Skip to main content
Log in

On the Costs of Nonclassical Logic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

Solutions to semantic paradoxes often involve restrictions of classical logic for semantic vocabulary. In the paper we investigate the costs of these restrictions in a model case. In particular, we fix two systems of truth capturing the same conception of truth: (a variant) of the system KF of Feferman (The Journal of Symbolic Logic, 56, 1–49, 1991) formulated in classical logic, and (a variant of) the system PKF of Halbach and Horsten (The Journal of Symbolic Logic, 71, 677–712, 2006), formulated in basic De Morgan logic. The classical system is known to be much stronger than the nonclassical one. We assess the reasons for this asymmetry by showing that the truth theoretic principles of PKF cannot be blamed: PKF with induction restricted to non-semantic vocabulary coincides in fact with what the restricted version of KF proves true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Feferman[3] doesn’t use the name KF for the system. See [6, chapter 15] for details.

  2. These conditions are somewhat simplified. Besides numerals \(\phantom {\dot {i}\!}{\ulcorner \varphi \urcorner }\) for (codes of) sentences there will also be other closed terms with the code of φ as their value. So the clause should be: A sentence T t is true iff the value of t is (the code of) a true sentence. Or one closes also under substitution of identicals. For the sake of the introduction here, we decided not to clutter the truth and falsity conditions with these subtleties.

  3. In (IND), x is not free in \(\phantom {\dot {i}\!}\Gamma , \Delta , \varphi (\overline 0)\) and t is arbitrary.

  4. To keep the notation in line with [8] and [6], we employ the label PKF although the logic DM that we employ is not partial but four-valued.

  5. We employ the lower-case label (utb) to distinguish it from the theory UTB from [6].

  6. Fischer et al. [5] study the criterion of ω-categoricity in depth and consider also other criteria such as similarity with a semantic construction and proof theoretic strength that are, in many respect, less refined than categoricity for ω-models. Having said that, it is also clear that ω-categoricity can at best be a necessary condition for an axiomatic theory to capture a semantic construction: by replacing the truth theoretic axioms of PKF with sequents of the form \(\phantom {\dot {i}\!}T\ulcorner \varphi \urcorner \Rightarrow \varphi \) and \(\phantom {\dot {i}\!}\varphi \Rightarrow T\ulcorner \varphi \urcorner \), in fact, one obtains again an ω-categorical axiomatization of Kripke’s theory.

  7. This result extends to the cases in which S is a consistent or a complete fixed point and (CONS) or (COMP) are added to KF, as we shall see in Section 5.

  8. Cantini [2] introduced the system BT, although his definition differs slightly from the one adopted here.

  9. For a definition of the systems of ramified truth up to the Feferman-Schütte ordinal Γ0, see [6, Section 9].

  10. For a definition of the Veblen functions, see again [6, Section 9].

  11. KF ↾ is in fact conservative over PA. Any model of \(\phantom {\dot {i}\!}\mathcal {M}\) of PA can be expanded to a model \(\phantom {\dot {i}\!}(\mathcal {M},S_{1},S_{2})\) of KF ↾ where (S 1,S 2) is a fixed point of Φ. This also yields the conservativity of PKF over PA as if PKF ↾ proved some formula φ of \(\phantom {\dot {i}\!}\mathcal {L}\) not provable in PA, φ would also be provable in KFr by the monotonicity of the logic DM.

  12. The picture that arises from our result is complemented by the results in [15], in which it is shown that PKF=IBT and that IKF=PKF plus transfinite induction up to ε 0.

  13. Equivalently, restriction to the least number principles or to forms of collection.

  14. See also [6, chapter 20].

  15. By writing ‘\(\phantom {\dot {i}\!}\mathcal M\) is a model of \(\phantom {\dot {i}\!}\mathcal S\)’ we mean that \(\phantom {\dot {i}\!}\mathcal M\) is a model of its derivable sequents.

  16. Of course in the other case in which we focus on Δ+, the Lemma would need to be suitably modified.

  17. The positive complexity of a formula φ of \(\phantom {\dot {i}\!}\mathcal L\) is 0 for atomic and negated atomic sentences; and n+1 for sentences of the form ¬¬φ,φψ,∀x φ with n the maximum of the complexities of φ and ψ.

