
To Be a Realist about Quantum Theory

Hans Halvorson

January 19, 2018

1 Introduction

There’s a story that some philosophers have been going around telling. It
goes something like this:

The pioneers of quantum mechanics — Bohr, Heisenberg, Dirac,
et al. — simply abandoned hope of providing a realist theory
of the microworld. Instead, these physicists settled for a calcu-
lational recipe, or statistical algorithm, for predicting the results
of measurements. In short, Bohr et al. held an antirealist or
operationalist or instrumentalist view of quantum theory.1

Implicit in this story is a contrast with the “traditional aspirations of sci-
ence” to describe an observer-independent reality. Having built up a sense of
looming crisis for science, the story-teller then introduces us to the heroes,
those who would stay true to the traditional aspirations of science.

As the 20th century moved into its second half, there arose a
generation of renegade physicists with the courage to stand up
against antirealism and operationalism. These valiant men —
David Bohm, Hugh Everett, John Bell — renewed the call for a
realist theory of the microworld.

This kind of story can be very appealing. It’s the age old “good guys versus
bad guys” or “us versus them” motif. And those “ist” words make it easy

1For example: “the uncertainty principle is connected with certain antirealist ideas of
Heisenberg and Bohr and the statistical interpretation of the wave function” (Ney and
Albert, 2013, pp 14–15).
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to distinguish the good guys from the bad, sort of like the white and black
hats of the classic westerns.

The story is brought into clearer focus by talking about the quantum
wavefunction. What divides the realists from the antirealists, it is said,
is their respective attitudes toward the wavefunction: antirealists treat it
as “just a bookkeeping device”, whereas realists believe it has “ontological
status”. Witness the faux-historical account of Roger Penrose:

It was part of the Copenhagen interpretation of quantum me-
chanics to take this latter viewpoint, and according to various
other schools of thought also, ψ is to be regarded as a calcula-
tional convenience with no ontological status other than to be
part of the state of mind of the experimenter or theoretician,
so that the actual results of observation can be probabilistically
assessed. (Penrose, 2016, p 198).

I suppose that Penrose can be forgiven for oversimplifying matters, as well as
for propagating the myth of the “Copenhagen interpretation” (see Howard,
2004). After all, there can be great value in simple fictional tales if they get
readers interested in the issues.

I also imagine that Sean Carroll is aiming to generate some heat — rather
more heat than light — when he poses the following dilemma about the
wavefunction:

The simplest possibility is that the quantum wave function isn’t a
bookkeeping device at all . . . ; the wave function simply represents
reality directly. (Carroll, 2017, p 167)

This seemingly simple dilemma — ontological status: yes or no? — is a fine
device for popular science writing, which shouldn’t demand too much from
the reader. But is it really the right place to locate a pivot point? Is the
question “ought I to commit ontologically to the wavefunction?” the right
one to be asking?

Popular science writers aren’t the only ones to have located a fulcrum at
this point. In fact, some philosophers say that if you’re a scientific realist,
then you’re logically compelled to accept the Everett interpretation. I’m
thinking of this kind of argument:

If you’re a realist about quantum theory, then you must grant
ontological status to the quantum state. If you grant ontological
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status to the quantum state, and if quantum mechanics is true,
then unitary dynamics is universal. Under these conditions, re-
alism and unitary dynamics, you have two options: either you
accept the completeness of quantum theory, or you don’t. And if
you accept the completeness of quantum theory, then the Everett
interpretation is true.

In short, we are told that the following implication holds:

Realism + Pure QM =⇒ Everett

Notice how much work realism is supposed to do in this implication!
You might accuse me of caricature, and I’m sure I have left out much of

the nuance in this argument. And yet, Everettians regularly gesture in this
direction. For example, Wallace (2013) claims that the Everett interpreta-
tion “is really just quantum mechanics itself understood in a conventionally
realist fashion,” and that “there is one pure interpretation which purports
to be realist in a completely conventional sense: the Everett interpretation”
(Wallace, 2008). Similarly, Saunders claims that if we don’t think of the
wavefunction as a measure of our ignorance, then

the only other serious alternative (to realists) is quantum state re-
alism, the view that the quantum state is physically real, changing
in time according to the unitary equations and, somehow, also in
accordance with the measurement postulates. (Saunders, 2010)

In short, if you’re a good realist, then you’ll say that the quantum state is
physically real, and from there it’s a short step to the Everett interpretation.

There is something strange about this sort of argument. The notion of
“realism” is doing so much of the work — and yet, nobody has told us what
it means. How could the “if realism then Everett” argument be valid when
“realism” hasn’t been defined clearly? And how could the argument be con-
vincing when realism has not been motivated, except through its undeniable
emotional appeal?

