
Reals by Abstractiont

BOB HALE*

1. General Aim and Basic Ideas

1.1. Abstraction
A Fregean abstraction principle is now usually taken to be a principle of
the general form:

VaV/? (§a = §/? ~ a « 0),

where « is an equivalence relation on entities denoted by expressions of
the type of a and /? and § is an operator which forms singular terms when
applied to constant expressions of the same type. The most prominent
examples in Frege's own writings are the Direction equivalence:

the direction of line a = the direction of line b
iff lines a and b are parallel,

together with what is now often called Hume's principle:
the number of Fs = the number of Gs
iff the Fs and the Gs are 1-1 correlated,

and his ill-fated Basic Law V:
the extension of F = the extension of G

iff F and G are co-extensive.
In general, an abstraction principle seeks to give necessary and sufficient
conditions for the identity of objects mentioned on its left-hand side in terms
of the holding of a suitable equivalence relation between entities of some
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REALS BY ABSTRACTION 101

other sort. The Direction equivalence is a first-order abstraction, because
its equivalence relation is a first-level relation on objects, whereas Hume's
principle and Basic Law V are second-order, their equivalence relations
being second-level relations on concepts.

1.2. Frege's logicism

Frege discusses at Grundlagen §§60-67 the suggestion that number might
be contextually defined by means of Hume's principle, but rejects it be-
cause he can see no way to solve what is now called the Caesar problem.
The problem is that while Hume's principle provides the means to settle,
at least in principle, the truth-values of identity-statements Unking terms
for numbers when those terms are of the form 'the number of Fs' (or defi-
nitional abbreviations of such terms), it appears not to enable us to answer
questions of numerical identity, when one of the terms is not of that form,
such as whether the number of Jupiter's moons = Julius Caesar. Frege
then immediately switches to his well known explicit definition of number
in terms of extensions (or classes): the number of Fs = the class of concepts
1-1 correlated with F. This requires him to provide a theory of extensions
or classes, which he does by means of Basic Law V. As is well known, Basic
Law V is inconsistent. Frege's own attempt to arrive at a restricted axiom
on classes which is both consistent and able to serve in its place as the
basis for his hoped-for derivation of arithmetic from logic was unsuccessful
and he eventually abandoned his belief that arithmetic could be provided
with a purely logical foundation. Further, whilst we now know—or at least
think we know—how to formulate a consistent theory of sets, this affords
no comfort to anyone in sympathy with Frege's logicist project, for two
reasons. One is that this theory—Zermelo-Fraenkel set theory, say—is not
plausibly viewed as a purely logical theory, owing to the very substantial
existence assumptions it involves. The other is that Frege's definition of
number cannot be consistently embedded in the theory, because the objects
with which it identifies cardinal numbers are too big to be treated as sets.

1.3. Neo-Fregean logicism

As far as elementary arithmetic goes, Frege's only indispensable appeal,
in Grundlagen and in Grundgesetze1 to his explicit definition of number
(and thence to Basic Law V) is in proving Hume's principle from it. That
is, once Hume's principle has been established as a theorem, no further
appeal need be made, either to the explicit definition or to Basic Law V, hi
deriving as theorems what are, near enough, the Dedekind-Peano axioms for
arithmetic. These include, crucially, the axiom asserting that every natural

1 As far as Grundlagen goes, this is quite clear from a reading of §§68-83 and is em-
phasised by Crispin Wright |1983]. That the same is true of Grundgesetze is shown in
Heck [1993|.
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number has another natural number as its successor, which amounts (in
the presence of the others) to the assertion that there are infinitely many
natural numbers. This fact is now, following a suggestion of the late George
Boolos (see Boolos [1990]), referred to as Prege's Theorem. What Frege's
Theorem asserts, in effect, is that if Hume's principle is added to a standard
formulation of second-order logic as a further axiom, the resulting system
suffices for the derivation of elementary arithmetic. It is known that this
system is consistent—or at least, that it is so, if second-order arithmetic is.

Whether this fact supports any kind of logicism about arithmetic de-
pends, of course, on the status of Hume's principle. Boolos, along with
many others, denies—plausibly, in my view—that it can be regarded as a
truth of logic. Further, Hume's principle cannot be taken as a definition,
in any strict sense, because it does not permit the elimination of numerical
terms in all contexts. This does not settle the issue, however, since it may
be claimed that the principle is analytic, or a conceptual truth, in some
sense broader than: either a truth of logic or reducible to one by means
of definitioas. That it can be so regarded is the view—now often called
neo-Fregean logicism—of Crispin Wright and myself.2

I do not intend, here, to defend this view of arithmetic against the many
objections to our claim that Hume's principle is a conceptual truth about
numbers. Nor shall I offer a solution to the Julius Caesar problem3—though
this must be (and we believe can be) done, if our view is to be viable. Nor,
finally, shall I offer a general philosophical defence of the idea—which is
again central to our view—that abstraction principles (provided they are
consistent and perhaps meet certain other constraints) provide a legitimate
means of introducing concepts of various kinds of abstract object in such a
way that the existence of those objects depends only upon there being true
instances of their right-hand sides.4

Instead, what I want to do is explain one way in which I think it may be
possible to extend our view beyond elementary arithmetic, to encompass
the theory of real numbers. I say 'one way' because there are, on the face
of it, several different ways in which one might try to do this.

1.4. Reals via Fregean set theory
In some ways, the most obvious approach—the one which has probably
received most attention in recent work5—is a set-theoretic one. This would
involve formulating a consistent Fregean axiom for sets to replace Basic

2 Cr. Wright |1983|, |1997| and |forthcoming|, Hale [1987], [1994] and [1997]. For Boo-
los's opposed view see his 11007).

3 Qv. works cited in Cn. 2.
4 Qv. works cited in fn. 2.
5 Cf. Boolos |1989| and also |1987] and |1993]; Wright [1997J; and Shapiro and Weir

(1999).
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REALS BY ABSTRACTION 103

Law V—an axiom which could form the basis of a theory of sets powerful
enough to support one or other of the usual set-theoretic constructions
(Dedekind's or Cantor's) of the reals. The most obvious way to do this
is by means of a suitably restricted version of Basic Law V, and a good
deal of work has been done on one particular axiom of this sort, which
builds in a restriction on the 'size' of concepts which are permitted to have
sets corresponding to them which obey the principle of extensionality.6 I
shall not discuss this work here, save to remark that some of it seems
to me to show that the prospects for obtaining a satisfactory treatment
of the reals along this line are uncertain at best. In particular, as Boolos
[1989] observed, a theory based on second-order logic plus this axiom alone,
without further comprehension or existence assumptions, will not enable us
to prove either an axiom of infinity or a power-set axiom. So it will not
yield sets large enough for the construction of the reals.