References

  1. Blamey, S. (2002). Partial logic. In Gabbay, D., & Guenther, F. (Eds.) Handbook of philosophical logic. 2nd edn., (Vol. 5 pp. 261–253). Dordrecht: Kluwer.

  2. Cantini, A. (1989). Notes on formal theories of truth. ZeitSchrift fü,r matematische Logik und Grundlagen der Mathematik, 35, 97–130.

    Article  Google Scholar 

  3. Feferman, S. (1991). Reflecting on incompleteness. The Journal of Symbolic Logic, 56, 1–49.

    Article  Google Scholar 

  4. Field, H. (2008). Saving truth from paradox. Oxford: Oxford University Press.

    Book  Google Scholar 

  5. Fischer, M, Halbach, V., Kriener, J., & Stern, J. (2015). Axiomatizing semantic theories of truth. The Review of Symbolic Logic, 8(02), 257–278.

    Article  Google Scholar 

  6. Halbach, V. (2014). Axiomatic theories of truth. CUP.

  7. Fujimoto, K. (2010). Relative truth definability of axiomatic theories of truth. The Bulletin of Symbolic Logic, 16, 305–344.

    Article  Google Scholar 

  8. Halbach, V., & Horsten, L. (2006). Axiomatizing kripke’s theory of truth. The Journal of Symbolic Logic, 71, 677–712.

    Article  Google Scholar 

  9. Horsten, L. (2009). Levity. Mind, 118, 555–581.

    Article  Google Scholar 

  10. Horsten, L. (2012). The Tarskian turn: deflationism and axiomatic truth, (p. 2012). Princeton: Princeton University Press.

    Google Scholar 

  11. Kremer, M. (1988). Kripke and the logic of truth. Journal of Philosophical Logic, 17, 225–278.

    Article  Google Scholar 

  12. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690–712.

    Article  Google Scholar 

  13. McGee, V. (1991). Truth, vagueness and paradox: an essay in the logic of truth. Cambridge: Hackett.

    Google Scholar 

  14. Moschovakis, Y. (1974). Elementary induction on abstract structures. Amsterdam: North-Holland.

    Google Scholar 

  15. Nicolai, C. Provably true sentences across axiomatizations of Kripke’s theory of truth. Unpublished manuscript.

  16. Reinhardt, W. (1986). Some remarks on extending and interpreting theories with a partial predicate for truth. Journal of Philosophical Logic, 15, 219–251.

    Article  Google Scholar 

  17. Scott, D. (1975). Combinators and classes. In Böhm, C. (Ed.) λ-calculus in computer science, (Vol. 1975 pp. 1–26). Berlin: Springer.

  18. Williamson, T. (2016). Semantic paradoxes and abductive methodology. To appear in: Armour-Garb, B. (forthcoming). The Relevance of the Liar. Oxford University Press.

Download references

Acknowledgments

We would like to thank Leon Horsten and an anonymous referee. The work of the second author was supported by the European Commission, Grant 658285 FOREMOTIONS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Nicolai.

Appendices

Appendix 1: The logic DM

The initial sequents of the system DM are:

