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Abstract. If � is conceived as an operator, i.e., an expression that gives applied

to a formula another formula, the expressive power of the language is severely re-

stricted when compared to a language where � is conceived as a predicate, i.e., an

expression that yields a formula if it is applied to a term. This consideration favours

the predicate approach. The predicate view, however, is threatened mainly by two

problems: Some obvious predicate systems are inconsistent, and possible-worlds se-

mantics for predicates of sentences has not been developed very far. By introducing

possible-worlds semantics for the language of arithmetic plus the unary predicate

�, we tackle both problems. Given a frame 〈W,R〉 consisting of a set W of worlds

and a binary relation R on W, we investigate whether we can interpret � at every

world in such a way that �pAq holds at a world w ∈ W if and only if A holds at

every world v ∈ W such that wRv. The arithmetical vocabulary is interpreted by

the standard model at every world. Several ‘paradoxes’ (like Montague’s Theorem,

Gödel’s Second Incompleteness Theorem, McGee’s Theorem on the ω-inconsistency

of certain truth theories etc.) show that many frames, e.g., reflexive frames, do not

allow for such an interpretation. We present sufficient and necessary conditions for

the existence of a suitable interpretation of � at any world. Sound and complete

semi-formal systems, corresponding to the modal systems K and K4, for the class

of all possible-worlds models for predicates and all transitive possible-worlds models

are presented. We apply our account also to nonstandard models of arithmetic and

other languages than the language of arithmetic.
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[ . . . ] semper denotatur quod talis modus
verificetur de propositione illius dicti, sicut per
istam ‘omnem hominem esse animal est
necessarium’ denotatur quod iste modus
‘necessarium’ verificetur de ista propositione
‘omnis homo est animal’ cuius dictum est hoc
quod dicitur ‘omnem hominem esse animal’[.]

William of Ockham, Summa Logicae II.9

§1. Predicates and Operators. Predicates applied to singular terms
yield formulae, while operators need to be combined with formulae to
give new formulae. Roughly speaking, in natural language and in the
case of necessity “necessarily” and “it is necessary that” are operators,
whereas “is necessary” is a predicate. Whether necessity, knowledge,
belief, future and past truth, obligation and other modalitities should
be formalised by operators or by predicates was a matter of dispute up
to the early sixties between two almost equally strong parties. Then
two technical achievements helped the operator approach to an almost
complete triumph over the predicate approach that had been advocated
by illustrious philosophers like Quine.

Montague [33] provided the first result by proving that the predicate
version of the modal system T is inconsistent if it is combined with weak
systems of arithmetic. From his result he concluded that “virtually all of
modal logic . . . must be sacrificed”, if necessity is conceived as a predicate
of sentences. Of course, Montague’s verdict does not imply that necessity
cannot be treated as a predicate of objects different from sentences, e.g.,
propositions conceived as language-independent entities, but the result
clearly restricted the attractiveness of the predicate approach.

The majority of philosophers and logicians have opted to spare modal
logic and to reject the predicate view altogether. The prevailing general
attitude is expressed by the following quote from Slater [43]:

Since Montague, we surely now know that syntactic treatments
of modality must be replaced by operator formulations.

The other technical achievement that brought about the triumph of the
operator view was the emergence of possible-worlds semantics. Hintikka,
Kanger and Kripke provided semantics for modal operator logics, while
nothing similar seemed available for the predicate approach.

Ever since possible-worlds semantics has reigned as the main tool in the
analysis of necessity and the notions mentioned above. Today sacrificing
possible-worlds semantics for the predicate conception of necessity etc.
would mean sacrificing a huge body of philosophical logic and of analytic
metaphysics, epistemology, ethics and computer science.
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Nevertheless the operator approach suffers from a severe drawback: it
restricts the expressive power of the language in a dramatic way because
it rules out quantification in the following sense: There is no direct for-
malisation of a sentence like “All tautologies of propositional logic are
necessary”.

Proponents of the operator approach have proposed several strategies
to overcome this problem. For instance, one might formalise the above
sentence by a scheme and transfer quantification into the metalanguage.
However, this strategy hardly will be satisfying if it is applied to more
complex sentences where the quantifiers are deeply embedded in the sen-
tence.

Alternatively, one might employ a special kind of quantification where
the above sentence can be formalised as ∀A (P (A) → �A), where P (x) is
a predicate while � still is an operator. Then even ∀A (P (A) → A) would
be well formed because the variable A can stand in place of a formula.
This kind of quantification often is called substitutional quantification,
sometimes even if it does not come with any semantics but only with
axioms and rules. This terminology is surely confusing, but it has be-
come almost standard terminology after Kripke [27] had shown how to
apply a substitutional interpretation of quantification with the mentioned
properties. Substitutional quantification in this sense is not simple propo-
sitional quantification because the new variables may appear in the place
of normal first-order variables as well.

It seems arbitrary that some notions are formalised as predicates, while
others are conceived as operators only. It also forces one to switch between
usual first-order quantification and substitutional quantification without
any real need. In natural language there are not these two different kinds
of quantification. We shall give an example. “All true Σ-sentences are
provable in PA” requires only a first-order quantifier because provability
and truth are predicates. “All true Σ-sentences are provable in PA and
necessary”, in contrast, is formalised with another kind of quantification.
But it is completely unclear why we should assume that in the latter
sentence we deal with a completely different kind of quantification than
in the first sentence.

In most cases the above kind of substitutional quantification will be
equivalent to a truth predicate. If a truth predicate is employed, then
one could stick to an operator for necessity in many cases. Instead of
saying “x is necessary”, one could say “x is necessarily true”. Thus �x
where � is a predicate might be replaced by �Tx where � is an operator
and T is a truth predicate. One could even reverse the order of the
truth predicate and the necessity operator (see Kripke [26]). Thus only
a truth predicate (or substitutional quantification) would be needed, but
otherwise operators would suffice.
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We have several qualms about this approach. As above, we do not see
any good reason to treat truth and necessity (and the other predicates)
differently on the syntactical level. Furthermore the theory of necessity
and other notions would rest on truth-theoretic foundations which are
threatened by the semantical paradoxes. In general, the theory of truth
is far from being settled and the theory of necessity would inherit all
semantical paradoxes.

We think that the operator approach might have some merits for in-
stance in linguistics and computer science, but it fails at its main applica-
tion in philosophical logic: it does not provide an illuminating analysis for
necessity, knowledge, obligation and so on. For it does not allow for the
formalisation of the most common philosophical claims such as “All laws
of physics are necessary” or “There are true but unknowable sentences”.

Of course, the rejection of substitutional quantification and the other
strategies mentioned requires a more detailed discussion. However, we do
not present it here but proceed to our own constructive proposals.

Even for those who adhere to the operator view our results might be
interesting because the difficulties we encounter will show up in a different
form if a proper account of substitutional quantification or a theory of
truth is used in order to express quantification.

Our general reservations against the operator approach are shared by
some philosophers (see also Bealer [4] for an overview). Thus along the
main stream of the operator conception with its possible-worlds semantics
there always has been a tiny but steady rill of work on the predicate view
by authors like Germano [15], Skyrms [42], Asher and Kamp [2], McGee
[32], Schweizer [41], Gupta and Belnap [5, chapter 6].

Some of these papers have unmasked several of the alleged arguments
against the predicate view as untenable prejudices. In the first place,
everything that can consistently be said in an operator language can be
consistently said in the language with a predicate instead. More precisely,
sentences of modal operator systems can be translated into sentences of a
rich predicate system in a natural way such that provability is preserved.
The resulting system with � as a predicate is consistent with systems that
allow for a proof of the Diagonalisation Theorem. Under this translation,
operator sentences become sentences where the modal operator is replaced
by a corresponding predicate. This argument can be taken as a proof
that one does not have to sacrifice anything for the predicate view (see
des Rivières and Levesque [38] and Gupta and Belnap [5, p. 240 ff]).

Only if the provability of axiom schemata is to be preserved, troubles
are emerging: we can have �pAq → A for any translation of a modal
operator formula into the language with � as a predicate, but we can-
not have it for all sentences of the predicate language. The translations
of operator sentences are always ‘grounded’ sentences, that is, roughly
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speaking, sentences whose semantical evaluation hinges on nonsemantical
facts; more exactly, they are sentences that arise from sentences without
� by finite applications of �. Sentences like the liar sentence that yield
the inconsistencies are typical examples of ungrounded sentences; they do
not have counterparts in the operator language.

In this paper we investigate the second main argument against the pred-
icate approach which says that possible-worlds semantics is not feasible
for predicates. Asher and Kamp [2] and Gupta and Belnap [5, chapter 6]
have already refuted this view by providing possible-worlds semantics for
modal predicate languages in certain special cases. But although in some
cases possible-worlds semantics can be provided, there are also well-known
severe restrictions. We want to explore in which cases problems arise.

We shall stick as closely as possible to the common possible-worlds se-
mantics for operators, and we shall not apply tricks to avoid paradoxes.
That is, we shall use classical logic throughout, in contrast to other au-
thors who have applied the techniques known from the theory of truth,
e.g., partial or many-valued logic, to the theory of necessity and similar
concepts.

However, there is one fundamental decision we have to make which
is avoided on the operator approach. If necessity, truth, belief and the
like are predicates, then they must apply to objects of a certain kind.
Propositions, tokens or types of sentences, utterances, mental objects or
the like have been used for this purpose. The different choices have been
discussed for a long time. Here we are not able to go into this discussion
and mention just one aspect.

The problem of the choice between the different categories of objects
is connected to a family of arguments that have been employed against
necessity, truth and belief as predicates of sentences (e.g., the so-called
Church–Langford argument; see [4]). According to these arguments, the
meaning of a linguistic expression is always contingent. Thus, for in-
stance, it is never necessary that “All men are men” is necessary, because
the expression “All men are men” could have meant something else; it
could have meant “It is raining”. Therefore the expression “All men
are men” is not necessarily necessary; it is only contingently necessary,
namely contingently on the assumption that the string of symbols has its
actual meaning. Only the proposition expressed by “All men are men” is
necessarily necessary.

Arguments of this kind have lead philosophers to the claim that truth,
belief etc. are predicates of propositions (e.g., in the case of Bealer and
Pap [36]), while others have claimed that truth is not a predicate at all
(e.g., Strawson [44] and Grover, Camp & Belnap [16]). Still others (like
Field [13]) maintain that there are ‘deflationist’ uses of the truth predicate
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to which this kind of reasoning simply does not apply. We do not discuss
these arguments here.

It is compatible with our account to conceive � either as a predicate
of sentences or as a predicate of propositions—as long as the latter share
the structure of sentences. If we opt for sentences as objects to which
necessity, truth etc. is ascribed, then we have to say that we deal with
‘deflationist’ uses of these predicates. At any rate we keep the interpreta-
tion of the vocabulary fixed that talks about the objects to which truth,
necessity and so on is ascribed. So the argument involving the contingency
of meanings is avoided.

In our technical treatment we shall apply the predicate � to numeri-
cal codes of sentences (and we shall even identify expressions with their
codes), although we do not think that this is actually the most satisfying
approach. It allows us, however, to proceed to our main topic, possible-
worlds semantics for predicates, without before developing a theory of
propositions or other objects.

Our approach leaves room for several interpretations: the codes could
be interpreted as types of sentences or as (language-independent) propo-
sitions. We shall discuss these issues in a separate paper and return to
our main topic.