This is not conclusive evidence against a broadly set-theoretic approach,
of course, since it may be possible to formulate some other more powerful
but still consistent Fregean axiom for sets which will give us large enough
sets. Or again, it may be possible to justify supplementing this particular
restricted version of Basic Law V with other principles to obtain a strong
enough theory. I take no stand on that question here.7 Instead, I want to
pursue a quite different approach, which is in some respects much more like
that taken by Frege hi his incomplete treatment of the reals in Grundge-
setze, although it differs from Frege's in at least one quite fundamental
way. This approach can roughly be described by saying that it tries (i) to
minimise reliance on set theory and (ii) to obtain the reals very directly
by means of abstraction principles, without any form of set-abstraction. In
these respects, I think my approach may be seen as the most direct and nat-
ural way of extending the neo-Fregean position to the reals. Just as basing
elementary arithmetic on Hume's principle minimises (and, indeed, elimi-
nates) reliance on set theory by avoiding a definition of cardinal numbers
as certain equivalence classes, introducing them instead via a specifically
numerical abstraction—so my approach to the arithmetic of real numbers
will minimise (and indeed eliminate) reliance on set theory by avoiding a
definition of reals as sets of one kind or another, introducing them instead
via abstraction principles which—even if not happily described as purely
numerical—are not distinctively set-theoretical.

6 The axiom (New V) is: VfVGI'F = 'G «- ((Small (F)V Small (G)) — Vi (Fx «-»
Gx))\, where a concept is Small if fewer objects fall under it than fall under the universal
concept i = i, and ' F is what Boolos calls the 'subtension' of F (the subtensions of
Small concepts being sets)—see Boolos |1987|, and also below p. 116ff.

7 For a brief discussion of this possibility, see Crispin Wright [1997|, section XI.
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1.5. Reals as ratios of quantities

Frege's actual (incomplete) treatment of the reals in Grundgesetze Pt III8

is, of course, unsatisfactory—if only because it relies, as does his theory
of cardinal numbers, on an inconsistent theory of extensions, and cannot
be simply relocated within any standard (and plausibly consistent) theory
of sets such as ZF or NBG because the objects with which he proposes
to identify the reals are too big to be treated as sets. In any case, such a
relocation would obviously betray Frege's philosophical aims, since it would
leave our entitlement to the substantial existential commitments of the
theory quite unaccounted for. From a philosophical standpoint, the most
striking and most important features of Frege's treatment of the reals are
two: (i) the real numbers are to be defined as ratios of quantities [§§73, 157]
and (ii) in regard to the analysis of the notion of quantity, the fundamental
question requiring to be answered is not: What properties must an object
have, if it is to be a quantity? but: What properties must a concept have,
if the objects falling under it are to constitute quantities of a single kind?
[§§160-1].

Briefly and roughly, his insistence that reals be defined as ratios of quan-
tities derives from his belief that the application of reals as measures of
quantities is essential to their very nature, and so should be built into an
adequate definition of them. It is this, more perhaps than any other sin-
gle consideration, which underlies his dissatisfaction with the theories of
Cantor and Dedekind, on which the applicability of the reals appears, in
Frege's view, merely as an incidental extra.

As regards the second point, it is obvious to anyone that there are many
different kinds of quantity (lengths, masses, volumes, angles, etc.) and that
addition and comparison (as greater or less) make sense only as applied to
quantities of the same kind. Since we may not simply take the notion of a
kind of quantity for granted, as already understood and itself in no need of
analysis, we cannot explain what a quantity is by saying that it is something
which can be added to, or be greater or less than, (other) quantities of the
same kind. If an explanation of quantity is not to be vitiated by circularity
in this way, Frege thinks, it must take as its target the notion of a kind
of quantity, and say what characteristics a collection of entities must, as
a whole, possess if it is to form what he calls a quantitative domain [ein
Grossengebiet]. When that has been done, what it is to be a quantity can
be easily stated—an object is a quantity if it belongs, together with other
objects, to a quantitative domain.

I believe Frege was substantially right on both points. Here I shall sun-
ply assume as much, without argument. Where I disagree with him is over
the analysis of quantitative domains. For reasons which I shall not go into,

8 Fbr expositions see Michael Dummett [1991], Ch. 22 and Peter Simons (1987).

 at V
ilnius U

niversity on A
ugust 15, 2012

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


REALS BY ABSTRACTION 105

Frege decides that the elements of a quantitative domain should themselves
be relations and—heavily influenced by a passage from Gauss [quoted in
Grundgesetze §162]—analyses such a domain as an ordered group of per-
mutations on an underlying set, with composition as its additive operation.
Since quantities themselves are, on his approach, relations of a certain sort,
real numbers, when defined as ratios of quantities, turn out to be relations
of relations. One advantage of Prege's approach is that it provides very
easily for negative as well as positive real numbers. I do not have space to
discuss Frege's view properly here. Whilst there is justice in his criticism
of earlier writers who simply help themselves to the notion of quantities
being of the same kind, I think that the notions of addition and quanti-
tative comparability are central and fundamental to the general notion of
quantity in a way Frege fails to acknowledge. Accordingly, I shall propose
a different account of quantitative domains—one which gives a central role
to the idea that the elements of such a domain may always be added to
yield further elements.

2. Quantities and Reals

2.1. Types of Quantitative Domain
I distinguish between the entities (usually concrete objects) which may
stand in various quantitative relations to one another—such as being longer
than, or being as long as—and quantities themselves, which I take to
be abstract objects introduced by abstraction on quantitative equivalence
relations—for example:

the length of a = the length of b «-» a is as long as b.
This way of introducing (terms for) quantities makes no explicit mention
of addition. However, a full analysis of the notion of a quantitative relation
would, I claim, show that the notion of addition is nevertheless central
to that of quantity. I do not have space to go into details here, but the
essential idea is this. Among quantitative relations, we may distinguish—
as conceptually basic—what may be called relations of simple quantitative
comparison (e.g., longer than/as long as, heavier than/as heavy as, etc.)
from relations of numerically definite or determinate comparison (e.g., twice
as long as, 2.4 kg heavier than, etc.). A necessary condition for <j> to denote
a kind of quantity is that it be associated with a pair of relations of simple
quantitative comparison: more <p than and as <p as. In virtue of this, things
which are <p may be partially ordered with respect to 0-ness. However, the
existence of an associated pair of such relations—a strict partial ordering
relation and a cognate equivalence relation—is insufficient for 0-ness to
be a kind of quantity. There are enormously many adjectives in ordinary
use which may be substituted without violence to sense or syntax in the
schemas: more <f> than and as <p as—'sweet', 'elegant', 'graceful', 'pretty',
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'clumsy', 'ambitious', 'impatient', 'irrascible', 'probable', . . . is clearly no
more than the start of a potentially very long list. But in the case of only
relatively few of them is it remotely plausible that they denote something
properly describable as a quantity. It is therefore necessary to enquire what
further condition needs to be satisfied, if such a pair of relations are properly
to be viewed as quantitative. I contend that what makes the difference
between quantitative ordering relations and others is that in the case of
a quantitative ordering relation, but not otherwise, the entities which can
significantly be asserted to stand in the relation can (at least in principle)
be combined in such a way that compounds must come later in the relevant
ordering than their components. In other words, for more <fi than to be a
quantitative ordering relation, there must be an operation of combination
© on items lying in the field of more 4> than, analogous to addition, such
that for any a, b in more (j> Hum's field, a © b is more <p than a and a©b
is more (j> than b.9

Quantitative domains are composed of (abstract) quantities. My aim
in this section is to provide an informal axiomatic characterisation of such
domains, on the basis of which it will be possible to introduce real numbers
by means of an appropriate abstraction principle. Instead of simply laying
down a single set of axioms for something to be a quantitative domain,
I shall distinguish several—successively richer— types of quantitative do-
main. This will be helpful later, when I come to consider questions about
the existence of quantitative domains.