$$\begin{array}{@{}rcl@{}} \begin{array}{lll} (\text{IN}) \quad \Gamma \Rightarrow \Delta, \text{if} ~\Gamma \cap\Delta\neq\varnothing & (\text{Cut})\quad\frac{\Gamma\Rightarrow\varphi,\Delta \qquad \Gamma,\varphi\Rightarrow\Delta}{\Gamma\Rightarrow \Delta}\\\\ (\text{W1}) \quad \frac{\Gamma\Rightarrow\Delta}{\Gamma,\varphi\Rightarrow\Delta} & (\text{W2}) \quad \frac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\varphi,\Delta}\\\\ (\text{Sub})\quad\frac{\Gamma\Rightarrow\Delta}{\Gamma(t/x)\Rightarrow\Delta(t/x)}& (\neg) \quad \frac{\Gamma\Rightarrow \Delta}{\neg \Delta\Rightarrow \neg\Gamma}\\\\ (\text{\textsf{d}}\neg 1) \quad \varphi \Rightarrow \neg \neg \varphi & ({\text{\textsf{d}}}\neg2) \quad \neg \neg\varphi\Rightarrow\varphi\\\\ (=1) \quad \Rightarrow t=t & (=2) \quad s=t,\varphi(s/x)\Rightarrow \varphi(t/x)\\\\ (\land 1) \quad \frac{\Gamma,\varphi,\psi\Rightarrow\Delta}{\Gamma,\varphi\land\psi\Rightarrow\Delta}& (\land 2) \quad \frac{\Gamma,\varphi\land\psi\Rightarrow\Delta} {\Gamma,\varphi,\psi\Rightarrow\Delta}\\\\ (\vee 1) \quad \frac{\Gamma\Rightarrow\varphi,\psi,\Delta}{\Gamma\Rightarrow\varphi\vee\psi,\Delta}& (\vee 2) \quad \frac{\Gamma\Rightarrow\varphi\vee\psi,\Delta}{\Gamma\Rightarrow\varphi,\psi,\Delta}\\\\ (\forall 1) \quad \frac{\Gamma\Rightarrow\varphi,\Delta}{\Gamma\Rightarrow\forall x\varphi,\Delta}& (\forall 2) \quad \frac{\Gamma\Rightarrow\forall x\varphi,\Delta}{\Gamma\Rightarrow \varphi(t/x),\Delta}\\\\ (\exists 1) \quad \frac{\Gamma,\exists x\varphi\Rightarrow\Delta}{\Gamma,\varphi(t/x)\Rightarrow \Delta}& (\exists 2) \quad \frac{\Gamma,\varphi\Rightarrow\Delta}{\Gamma,\exists x\varphi\Rightarrow\Delta} \end{array} \end{array} $$

In (¬), ¬Γ denotes the set of all negations of sentences in Γ. In ( ∀1) and ( ∃2), x is not free in the lower sequent.

Classical logic K is obtained by replacing, in DM, ( ¬) with the stronger

$$\begin{array}{@{}rcl@{}} \begin{array}{ll} (\neg\textsf{k}1) \quad \frac{\Gamma \Rightarrow \varphi,\Delta}{\Gamma,\neg\,\varphi\Rightarrow\Delta}& \qquad (\neg\textsf{k} 2) \quad \frac{\Gamma,\varphi\Rightarrow\Delta} {\Gamma\Rightarrow\neg\varphi,\Delta} \end{array} \end{array} $$

Appendix 2: Axioms of KF

PAT is the theory formulated in K (cf. Appendix 1) extended with initial sequents ⇒φ, for φ a basic axiom of PA, and the induction rule

$$ \frac{\Gamma,\varphi(x)\Rightarrow\varphi({S}x),\Delta}{\Gamma,\varphi(\overline 0)\Rightarrow\varphi(t),\Delta} $$
(IND)

with x not free in \(\phantom {\dot {i}\!}\Gamma ,\Delta ,\varphi (\overline 0)\) and t arbitrary, for all formulas φ of \(\phantom {\dot {i}\!}\mathcal {L}_{T}\). KF is obtained from PAT by adding the following initial sequents, where s,t range over (codes of) closed terms of \(\phantom {\dot {i}\!}\mathcal {L}_{T}\):

KF1:
  1. 1.

    \(\phantom {\dot {i}\!}{s^{\circ }}={t^{\circ }}\Rightarrow \textit {T}(\textit {s}\underset {\cdot }{=}\textit {t})\) (where (⋅) is the arithmetical evaluation function)

  2. 2.

    \(\phantom {\dot {i}\!} \textit {T}(\textit {s}\underset {\cdot }{=}\textit {t})\Rightarrow {s^{\circ }}={t^{\circ }}\)

KF2:
  1. 1.

    \(\phantom {\dot {i}\!}{s^{\circ }}\neq {t^{\circ }}\Rightarrow \textit {T}(\underset {\cdot }{\neg }\, s= t)\)

  2. 2.