The core of possible-worlds semantics is the analysis of necessity (or the
notions mentioned above) as truth in all accessible worlds (or situations
or the like). That is, sentences �A (on the operator account) or �pAq
(on the predicate account) are true if and only if A is true in all accessible
worlds. Here a fundamental difference shows up between possible-worlds
semantics for modal operator and modal predicate languages. In the case
of an operator conception, this analysis can be turned into a clause in the
definition of validity of modal sentences. If a frame, i.e., a set of worlds
with an accessibility relation, is given and a function that assigns a model
for the �-free language to any world, then it is easy to define truth at a
world for all sentences with � as an operator. The definition proceeds by
recursion on the complexity of the sentence. Thus one can build a model
on every given frame.

If � is treated as a predicate, the recursive definition of truth at a world
cannot be carried out anymore, because a sentence �pAq is atomic, while
on the operator account �A has the complexity of A plus one. Also there
is no way to provide an amended definition of the complexity of a formula
that allows for a recursive definition of truth at a world. Problems are
posed, in particular, by self-referential sentences like the liar sentence.

For some frames a recursive definition of truth at a world is not only
impossible, but there is not even a model based on the frame at all. Mon-
tague’s [33] Theorem, for instance, shows that one cannot build possible-
worlds models on reflexive frames (see Example 5 below) if necessity is
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viewed as a predicate. This means that there is no way to assign truth
and falsity to all sentences in such a way that �pAq comes out as true if
and only if A holds at all accessible worlds (and if some conditions are met
which will be explained below). Another example is provided by McGee’s
[31] Theorem on ω-inconsistent systems. It is a direct consequence of this
theorem that a frame consisting in the natural numbers ordered by the
successor relation (so that every world sees exactly one other world) does
not support a possible-worlds model.

Although several further such restrictions on frames are known, the
general problem has not been tackled so far: which frames support a
possible-worlds model, if � is a predicate?

A satisfying answer to this characterisation problem would exhibit a
graph-theoretical description of the frames supporting possible-worlds
models. The restriction imposed by theorems like those due to Montague
and McGee should drop out as consequences of such a characterisation
result.

Our development of possible-worlds semantics for predicates will also
yield some further insights. It allows to model certain paradoxes and in-
consistency results in a framework where are modalities are treated uni-
formly. Here we explicitly reckon—like Ockham did—-also truth, being
known and other notions among the modalities.

Moreover our approach sheds a new light on hierarchies of metalan-
guages, and some results of provability logic and modal logic are gener-
alised. Our treatment of transitive converse wellfounded frames can be
seen as a variant or generalisation of the revision theory of truth.

Overview of the remaining sections. In section 2 we define the ba-
sic notions of possible-worlds semantics such as frames etc. and apply this
account to predicates rather than operators of sentences. Some examples
of frames that do not support a model are provided in section 3. We tackle
the Characterisation Problem for transitive frames in sections 4 and 5, and
provide some results on other frames in section 6. In section 7 we show
that some frames support more than one model even in the absence of
“contingent” vocabulary. We return to a classical topic of operator modal
logic in section 8, namely completeness; we shall provide a completeness
result by the method of canonical models. Sections 9 and 10 deal with the
properties of a fixed point of an operator that arises in the construction
of models. All our constructions so far are based on the standard model
of arithmetic; we sketch some applications to nonstandard models and
other models and languages in sections 11 and 12.

§2. Possible-Worlds Semantics. LPA is the language of arithmetic;
L� is LPA augmented by the one-place predicate symbol �. We shall
identify LPA with the set of all arithmetical formulae and L� with the
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set of all formulae that may contain �. We do not distinguish between
expressions (like formulae and terms) and their arithmetical codes. We
use uppercase roman letters A, B, . . . for sentences of L�. If a formula
may have a free variable we always indicate this by writing A(v) etc.

We shall assume that the language LPA features certain function sym-
bols. This will render the notation somewhat more perspicuous. Of
course, these function symbols can be eliminated in the usual way and
thus are not really required.

On our account all arithmetical truths come out necessary. Thus one
might wish to include further vocabulary that allows for more contingent
sentences. In fact, our account can and should be applied to expansions
of LPA. In the main parts of this paper, however, we shall concentrate
on the language LPA because additional vocabulary would be idling and
obstruct the view for the essentials. We shall discuss expansions of LPA

in section 12.
Except for section 11 we shall consider standard models only, i.e., mod-

els with the set of natural numbers as the domain and the standard in-
terpretation of the arithmetical vocabulary. Hence models have the form
(N, X) where N is the standard model of arithmetic and X⊆ ω the exten-
sion for �. Since models differ only in the extension of �, we may identify
a model with an extension for �. Thus we write X |= A for (N, X) |= A.

3x is defined as ¬�¬. x where ¬. is a function symbol for the function
sending the code of a sentence of L� to the code of its negation.

The definition of frames and possible-worlds models (PW-models, for
short) parallels the usual definitions for the operator approach.

Definition 1. A frame is an ordered pair 〈W,R〉 whereW is nonempty
and R is a binary relation on W.

The elements of W are called worlds, R is the accessibility relation.
World w sees v if and only if wRv.

Next we define PW-models. They must not be confused with the models
of the form (N, X). The latter are models in the usual sense and act,
loosely speaking, as worlds in PW-models.

Definition 2. A PW-model is a triple 〈W,R, V 〉 such that 〈W,R〉 is
a frame and V assigns to every w ∈ W a subset of L� such that the
following condition holds:

V (w) =
{
A ∈ L�

∣∣ ∀u(wRu ⇒ V (u) |= A)
}
.

If 〈W,R, V 〉 is a model, we say that the frame 〈W,R〉 supports the PW-
model 〈W,R, V 〉 or that 〈W,R, V 〉 is based on 〈W,R〉. A frame 〈W,R〉
admits a valuation if there is a valuation V such that 〈W,R, V 〉 is a PW-
model. Thus a frame supports a model if and only if it admits a valuation.
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V assigns to every world a set of sentences, the extension of � at that
world. The condition on the function V in the definition says that a
sentence is in the extension of � at a world w if and only if it is true in all
worlds seen by w. Thus if 〈W,R, V 〉 is a PW-model, the following holds:

V (w) |= �pAq iff ∀v ∈W (wRv ⇒ V (v) |= A).

If we were to include further ‘contingent’ vocabulary, the valuation V not
only would have to interpret � but also this additional vocabulary. We
shall consider this situation in section 12.

As pointed out above, the definition of truth at a world cannot be
carried out recursively as in the operator case. On the operator account
one can build models on every frame. Thus the question whether a frame
supports a model does not arise for � as an operator. However, if � is a
predicate, there are restrictions and the following question is sensible:

Characterisation Problem. Which frames support PW-models?

An answer to this problem exhibits the restrictions imposed by the
‘paradoxes’ (like Montague’s) on possible-worlds semantics for predicates.
We are only able to provide partial solutions to the Characterisation Prob-
lem in this paper.

We shall now show that possible-worlds semantics for predicates is in
many respect similar to the usual possible-worlds semantics for operators.

Analogous definitions of frames and models for operators lead to the
so-called normal systems of modal logic with the minimal system K (see,
e.g., Boolos [6]). These systems are closed under necessitation, and the
necessity operator � distributes over material implication. For the pred-
icate account something similar can be shown.

Lemma 3 (Normality). Suppose 〈W,R, V 〉 is a PW-model, w ∈W and
A,B ∈ L�. Then the following holds:

(i) If V (u) |= A for all u ∈W, then V (w) |= �pAq;
(ii) V (w) |= �pA→ Bq → (�pAq → �pBq).

Since we are dealing with standard models only, we do not only obtain
schemata like (ii) but also their universal closure, that is

∀x∀y
(
SentL�

(x) ∧ SentL�
(y) →

(
�(x→. y) → (�x→ �y)

))
.

Here →. represents the function that yields, when applied to two codes of
sentences, the code of their material implication (if no such function sym-
bol is available it is to be expressed by a suitable predicate expression).
SentL�

(x) represents the set of sentences of L�. In order to avoid confus-
ing notation, we shall state schemata like (ii) instead of the universally
quantified sentences. This does not make a difference because of the use
of standard models.
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§3. Some Limitative Results. As has been noted in the introduc-
tion, several restrictions on the class of frames supporting a PW-model
are well known. These restrictions correspond to several inconsistency
results. We begin with the most trivial example, namely the liar paradox
or Tarski’s Theorem which shows that object- and metalanguage cannot
coincide.

•
��

Example 4 (Tarski). The above frame with one world that sees itself
does not admit a valuation.

Montague’s Theorem is a generalisation thereof.

Example 5 (Montague). If 〈W,R〉 admits a valuation, then 〈W,R〉 is
not reflexive.

The trivial proof resembles Montague’s proof showing that the predicate
version of the modal system T is inconsistent. We present it in detail as
an example.

Proof. Assume 〈W,R, V 〉 is a PW-model based on 〈W,R〉 which is
reflexive. The liar sentence is a sentence such that PA ` A↔ ¬�pAq; it
holds at any world. Pick an arbitrary world w ∈W.

If V (w) |= ¬A then also V (w) |= �pAq and thus by reflexivity V (w) |=
A. Therefore V (w) |= A must hold and consequently there is a world u
such that wRu and V (u) |= ¬A and again V (u) |= A. a

The arguments showing that a frame does not admit a valuation proceed
by diagonal arguments. In the above examples we employed the liar
sentence. The next two examples require slightly more complex diagonal
sentences.

• ** •jj

Example 6. The frame ‘two worlds see each other’ displayed above
does not admit a valuation.

The existence of a suitable valuation is refuted by the fixed point A↔
¬�p�pAqq.

This example can be generalised in the obvious way in order to refute
the existence of valuations for loops of arbitrary finite length.

Now we turn to a frame with a dead end, i.e., a world which does not
see any other world.

•

•

OO

ZZ
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Example 7. The frame ‘one world sees itself and one other world’ does
not admit a valuation.

For the proof the fixed point A↔ (�pAq → �p¬Aq) can be employed.

• ++ •kk

•

??~~~~~~~

__@@@@@@@

Example 8. The above frame ‘one world sees two worlds that see each
other’ does not admit a valuation.

One can show this by using the fixed point A↔ ¬�p�pAqq ∧ ¬�pAq.
So far we have been dealing with transitive frames only. McGee’s main

theorem in [31] on the ω-inconsistency of a certain theory of truth imposes
a restriction on the existence of PW-models based on a nontransitive
frame. Pre is the predecessor relation: k Pre n if and only if n = k + 1.

...

2

OO

1

OO

0

OO

Example 9 (McGee, Visser). 〈ω,Pre〉 does not support a PW-model.

The proof relies on the following diagonal sentence involving a quantifier
(see McGee [31]):

A↔ ¬∀x�h. (x, pAq).

Here h. represents a function satisfying the following equation:

h(n, pBq) = p�p�p. . .︸ ︷︷ ︸
n

pBq q . . .q︸ ︷︷ ︸
n

q.

(See also Halbach [18, Lemma 4.1(iv)] for a proof of the example.) By
a similar argument one can show that there is no PW-model based on
〈ω,<〉.

Instead of McGee’s theorem Visser’s theorem [45] on illfounded hierar-
chies of languages can be used for deriving the above result. The relations
between the different ω-inconsistency results and their implications are
studied by Leitgeb [29].
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Also Gödel’s Second Incompleteness Theorem can be rephrased in terms
of possible-worlds semantics. First we prove Löb’s Theorem, which will
be very useful in later sections.