(1) A minimal q-domain is a non-empty collection Q of entities closed under
an additive operation ©, which commutes, associates and satisfies the
strong trichotomy law that for any a, b e Q we have exactly one of:
3c (a = b © c), 3c (b = a © c) or a = b. Any minimal q-domain is
strictly totally ordered by <, defined by: a < b *-* 3c (a © c = b).
Multiplication of elements of Q by positive integers is easily defined—
inductively— in terms of ©.

(2) A normal q-domain is any minimal q-domain meeting the [Archime-
dean] comparability condition: V a, b 6 Q 3m (ma > b). Here and sub-

9 The basic idea is of course not new. It is, in particular, central to the theory of
measurement advanced by N. R. Campbell in a number of works first published in the
1920s, the most important of them being Campbell [1919]—see Part II—and Campbell
|1928|. A briefer popular statement of his theory is given in Campbell (1921), ch. VI.
Whilst there is much in Campbell's overall theory which I think we neither can nor
need accept, I believe that Campbell was right, pace critics such as Brian Ellis (see Ellis
[1966], ch. IV), to insist upon the importance of a physical analogue of addition, and
right too (at least in essentials) in taking there to be an important distinction between
fundamental and derived measurement. More recent treatments of measurement—see,
for example, the comprehensive text of Krantz et a/. [1971), [1989]—have not looked
kindly on these distinctive features of Campbell's approach. I need hardly emphasise
that the very rough and dogmatic statement of my view, both here and in the text,
requires both considerable qualification and further explanation, as well as defence.
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REALS BY ABSTRACTION 107

sequently (unless explicitly indicated), m (and later n as well) ranges
over positive integers. This requires quantities to be finite, in the sense
that no quantity is infinitely greater (or smaller) than any other—it
rules out infinitesimal quantities. With his eye on Euclid's Def. 4 of
Elements Bk. V, Howard Stein10 describes it as the condition neces-
sary and sufficient for a and b to have a ratio. It might be compared,
in status, to the requirement on concepts presupposed by Hume's prin-
ciple, that the concepts through which it quantifies be sorted—which
might be described as the condition for a concept to have a (cardinal)
number.

Where Q, Q* are any normal q-domains, not necessarily distinct, we
introduce ratios of quantities by the abstraction principle:

Va, b 6 Q Vc, d € Q'[a : b = c : d <-

Vro, n(ma <=> nb *-* me <=> nd)].

That is, ratios a : b and c : d are the same just if equimultiples of
their numerators stand in the same order relations to equimultiples of
their denominators." The condition for identity of ratios is framed
so as to allow that one and the same ratio may be at the same time
a ratio of pairs of quantities of different kinds—belonging to different
domains—such as masses and lengtlis. The operation in terms of which
comparability is ultimately defined (i.e., addition of quantities) is, of
course, domain specific—no sense is given to adding a length and a
mass, for instance. But this does not preclude the introduction of
ratios so that the same ratio may be found among, say, both masses
and lengtlis.

(3) A normal q-domain Q is full if Va, b, c € Q 3q € Q(a : b = q : c).
This condition, which is a restricted form of the ancient postulate of
'fourth proportionals', ensures that, given a pair of ratios a : b and

10 Sec Stein []990|. Whilst the approach I pursue here differs quite radically from
anything suggested by Stoin, I have derived much benefit from this excellent paper.
11 This is, of course, the central principle in the ancient theory of proportion presented
in Euclid's Elements Book V (cf. Def. 5) and standardly attributed to Eudoxos.

I should perhaps emphasise that EM is not an abstraction principle of the form
characterised at the outset. On the other hand, it should be clear that it is intended to
work in essentially the same way as paradigm abstractions like the Direction equivalence
and Hume's principle and that it is reasonable to regard it as one. We might bring
EM into line with the characterisation of abstraction principles with which I began by
first defining an equivalence relation on ordered pairs of quantities: £|(a, b),(c, d)]
<-• Vm, n(ma < = > nb «-> me < = > nd), and then setting: Ratio(a, b) = Ratio(c,
d) «-> /3|(a, b), (c, d)|. Alternatively, if it were felt desirable to avoid reliance on the
notion of an ordered pair, we could introduce an extension of the notion of an equivalence
relation so as to allow relations of arity greater than 2 to qualify as equivalence relations.
Later we shall meet another abstraction principle which does not, as it stands, conform to
the usual characterisation, but which may readily be brought into line in one or another
of these ways.
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c : d, there is a quantity c' such that c' : b = c : d, so that we
may always, without loss of generality, restrict attention to ratios with
common denominators. I shall refer to it as CD. It is easy to see that
CD ensures that there is no smallest quantity.12

(4) A full q-domain may be incomplete, in the sense that it may include
only quantities which are rationally measurable; in consequence, the
set of all ratios on a full domain is not guaranteed to include ratios
corresponding to any, much less all, (positive) irrational numbers.13 If
ratio-abstraction is to yield all the positive reals, we require a complete
domain. Indulging—for convenience, but avoidably—in set-theoretic
language, we say that a subset S of quantities belonging to a q-domain
Q is bounded above by b iff for every quantity a in S, a < b. A quantity
b € Q is a least upper bound of S C Q iff b bounds S above and V c(c
bounds S above —» b < c), and finally that a q-domain Q is complete iff
Q is full and every bounded-above non-empty S C Q has a least upper
bound.

2.2. Real Numbers
We may straightforwardly define 'bounded above', 'lub', and 'order-com-
plete' for mtios in a way that parallels our definitions of these notions for
quantities and then prove, as an easy consequence of the completeness of
the underlying domain, that where Q is any complete q-domain, the set RQ

of ratios on Q is order-complete.14 It can be shown that if Q and Q* are
any complete q-domains, they are isomorphic, so that RQ = RQ , i.e., the
set of ratios on Q is identical with the set of ratios on Q'. Thus provided
there exists at least one complete q-domain, we can introduce the positive
real numbers, by abstraction, as the ratios on that domain.