    \(\phantom {\dot {i}\!}\textit {T}(\underset {\cdot }{\neg }\, s= t)\Rightarrow {s^{\circ }}\neq {t^{\circ }}\)

KF3:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x),\textit {T}\,\underset {\cdot }{\neg }\underset {\cdot }{\neg }\,x\Rightarrow \textit {T}x\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x),\textit {T}x\Rightarrow \textit {T}\,\underset {\cdot }{\neg }\underset {\cdot }{\neg }\,x\)

KF4:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\land }y), \textit {T}(x\underset {\cdot }{\land }y)\Rightarrow \textit {T}x\land \textit {T}y\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\land }y), \textit {T}x\land \textit {T}y\Rightarrow \textit {T}(x\underset {\cdot }{\land }y)\)

KF5 :
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\land }y),\textit {T}\underset {\cdot }{\neg }(x \underset {\cdot }{\land }y)\,\Rightarrow \,\textit {T}\,\underset {\cdot }{\neg } x\vee \textit {T}\,\underset {\cdot }{\neg } y\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\land }y),\textit {T}\,\underset {\cdot }{\neg } x\vee \textit {T}\,\underset {\cdot }{\neg } y\,\Rightarrow \,\textit {T}\,\underset {\cdot }{\neg }\,(x\underset {\cdot }{\land }y)\)

KF6:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\vee }y), \textit {T}(x\underset {\cdot }{\vee }y)\Rightarrow \textit {T}x\vee \textit {T}y\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\vee }y), \textit {T}x\vee \textit {T}y\Rightarrow \textit {T}(x\underset {\cdot }{\vee }y)\)

KF7 :
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\vee }y),\textit {T}\,\underset {\cdot }{\neg }\,(x \underset {\cdot }{\vee }y)\,\Rightarrow \,\textit {T}\,\underset {\cdot }{\neg } x\land \textit {T}\,\underset {\cdot }{\neg } y\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(x\underset {\cdot }{\vee }y),\textit {T}\,\underset {\cdot }{\neg } x\land \textit {T}\,\underset {\cdot }{\neg } y\,\Rightarrow \,\textit {T}\,\underset {\cdot }{\neg }\,(x\underset {\cdot }{\vee }y)\)

KF8:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\forall } vx),\forall t\,\textit {T}(x(t/v))\Rightarrow \textit {T}(\underset {\cdot }{\forall } vx)\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\forall } vx),\textit {T}(\underset {\cdot }{\forall } vx)\Rightarrow \forall t\,\textit {T}(x(t/v))\)

KF9:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\forall } vx),\exists t\,\textit {T}(\underset {\cdot }{\neg } x(t/v))\Rightarrow \textit {T}(\underset {\cdot }{\neg }\,\underset {\cdot }{\forall } vx)\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\forall } vx),\textit {T}(\underset {\cdot }{\neg }\,\underset {\cdot }{\forall } vx)\Rightarrow \exists t\,\textit {T}(\underset {\cdot }{\neg } x(t/v))\)

KF10:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\exists } vx),\exists t\,\textit {T}(x(t/v))\Rightarrow \textit {T}(\underset {\cdot }{\exists } vx)\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\exists } vx),\textit {T}(\underset {\cdot }{\exists } vx)\Rightarrow \exists t\,\textit {T}(x(t/v))\)

KF11:
  1. 1.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\exists } vx),\forall t\,(\textit {T}\,\underset {\cdot }{\neg } x(t/v))\Rightarrow \textit {T}(\underset {\cdot }{\neg }\,\underset {\cdot }{\exists } vx)\)

  2. 2.