Transitivity yields the predicate analogue of the K4 axiom:

Lemma 10. Let 〈W,R, V 〉 be a PW-model based on a transitive frame.
Then

V (w) |= �pAq → �p�pAqq

obtains for all w ∈W and all sentences A ∈ L�.

Lemma 11 (Löb’s Theorem). For every world w in a PW-model based
on a transitive frame and every sentence A ∈ L� the following holds:

V (w) |= �p�pAq → Aq → �pAq.

Proof. The proof is the usual proof of Löb’s Theorem with the prov-
ability predicate replaced by the primitive symbol �. The diagonalisation
lemma yields a sentence K:

V (w) |= K ↔ (�pKq → A).(1)

Since this holds in any world, we may necessitate the sentence according
to Lemma 3:

V (w) |= �pKq → (�p�pKqq → �pAq)
V (w) |= �pKq → �pAq Lemma 10
V (w) |= (�pAq → A) → (�pKq → A)
V (w) |= (�pAq → A) → K by (1)

Since this holds at all worlds w, we may necessitate the last sentence and
obtain Löb’s Theorem by applying V (w) |= �pKq → �pAq. a
Obviously Löb’s Theorem is a kind of an induction principle (see Boolos
[6]). Since we cannot assign arbitrary truth-values to the sentences of L�
in any given world, we cannot conclude that R is converse wellfounded in
general.

We shall also use the following version of the theorem:

Corollary 12. Assume 〈W,R〉 is transitive and A ∈ L�. If V (w) |=
�pAq → A for all w ∈W, then also V (w) |= A for all worlds w.

From (the modal version of) Löb’s Theorem 11 (the modal version of)
Gödel’s Second Incompleteness Theorem can be derived by setting A = ⊥
for a fixed contradiction ⊥. A dead end is a world that does not see any
world. Obviously V (w) |= �p⊥q holds if and only if w is a dead end.

Example 13. In a transitive frame admitting a valuation every world
is either a dead end or it can see a dead end.
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Proof. Since the frame is transitive the predicate analogue of the K4
axiom scheme holds. This suffices for a proof of the formalised Incom-
pleteness Theorem and we obtain V (w) |= �p⊥q ∨3p�p⊥qq. a

In the sequel we shall provide a theorem (Theorem 32) that implies
all the above results and does away with the need for all the different
diagonal sentences, which have to be found for every frame separately. In
the end all limitative results can be derived from Löb’s Theorem.

§4. The Characterisation Problem for Transitive Frames I. In
the preceding section we have presented some examples of limitations on
the existence of valuations. All frames discussed in the preceding section
have infinite R-chains w1Rw2Rw3R . . . , that is, they are not converse
wellfounded. It is not hard to show that all converse wellfounded frames
support a PW-model (see Theorem 31 below). However, also some con-
verse illfounded frames admit valuations. Because of these frames the
Characterisation Problem is nontrivial.

The following two sections are devoted to a special case of the Char-
acterisation Problem, namely to the following question: Which transitive
frames admit valuations? In the present section we provide sufficient con-
ditions for the existence of a valuation; some (unfortunately inequivalent)
necessary conditions are then given in the next section. Throughout both
sections we assume that R is transitive. We give here a brief outline of
the results of these two sections and (some) of Section 6.

It is natural to look first at frames with an accessibility relation that is
a converse wellfounded ordering, indeed a converse wellorder. For these
it is unproblematic to assign valuations (see Theorem 31). From these
one considers orderings that have some co-initial wellfounded part (Defi-
nition 14), and we seek to characterise (first) those linear orderings that
have some converse wellordered part, with a possibly illfounded initial
part. We first analyse however how valuations are built up along converse
wellorderings. It turns out that there is a natural operator, Φ, associated
to the transition of the extension of the � symbol from one world to its
immediate predessor. This operator is decreasing, and hence, if the con-
verse wellordering is sufficiently long, results in a fixed point after some
least ordinal number κ, of stages of application. The main theorem of
the section (Theorem 23) is a calculation of κ. It is not hard to imagine,
for the first stages at least, that the extension of � along the co-initial
segment of an accessibility relation, being a predicate referring to truths
at previous worlds, in fact contains sufficient information to amount to
an iteration of a truth predicate. Indeed this is precisely what happens;
and once into the transfinite the idea is that the extensions of � (called
Xα+1 at the “α+ 1’st world”) in fact code truth sets for the α’th level of
the Gödel constructible hierarchy Lα. At a certain level of this hierarchy,
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γ, the structure 〈Lγ ,∈〉 is sufficiently closed that it becomes first-order
reflecting (see the discussion before Theorem 23). It is precisely at this
stage that we have our fixed point. The structure 〈Lγ ,∈〉 is a model of
Kripke-Platek set theory, KP. Such a theory is important for us since our
(simplest to state) sufficient condition on those linear orders that carry
valuations, are as those that are isomorphic to (initial segments of) the
ordinals of models of KP. Such models need not be wellfounded. This
is done at Theorem 27. A more technical sufficient condition is that of
Theorem 25; a more quotable version is the Corollary 26: essentially if a
KP model A contains a linear frame 〈W,R〉 as an element of the model,
then that frame supports a valuation if A is a model of the statement that
“R is converse wellfounded” (irrespective of the truth of that statement
in the real word – as A may itself be illfounded, and hence assess the
truth value of this assertion incorrectly).

We are unable to give an exact characterisation of all linearly ordered
frames that admit valuations, however the main result of section 5 gives
a necessary condition on what those linear orders must look like: if they
are converse illfounded, then the converse wellfounded part must have
order type greater than κ or be an admissible ordinal ω < α ≤ κ (Lemma
30). (That there are such frames is a standard fact and an application
of the Barwise Compactness theorem - cf Lemma 35 and the related
Proposition 37 of section 7 where it is shown that there are frames with
converse wellfounded part any countable admissible ordinal > ω, which
admit a valuation containing a Φ-fixed point (necessarily by the above in
the converse-illfounded part of the frame).)

It seems to us that the problem of finding which linear orders admit
frames is a particular case of the problem “Along which linear orderings
can one build L-hierarchies?”, or equally, hierarchies of ramified analy-
sis. We make one simple conjecture here concerning just recursive linear
orderings (at the end of section 4). This amounts to the claim that the
sufficient condition of Theorem 27 is also necessary; but more generally it
seemed to us at one point reasonable as a conjecture that one could build
such a frame 〈W,R〉 with an associated valuation by piecing together
pseudowellorders, whose converse wellfounded parts were of increasing
admissible order type, as one descended through R.

We now proceed to the formal definitions. As above, a world w is
converse wellfounded in a frame 〈W,R〉 if and only if every subset of
w↑ =df {u ∈ W | wRu } has an R-maximal element. A set of worlds
is converse wellfounded if and only if all its elements are converse well-
founded; thus a set S of worlds is converse wellfounded if and only if⋃
w∈S w↑ is wellfounded with respect to R−1.

Definition 14. For any partial order 〈X,T 〉 we define the wellfounded
part as WFP(X) = WFP(〈X,T 〉) =df 〈X ′, T �X ′×X ′〉 where X ′ is the
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maximal set X ′ ⊆ X, downwards closed under T , on which T is well-
founded.

Associated with any wellorder is the natural rank function defined by
transfinite recursion. We define the rank of the wellfounded part of any
partial order to be the supremum of the ordinal ranks of its elements.

Concerning our frames, the converse wellfounded part of a set of the
form { v | wRv } is then the largest R-upwards closed set X (i.e., the
largest X such that ∀y ∈ X(yRx⇒ x ∈ X)) on which R−1 is wellfounded.
The depth of a world w is defined to be the rank of R−1 restricted to the
converse wellfounded part of { v | wRv }. Thus a world does not have to
be converse wellfounded to have a depth. (Later we shall need to apply
this definition also to frames that are not transitive. If R is not transitive,
we set the depth of w in 〈W,R〉 as the depth of w in 〈W,R∗〉, where R∗ is
the transitive closure of R.) If R is transitive and converse wellfounded,
then V (w) is determined by the depth of w. Thus V may be defined
inductively by an operator Φ, which we shall study now.

Φ will generate suitable extensions of �. Thus we start with the set L�
of all sentences (which, perforce, are all in the extension of � at any dead
end) and Φ will progressively remove sentences of L� in order to define
the extension of � at worlds of larger depth. Thus the operator does not
build up larger and larger sets from the empty set; it rather reduces L�.
We could work instead with an operator generating suitable extensions for
3 from the empty set, which we did in [19], but this makes the notation
awkward.

Definition 15. We set for any set X of natural numbers:

Φ(X) =df X ∩
{
A ∈ L�

∣∣ (N, X) |= A
}
.

In the following, Φα(X) designates the α-fold application of Φ to X; at
limit ordinals λ, Φλ(X) is defined as the intersection

⋂
α<λ Φα(X) of all

previous stages.
The following lemma is established by induction on the depth α of w

(and is a special case of 31).

Lemma 16. Assume 〈W,R, V 〉 is a PW-model based on a transitive con-
verse wellfounded frame. If w has depth α, then V (w) = Φα(L�) holds
for all ordinals α.

A set X ⊆ L� is a fixed point (of Φ) if and only if Φ(X) = X. For
any set Φ(X) ⊆ X holds and, consequently, Φα(L�) ⊇ Φβ(L�) if α ≤ β.
Thus by iterated applications of Φ to L� we arrive at a fixed point:

Lemma 17. There is an ordinal κ such that Φκ(L�) = Φα(L�) for all
α ≥ κ.
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The operator Φ (as well as the corresponding operator for 3) is not
monotone, that is, X ⊆ Y does not generally imply Φ(X) ⊆ Φ(Y ).
Therefore the fixed point Φκ(L�) need not be maximal (and the fixed
point generated by the corresponding operator for 3 need not be mini-
mal).

The operator Φ compares with the revision operator Ψ of revision se-
mantics as introduced by Gupta [17] and Herzberger [21] (see Gupta and
Belnap [5]). The revision operator Ψ takes a set X to the new extension{
A ∈ L�

∣∣ (N, X) |= A
}
. Since X ⊆ Ψ(X) does not obtain, at a limit

level one cannot simply take the intersection of all levels up to the limit
level. Several alternative treatments of limit stages have been proposed.

If we start with the set L� of all sentences, apply Φ repeatedly to
it and take intersections at limit stages, then the liar sentence L with
L ↔ ¬�pLq is in L� but not in any Φα(L�) for α ≥ 0. In revision
semantics, in contrast, the liar sentence will always flip in and out of
the extension of the truth predicate, thereby causing trouble with the
definition of the extension at limit stages; in particular, as already noted,
the revision process will never converge.

Fixed points of Φ can be characterised in the following way.

Lemma 18. X ⊆ L� is a fixed point if and only if X |= �pAq → A
for all A ∈ L�.

The existence of fixed points implies that there are frames that are not
converse wellfounded but which admit a valuation nevertheless.

Theorem 19. Assume 〈W,R〉 is transitive and every converse illfound-
ed world in 〈W,R〉 has depth at least κ. Then 〈W,R〉 admits a valuation.

Proof. The definition of V for converse wellfounded w is forced by
Lemma 16. If w ∈W has depth at least κ we put V (w) = Φκ(L�). This
holds in particular for all converse illfounded worlds.