In standard constructions of the various number systems, negative num-
bers make their entry at an early stage. The method by which this is
accomplished—introducing a new, enlarged domain including negative

12 Although I am not identifying quantities, as such, with numbers of any kind, it should
be fairly clear that a full domain, and likewise the domain of ratios on it, is dense, and
that we can develop an 'arithmetic' of ratios structurally analogous to that of the positive
rationals.
13 Of course, since quantitative domains, as I have characterised them, do not include
either a zero quantity or negative quantities, the ratios on such domains will not, in any
case, have elements corresponding to all the reals.
14 Proof: Let S be any bounded-above subset of R"'. By CD, each ratio in S can be
expressed with a single common denominator, so that the members of S are: ai : b,
aa : b, • • •, a* : b, • • •. The set of numerators of these ratios is a non-empty subset of Q,
and so—by the completeness of Q—have a least upper bound a°. Since every &i < a°,
a» : b < a° : b for every ratio a* : b in S. And if some ratio p : q is less than a° : b,
it follows |by CD| that p : q = p' : b for some p', with p' < a°. But then by the
completeness of Q, there is some a*, among the numerators of the ratios aj : b so that
p' < a/t, and hence a ratio a t : b in S such that p' : b < a* : b. So a° : b is a least upper
bound of S.
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REALS BY ABSTRACTION 109

numbers as certain ordered pairs (difference pairs) of numbers belonging
to an underlying domain—is, however, perfectly general, in the sense that
it is quite inessential to it that the numbers in the underlying domain should
be natural numbers. Of course, we must start with the natural numbers if
we want to get just the integers—but in general, all that is required for the
application of the method itself is that the objects belonging to the under-
lying domain have the requisite arithmetic properties. There is, so far as I
can see, no reason, either technical or philosophical, why this step may not
just as well be taken at a (much) later stage. In particular, essentially the
same construction can be used to get negative reals, starting from positive
ones, as difference pairs of positive reals. Letting x, y, z,... range over, and
© stand for addition of, positive reals, we obtain difference pairs of positive
reals by the abstraction:

(D) (x, y) = (z, w) <-> x ® w = y ® z.

Defining < , >, addition, subtraction and multiplication and zero for d-
pairs in the obvious way, it can be shown that the collection R of d-pairs
forms a field with the operations + and x. Further, there is a subset P of
R, namely the set of all pairs (x,y) such that (z,z) < (x,y), meeting the
conditions:

(i) if (x, y), (2, w) G P then (x, y) + (z,w)&PA (x, y) x {z, to) € P
and

(ii) if (x,j/) e R, then exactly one of (x,y) € P, (y,x) G P or (x,y) =
(z,z) holds.

Thus R is an ordered field. There is an obvious isomorphism between the
strictly positive subset P of R and the positive reals as previously defined.
Using this, it can be shown without too much difficulty that R is complete.

3. The Existence of Quantitative Domains
Our result thus far is conditional: real numbers may be obtained by ab-
straction on quantities, if there exists at least one complete q-domain. Even
if this were the best result that could be obtained, it is not completely ob-
vious that this would signal the collapse of the neo-Fregean abstractionist
approach to foundations. It might be possible to provide principled rea-
sons for adopting different attitudes towards the question of the existence
of reals and that of the natural numbers, holding that while the latter ad-
mits of resolution, a priori, in the affirmative, the existence of the reals is a
matter on which no similar a priori assurance is to be expected. According
to such a view, the existence of (at least) finite cardinal numbers would
be a matter of necessity—whatever the universe might be like, its ingre-
dient objects would be assignable to distinguishable sorts or kinds; there
would be some sortal concepts or other, under which the objects fell, so
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that for various concepts F and cardinal numbers n, there would be facts
of the form: the number of Fs= n. More importantly, for any such sortal
concept F, there will be a sortal—F-and-not-F—logically guaranteed to
have no objects falling under it, in terms of which zero may be defined,
thus giving the necessary toe-hold for a Pregean proof of the existence of
an infinite collection of finite cardinals. But there can be no similar a priori
guarantee that the physical universe comprises quantities which are real-
valued—it is perfectly conceivable, even if in fact false, that the physical
world should be discontinuous. So a result which says, hi effect, that if it
does exhibit continuity, the real numbers are available to measure it, might
not appear utterly outrageous. Defending this position would, naturally,
require speaking to the contrary intuition, that while it may be hi some way
an empirical question whether the physical universe is continuous, and so
an empirical question whether the reals have 'objective' application [in the
sense that there actually are real-valued quantities—contrast the idea that
using the reals simply affords a useful simplification of applied mathemat-
ics], the existence of the reals should not itself be an empirical, a posteriori
matter.

Clearly, however, it is important to enquire whether a neo-Fregean can
secure a stronger result. Evidently, the question of greatest interest is
whether there can be proved to exist a complete q-domain. But it is worth
emphasising that the question arises, not only for the case of complete q-
domains, but equally for q-doinains of the more modest kinds described—
thus far, nothing has been done to establish the existence of a full q-domain,
or even that of a normal, or even minimal, one. Even the question of the
existence of a minimal domain is anything but trivial. A minimal do-
main is, by definition, non-empty. Since such a domain is closed under
its addition operation and satisfies the additive trichotomy condition, it
must comprise arbitrarily large quantities, and thus be at least countably
infinite. To anyone who thinks of quantities as physical entities of some
sort, the existence of such a domain must, for this reason, appear open
to serious question. On my own view, quantities such as lengths, masses,
angles, etc., should not be thought of as physical entities; they are, rather,
abstract objects, 'introduced' via abstraction principles employing appro-
priate equivalence relations on the concrete objects whose lengths, masses,
etc., they are. But this makes no essential difference, so far as the present
question is concerned. At least, it will make no difference if the existence of
a given length, say, is taken to be contingent upon the existence of a suit-
able concrete entity of which it is the length; for in that case, the ground
for doubt about the existence of arbitrarily large quantities of any given
kind remains. Clearly there must be an analogous doubt about the exis-
tence of arbitrarily small quantities, and hence about the existence of a full
q-domain. However, it seems to me that these doubts may be assuaged and
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that we can actually prove the existence of at least one domain of each of
the kinds I have distinguished, including complete domains.

The crucial point here is to notice that whilst quantities as such are
not identified, in my approach, with numbers, nothing in the characteri-
sation of q-domains precludes such domains being composed of numbers.
As previously remarked, Hume's principle suffices for a derivation of the
Dedekind-Peano axioms for elementary arithmetic, and hence for a proof
of the existence of an infinite sequence of natural numbers—0,1,2,.... Omit-
ting 0 to obtain the strictly positive naturals, N+, and adjusting the usual
recursive definitions of + and x to suit, we can easily show that N+ con-
stitutes a minimal—and indeed a normal—q-domain.

It is clear that N+ is not itself a full domain, i.e., it does not satisfy
CD. However, the collection RN+ of ratios on N+ does constitute a full
domain. To see this, note first that since N+ is normal, there exists a
ratio a : b for every a and 6 in N+. Let a, b,c,d,e,f be any elements of
N+. Then what we must show is that there is a ratio g : h such that
[a : b\ : [c : d] = [g : h\ : [e : / ] . It is quite straightforward to verify that

[a : 6] : [c : d] = ad : be = ade : bee

= [ade : bef] : [bee : bef] = [ade : bef] : [e : / ]

so that [ade : bef] is our required ratio.15 In the presence of CD, satisfaction
by RN of the minimality and normality conditions follows easily from then-
satisfaction by the underlying domain N+. Thus RN+ is a full domain.
What we have, in effect, is a quite natural way of obtaining the positive
rationals by abstraction on the positive natural numbers—each and every
positive rational is simply a ratio of positive natural numbers. Thus 3/4
just is the ratio 3:4. Of course, it is also the ratio 6:8 and the ratio 9:12,
etc., but that is no problem, since these are all simply one and the same
ratio in our sense (i.e., by the lights of EM).