    \(\phantom {\dot {i}\!}{\text {Sent}_{\mathcal {L}_{T}}}(\underset {\cdot }{\exists } vx),\textit {T}(\underset {\cdot }{\neg }\,\underset {\cdot }{\exists } vx)\Rightarrow \forall t\,(\textit {T}\,\underset {\cdot }{\neg } x(t/v))\)

KF12:
  • T t TṬ t

KF13:
  • \(\phantom {\dot {i}\!}\textit {T}\underset {\cdot }{\neg }\,\textit {\d {T}}t\Leftrightarrow \textit {T}\underset {\cdot }{\neg }\,{t^{\circ }}\vee \neg {\text {Sent}_{\mathcal {L}_{T}}}({t^{\circ }})\)

KF14:
  • \(\phantom {\dot {i}\!}\textit {T}x\Rightarrow {\text {Sent}_{\mathcal {L}_{T}}}(x)\)

KF ↾ is obtained by restricting (IND) to formulas of \(\phantom {\dot {i}\!}\mathcal {L}\) and adding the sequents (Reg1) and (Reg2). We consider the extension of KF – that we call KF– KF – via the disjunction of the following sentences, forcing complete or consistent extensions of the truth predicate respectively:

$$ \forall x({\text{Sent}_{\mathcal{L}_{T}}}(x)\land \neg T x\rightarrow T\underset{\cdot}{\neg} x) $$
(COMP)
$$ \forall x({\text{Sent}_{\mathcal{L}_{T}}}(x)\land T\underset{\cdot}{\neg}\,x\rightarrow \neg Tx) $$
(CONS)

Appendix 3: Completeness of DM

The bulk of this appendix is to prove Proposition 4 below. We recall that we write \(\Gamma \vDash _{\mathcal S} \Delta \) to mean that for all four-valued models \(\mathcal M\) of a set of sequents and rules \(\mathcal S\supseteq \textsf {DM}\), the following are jointly satisfied:Footnote 15

  • if \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} \varphi \) for all φ∈Γ, then \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} \psi \) for at least one ψ∈Δ;

  • if \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\neg \psi \) for all ψ∈Δ, then \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\neg \varphi \) for at least one φ∈Γ.

For notational simplicity, we do not deal with variable assignments.

The informal sketch of the strategy is as follows: we start with a pair (Γ,Δ) such that Γ⇒Δ is not derivable in \(\phantom {\dot {i}\!}\mathcal S\), and build ‘maximal’ sets Γ+ and Δ+ such that Γ+⇒Δ+ is still not \(\phantom {\dot {i}\!}\mathcal S\)-derivable. We can in fact extend our notion of derivability (and underivability) in DM to sequents Λ⇒Θ where Λ,Θ are infinite: \(\mathcal S\vdash {\Lambda }\Rightarrow {\Theta }\) iff for some finite Λ⊆Λ, Θ⊆Θ, we have \(\phantom {\dot {i}\!}\mathcal S\vdash {\Lambda }^{\prime }\Rightarrow {\Theta }^{\prime }\). From Γ++ a four-valued model \(\phantom {\dot {i}\!}\mathcal M\) of \(\phantom {\dot {i}\!}\mathcal S\) can be then read off, one that satisfies at least one of the following:

  • if \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\varphi \) for all φ∈Γ+, then \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textsf {DM}} \psi \) for ψ∈Δ+;

  • if \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\neg \psi \) for all ψ∈Δ+, then \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textsf {DM}} \neg \varphi \) for φ∈Γ+.

Henkin-style arguments of the kind given below can be found in [11] for a different sequent calculus and in [13] for a system of natural deduction. [1] hints at a more general strategy.

Proposition 4

Let \(\phantom {\dot {i}\!}\mathcal S\) be a set of sequents in a language \(\phantom {\dot {i}\!}\mathcal L\) and Γ,Δ finite sets of \(\phantom {\dot {i}\!}\mathcal L\) -formulas. Then:

$$\text{if} ~\Gamma\vDash_{\mathcal S} \Delta, \text{then }\vdash_{\mathcal S} \Gamma \Rightarrow\Delta. $$

We prove the counterpositive. If \(\phantom {\dot {i}\!}\nvdash _{\mathcal S} \Gamma \Rightarrow \Delta \), by (Cut), there cannot be a φ such that

$$\vdash_{\mathcal S} \Gamma\Rightarrow \Delta,\varphi ~ \text{and} ~ \vdash_{\mathcal S} \Gamma,\varphi\Rightarrow\Delta.$$

Let \(\phantom {\dot {i}\!}\mathcal L^{+}:=\mathcal L\cup C\) the language \(\phantom {\dot {i}\!}\mathcal L\) expanded with a countable set of new constants. Let {φ n | nω} and {c i | iω} enumerations of the formulae of \(\phantom {\dot {i}\!}\mathcal L^{+}\) and constants in C respectively.