By Lemma 17 the condition

V (w) =
{
A ∈ L�

∣∣ ∀u(wRu ⇒ V (u) |= A)
}

is satisfied by all worlds w ∈W. a
In the following, ω1 will always denote the first nonrecursive ordinal (see

Rogers [39]). Using an ordinal notation system for the ordinals below ω1

it is possible to construct sentences that hold at a world w of a transitive
frame if and only if w is converse wellfounded and has depth α < ω1.
However, in general one cannot express converse wellfoundedness in L�.

Corollary 20. If 〈W,R, V 〉 is a transitive converse illfounded model,
then there is no formula A that holds exactly in the converse wellfounded
worlds of 〈W,R〉.
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Proof. According to Theorem 19 there are frames 〈W,R〉 with not
converse wellfounded worlds that support a PW-model. If there were
such a formula A,

V (w) |= �p�pAq → Aq

would hold in every world w ∈W. By Lemma 11 (Löb’s Theorem) �pAq
would hold in every world of W. But by assumption A does not hold in
these converse illfounded worlds. Contradiction! a

We determine the exact size of the closure ordinal κ of Φ and thereby
show that there is a gap between ω1 and κ.

We abbreviate by setting Xα = Φα(L�). The function δ 7→ Xδ can
be defined by a Σ1-recursion over the ordinals of M where the latter is
any sufficiently closed model 〈M, E〉 containing the standard model N
of arithmetic. In particular this is true over any model M of Kripke–
Platek (KP) set theory containing the integers as a standard set. For
background on the theory KP and on admissible sets, see Barwise [3].
We review some of this theory and these notions here. We shall assume
the reader is familiar with Gödel’s constructible hierarchy, which can also
be found in [3]. The theory of KP is expressed in the language of set
theory, that is, with equality, and the single nonlogical symbol ∈̇.

Transitive models M = 〈M,∈〉 of KP, with the symbol ∈̇ getting its
standard interpretation, are called admissible sets. We shall have occasion
to consider in the sequel nonwellfounded models of KP: that is, models of
the form 〈A, E〉 where the epsilon relation E of A is not wellfounded. The
wellfounded part of such a model WFP(A) =df WFP(A, E) is defined in
accordance with Definition 14, by considering E as a partial ordering on
the domain of A.

If α is the ordinal rank of the wellfounded part WFP(A) (we shall
write α = ρ(WFP(A))), then it is known that WFP(A) is a model of
KP (the so-called “Truncation Lemma”, see [3, II 8.4]). In particular this
lemma implies that the constructible part of WFP(A), which is isomor-
phic to 〈Lα,∈〉, also is a model of KP. If A is a model of KP, On(A)
denotes the class of ordinals in the sense of A. We adopt the convention
that we identify the wellfounded part of On(A) with the standard ordi-
nals to which they are order-isomorphic (and similarly we identify the
E-relation restricted to the wellfounded part as the actual ∈-relation).
Hence On(WFP(A)) ⊇ ω+1 holds if and only if the integers of A are
standard. We shall only consider in what follows models of KP in which
the integers are standard and moreover form a set.

The feature, and strength, of KP which we shall be exploiting is its
ability to define functions by transfinite recursion along relations (usually
the ordinals of the model, or its E-relation), if the defining clauses of the
recursion are sufficiently simple: that is, have a form which is—provably
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in KP—equivalent to a Σ1-form. Thus ordinal arithmetic, and in par-
ticular the Gödel L-hierarchy, can be defined by suitable Σ1-recursions
over any model A of KP. Hence such models A have versions of the
L-hierarchy contained inside them as “inner models” of KP. Thus if the
model A is illfounded, the L-hierarchy of A coincides with Lα on the well-
founded part of A (by our convention) but there will also be sets Z ∈ A
that are the levels La of the constructible hierarchy of A where a is a
nonstandard ordinal in the illfounded part of A. Another example is the
operation of Φ: this can be defined by a Σ1-recursion inside any KP-model
A using as frame the converse of the A-ordinals, 〈On(A), E−1�On(A)2〉.
The latter may be illfounded, and if so, the result will be an illfounded
frame with a valuation defined in A. (It is to be emphasised that A of
course thinks its ordinals are wellfounded: only in the “real world” of all
sets do we see that there is a counterexample to wellfoundedness: that
is, a nonempty set X ⊆ On(A) which has no E-minimal element. It is a
consequence of KP that there is no such X ∈ A.)

We shall always assume that the Axiom of Infinity is part of KP. An or-
dinal is admissible if 〈Lα,∈〉 is a model of KP. For R ∈ 2ω (or equivalently
R ⊆ ω) we let ωR1 denote the supremum of the ranks of all wellorderings
of ω that are recursive in R. ADM is the class of all admissible ordinals,
which by this assumption are all greater than ω. ADM is not a closed
class; we thus define ADM∗ as ADM together with all of its limit points.

The idea of the proof of the following theorem is that below the closure
ordinal κ of the operation Φ, the sets Xδ+1 (for δ ≥ ω) can be construed
essentially as truth sets for the δ’th level of the L-hierarchy. The point
where this identification breaks down is precisely where the L-hierarchy
requires parameters in the first-order definitions that are required to make
up the elements of the next level.

Let γ be least so that Lγ has a transitive Σ1-end extension (that is,
there is a transitive M with Lγ as an element, and 〈Lγ ,∈〉 ≺Σ1 〈M,∈〉).
This ordinal is in some senses a large one: it is recursively Mahlo (indeed
a fixed point in a recursively “hypermahlo” hierarchy). It is easy to see
that Lγ |= ∀x(|x| = ω). Further one may show the following:

Proposition 21. γ is the least ordinal for which 〈Lγ ,∈〉 ≺Σ1 〈Lγ+1,∈〉
holds.

Actually we could have used this as our definition of γ in the sequel.
From this it follows that γ is less than the least ordinal ν so that Lν |=
KP + Σ1-separation.

Lemma 22. Lγ is an admissible set that is the Skolem Hull of Σ1-
parameter-free terms inside itself. Thus any element x of Lγ is named by
a parameter-free Σ1 Skolem term, and the ∈-diagram of Lγ is essentially
given by the Σ1-truth set for Lγ.
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This latter property fails first at Lγ+1. We sketch a proof of the lemma.

Proof. That Lγ |= KP is fairly immediate. (If, for example, some
instance of ∆0-comprehension failed, one obtains a function g : x→ On,
for some x ∈ Lγ , with g Σ1-definable over Lγ , that is, unbounded in γ.
However Lγ+1 believes ran(g)is bounded, and this Σ1-statement transfers
down to Lγ—a contradiction.) If the Skolem Hull property failed for
some set x ∈ Lγ we may use a function F that is ∆Lγ

1 -definable and is
a bijection between γ and Lγ , to assume, without loss of generality, that
some least ordinal δ < γ fails to be Σ1-definable. But then no ordinal η
with δ < η < γ can be Σ1-definable over Lγ without parameters. If η were
a counterexample, then we use the fact that in Lη+1 there is a least (in
the canonical wellorder of Lη+1) wellorder of ω, S say, in order type η.
There must be such a wellorder: otherwise η is a cardinal inside Lη+1

and then it can be shown there are chains of fully elementary chains of
models of ZF−-models of the form Lγn≺ Lγn+1 with all γn < η < γ. Thus
δ would be Σ1-definable from this wellordering S (as being isomorphic to
the “rank of k in S” for some k ∈ ω) in Lγ . Putting this together with the
Σ1-definition of η, and the further Σ1-definition of Lη+1 from η, would
constitute a parameter-free Σ1-definition of δ—a contradiction.

Now it can easily be shown that Lδ ≺Σ1 Lγ . If this failed, then for some
Σ0-formula ψ(v0, v1) we should have Lγ |= ∃xψ[x, y] but Lδ |= ∃xψ[x, y]
fails for some set y ∈ Lδ. But y has a Σ1-parameter-free definition in Lγ ,
so in effect we can drop y by rewriting the definition ∃v0 ψ(v0, v1) as
∃v0 ψ′(v0). Now γ is a limit ordinal, hence the “least ordinal η so that
Lη |= ∃xψ′[x]” is a Σ1-definition of an ordinal greater than δ. Contradic-
tion!

But γ was least so that Lγ had a Σ1-end extension! Hence there is no
such δ. a

The two facts from Proposition 21 and Lemma 22 above from the folk-
lore are used in the proof of Theorem 23 below.

It is also well known that γ is least so that Lγ is first-order reflecting,
that is, for all n, if ϕ is any Πn-formula (with parameters from Lγ allowed)
in the language of set theory, then the following holds (see Aczel [1]):

Lγ |= ϕ =⇒ ∃α < γ Lα |= ϕ.

(As indicated above, Lγ is a model of a strong extension of KP—stronger
than the theory KPi which is proof-theoretically equivalent to ACA +
Bar Induction + ∆1

2-Comprehension Scheme; however, it is known, by
consideration of (i) above, that it is weaker than the latter strengthened
with the Π1

2-Comprehension Scheme—see Rathjen [37].)
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Theorem 23. γ = κ.1

In particular, this shows that κ > ω1 (like any admissible ordinal, ω1 is
Π2-reflecting but it is not Π3-reflecting). We shall prove this theorem
after a preliminary lemma.

We shall let Σn-Th(Lβ) denote the set of Σn-sentences true in 〈Lβ,∈〉.
We use lower-case Greek letters ϕ, ψ etc. for formulae in the set-theoretic
language possibly expanded by additional parameters. Note if Σ1-Th(Lδ)
is Σk-definable over (N, Xδ), say,

ϕ ∈ Σ1-Th(Lδ) ⇐⇒ (N, Xδ) |= C1(pϕq),(2)

then it is well known that Σn-Th(Lδ) is Σk+n-definable over (N, Xδ) in
a definition effectively obtainable from that of C1. We shall see by the
following Lemma that we may take here k = 1 and thus we shall have for
a suitable formula Cn(x):

ϕ ∈ Σn-Th(Lδ) ⇐⇒ (N, Xδ) |= Cn(pϕq).(3)

Lemma 24. Σ1-Th(Lδ) is Σ1-definable over 〈N, Xδ〉 (and thus is recur-
sively enumerable in Xδ). The definition is uniform for all δ+1, that is,
it is independent of δ. It is similarly uniform for all limits δ.

Proof. We prove the lemma by induction on δ.
If δ is a limit ordinal, we have the following by the upwards persistence

of Σ1-sentences:

Σ1-Th(Lδ) =
⋃
α<δ

Σ1-Th(Lα).

Thus we arrive at the following:

ϕ ∈ Σ1-Th(Lδ) ⇐⇒ ∃α < δ ϕ ∈ Σ1-Th(Lα)

⇐⇒ ∃α < δ (N, Xα) |= C1(pϕq) by (2)

⇐⇒ ∃α < δ (C1(pϕq)) ∈ Xα+1

⇐⇒ (C1(pϕq)) ∈ Xδ.

Therefore Σ1-Th(Lδ) is Σ1 over (N, Xδ).
We turn to the successor case. Assume ϕ is Σ1 and Lδ+1 |= ϕ. Suppose

ϕ ≡ ∃y ψ(y) where ψ(v0) is Σ0 with just v0 free. Let y ∈ Lδ+1 be a
witness to this. Hence Lδ+1 |= ψ(y). By construction y ∈ Def(〈Lδ,∈〉)
and has therefore a first-order definition:

y =
{
z ∈ Lδ

∣∣ Lδ |= χ(z)
}
.