It is clear that iteration of the abstractive procedure which yields RN+

from N+ will not yield any new kind of q-domain. The crucial point emerges
above, in the observation that [a : b] : [c : d] = ad : be. This holds
quite generally—any ratio of ratios of positive natural numbers are simply
ratios of positive natural numbers. In the same way, ratios of ratios of
ratios of positive natural numbers collapse to ratios of positive natural
numbers. Iteration of the abstraction to ratios of higher order thus merely
gives us the positive rationals all over again. Thus the operation by which

18 Recall that a, 6, c,d,e, f are all positive integers. A ratio is unchanged by multiplying
its numerator and denominator by the same positive integer. Hence a : b = ad : bd.
Similarly, c • d = be : bd. But the ratio to one another of ratios with a common
denominator is simply the ratio of their numerators, so [ad : bd] : [be : bd] = ad : be,
whence |a : 6] : \c : d\ = ad : be. Further e : / = bee : bef and ad : be = ade : bee. Hence,
since \ade : bcf\ : \bce : bcf\ = ade : bee, we have: [a : 6] : \c : d\ = ad : be = ade : bee =
\ade : bcf\ : \bce : 6c/1 = \ade : bcf\ : |e : / | .
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we obtained a full domain from an underlying normal one cannot, when
re-applied to a full domain, yield a complete one. This is a special case of
a quite general fact about first-order abstraction: no first-order abstraction
on an infinite domain can generate a 'new' domain of greater cardinal size
than that abstracted on. It follows that if a complete domain is to be
obtained by abstraction, we must invoke a second-order abstraction. In
this way—and only in this way—we may advance from a domain of objects
of given cardinality to a strictly larger domain of abstracts. Given an initial
domain comprising n objects, there will be 2" properties of those objects.
By taking these properties, rather than the objects which have them, as
our underlying domain for an abstraction, we may obtain a strictly larger
collection of abstracts—up to (but not more than) 2" of them.16

We take as our initial domain the (at least countably infinite) full domain
RN of ratios on N+. Our goal is to obtain a complete domain Q# by cut
abstraction, so-called because of its obvious correspondence to Dedekind's
construction.17 As anticipated, cut abstraction operates, not directly upon
RN itself, but upon properties of a certain kind defined over its elements,
which I shall call cut-properties. These are defined by reference to the
ordering on RN . Informally, a cut-property is a non-empty property whose
extension is a pivper subset of RN and which is downwards closed [i.e.,
VaV6 (Fa —> (6 < a —• F6))18] and has no greatest instance [i.e., Va (Fa —>
36 (6 > a A Fb))]. We now introduce objects—cuts—corresponding to cut-
properties by the abstraction principle:

(Cut) # F = #G <-» Va (Fa <-» Go) where F, G are any cut properties
on RN+ and a ranges over RN .

Q# is the collection of all cuts, # F , for cut-properties F on RN . It may
be shown that Q# constitutes a complete domain, in the sense previously
explained. Obviously the main thing here is to verify that Q# has the
least upper bound property, i.e., where <p varies over properties of cuts on
RN , and bounds above and lub are defined in an obvious way, that if
3F 0(#F) and <p is bounded above then <p has a least upper bound. This
can be done, mimicking the usual proof, by defining the property H by:
Ha *-+ 3F ((/>(#F) A Fa)—we can then show that H is a cut-property
and that #H is a lub of <j>. We may define # F + #G to be #H, where
Ha «-> 363c (Fb A Gc A a = 6 © c), and # F x #G to be # P , where
Pa «-» 363c (F6 A Gc A a = b ® c). With the aid of these and some

1 6 If K is infinite and CH holds, then we shall, of course, get more than K abstracts only
if we get exactly 2" of them; but I am not assuming CH, much less GCH.
17 Cf. Richard Dedekind, Stctigkeit und Inationale Zahlen (1872), translated by Woos-
ter Woodruff Beman as 'Continuity and irrational numbers', in Richard Dedekind, Essays
on the Theory of Numbers. Reprinted New York: Dover Publications (1963), pp. 1-27.
18 Here and subsequently a, 6,... range over elements of RN .
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supplementary definitions, it can then be proved that Q# is full, i.e., that
it is a minimal q-domain which also meets the normality and common
denominator conditions.

4. Safe Abstractions and Safe Sets
Are the abstraction principles which I have employed all in good stand-
ing? The question is urgent, since we know that not all abstraction princi-
ples are acceptable, if only because some—Basic Law V being the obvious
example—are inconsistent. And there may be other constraints, besides
consistency, with which good abstractions must comply. A thorough exam-
ination of the question lies well beyond the scope of this paper, but I should
like to conclude by saying a little about it. Of the abstraction principles I
have used, two—ratio abstraction EM and difference abstraction—are first-
order, while the other two—Hume's principle and Cut—are secorwi-order.
In the case of first-order abstraction, we abstract upon a domain of objects
of some kind, and thereby come to recognise objects of another kind; with
a second-order abstraction, by contrast, we abstract upon a domain of con-
cepts, themselves defined on some underlying domain of objects, and come
to recognise 'new' objects, i.e., objects of a kind other than those belonging
to this underlying domain. I shall call the field of an abstraction's equiv-
alence relation the domain for the abstraction, and in the case where this
is a domain of (first-level) concepts, I shall call the domain of objects on
which these concepts are defined the underlying domain.

In the case of second-order abstractions, the underlying domain—if it
has a determinate size at all—is much smaller than the domain for the
abstraction; if the underlying domain has cardinality K, then the domain
for the abstraction (assuming it to comprise all the concepts defined on the
underlying domain, and assuming concepts to be individuated extension-
ally) has cardinality 2". In consequence, the abstraction may 'generate' up
to 2" abstracts—and so many more abstracts than there are objects in the
underlying domain. It is this feature of second-order abstractions which
has led some writers to think that it is these abstractions—in contrast with
first-order abstractions—which pose the greatest worry, as far as the risk
of inconsistency is concerned. I think that is correct, and I shall therefore
focus on the second-order abstractions. In fact, since Hume's principle is
known to be consistent, I shall concentrate upon the other second-order
abstraction I have used—cut abstraction.