Next we inductively define Γ+ and Δ+ as follows:

  • Γ0:=ΓandΔ0:=Δ

  • if \(\phantom {\dot {i}\!}\nvdash _{\mathcal S}\Gamma _{n},\varphi _{n}\Rightarrow \Delta _{n}\), then Δ n+1 n and

    $$\Gamma_{n+1}:= \left\{\begin{array}{ll} &\Gamma_{n}\cup\{\varphi_{n},\chi(c_{i}/x)\},\hspace{10pt}\text{if }\varphi_{n}\text{ is }\exists x\chi\text{ and }c_{i}\text{ is the least constant in }C\\ &\hspace{100pt} \text{not occurring in }\Gamma_{n},\Delta_{n},\varphi_{n}.\\ &\Gamma_{n}\cup\{\varphi_{n},\neg\chi(c_{i}/x)\},\hspace{10pt}\text{if }\varphi_{n}\text{ is }\neg\forall x\chi\text{ and }c_{i}\text{ the least constant in }C\text{ not}\\ &\hspace{100pt}\text{ occurring in }\Gamma_{n},\Delta_{n},\varphi_{n}.\\ &\Gamma_{n}\cup\{\varphi_{n}\},\hspace{50pt}\text{otherwise} \end{array}\right. $$
  • if \(\phantom {\dot {i}\!}\vdash _{\mathcal S}\Gamma _{n},\varphi _{n}\Rightarrow \Delta _{n}\), we have Γ n+1 n and

    $$\Delta_{n+1}= \left\{\begin{array}{ll} &\Delta_{n}\cup\{\varphi_{n},\chi(c_{i}/x)\},\hspace{10pt}\text{if }\varphi_{n}\text{ is }\forall x\chi\text{ and }c_{i}\text{ is the least constant in }C\text{ not}\\ &\hspace{100pt}\text{ occurring in }\Gamma_{n},\Delta_{n},\varphi_{n}.\\ &\Delta_{n}\cup\{\varphi_{n},\neg\chi(c_{i}/x)\},\hspace{10pt}\text{if }\varphi_{n}\text{ is }\neg\exists x\chi\text{ and }c_{i}\text{ the least constant in }C\text{ not}\\ &\hspace{100pt}\text{ occurring in }\Gamma_{n},\Delta_{n},\varphi_{n}.\\ &\Delta_{n}\cup\{\varphi_{n}\},\hspace{60pt}\text{otherwise} \end{array}\right. $$

Let \(\phantom {\dot {i}\!}\Gamma ^{+}=\bigcup _{n\in \omega }\Gamma _{n}\) and \(\phantom {\dot {i}\!}\Delta ^{+}=\bigcup _{n\in \omega }\Delta _{n}\). Obviously we have Γ⊂Γ+ and Δ⊂Δ+.

Next we state some properties of the pair (Γ++).

Lemma 9

  1. 1.

    If Γ ⊂Γ + , Δ ⊂Δ + , with Γ finite, and \(\phantom {\dot {i}\!}\mathcal S\vdash \Gamma ^{\prime }\Rightarrow \Delta ^{\prime }\) , then there is an n∈ω such that

    $$\mathcal S\vdash \Gamma_{n}\Rightarrow \Delta_{n}$$
  2. 2.

    \(\phantom {\dot {i}\!}\nvdash _{\mathcal S}\Gamma _{n}\Rightarrow \Delta _{n}\) for all n;

  3. 3.

    \(\phantom {\dot {i}\!}\Gamma ^{+}\cap \Delta ^{+}=\varnothing \)

  4. 4.

    t=t∈Γ + and t≠t∈Δ +;

  5. 5.