By our assumption on γ (Fact (ii) above), we can assume all parameters
that would normally be required in such a defining formula χ(v) have in

1The closure ordinal γ for the operator Φ was independently suggested to Volker
Halbach by Peter Aczel, and by Philip Welch. [V.H.]
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fact been replaced by Σ1-defining terms. We may thus assume χ(v) has
just the one free variable shown, and no other parameters from Lδ. Let
ψ(χ) be the Σm-formula (for some m) obtained by replacing each mention
of v in ψ(v) by {u | χ(u) }. For any formula ζ of set theory set lh(ζ) to
be the smallest n such that ζ is in Σn. We thus have

ϕ ∈ Σ1-Th(Lδ+1) ⇐⇒ Lδ+1 |= ∃y ψ
⇐⇒ ∃χ

(
ψ(χ) ∈ Σlh(ψ(χ))-Th(Lδ)

)
⇐⇒ ∃χ

(
Clh(ψ(χ))(pψ(χ)q) ∈ Xδ+1

)
.

The last line follows from (3) and our inductive hypothesis. a
Proof of Theorem 23. We prove κ ≤ γ first. Suppose γ < κ for

a contradiction. Then Xγ 6= Xγ+1. Let A ∈ Xγ+1 \ Xγ . Suppose that
A ∈ Σk. Then recall that{

A
∣∣ A ∈ Σk ∧ (N, Xγ) |= A

}
is recursive in X ′

γ
(k) (the k’th Turing jump of Xγ). By the preliminary

remarks above, as Lγ is a KP-model, Xγ =
⋃
α<γ Xα is ΣLγ

1 -definable.

Then X ′
γ
(k) is ΣLγ

k+1-definable, and is in Lγ+1. Thus γ is Σ1-definable
in Lγ+1 as “the least γ̄ so that n ∈ X ′

γ̄
(k) ”. But then Lγ cannot be a

Σ1-substructure of Lγ+1. Thus we have κ ≤ γ.
It remains to show κ ≥ γ. We derive a contradiction from κ < γ by

assuming the following:

ϕ ∈ Σ1-Th(Lκ+1) \ Σ1-Th(Lκ).

Such a ϕ exists, since otherwise Lκ ≺Σ1 Lκ+1, whereas γ is the least
ordinal with this property. Thus by Lemma 24 we arrive at the following:

∃χ
(
Clh(ψ(χ))(pψ(χ)q) ∈ Xκ+1 \Xκ

)
,

whereas κ is the closure ordinal for this operation and Xκ is a fixed point.
Contradiction! a
Thus the characterisation of the class of transitive frames admitting valu-
ations yielded by Lemma 32 and Theorem 19 is incomplete because it does
not say whether worlds of depth α with ω1 ≤ α ≤ κ have to be converse
wellfounded. We shall now show that these worlds may be illfounded,
too.

We note that if we concentrate on countable frames 〈W,R〉, then we
may without loss of generality assume that R is a binary relation on
W = ω. If R is such a binary relation, its characteristic function r ∈ 2ω

is defined as follows:

for all n,m : r(〈n,m〉) = 1 ↔ nRm.
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We add a symbol r to the language of KP and numerals n for all natural
numbers. Diag(R) contains the sentence r ∈ 2ω as well as all sentences
r(〈n,m〉) = k such that r(〈n,m〉) = k. For A a KP-model we let κA '
the closure ordinal of the operation Φ—as defined inside A—if it exists;
otherwise it is undefined.

Theorem 25. Assume 〈ω,R〉 is transitive and the theory KP+Diag(R)
does not prove in ω-logic the following conjunction:

(i)“r codes a converse illfounded relation R̄ on ω,” and:
(ii) “if κ̄, the closure ordinal of Φ, exists, then there exists a
converse illfounded world w with depth(w) < κ̄.”

Then 〈ω,R〉 admits a valuation V and thus is a frame with a PW-model.

Proof. As the quoted assertion is not provable, let A be a KP-model
containing r, in which the integers are standard, and in which the quoted
assertion is false. Note that κ̄A, if it exists, could be a nonstandard ordinal
of A.

It suffices to note that A |= “Z=Φ(X)” if and only if Z = Φ(X). Thus
in A the Σ1-function F (w) = Xw is defined along the part of the relation
R̄−1 that A believes to be wellfounded. The function so defined in A
satisfies these defining clauses for w 7→ V (w) in the real world. If κA = κ̄
exists, as long as A believes the converse wellfounded part has length κ̄,
one may assign V (w) = Φκ̄(L�) for those w in R−1 of depth ≥ κ̄. a

We obtain the following corollary from the proof of the last theorem.
(Compare this with Theorem 19):

Corollary 26. Let 〈W,R〉 be transitive, A be a model of KP, R ∈ A
and suppose if A |= “〈W,R〉 has a converse illfounded world w”, then
A |= “κA exists, and depth(w) ≥ κA”. Then 〈W,R〉 admits a valuation.

We can add a somewhat more perspicuous example in the case of linear
orderings.

Theorem 27. Let R be a linear ordering of ω. Let 〈W,R〉 be the frame
with W = ω. Then

〈W,R〉 admits a valuation if 〈W,R−1〉 is a pseudo-wellordering.

We make some remarks on the notions involved. 〈ω, S〉 is a pseudo-
wellorder if (a) it is a linear ordering and (b) if X ⊆ ω is an S-descending
chain, then X is not hyperarithmetic in S. Thus, in particular, a recursive
pseudo-wellorder can have no hyperarithmetic descending chains; pseudo-
wellorders for recursive S were introduced by Spector and Feferman [12]
and studied by J. Harrison who showed in [20] the following:

Theorem 28 (Harrison). Let η be the order type of the rationals. Let
〈ω, S〉 be a linear ordering. This ordering is a pseudo-wellordering if and
only if it has order type ωS1 (1+η) + α where α ≤ ωS1 .
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(In [20] again, only the special case of S a recursive linear order-
ing is studied, but the argument straightforwardly relativises.) Pseudo-
wellorders characterise the order types of countable models of KP. One
may show the following fact: 〈ω, S〉 is a pseudo-wellorder if and only if
there is a countable model A of KP with 〈ω, S〉 order-isomorphic to an ini-
tial segment of On(A). The character of a pseudo-wellorder is essentially
the admissible ordinal ωS1 .

Proof of Theorem 27. Let 〈ω,R〉 be a frame with R−1 a pseudo-
wellordering. Let B be a KP-model with 〈ω,R−1〉 isomorphic to an initial
segment of On(B). (If R−1 is not a wellorder, we construct such a B below
at Proposition 37 with WFP(On(B)) isomorphic to ωR1 .) But now arguing
as in Theorem 25 we can establish a valuation function F (w) = Xw on
this initial segment. This suffices. a

Conjecture. Let R be a recursive linear ordering of ω. Then 〈ω,R〉
is a frame admitting a valuation if and only if R−1 is a pseudo-wellorder.

Note that in this case, as R is recursive, ωR1 = ω1. We could have
made a more general conjecture about the totality of countable pseudo-
wellorders: it seems to us that, ignoring the final short ordinal part of a
pseudo-wellordering, it should be possible to assemble a converse linear
ordering admitting a valuation that is built from pseudo-wellorders of
increasing character. However we rest content with the above conjecture.

§5. The Characterisation Problem for Transitive Frames II.
We now turn to necessary conditions for the existence of a valuation.

As above, ADM∗ is the class ADM of all admissible ordinals (without ω)
together with its limit points.

Theorem 29. Let 〈W,R, V 〉 be a transitive model. Then the following
must hold for the depth α of every converse illfounded world in 〈W,R〉:
either α ∈ ADM∗ or α ≥ κ.

This follows by general considerations, and a similar argument leads to
the following lemma, that proves essentially this result restricted to linear
orders.

Lemma 30. Suppose 〈W,R〉 is a frame with R−1 an illfounded linear
ordering which admits a valuation V. Then R−1 has an initial wellordered
segment of order type α ∈ ADM or α ≥ κ.

Proof. By Example 13, R−1 has a nonempty wellordered initial seg-
ment. The maximal wellordered initial segment of R−1 is isomorphic to
an ordinal 〈α,<〉. We identify this initial wellordered part with α itself.
We suppose from now on that R−1 has an illfounded part beyond this
segment and that α < κ. Thus we need to prove α ∈ ADM.
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First we show that α cannot be a successor ordinal β + 1. In order to
arrive at a contradiction, assume that β is the maximal element of the
wellordered initial segment. Since α < κ, there is a sentence B ∈ L�
satisfying the following condition:

V (β) |= �pBq ∧ ¬B.(4)

For δ ≤ β we have:

V (δ) |= �pBq.(5)

Assume w ∈ W is converse illfounded. Since there are infinitely many
worlds between w and the wellordered initial segment, we conclude from (4)
the following:

V (w) |= ¬�p�pBqq.(6)

Together, (5) and (6) yield the following for every world w ∈W :

V (w) |= �p�pBqq → �pBq.

Löb’s Theorem (Corollary 12) yields V (w) |= �pBq. But this is a con-
tradiction because �pBq fails at all converse illfounded worlds.

Therefore α has to be a limit number and, by assumption, α is inadmis-
sible over 〈Lα,∈〉. Hence by Theorem 23 for the closure ordinal κ there
is a function that has domain ω, is cofinal in the ordinal α, and is Σ1-
definable over Lα. Let us suppose it is defined by the formula ψ(n, γ). As
α < κ we need no parameters in this definition. We employ the formula
C1(x) used in the proof of Lemma 24 and define the sentence D as

∃n¬C1(p∃y ψ(ṅ, y)q).

As in the successor case, we shall show for the sentence D defined in this
way that the following holds at all worlds w ∈W :

V (w) |= �p�pDqq → �pDq.(7)

In order to show

∀β < α V (β) |= �pDq,(8)

consider any β < α; as ψ does not define a total function over Lβ, we
have

∃n
(
∃y ψ(n, y)

)
6∈ Σ1-Th(Lβ).

But, using (2) in the proof of Theorem 23, this is equivalent to

(N, Xβ) 6|= ∀nC1(p∃y ψ(ṅ, y)q)

and (8) follows. (7) will be established, if we have shown that for all
converse illfounded worlds w ∈W the following holds:

V (w) |= ¬�p�pDqq.(9)
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This may be seen as follows:

∀n ∈ ω
(
∃y ψ(n, y)

)
∈ Σ1-Th(Lα) definition of ψ(n, γ)

∀n ∈ ω (N, Xα) |= C1(p∃y ψ(n, y)q) by (2)

(N, Xα) |= ∀nC1(p∃y ψ(ṅ, y)q)

(N, Xα) |= ¬D.

Since w can see all converse wellfounded worlds β < α, we have V (w) ⊆
Xα =

⋂
β<αXβ and also (9) obtains because there are infinitely many

(and thus at least two) worlds between w and the wellfounded part of R−1.
a

The partial characterisation of the class of transitive frames admitting
valuations yielded by Lemma 29 and Theorem 19 is incomplete because
it does not say whether worlds of depth α with ω1 ≤ α ≤ κ have to
be converse wellfounded. Proposition 37 below will show that for any
admissible ordinal α > ω, there exist frames with converse illfounded
worlds of depth α.

To summarise: For transitive frames 〈W,R〉: (i) If every world w ∈ W
has a depth α < ω1 then R is converse wellfounded iff 〈W,R〉 admits a
valuation; (ii) if every converse illfounded world has depth α ≥ κ (with-
out any restriction being placed on the ordering R for the part containing
those worlds of depth ≥ κ) then the frame admits a valuation. Thus for
frames where all depths are smaller than ω1 or larger than κ the Char-
acterisation Problem for transitive frames is settled. Between these two
ordinals the depth of every converse illfounded world of a transitive frame
admitting a model must be admissible or a limit of admissibles accord-
ing to Theorem 29. The problem of finding which, say, linearly ordered
frames admit models appears to be part of a more general underlying
question: which linear orderings support “constructible” hierarchies?

