additive probabilities. Epstein (1997), Klibanoff (1996a), Lo (1996,
1999), Marinacci (2000) and Ritzberger (1996) rank among the sev-
eral important contributions not mentioned before. In the context of
the multiple priors model, Klibanoff (1996a) and Lo (1996) have
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studied games where players are uncertainty averse, but in addi-
tion are allowed to randomize. They conclude that under certain
conditions, players may exhibit preference for randomization over
pure strategies between which they are indifferent. Eichberger and
Kelsey (1996b) argue that preference for randomization is displayed
in an Anscombe–Aumann framework whereas it is unlikely in the
decision theoretical framework à la Savage.

The proper choice of Choquet integral in a multi-stage game
appears to be related to another crucial modelling choice one has
to make: how to update non-additive capacities. Basic research has
been performed by Denneberg (1994a), Gilboa and Schmeidler
(1993), Jaffrey (1992), Sundberg and Wagner (1992), Wasserman
and Kadane (1990), among others. The focus of some of this ana-
lysis lies on concave capacities whereas convex capacities are much
more interesting for economic and game theoretic modelling pur-
poses. In this respect, recent findings by Eichberger and Kelsey
(1996c) are most intriguing. They show that as a rule, the Cho-
quet expected utility class of preferences as axiomatized by Gilboa
(1987), Schmeidler (1989), and Sarin and Wakker (1992), is not
closed under dynamically consistent updating in the sense of Mach-
ina (1989). More recent progress on conditional capacities is repor-
ted in Denneberg (1995). Lehrer (1996) proposes an elegant geo-
metric approach to conditional expectations for non-additive prob-
abilities in analogy to the treatment of the additive case.
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NOTES

1. See also Groes et al. (1998). For specific economic applications, see Ben-
Porath, Gilboa, and Schmeidler (1997), Dow and Werlang (1992a,b), Ghir-
ardato (1994a), Eichberger and Kelsey (1995, 1966a), Mukerji (1998).

2. A simple capacity is defined as a convex combination of risk and complete
ignorance. The precise formal definition will be given in Section 2.

3. In the language of cooperative game theory, the habitual term for these ca-
pacities would be “inessential”. The author leaves it to the reader whether to
adopt such language in the present context.

4. With respect to the first definition, the support ofωi would beNi . With respect
to the third definition, the support ofωi would be the empty set.

5. If |Ni | = 2, every convex capacity onNi is a simple capacity — and vice
versa. Belief functions or lower probabilities as studied by Hendon et al.
(1994) and Groes et al. (1998) form another distinguished class of convex
capacities. Many of the properties of simple capacities generalize to the class
of E-capacities studied by Eichberger and Kelsey (1999).

6. For generic payoff matrices,V i is separating. However, with respect to eco-
nomic or other applications, many interesting games have non-generic payoff
matrices.
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