    If φ∉Γ + , then \(\phantom {\dot {i}\!}\vdash _{\mathcal S}\Gamma ^{+}\cup \{\varphi \}\Rightarrow \Delta ^{+}\) (symmetrically for φ∉Δ +);

  6. 6.

    s=t∈Γ + and φ(s/x)∈Γ + , then φ(t/x)∈Γ +;

  7. 7.

    s≠t and φ(s/x)∈Δ + , then φ(t/x)∈Δ +;

  8. 8.

    s=t∈Γ + if and only if s≠t∈Δ +;

  9. 9.

    there is no \(\phantom {\dot {i}\!}\varphi \in \mathcal L^{+}\) such that

    $$\Gamma^{+}\Rightarrow\Delta^{+},\varphi\text{ and }\varphi,\Gamma^{+}\Rightarrow\Delta^{+}. $$

A four-valued model \(\phantom {\dot {i}\!}\mathcal M\) can now be defined as follows:

$$M:=\{[\![ t]\!]\;|\;t\in \textit{Term}_{\mathcal L^{+}}\} $$

where

$$[\![t]\!]:=\{ s\in \textit{Term}_{\mathcal L^{+}}\;|\;s=t\in \Gamma^{+}\} $$

that is the equivalence class of terms of \(\phantom {\dot {i}\!}\mathcal L^{+}\) determined by s = t∈Γ+. Moreover,

$$\begin{array}{@{}rcl@{}} &P_{\mathcal M}^{+}:=\{([\![t_{1}]\!],...,[\![t_{n}]\!])\;|\;P(t_{1},...,t_{n})\in \Gamma^{+}\}\\ &P_{\mathcal M}^{-}:=\{([\![t_{1}]\!],...,[\![t_{n}]\!])\;|\;\neg P(t_{1},...,t_{n})\in \Gamma^{+}\} \end{array} $$

The term model \(\phantom {\dot {i}\!}\mathcal M\) so-defined enables us to prove the following lemma, which will in turn yields the desired result:Footnote 16

Lemma 10

For all \(\phantom {\dot {i}\!}\varphi \in \mathcal L^{+}\),

  1. 1.

    φ∈Γ + if and only if \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textnormal {\textsf {DM}}}\varphi \);

  2. 2.

    if φ∈Δ + , then \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textnormal {\textsf {DM}}}\varphi \).

Proof

By induction on the positive complexity of φ.Footnote 17 We mostly focus on the base and on the existential quantifier cases.

Case 1::

φ:= (s = t). (s = t)∈Γ+ iff [ [s] ]=[ [t] ] iff \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} s=t\). If (s = t)∈Δ+ and \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} s=t\), then [ [s] ]=[ [t] ] and s = t∈Γ+, which would imply the \(\phantom {\dot {i}\!}\mathcal S\)-derivability of Γ+⇒Δ+, against Lemma 9.

Case 2::

φ:= (st). If (st)∈Γ+, by Lemma 9(8), s = t∈Δ+. By Lemma 9(2), s = t∉Γ+, therefore [ [s] ]≠[ [t] ] and \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} s\neq t\). If st∈Δ+, again by Lemma 9(8), s = t∈Γ+ and so \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textsf {DM}} s\neq t\).

Case 3::

φ: = P(t 1,...,t n ). By construction of \(\phantom {\dot {i}\!}\mathcal M\), φ∈Γ+ iff \(\phantom {\dot {i}\!}([\![t_{1}]\!],...,[\![t_{n}]\!])\in P_{\mathcal M}^{+}\), that is \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} P(t_{1},\ldots ,t_{n})\). If P(t 1,...,t n )∈Δ+, then by Lemma 9(3), P(t 1,...,t n )∉Γ+; therefore \(\phantom {\dot {i}\!}([\![t_{1}]\!],...,[\![t_{n}]\!])\notin P_{\mathcal M}^{+}\).

Case 4::

φ:=¬ P(t 1,…,t n ). Similar to the previous one.