§6. The General Characterisation Problem. We now turn to the
general Characterisation Problem, that is, we drop the assumption that
the frames are transitive.

If 〈W,R〉 is converse wellfounded, then one can easily define a valuation
for 〈W,R〉 by induction along R in the following way:

V (w) =
{
A ∈ L�

∣∣ ∀v(wRv ⇒ V (v) |= A)
}
.(10)

Obviously there is no choice in the definition of V. This implies the
following sufficient condition for the existence of a valuation, which was
proved by Gupta and Belnap in [5, Theorem 6E.5] in a slightly different
form.

Theorem 31 (Gupta & Belnap). Every converse wellfounded frame ad-
mits exactly one valuation.
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The necessary condition Theorem 29 for the existence of a valuation
can be generalised in the following way:

Theorem 32. If 〈W,R〉 supports a PW-model, then in the transitive
closure 〈W,R∗〉 of 〈W,R〉 every not converse wellfounded world in W has
depth α with α ∈ ADM∗ or α ≥ κ.

Proof. There exists a two-place recursive function f that yields ap-
plied to a number n and a sentence A the sentence A itself preceded by
n necessity predicates, i.e.:

f(y, pAq) = �p�p. . .�︸ ︷︷ ︸
y times

pAq . . .q.

Instead of �f(y, pAq) we write �ypAq. Thus �0pAq is �pAq.
We define a new modal predicate corresponding to the transitive closure

of that accessibility relation:

�∗x :⇐⇒ ∀n�nx.(11)

Clearly, V (w) |= �∗pAq holds if and only if V (v) |= A for all v with
wR∗v, where R∗ is the transitive closure of R.

Applying Theorem 29 to �∗ yields the claim. a
Theorem 32 can be used for demonstrating that the frame 〈ω, Suc〉

in Example 9 does not admit a valuation. Thus Theorem 32 implies
all negative results in section 3. Therefore, in a sense, Löb’s Theorem
implies the possible-worlds analogues of Tarski’s, Montague’s, McGee’s
and Visser’s theorems. In section 8 we shall show how to get from these
analogues back to ω-inconsistency results.

By Theorem 19 a transitive frame admits a valuation if every converse
illfounded world w ∈ W has at least depth κ. One might hope to gener-
alise Theorem 19 by showing that a frame admits a valuation if all not
converse wellfounded worlds are of depth at least κ in the transitive clo-
sure of the frame. However, this generalisation fails. Thus there is no
characterisation of the class of frames that admit valuations in terms of
the transitive closure of the frames. This is shown in the next theorem.

Theorem 33. There are frames that do not support a PW-model, al-
though their transitive closure does.

Proof. We add to the frame (κ + 1, <) a world w that sees only the
fixed-point world κ and itself, but not any worlds α < κ. We call this
frame 〈W,R〉.

The frame is not transitive because w cannot see the worlds seen by κ.
By Theorem 19 the transitive closure of the extended frame admits a

valuation because the only converse illfounded world w of 〈W,R∗〉 has
depth κ+ 1.
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D is the usual liar sentence with

D ↔ ¬�pDq.

We shall show that the assumption that this frame admits a valuation
leads to a contradiction.

Since κ sees a dead end, D holds at κ:

V (κ) |= D.(12)

We show that both V (w) |= D and V (w) |= ¬D lead to a contradiction.
1. Case: V (w) |= D. Then we have also V (w) |= ¬�pDq and ¬D

must hold either at κ or at w, because w does not see any further world.
From (12) we conclude V (w) |= ¬D, which contradicts the assumption.

2. Case: V (w) |= ¬D. From V (w) |= �pDq and the supposition that
wRw we derive a contradiction again. a
Obviously, if 〈W,R, V 〉 is a PW-model and wRw, then V (w) is a fixed
point of Φ. So far we have used only the fixed point Φκ(L�). However,
other fixed points of Φ are required for valuations of certain frames that
are not transitive. We give an example.

Proposition 34. There is a model with two reflexive worlds v and w
such that V (v) 6= V (w).

Proof. The set of worlds is defined as follows:

W =
{
〈α, k〉

∣∣ α ≤ κ and k ∈ {0, 1}
}
.

A world 〈α1, k1〉 can see a world 〈α2, k2〉 iff one of the following conditions
is satisfied:

(i) k1 = k2 and α2 < α1;
(ii) α1 = 0, k1 = 1, α2 = κ and k1 = 0;
(iii) α1 = κ and α2 = κ and k1 = k2.
Both copies 〈κ, 0〉 and 〈κ, 1〉 of κ can see themselves.

A valuation V is easily construed: it is the same as the valuation for the
converse wellfounded frame (where 〈κ, 0〉 and 〈κ, 1〉 cannot see themselves)
that is obtained by dropping clause (iii) above. For the κ of the first copy
we have V (〈κ, 0〉) |= 3p0 6= 0q while for the κ of the second copy we have
V (〈κ, 1〉) |= ¬3p0 6= 0q because 〈κ, 1〉 cannot see the world 〈0, 0〉, which
is a dead end. Clearly both 〈κ, 0〉 and 〈κ, 1〉 can see themselves and are
evaluated differently. a

§7. Uniqueness of Valuations. Are there two distinct PW-models
based on the same frame? That is, are there frames that admit distinct
valuations? Converse wellfounded frames have exactly one valuation by
Theorem 31; thus the valuation is always unique. Therefore two valua-
tions for the same frame can differ only on converse illfounded worlds.
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The technique developed in the previous section yields an example of a
frame that admits two distinct valuations. In order to construct the two
valuations, we need an illfounded model of KP.

Lemma 35. There is a nonwellfounded model of KP with

On(WFP(A)) = κ.

Proof. This is a reasonably standard argument, but we explicitly give
it here. For the unexplained notions the reader may consult [3]. By
Theorem 23, Lκ is a union of KP-models: there are unboundedly many
α < κ with Lα |= KP (for otherwise if α is the largest such, κ is Σ1-
definable in Lκ+1 using the parameter α as “the least β > α so that Lβ |=
KP”). Now let T be the following theory in the infinitary language Lκ,ω
with constant symbols x̄ for each x ∈ Lκ and a further named constant
symbol c̄. The theory T comprises the following sets of sentences:
(1) KP + V =L.
(2) The diagram of Lκ: { x̄ = ȳ | x = y ∈ Lκ }; { x̄ ∈ ȳ | x ∈ y ∈ Lκ }.
(3) For each β < κ the sentence “β̄ ≤ c̄ ∧ c̄ is an ordinal”.
(4) The sentence “∀v0 ≤ c̄ v0 is not the closure ordinal of Φ”.
Then every T0 ⊆ T with T0 ∈ Lκ has a model: just take the least α with
Lα |= KP and T0 ∈ Lα, and interpret c̄ as any ordinal < α larger than
any ordinal mentioned in T0, and interpret the other constant symbols
occurring in T0 as the corresponding actual sets. By the Barwise Com-
pactness Theorem [3, Theorem 5.6], T has a model A which properly end
extends Lκ by (2) and (3) (as c̄A is interpreted as something greater than
all α < κ); but κ is not in the wellfounded part of A: otherwise it would
be ≤ c̄A, and so there would be a closure point of Φ which is an initial
segment of On(A) below c̄A, contradicting (4). a

Theorem 36. There is a linearly ordered frame 〈W,R〉 which admits
two different valuations V, V ′.

Proof. To see this, let A be an admissible set whose wellfounded part
has ordinal rank exactly κ. Such a set exists according to the previ-
ous lemma. The frame for which we construct two valuations V and V ′

is 〈On(A), <A〉 where On(A) is the set of ordinals of A (including the
nonstandard ordinals) ordered in the sense of A.

Let R−1 be an initial segment of the ordinals of A of length b ∈ OrdA
where the latter is in the illfounded part of A and A |= b<κA (if A thinks
the latter exists). Define inside A the valuation V by recursion along <A.
As κ /∈ A the latter thinks that the closure ordinal κA (if it exists) is in
the illfounded part of A. Hence between κ and b there is no fixed point
of the operator Φ. But now let V ′ be the valuation obtained by letting
V (w) = V ′(w) = Xα for w of rank α < κ, and V ′(w) = Xκ otherwise. V
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and V ′ are both valuations admitted by 〈On(A), <A〉 (in the real world),
but they are clearly different. a

We conclude this section with a remark that actually belongs in sec-
tion 5, for it complements Theorem 29. However, because we employ
methods similar to those of the proof of Lemma 35, we have placed it
here.

Proposition 37. For any countable α ∈ ADM there is a linearly or-
dered frame 〈W,R〉 with R−1 nonwellfounded, with WFP(R−1) ∼= α and
V (w) is a fixed point for some w ∈W.

Proof. It clearly suffices to assume that α < κ. Apart from the last
requirement of a fixed point, this would follow immediately from the stan-
dard construction of a nonwellfounded model A of KP with WFP(A) ∼=
α—which can be effected by an omitting-types argument. We give a short
proof here using a result of Friedman–Jensen, and of Sacks. This runs as
follows:

Theorem 38 (Friedman–Jensen; Sacks [40]). Let α ∈ ADM. Then there
is x ⊆ ω so that ωx1 = α.

Now let A0 = Lδ[x] the δ’th level of the constructible hierarchy using
x as predicate. Let δ > κ be chosen least so that Lδ[x] |= KP. Consider
the following theory T in the language Lα,ω:
(1) KP + V =L[ẋ] + “ẋ⊆ω”.
(2) The diagram of Lα[x]:{

x̄ = ȳ
∣∣ x = y ∈ Lα[x]

}
∪

{
x̄ ∈ ȳ

∣∣ x ∈ y ∈ Lα[x]
}
.

(3) For each β < α the sentence “β̄ ≤ c̄ ∧ c̄ is an ordinal”.
(4) The sentence “∀v0 ≤ c̄

∨∨
ψ∈KP Lv0 [x] |= ¬ψ”.

(5) “The closure ordinal of Φ exists.”
Then every T0 ⊆ T with T0 ∈ Lα[x] has a model: choose η < α so that
any β mentioned in T0 from the collection specified at (3) is less than η.
Then an interpretation of c̄ is afforded by η, and thus 〈Lδ[x],∈, x, η〉 is
a model of T0. (4) holds since η is less than the first ordinal that is the
height of an admissible set containing x. The theory T is Σ1-definable
over Lα[x] and so the Barwise Compactness Theorem again applies: so
let A be a model of T . Then we claim that WFP(On(A)) = α. By (1)
and (2) A ⊇ Lα[x]. Hence WFP(On(A)) ≥ α. But (3) ensures α ≤ c̄A,
and (4) that α cannot be in the wellfounded part of A. a

In particular, it follows that the minimal depth of an illfounded world
in any model is exactly ω1.

§8. Completeness. Theorem 32 imposes very strong limitations on
frames that support PW-models. The examples in Section 3 illustrate
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the restrictions. Does this show that possible-worlds semantics does not
reach far, that is, that there are no possible-worlds models where models
ought to exist? In this section we show that our semantics is not to be
blamed for these limitations because there is a PW-model for any set of
sentences consistent in ω-logic.