Cut—in contrast with Hume's principle and Basic Law V—is a restricted
abstraction principle, in the sense that the domain for the abstraction com-
prises only cut-properties on a certain specified underlying domain of ob-
jects. It is obvious that if the side constraints on it are ignored, Cut is
just a notational variant on Basic Law V. Clearly, then, from unrestricted
Cut, we could derive Russell's contradiction. If we define a Russell prop-
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erty R by: Rx «-» 3F (x = # F A ~'Fx), then by unrestricted Cut we have:
#R = #R +-+ Vx (Rx «-• Rx), whence: #R = #fl—so #/? exists, and we
may
1
1
3
3

3
3
3
3
1

12

12
12
12

proceed:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

R(#R)
3F (#il = #F A ->F(#R))
#R = # F A ->F(#R)
#R = # F
#R = # F <-> Vx {Rx <- Fx)
Vx (Rx «-» Fx)
R{#R) «- F(#R)
-<F(#R)
-yR(#R)
-iR(#R)
R(#R) -> ̂ R(#R)

^R(#R)
#R = #R
#R = #RA^R(#R)
3F(#/* = #FA-F(#il))
R(#R)
-<R(#R) —• R(#R)

assn
1, DefiZ
assn
3 AE
(unrestricted) Cut
4,5 <->E
6 VE
3 AE
7,8<-+E
2,3,9 3E
l,10->I
assn
=1
12,13 AI
14 31
15Def R
12,16 -»I

(18)
With the constraints on Cut in place, however, this derivation will not
go through without two further assumptions: to establish the existence
of #/?, and to justify the (second-order) VE step involved at line (5), we
must assume that R is a cut-property on RN+; and for the application
of VE at line (7), we must further assume that # i t is in RN . Since the
contradication at line (18) depends upon these further assumptions, we may
apply reductio to infer that either R isn't a cut-property on RN+, or # i i
is not an element of RN+.

Does that settle the matter? Well, no. The particular cut-abstraction
principle I've used may be viewed as a special case of a general schema
which runs:
(#) #-F = #G <-» Va (Fa *-* Ga) where F, G are any cut properties

on a suitable domain Q and a ranges
over Q.

A suitable domain Q here will be any domain with an at least dense
linear ordering, with respect to which cut-properties are definable. Two
obvious questions which may be raised about this general schema are: Are
all its instances safe? If not, what distinguishes those which are from those
which are not? I'll venture a few somewhat tentative thoughts about these
questions.

Perhaps the first thing I should say is that I am not, so far as I can
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see, committed to endorsing all instances of (#)—i.e., to defending its
universal closure with respect to Q—though I would think that, should
it prove that some of its instances are either prone to Russell trouble or
otherwise unsafe, it should be possible to provide some principled charac-
terisation/explanation of the limitations here.

It is clear that so long as the underlying domain Q for an instance of
(#) is not inclusive of all objects whatever, any derivation of Russell's con-
tradiction can be seen, not as showing the inconsistency of that instance
(#), but as a demonstration that either the Russell property R cannot be
a cut-property on Q or the Russell cut #-R cannot be an element of Q. If
the universe of all objects whatever constitutes an admissible underlying
domain for cut-abstraction, then the Russell cut, if there is such an object
at all, must belong to that domain—so the second option lapses. But the
first remains open. There will be such an object as the Russell cut only
if the Russell property is a cut-property on the universe. But, at least in
the absence of any compelling independent reason to think (#) defective, a
derivation of the Russell contradiction would seem to give us ample reason
to think that the Russell property cannot be a cut-property on the universe.

If what I have said is right, it is possible to block Russell trouble with-
out challenging the assumption that the universe constitutes an admissible
underlying domain for cut-abstraction. The point is, however, somewhat
academic since there are other worries—having more to do with Cantor's
paradox than with Russell's—which are, I think, best answered by rejecting
that assumption. Briefly, cut-abstraction, for all I have said thus far, may
be applied to any domain on which cut-properties are definable—that is,
any domain with an at least dense linear ordering. If the chosen domain
is strictly dense (i.e., dense—like the rationals— but not complete—like
the reals), then an instance of cut-abstraction will inflate, in the sense that
there are more abstracts 'generated' than there are objects in the underly-
ing domain (i.e., the domain on which the cut-properties are defined).19 If
it is dense but complete, then there will be no inflation—the collection of
abstracts will be isomorphic to the underlying object domain. If the uni-
verse of all objects whatever admits of a strictly dense linear ordering and
can be taken as a domain for cut-abstraction, we shall wind up with more
abstracts (and so more objects) than there are objects altogether! How
should we avoid this disastrous conclusion?

The answer I shall tentatively commend makes crucial play with the con-
trast I drew previously between unrestricted abstractions, such as Hume's
principle, and I'estricted ones, such as cut-abstraction. In the case of Hume's

10 As an anonymous referee, Stewarl Shapiro, and his student Roy Cook (independently)
pointed out to me, cut abstraction inflates at every cardinality, in the sense that, for
every cardinal a there is a domain of size a with a strictly dense linear order on it, so
that cut abstraction applies to yield a 'new' domain of size 2".
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principle, it is essential that the first-order quantifiers on its right-hand side
be allowed to range unrestrictedly over all objects whatever, including—
crucially—the numbers themselves. In this sense, the first-order quantifiers
in Hume's principle must be understood impredicatively. If instead those
quantifiers were restricted so as to range only over objects other than num-
bers, we could not prove the infinity of the sequence of finite numbers—
at least, not without the additional assumption that there exist infinitely
many objects of some other kind.

With cut-abstraction, by contrast, it is unnecessary—in order to ensure
that the abstraction delivers all the abstracts we require—to construe its
first-order quantifier impredicatively in this way. Moreover, if we do allow
that—in particular, if we allow an instance of the cut-schema whose first-
order quantifier ranges over all objects whatever—then we will (provided
the universe admits of a strictly dense ordering) run into Cantor-type trou-
ble. But we do not have to allow this. As I have explained, cut-abstraction
is—in contrast with Hume's principle, and Basic Law V—a restricted ab-
straction, in the sense that each instance of the cut-schema (#) involves
a restriction to a specified underlying domain, over which its first-order
quantifier ranges. All I have said thus far about what constitutes a suitable
underlying domain is that it shall be some densely ordered collection of
objects. But as far as I can see, nothing stands in the way of imposing a
further restriction which will preclude application of cut-abstraction to the
universe as a whole.

It may seem that the most obvious way to do this would be to incor-
porate a 'limitation of size' requirement in the conditions for a suitable
domain for cut-abstraction—the idea would be to require that any suitable
domain Q for cut-abstraction be smaller than the universe. This would
bring cut-abstraction much closer to the modified version of Basic Law V
which George Boolos dubbed New V. Following Boolos, say that a concept
F is a subconcept of a concept G iff Vz (Fx —* Gx), and that F goes into G
iff F w H for some subconcept H of G. Let V be the concept [x : x = x],
and say that F is small iff V does not go into F. Define F to be similar
to G iff (F is small V G is small —• Vi (Fx *-* Gx)). Similarity is an
equivalence relation. New V is then the abstraction:

New V *F = *G «-> F is similar to G.
If we agree—as I think we should—that numbers may only properly

be assigned to genuine sortal concepts—that is, roughly, concepts F with
which are associated not only criteria of application but also criteria of
identity—then we should be happy with this modification (of either cut-
abstraction or Basic Law V) only if we are persuaded that self-identity is
a genuine sortal. For if a concept F can have a number only if F is sortal,
then, assuming Hume's principle, F can be equinumerous with itself only
if it is sortal. And if it can't be equinumerous with itself, it can scarcely be

 at V
ilnius U

niversity on A
ugust 15, 2012

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


REALS BY ABSTRACTION 117

equinumerous with any other concept. Since small is defined so that F is
small iff self-identity doesn't go into F, New V is a real restriction of Basic
Law V only if self-identity is a genuine sortal.