Case 5::

φ:=¬¬χ. It’s easy to check that φ∈Γ+ iff χ∈Γ+ (otherwise Γ+,χ⇒Δ+ or Γ+,¬¬χ⇒Δ+ by Lemma 9, thus Γ+⇒Δ+ by the DM-rules). We can then apply the induction hypothesis.

If φ∈Δ+, then χ∈Δ+ (otherwise Γ+χ+, and thus Γ+⇒Δ,φ). Again we apply the induction hypothesis.

Case 6::

φ:=∃v i χ.

By construction of Γ+, φ∈Γ+ if and only if χ(c)∈Γ+ for suitable c. This is then equivalent to \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\chi (c)\) and \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} \exists v_{i}\chi \) by induction hypothesis and definition of \(\phantom {\dot {i}\!}\vDash _{\textsf {DM}}\).

If φ∈Δ+, then χ(t/v i )∈Δ+ for any t (otherwise \(\vdash _{\mathcal S}\Gamma ^{+}\Rightarrow \Delta ^{+},\chi (t/v_{i})\) , by Lemma 9 and \(\vdash _{\mathcal S} \Gamma ^{+}\Rightarrow \Delta ^{+}\) since \(\mathcal S\vdash \chi (t)\Rightarrow \exists v\chi \) ). By induction hypothesis, \(\mathcal M\nvDash _{\textsf {DM}} \chi (t/v_{i})\).

Case 7::

φ:=¬ ∃v i χ. If φ∈Γ+, then ¬χ(t/v i )∈Γ+ for any t (as ¬χ(t)∉Γ+ for some t entails \(\phantom {\dot {i}\!}\mathcal S\vdash \Gamma ^{+},\varphi \Rightarrow \Delta ^{+}\), thus Γ+⇒Δ+, quod non). Also, if ¬χ(t/v i )∈Γ+ for any t, then ¬∃v i χ∈Γ+ (as if φ∉Γ+, then φ∈Δ+, thus ¬χ(c)∈Δ+ for suitable cC). By induction hypothesis, this is equivalent to \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}} \neg \chi (t)\) for any t and \(\phantom {\dot {i}\!}\mathcal M\vDash _{\textsf {DM}}\varphi \).

By definition of Δ+, if φ∈Δ+, then ¬χ(c/v i )∈Δ+ for suitable cC. By induction hypothesis, \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textsf {DM}}\neg \chi (c/v_{i})\). Thus \(\phantom {\dot {i}\!}\mathcal M\nvDash _{\textsf {DM}} \neg \,\exists v_{i}\chi \).

With Lemma 10 at hand one can check that all initial sequents in \(\phantom {\dot {i}\!}\mathcal S\) are satisfied by \(\phantom {\dot {i}\!}\mathcal M\).

This conclude the proof of Proposition 4. From the assumption \(\phantom {\dot {i}\!}\nvdash _{\mathcal S} \Gamma \Rightarrow \Delta \) we constructed (Γ++) and the term model \(\phantom {\dot {i}\!}\mathcal M\). The reduct \(\phantom {\dot {i}\!}\mathcal M\restriction \mathcal {L}\) of \(\phantom {\dot {i}\!}\mathcal M\) to \(\phantom {\dot {i}\!}\mathcal {L}\) is such that \(\phantom {\dot {i}\!}\mathcal M\restriction \mathcal {L}\) is a model of \(\phantom {\dot {i}\!}\mathcal S\) and

for all φ∈Γ, \(\phantom {\dot {i}\!}\mathcal M\mathpunct \upharpoonright \mathcal L\vDash _{\textsf {DM}}\varphi \) and \(\phantom {\dot {i}\!} \mathcal M\mathpunct \upharpoonright \mathcal L\nvDash _{\textsf {DM}} \psi \) for all ψ∈Δ.

Thus \(\phantom {\dot {i}\!}\Gamma \nvDash _{\mathcal S} \Delta \). This completes the proof of Proposition 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbach, V., Nicolai, C. On the Costs of Nonclassical Logic. J Philos Logic 47, 227–257 (2018). https://doi.org/10.1007/s10992-017-9424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-017-9424-3

Keywords

Navigation