In operator modal logic completeness theorems play a central role. For
instance, the sentences valid in all frames at all words under any valuation
are exactly the theorems of the modal system K. Similarly, the system K4
is associated with the class of transitive frames, the Gödel system G with
the class of converse wellfounded frames (see Boolos [6]).

Since we are dealing with standard models only, the set of all sentences
valid in all PW-models 〈W,R, V 〉 contains all arithmetical truths and is
closed under the ω-rule. Of course this set is not recursively enumerable.

Definition 39. A set Th of sentences of L� is �-closed if and only if
it satisfies the following conditions:

(i) Th contains PA and is closed under logic, necessitation and the ω-
rule:

A(0̄), A(1̄), . . .
∀xA(x)

(ii) �pA→ Bq → (�pAq → �pBq) is in Th for all A and B in L�.
(iii) All instances ∀x�pA(ẋ)q → �p∀xA(x)q of the Barcan formula (i.e.,

the formalised ω-rule) are in Th for all formulae A(v) of L�.

Theorem 40 (Completeness). If Th is �-closed and consistent, then
there is a PW-model 〈W,R, V 〉 such that for all sentences A ∈ L� the
following equivalence holds: A ∈ Th iff A holds in 〈W,R, V 〉 at any
world.

Our completeness proof resembles the usual proofs for operator modal
logic (see, e.g., Chagrov and Zakharyaschev [10, chapter 5]) by the method
of canonical models. However, since we are dealing with standard models
only, we employ ω-logic rather than pure first-order logic.

The worlds of the model constructed in the proof are just the possible
extensions of the box. Thus one might think of the worlds as the standard
models for Th.

For a set Th of sentences of L� we write (N, S) |= Th if for all sentences
A ∈ L�, (N, S) |= A holds.

Proof. Assume that Th is consistent and define W as the following
set:

W =df

{
S ⊆ ω

∣∣ (N, S) |= Th
}
.

W is not empty since Th is consistent in ω-logic (see Barwise [3, Corollary
3.6]). Thus every world of W is a possible extension S of � and we
interpret � at a world by S. We define the valuation V by setting V (w) =
w. Therefore (N, V (w)) |= Th holds for all w ∈W.
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The accessibility relation R is defined in the following way:

wRv :⇐⇒ (N, v) |= w.

Here w is conceived as a set of sentences of L�.
It remains to check whether 〈W,R, V 〉 is a PW-model, that is, we have

to show

w = V (w) =
{
A ∈ L�

∣∣ ∀u(wRu ⇒ (N, u) |= A)
}
.

The left-to-right inclusion follows directly from the definition of R.
In order to prove the other direction, assume ∀u(wRu ⇒ (N, u) |=A).

By inserting the definition of R we obtain the following:

∀u
(
(N, u) |= w ⇒ (N, u) |= A

)
.(13)

That is, A holds in all ω-models of w.
Since (N, w) |= Th and Th is �-closed, w contains all logical truths and

all true atomic and negated atomic sentences of LPA by (i) above; w is
closed under logic and the ω-rule because of (N, w) |= Th and (iii). This
allows us to apply the ω-Completeness Theorem in the form of Barwise’s
[3, Theorem 3.5] M-Completeness Theorem to (13), which implies A ∈ w.

a

Corollary 41. A �-closed set Th of sentences is consistent iff it is
satisfied by the dead end model, in which there is just one world and the
accessibility relation is empty.

Proof. From left to right: If Th is consistent, it has a PW-model by
the Completeness Theorem 40. But by Theorem 32 every frame support-
ing a PW-model has dead ends. Thus every dead end satisfies Th. The
other direction is obvious. a

From the Completeness Theorem we can also derive several inconsis-
tency results. For instances, we can prove that the theory FS of truth in
Halbach [18], which is equivalent to a system introduced by Friedman and
Sheard [14], is inconsistent in ω-logic. Here we present another example.
D is the smallest �-closed set containing all instances of �pAq → 3pAq

for all A ∈ L�. Obviously D is the predicate analogue (plus the ω-rule) of
the system D of deontic logic. Note that, according to the definition of D,
the ω-rule and the rule of necessitation may be applied to consequences
of �pAq → 3pAq for all A ∈ L�. The following example might also the
viewed as a variant of McGee’s theorem.

Example 42. D is inconsistent.

Proof. For every tautology > we can derive 3p>q in D. But 3p>q
is not satisfied in a dead end and thus D is inconsistent by our previous
corollary. a
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We define the predicate counterparts of the operator modal systems
K and K4.

Definition 43. K is the smallest �-closed set. K4 is the smallest �-
closed set that contains all instances of �pAq → �p�pAqq.

By applying the theorem to Th = K and Th = K4 we get the following
two corollaries:

Corollary 44. The following are equivalent for all A ∈ L�:
(i) A is valid at all worlds in all PW-models, i.e., V (w) |= A for all

PW-models 〈W,R, V 〉 and w ∈W.
(ii) A is in K.

Proof. In order to prove that (i) implies (ii), we apply our Complete-
ness Theorem. If A 6∈ K there is a world w in the PW-model 〈W,R, V 〉
constructed in the proof of the completeness result such that A 6∈ w, i.e.,
V (w) 6|= A.

The Normality Lemma 2.3 ensures that (ii) implies (i). a
We obtain also an analogous result for K4:

Corollary 45. The following are equivalent for all A ∈ L�:
(i) A is valid at all worlds in all transitive PW-models, i.e., V (w) � A

for all transitive PW-models 〈W,R, V 〉 and w ∈W.
(ii) A is in K4.

Not all completeness theorems known from operator modal logic carry
over to their predicate counterparts. For instance, the logic G obtained
from K4 by adding the operator version �(�p → p) → �p is complete
with respect to the class of all transitive converse wellfounded frames. The
predicate system K4 has Löb’s Theorem already as a theorem. However,
it does not prove all sentences valid in all transitive converse wellfounded
frames, as we shall show in the next section.

In possible-worlds semantics for operators of sentences one can build
PW-models on all frames. We have proved that there are very strong
limitations on possible-worlds semantics for predicates (Theorem 32). In
particular, the frames of the modal systems T, S5 and D do not feature
dead ends and therefore they do not admit valuations. Thus the predicate
approach seems to rule out the most important kinds of modality.

Does this not show that the operator approach is superior? We do not
think so. It is not our possible-worlds semantics that is to be blamed.
Obviously, the predicate analogues of T and S5 are inconsistent, and the
analogue of D becomes inconsistent if some natural closure conditions
are added (Example 42). Thus the fact that there are no predicate PW-
models based on T, S5 and D mirrors only these inconsistency results. In
general, the Completeness Theorem shows that there is a PW-model in
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our sense for any set of sentences that is consistent in the logic described
in Definition 39.

Even if we generalise our present account and allow for nonstandard
models, we will not be able to provide valuations for reflexive frames (see
section 11). In general, our results make the limitations imposed by Löb’s
Theorem and its relatives explicit.

§9. The Fixed Point Φκ(L�). By Corollary 45, K4 is the set of
sentences valid in all transitive PW-models; Φκ(L�) is the set of all sen-
tences valid in a all transitive converse wellfounded PW-models. There-
fore Φκ(L�) is a subset of K4. We shall show that the converse does not
hold: there are sentences that are valid in all transitive converse well-
founded PW-models but that fail at a world of some transitive converse
illfounded PW-model. In particular, Corollary 45 does not hold if (i) is
restricted to converse wellfounded frames.
K4 is obviously Π1

1. The following theorem shows that Φκ(L�) has a
much higher complexity than K4. Thus converse illfounded PW-models
really do matter.

Theorem 46. The set Φκ(L�) is ∆1
2 but neither Σ1

1 nor Π1
1.

Proof. Φ is a ∆1
1-operator; hence its fixed point Φκ(L�) is ∆1

2 (see,
for example, Hinman [22, Theorem 3.10]).

As (3) before Lemma 24 shows, Φκ(L�) is essentially the Σ1-theory of
a reasonably high countable level of the Gödel hierarchy, well beyond the
first admissible level. Its complexity is thus well beyond Π1

1. This will
have been amply demonstrated to those familiar with the Gödel hierarchy,
or the ramified analytical hierarchy. However, we can now give a direct
demonstration of this fact.

In order to show that Φκ(L�) is not Π1
1 we use the match between

Xα = Φα(L�) and Σ1-Th(Lα) established in Lemma 24.
We show that Φκ(L�) is at least Π1

1 in a complete Π1
1-set of integers (so

of the degree OO where O is Kleene’s ordinal notation system for ordinals
up to ω1. OO is Kleene’s set of ordinal notations relativised to the set O,
and hence is a complete Π1

1(O)-set of integers.
Let B be a sentence with B ∈ Xω2+1 \Xω2 where ω2 is the second

admissible ordinal.
We define the following recursive function f for Σ1-sentences τ of the

language of set theory:

f(τ) :=
(
C1(pτq) ∧ (C1(pτq) ↔ (¬B ∧ ¬3pBq))

)
.

Put f(n) = 0 for other n that are not Σ1-sentences of the language of set
theory.
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Then f−1′′(Xκ) is the set Σ1-Th(Lω2). The latter is known to be (re-
cursively isomorphic to) OO (see [23]). Thus, OO is recursively reducible
to Xκ. Hence Xκ cannot be Π1

1, or else so would OO. a

The method for establishing the lower bound is general and can be applied
also to admissibles greater than ω2.

The previous theorem shows explicitly that Φκ(L�) is complex and
hence cannot be equal to K4. We can exhibit an explicit sentence that is
true in all converse wellfounded worlds, but fails to be in K4.

Let A be in Xω1+1\Xω1 (any such will do for the proof). For the sake
of definiteness we can obtain one as follows:

There is a Π3-sentence τ in L{∈̇} so that Lω1 |= τ but for no smaller β
does Lβ |= τ . For example it can be shown there are monotone total
functions on ω cofinally increasing into ω1 which are Σ2-definable over
Lω1 ; the statement that such a function is cofinal and defined on all of ω
yields such a τ .

Thus τ is in the Π3-Th(Lω1). Let A = C4(pτq). Now let A be an
illfounded KP-model of τ with WFP(On(A)) = ω1 (an adaptation of the
argument of Proposition 37 gives us such an A). Let e ∈ ω be an index
for a recursive linear order (in fact a pseudo-wellorder) that A thinks is
wellfounded, but is in fact illfounded. (Such an e must exist as τ is true
in A only at A’s first “admissible” ordinal, b say, so first at (Lb)A; A
however thinks that b is the supremum of all recursive wellorders: hence
there is an index e for a recursive linear ordering e which is isomorphic
to an initial segment of On(A) but is in fact illfounded.)

Let n be the code of the sentence expressing that {e} is illfounded.

Theorem 47. 3pAq −→ C1(n) is not provable in K4, but it is true in
all converse wellfounded worlds.

Proof. In A we can define a model 〈W,R, V 〉 and with A thinking that
the frame is converse wellfounded and that 3pAq is true in some world
w ∈ W. (It suffices to have 〈W,R−1〉 isomorphic to an initial segment
of On(A) containing b and some w with wRb.) However we could not
have that C1(n) were true at w, as this would mean that A recognised e’s
illfoundedness—which it cannot. Thus K4 does not prove the displayed
sentence.