I do not think it is. A simple argument due to Crispin Wright shows,
in effect, that if self-identity were a genuine sortal, many concepts which
are plainly not sortal would qualify as such. The argument turns on the
point that whenever a concept G is genuinely sortal, its restriction by any
other (even merely adjectival) concept F—i.e., the conjunctive concept: F-
and-G—will likewise be sortal. For example, since horse is, presumably,
genuinely sortal, so is white horse, for all that the restricting concept white
is not sortal. Thus if self-identical were a genuine sortal, so would be any
restriction of it, such as white-and-self-identical. However, since white-and-
self-identical is equivalent to white, it would follow that white is after all a
sortal concept. Since white (or white thing) is not a genuine sortal, neither
can self-identical be one. For the same reason, clearly, no concept which
applies universally can be a genuine sortal concept.20

If this is right, some other means of formulating the needed restriction is
required. There is an obvious next thought. Why should we not simply stip-
ulate that a predicate Q determines a suitable domain for cut-abstraction
only if Q is genuinely sortal? Since neither self-identity, nor any other
predicate (such as 'F V ->F') which is guaranteed application to all objects
whatever, is a genuine sortal, this will ensure that the universe of objects as
a whole—even if it admits of a strictly dense ordering—is not an admissible
domain for cut-abstraction.

A thorough defence of this proposal requires more space than I have
here. To conclude, I should like to comment briefly on three points.

(i) It might be observed that a restriction of admissible domains to those
specifiable by sortal concepts will not, on the face of it, exclude certain
very large domains such as those comprising all ordinals, or all cardi-
nals, or all sets (since the relevant concepts appear to qualify as genuinely
sortal)—giving rise to concern that paradox may still be derivable from
cut-abstraction by taking one or other of these collections as underlying
domain. I think this might be met in either of two ways. First, any at-

20 Cf. Wright |fort,hcoming|. Wright formulates the argument slightly differently, as fol-
lows:

Call a concept that is not sortaJ a mere predicable. Where F is a mere predicable,
the question: 'How many F's are there?', is deficient in sense and 'the number of
F's ' has no determinate reference. However, attaching a mere predicable to a genuine
sortal, G, produces a complex, restricted sortal, Fk.G, such that there can be, and
normally will be, a determinate number of objects falling under it. Thus if F is any
mere predicable, and self-identity is a genuine sortal, there will be a determinate
number of objects whch are FksdJ-identicaL But since Ftiself-identical is equivalent
to F, it follows that there can be no such determinate number wherever
there is no determinate number of F's—i.e., wherever F is a mere predicable. So self-
identity is not a sortal concept.
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tempt to generate paradox from (#) by taking the ordinals, say, as domain
will—so far as I can see—rely on the idea that the collection of all ordinals
is universe-sized. That requires the assumption that the concept ordinal
number is equinumerous with some concept under which every object—
whether an ordinal number or not—falls. But if what I have already said
is right, concepts can be equinumerous only if both are sortal, and there
can be no universal sortal concept, so that this assumption can be rejected,
and there will be no need to strengthen the restriction on cut-abstraction to
preclude taking the ordinals, etc., as domains. But second, even if it should
prove necessary to exclude the ordinals, etc., as admissible domains for cut-
abstraction, there is a quite natural way to do this. Instead of requiring
simply that an admissible domain be given by a sortal concept, we might
require that such a domain should have a determinate cardinal size. Since
being the extension of a sortal concept is at least a necessary condition for
a collection to have a determinate size, this restriction would encompass
the one already proposed. If this necessary condition is not sufficient—i.e.,
if certain sortal concepts fail to have determinately-sized extensions—then
those concepts will be excluded by the revised restriction. In particular,
what Michael Dummett has called indefinitely extensible concepts, such as
ordinal, cardinal and set itself, will be excluded.

(ii) It may be objected that restricting admissible domains for cut-abstrac-
tion in either of the ways suggested is arbitrary or ad hoc. And the objec-
tion might be thought to draw strength from the neo-Fregean's willingness
(and, indeed, need) to employ unrestricted abstractions such as Hume's
principle. I shall make just two quick points in reply, leaving—no doub t -
much more to be said. First, as should by now be clear, it is in fact false
that Hume's principle is a completely unrestricted abstraction—although
its first-order quantifiers are unrestricted, its initial second-order quanti-
fiers are—crucially—restricted to sortal concepts. Second, my proposed
restriction (s) on cut-abstraction appear to be no more arbitrary or ad hoc
than the restriction which New V seeks to build into Basic Law V. It is true
that the manner in which the restriction is imposed on (#) differs, formally,
from what happens with New V—where what is done is not to restrict the
range of any quantifier, but to complicate the equivalence relation—with
the effect that when F and G are not small, *F and *G exist, but are iden-
tified irrespective of whether their concepts are co-extensive. But I think
this difference is superficial. Provided that the conditions for a first-level
concept to be sortal can be expressed (using only logical vocabulary) in a
language of second (or perhaps third) order, I can see no reason why (#)
should not be recast in essentially the same mould as New V. And if they
cannot be so expressed, that is bad news (if it really is bad) not only for (#)
but for New V too, for reasons already mentioned. But I am not persuaded
that it would be bad news—since I see no ground for assuming that every
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philosophically important concept must be capable of definitive expression
hi the purely logical vocabulary of a second- or third-order language.
(ill) Finally, a quick word about the state of the economy. Some recent
writers21 have claimed—plausibly, in view of the obvious risk of some form
of Cantor's paradox—that acceptable abstractions should be, in some sense,
non-inflationary. Is cut-abstraction inflationary hi any objectionable sense?

Some care needs to be exercised in characterising the relevant notion of
inflationariness, since a great part of the point and interest of abstractions
lies in the fact that they 'generate' objects which are 'new', and so, in a cer-
tain sense, 'expand' the underlying domain. So that in one way, inflation—
or at least domain-expansion—is just what the neo-Fregean wants. Of
course, this way of putting the matter is potentially very misleading, since it
gives the entirely false impression of ontological prestidigitation—in which
abstraction creates objects out. of nothing, as it were, much as a practised
conjurer appears to pull pigeons out of thin air. The neo-Fregean can, and
should, insist upon a more sober description of what is going on. What
an abstraction does, if all goes well, is to set up a concept—of direction, or
cardinal number, or whatever—by supplying necessary and sufficient con-
ditions for the truth of identity-statements linking terms which purport
reference to objects falling under it. It draws our attention to the possibil-
ity of redescribing—or reconceptualising—the state of affairs which consists
in line a being parallel to line b, for example, in terms of the holding of the
relation of identity between certain objects, the direction of a and the direc-
tion of b.22 Accepting the proposed reconceptualisation does not—in and
of itself—involve acknowledging the existence of these objects. What it in-
volves, rather, is accepting that the question whether there are such objects
reduces to the question whether suitable instances of the right-hand side of
the abstraction principle are indeed true. So what an abstraction does is
not to 'create' objects, but to equip us to recognise, identify and distinguish
objects which we could not recognise, identify and distinguish before—i.e.,
in advance of grasping the concept which the abstraction introduces.

If inflation of this kind is acceptable, what kind might not be? Kit Fine
writes:

Two necessary conditions for the truth of an abstraction principle hold as mat-
ter of logic In the first place, it follows from the truth of an abstraction
principle tliat its underlying criterion of identity on concepts should be an
equivalence relation ...

Secondly, it follows from the truth of an abstraction principle that the iden-
tity criterion should not be inflationary, the number of equivalence classes must
not outstrip tlie munber of objects. There must, that is to say, be a one-one

21 See Fine (1098).
22 For fuller discussion of this idea, see Wright [1997], §1; Hale [1994], §2; and Hale [1997]
passim.
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correspondence between all of the equivalence classes, or their representatives,
on the one hand, and some or all of the objects, on the other. It is, of course,
on this score that Law V proves unacceptable; for where there are n objects,
it demands that there be 2" abstracts. (Fine [1998], p. 506.)

There is, I think, some ambiguity or vagueness in these remarks which we
need to resolve if avoidable confusion is to be avoided. Let us say that
an abstraction A inflates on an underlying domain D if A's equivalence
relation partitions D into more equivalence classes than D has elements.
Then one might say that an abstraction is weakly inflationary if there is
some domain on which it inflates, and strongly inflationary if it inflates
on every domain (or perhaps—a little less exiguously—on some domain of
cardinality K, for every cardinal K).23

To require of an acceptable abstraction that it should not be (even)
weakly inflationary would stop the neo-Fregean project dead in its tracks,
before it even got moving (as it were). It will be clear that I think there
is no good ground to impose such a requirement, and I shall not discuss
it further. It is much more plausible to require that acceptable abstrac-
tions should not be sttvngly inflationary.24 Some of the neo-Fregean's key
abstractions, including the other crucial second-order abstraction, Hume's
principle, satisfy this requirement.25 But whilst the requirement that ab-
stractions not be strongly inflationary is more plausible, I can see no com-
pelling reason to accept it in full generality—that is, as applying both to
unrestricted abstractions and restricted ones. It may be necessary to insist
that no unrestricted abstraction can be strongly inflationary. But, as I

2 3 This characterisation of weak and strong inflation applies directly only to abstrac-
tions—like Hume's principle and Basic Law V—which are not restricted abstractions in
the sense previously explained, i.e., are not such that their formulation already involves a
specification of a particular domain as the underlying domain for the abstraction. Since
any particular cut^abstraction, such as Cut, is restricted in this sense, there can be no
question of its being strongly inflationary. We can, however, properly ask of the corre-
sponding general scJiema—(#) in tlie case of Cut—whether it is strongly inflationary.
2 4 More plausible, because it might seem that strong inflation is bound to give rise to a
version of Cantor's paradox. It might also be thought that if an abstraction is strongly
inflationary, then there could be no hope of showing that it is satisfiable, i.e., has a
model—for let D be any domain, of cardinality K, say. Then any strong abstraction
inflates on D, i.e., its equivalence relation partitions D into more than K equivalence
classes, and so 'generates' more than K. abstracts. Thus D cannot be a model for the
abstraction. But D was any domain whatever, so our abstraction can have no mod-
els. On reflection, it should be apparent that this short argument involves an unstated
assumption—that the domain of any putative model for an abstraction must be the un-
derlying domain for the abstraction. As against this, I cannot see why, in setting up
a model for a restricted abstraction—such as cut-abstraction—we should not choose as
the domain of the model some larger collection which properly includes the collection
which is to play the role of the underlying domain for the abstraction.
2 5 Hume's principle inflates, of course, on any finite domain, but can be shown—
assuming Choice, but without assuming CH or GCH—that it does not inflate on any
infinite domain.
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have tried to make plausible, it is unnecessary to require this of restricted
abstractions. The cut schema, in particular, is strongly inflationary in the
sense that for every cardinality K, there is an admissible domain of cardi-
nality n on which an instance of (#) inflates. But that, so far as I can see,
does no harm, provided admissible domains are restricted to those given by
genuine sortal concepts (or perhaps, those of determinate cardinal size).

5. Summary and Concluding Remarks
My aim in this paper has been to set forth one plausible way in which a
neo-Fregean account of arithmetic may be extended to encompass the real
numbers. I have followed Frege himself in suggesting that the reals should
be introduced as ratios of quantities. This approach, as Frege perceived,
demands a prior analysis of the notion of quantity. I have agreed with
Frege, too, in thinking that this should be done by providing a general
characterisation of what he called quantitative domains, but have offered
a somewhat different account of them from that given in Grundgesetze.
Ratios of quantities are introduced by an abstraction principle based on
the ancient theory of proportion whicli comes down to us from Eudoxos.
The positive reals are then obtainable as ratios of quantities in a complete
quantitative domain, and zero and the negative reals by essentially the
move by whicli the integers are standardly constructed as difference-pairs
of natural numbers. My construction, taken by itself, establishes only a
conditional result: if there exists a complete quantitative domain, then the
reals may be introduced as ratios of quantities on it. However, as I argue in
the second half of the paper, there is a route by which a neo-Fregean may
establish the existence of at least one complete domain, starting with the
natural numbers (as given by Hume's principle), by successively applying
ratio-abstraction to obtain a full domain and a suitably adapted version of
Dedekind's method of cuts to obtain from this a complete domain.

Two points deserve emphasis: first, quantities, though (on my account)
abstract objects which are sharply to be distinguished from the concrete
entities which stand in various quantitative relations to one another, are
not themselves to be identified with numbers; and second, although I use
a version of Dedekind's method in proving the existence of a complete do-
main, there is no question, on the present approach, of defining the reals
as or in terms of Dedekind cuts. Here is not the place to elaborate upon
the significance of these points. The first is, I believe, integral to the de-
fence of my approach against several more or less familiar objections to
older attempts to treat real numbers as directly abstracted from quantita-
tive relations among concrete entities—but that defence is best conducted
in the context of a more searching analysis of the notion of quantity than
I have had space for here. Such an analysis would also do much to moti-
vate the axiomatic characterisation of quantitative domains which I have
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been obliged to state somewhat dogmatically, without the philosophical de-
fence it surely requires. The second is essential to the claim of the present
approach to respect Frege's belief—I would say, insight—that a satisfying
foundational account of the real numbers should introduce them in a way
which expressly provides for their applications.26
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ABSTRACT. On the neo-Fregean approach to the foundations of mathematics,
elementary arithmetic is analytic in the sense that the addition of a principle
wliich may be held to be explanatory of the concept of cardinal number to a
suitable second-order logical basis suffices for the derivation of its basic laws.
This principle, now commonly called Hume's principle, is an example of a Fregean
abstraction principle. In this paper, I assume the correctness of the neo-Fregean
position on elementary aritlimetic and seek to explain one way in which it may
be extended to encompass the theory of real numbers, introducing the reals, by
means of suitable further abstraction principles, as ratios of quantities.
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