Let 〈W,R, V 〉 be any model and w any converse wellfounded world
in W with 3pAq holding at w. Lω1+1 realises that {e} is truly illfounded:
the wellfounded part of {e} is mapped by its ranking function onto ω1

by a Σ1-recursion over Lω1 . Hence the rest of the field of {e}—that
is, its illfounded part, U say, is definable over Lω1 and hence is a set
in Lω1+1, and the latter is a model of “U has no {e}-minimal element”
(a Σ1-statement: ∀k∈U ∃m∈U

[
{e}(〈m, k〉) = 1

]
—the bracketed matrix
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expressing that “m is {e}-below k”). Therefore 3pAq −→ C1(n) holds at
w. a

§10. Theories for Φκ(L�). Investigations into axiomatic theories based
on PA plus an additional truth or necessity predicate axiomatised by suit-
able axioms turned out to be interesting and fertile (see, e.g., Cantini [9]
for an overview). In many cases these theories are supposed to capture a
semantical construction like Kripke’s [26] theory. In this tentative section
we explore the prospects of a strong theory for Φκ(L�).

We introduce some new notation. The quantifiers ∀a and ∀b range over
sentences of the language L�; they can be defined in the usual way in LPA.
The quantifier ∀a(v) ranges over all formulae of L� with at most one free
variable. The function sending the code of a formula to the code of its
negation is expressed in LPA by ¬. , and similarly for other connectives and
quantifiers. For the notation see also Feferman [11].

The following sentences are valid in Φκ(L�), that is, for any sentence A
below we have (N,Φκ(L�)) |= A:
A1 All axioms of PA including all induction axioms in L�
A2 ∀a (BewPA(a) → �a)
A3 ∀a, b

(
�(a→. b) → (�a→ �b)

)
A4 ∀a (��. ȧ↔ �a)
A5 ∀a (�¬. a→ ¬�a)
A6 ∀a(v)

(
�∀.v a(v) ↔ ∀x�a(ẋ/v)

)
A7 ∀x

(
�pA(ẋ)q → A(x)

)
for all A(v) ∈ L�

The theory given by A1–A7 is at least as strong as ID1. This follows from
results proved by Friedman and Sheard [14].

By Theorem 46 the fixed point Φκ(L�) is more complex than the min-
imal fixed point of Kripke’s construction (see Burgess [7, 8] for more
on the complexity of truth-theoretic constructions). We are unable to
say whether the theory A1–A7 as it stands is already a correspondingly
stronger one than ID1. The scheme A7 already represents the full reflec-
tion property of γ.

To find a theory that more aptly describes Φκ(L�) and has greater
proof-theoretic strength than the simple axioms A1–A7 perhaps one has
to add axioms expressing this reflection more fully. We can express that
γ is a limit of Πn-reflecting ordinals by adding the following. We let
Formn be a recursive one-place predicate enumerating the Πn-formulae
of L� with one free variable. Define

Φn : ∀x∀a(v)
(
Formn(a) → (�a(ẋ/v) → a(x/v))

)
.

Then define the following scheme:

∀b(�(pΦnq→. �. b) → �b).(A8n)
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This scheme is true in Φκ(L�) also, for each n. Similarly one could
express that γ is a limit of points, each of which was, for all n, a limit
of Πn-reflecting ordinals, but it is not clear whether this process carries
us any further forward. It is also worth noting that at each world of a
valuation along a converse wellorder shorter than κ, one may use Gödel
numbers of sentences that become true at worlds accessible to it, as “la-
bels” of those worlds, and indeed to reconstruct the whole of the ordering
above any world, together with the valuations associated to those worlds.

§11. Nonstandard PW-Models. So far we have concentrated on
models of the form (N, S) where N is the standard model of LPA and S is
a set of standard numbers. As a consequence, the Barcan formula is valid
in all worlds on our approach.

In the following two sections we sketch alternative approaches where
some other model than N is used. While the next section is concerned with
models for other languages than LPA, we consider nonstandard models
of LPA in the present section, more precisely, instead of (N, S) we employ
certain models of the form (M, S) where M is a model of full arithmetic,
i.e., of all arithmetical truths. Of course, there are further options, like
arbitrary models of PA, but we will not explore them in the present paper.

By invoking nonstandard models we shall be able to construct valua-
tions for the frame 〈ω, Suc〉 of Example 9, which does not admit a valu-
ation if the PW-model is based on the standard model N. Thus we shall
be able to construct valuations for frames without dead ends, whereas on
the standard account all frames admitting valuations must have a dead
end according to Theorem 32.

In a standard model (N, S) the extension S of � is a set of numbers.
If we pass to nonstandard models (M, S), we have to decide whether we
shall admit nonstandard numbers in S as well. In a nonstandard modelM
the syntactical predicates expressible in LPA (like “x is a propositional
tautology”) apply to standard as well as to nonstandard elements of M.
Thus if we want to have sentences like “All propositional tautologies are
necessary”, i.e., ∀a(Taut(x) → �x) as valid, then S must comprise also
nonstandard elements of M.

This poses a problem for the applicability of our Definition 2, which
says that the extension of � at a world w is just the set of sentences
true at all worlds seen by w. If this condition is reformulated for the
nonstandard case, we have to say what it means for a nonstandard sen-
tence, i.e., a sentence in the sense of M, to be true at a world. There
are several ways of defining truth for nonstandard sentences. Here we use
(a slight modification of) the notion of a satisfaction class (see Kaye [24]
and Kotlarski [25] for overviews).
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Let a model M be given. And let S1 be a set of elements of M. Then
S2 is a satisfaction class for (M, S1) if and only if the following conditions
are met:

(i) All elements ofM which are true atomic sentences in the sense ofM
are in S2. (These are the elements a such that M |= Tr0(ā), where
Tr0(x) is a truth definition for atomic sentences of L�.)

(ii) S2 commutes with all quantifiers and connectives in the sense of M.
For instance, the negation of a sentence in the sense of M is in S2

if and only if the sentence itself is not in S2.
According to results by Kotlarski, Krajewski and Lachlan [25, 28] and
assuming that M is a countable nonstandard model of PA, there is a sat-
isfaction class for (M, S1) if and only if (M, S1) is recursively saturated.
Every countable recursively saturated model has uncountable many sat-
isfaction classes.

The following is a modification of Theorem 2 of Leitgeb [30]:

Theorem 48. There is a model M elementarily equivalent to N and a
function V on ω such that V (n) is a satisfaction class for (M, V (n+1)).
Moreover all induction axioms hold in all models (M, V (n)).

V may be seen as a valuation for the frame 〈ω, Suc〉 where a world n
sees a world k if and only if k = n + 1. For every n, V (n) contains all
(standard) sentences true at all immediately preceding worlds, i.e., true in
(M, V (n+1)). In addition V (n) is a satisfaction class for (M, V (n+1)).
In this sense V (n) is a set comprising all L�-sentences in the sense of M
that are true at all preceding worlds. However, V (n) is only one of many
such classes because there are many different satisfaction classes.

§12. Extensions to Other Languages and Ground Models. In
this section we generalise our approach and the methods developed so far
to languages extending L�.

Our results carry over to acceptable models in a straightforward way.
Thus we can use other well-behaved models M (with the appropriate
language LM) instead of the standard model of arithmetic.

Definition 49. Let M = 〈M,R, . . .〉 be any structure. Let κM be the
least ordinal so that LκM(〈M,R, . . .〉) is the first level of the relativised
Gödel L-hierarchy built overM , using elements ofM as urelemente, which
is first-order reflecting.

The methods of Section 4 can be used to show the following. Let M be
a countable acceptable structure (in the sense of [35], that is, essentially
M has a definable coding scheme). Consider the class of frames where
now N has been replaced by M at each world of the frame. One may
show:
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(i) The fixed point ΦκM(L�) occurs in sufficiently long converse well-
founded frames 〈W,R〉 at the ordinal κM.

(ii) We may look at admissible sets A over the structure M (much as
Barwise does in [3], and take orderings R ∈ A with A |= “R−1 is
wellfounded” and construct valuations V for the worlds of W.

(iii) The Characterisation Theorem 32 of the wellfounded parts of frames
admitting valuations holds with κ replaced by κM and the class
ADM replaced by ADM(M)—the class of ordinals admissible with
respect to the structure M.

In general the results of sections 4 & 5 go through mutatis mutandis.
The formulae of the language LM are interpreted in every world in the

same way. In particular, in the special case LM = LPA we have considered
in the previous sections, the arithmetical vocabulary is interpreted at
every world by the standard model. Also the domain stays constant
throughout all worlds.

As announced above, we show how to extend our account to languages
with contingent vocabulary whose interpretation varies from world to
world. The domains of the worlds are allowed to differ as long as they
contain the natural numbers. We shall still keep the interpretation of the
arithmetical vocabulary fixed; it has thus the status of ‘logical’ vocabu-
lary. The problems (e.g., the Church–Langford argument) connected with
this assumption have been touched upon in the first section and will be
discussed in another paper.

In order to expand our account to languages with contingent vocabulary,
we redefine the language L�. In this section L� is assumed to contain
all arithmetical vocabulary, a relativizing predicate N, � and arbitrary
further constants, function and predicate symbols. LPA is the sublanguage
of L� containing only arithmetical vocabulary where all quantifiers are
relativised to Nx. The relativization of the quantifiers is needed because
the domains of our models may contain objects beyond the numbers.

A standard model for L� (redefined in this way) is a model of L� that
interprets the sublanguage LPA of L� in the standard way. Thus the
standard model of arithmetic is a submodel of every standard model of
L� and Nx applies in every standard model of L� exactly to all (standard)
numbers. A standard model of L� also needs to fix the interpretation of
the arithmetical functions applied to objects that are not numbers.

Definition 2 is then modified in the following way:

Definition 50. A PW-model is a triple 〈W,R, V 〉 such that 〈W,R〉 is
a frame and V assigns to every w ∈W a standard model of L� such that
the following condition holds:

V (w) =
{
A ∈ L�

∣∣ ∀u(wRu ⇒ V (u) |=A)
}
.
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Thus V does not only interpret � at every world but it covers also the
contingent vocabulary, i.e., the vocabulary not in LPA.

If the notion of a PW-model is extended in this way, the main argu-
ments of the paper still go through. In particular, our partial solutions
of the Characterisation Problem and the Completeness Theorem 40 still
apply. Valuations, however, are no longer unique because even converse
wellfounded frames admit valuations that interpret the contingent vocab-
ulary in different ways (and consequently also �).

The interpretation of the contingent vocabulary is not completely arbi-
trary. In a converse illfounded model there cannot be a sentence that is
true at all converse wellfounded worlds and false at all converse illfounded
worlds because Löb’s Theorem rules out such valuations. Therefore there
are restrictions on the interpretation of the contingent vocabulary.

In such PW-models the Barcan formula for arithmetical quantifiers, i.e.,
those restricted by Nx, will still obtain. In order to formulate the Barcan
formula and its converse also for unrestricted quantifiers we would have
to appeal to assignments and we would have to conceive � as a binary
predicate. In contrast to operator quantified modal logic, the converse
Barcan formula does not drop out from our framework as a logical truth.
Furthermore shrinking domains are allowed, i.e., a world may see another
world with a smaller domain.

With contingent vocabulary we can express further conditions on frames.
The following axiom forces infinite branching, that is, every world where
it holds is either a dead end or sees infinitely many other worlds:

�p⊥q ∨ ∀x
(
Nx→ 3pGẋ ∧ ∀y(Gy → ẋ=y ∨ ¬Ny)q

)
.

G is here a predicate symbol distinct from � and not in the arithmetical
language.

We plan to treat canonicity and further classical topics of operator
modal logic as applied to our framework in a future paper.
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