In this paper, I’ll take a closer look at the distinction between between
realist and antirealist views of the quantum state. I argue that this bi-
nary classification should be reconceived as a continuum of different views
about which properties of the quantum state are representationally signifi-
cant. What’s more, the extreme cases — all or none — are simply absurd,
and should be rejected by all parties. In other words, no sane person should
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advocate extreme realism or antirealism about the quantum state. And if we
focus on the reasonable views, it’s no longer clear who counts as a realist, and
who counts as an antirealist. Among those taking a more reasonable inter-
mediate view, we find figures such as Bohr and Carnap — in stark opposition
to the stories we’ve been told.

2 Extremists

Suppose that you were asked to list historical figures on two sheets of paper:
on the first sheet, you’re supposed to list realists (about the quantum
state), and on the second sheet you’re supposed to list antirealists (about
the quantum state). Suppose that you are asked to sort through all of the
big names of quantum theory — Bohr, Heisenberg, Dirac, Bohm, Everett,
etc..

I imagine that this task would be difficult, and the outcome might be
controversial. For almost none of these people never explicitly said, “I’m a
realist” or “I’m an antirealist” or “the wavefunction has ontological status”
or anything like that. You’d have to do quite a bit of interpretative work
before you could justify assigning a person to one of the lists. You’d have
to assess that person’s attitude toward the quantum state by studying their
behavior and utterances with respect to it. For example, if person X makes
free use of the collapse postulate, with no proposed physical mechanism, then
you might surmise that X is either a mind-body dualist, or an operationalist
about the quantum state, or both. In other words, an operationalist stance
might serve as the best explanation for X’s utterances and behavior.

The task of sorting people into realist and antirealist would be sim-
pler for contemporary figures, who seem happy to embrace one of these two
labels. For example, Sean Carroll and Lev Vaidman will tell you, with great
passion, that the wavefunction is just as real as — in fact, more real than!
— a rock, or a tree, or your spouse. In contrast, Carlo Rovelli speaks of
the wavefunction as Laplace spoke of God: je n’avais pas besoin de cette hy-
pothèse-là. And these are just a few examples among the many philosophers
and physicists who have openly labelled themselves as realist or antirealist
about the quantum state. Self-identified state realists include Esfeld, Gold-
stein, Ney, Saunders, Wallace, Zanghi, etc.. Self-identified state antirealists
include Bub, Fuchs, Healey, Peres, etc.. The battle lines have been clearly
drawn, but what is at stake?
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The right wing extremists say: quantum wavefunctions are things. That
view is silly. The left wing extremists say: quantum wavefunctions are just
bookkeeping devices. That view is just as silly.

2.1 Right wing extremists

One might think that the litmus test for realism about quantum theory could
be posed as:

Do you believe that the wavefunction (more generally, the quan-
tum state) exists?

Or as Callender (2015) puts it,

Is the quantum state part of the furniture of the world?

So when (Carroll, 2017, p 142) says that, “the basic stuff of reality is a quan-
tum wave function”, he’s declaring his allegiance to wavefunction realism.

But what is this wavefunction thingy? Should I be thinking about it like
I think about chairs or tables? No, say the philosophers; you have to be
a bit more sophisticated about it. The preferred ontological reading of the
wavefunction is as a field, on analogy to things like the magnetic field that
surrounds the earth. Thus, to push the ontological picture further, things are
represented by points in the domain of that field, and the properties of those
things are the values of that field. What then are the things according to
this ontological view? Some philosophers say that the wavefunction is a field
on configuration space (Albert, 1996; Ney, 2012; North, 2013), so that the
things are points of configuration space. Others say that the wavefunction
is a multi-field on physical space (Forrest, 1988; Belot, 2012; Chen, 2017), so
that the things are spacetime points.

These straightforwardly ontological views have been subjected to many
criticisms (see Belot, 2012; Wallace and Timpson, 2010). Here I want to raise
another kind of objection. Or rather, I want to make a request of the ψ-field
theorists: would you please describe your theory clearly, including its states,
properties, and the relationship between them. To my mind, the attraction
of ψ-field theories is due in large extent to the vague, realist associations that
they conjure up in our heads. “The wavefunction is a thing with a definite
shape!” I wager that such theories are plausible only to the extent that it is
unclear what they are really saying.
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For starters, in quantum theory, the primary theoretical role of the wave-
function ψ is as a state. The ψ-field theorists ask us to change our point
of view. Instead of thinking of ψ as a state, we are to think of ψ as a field
configuration. There are numerous problems with this proposal.

In classical physical theories, the word “state” is shorthand for “a max-
imally consistent list of properties that could be possessed by the system
simultaneously”, or equivalently, “an assignment of properties to objects”.
In that case, there are two possible things we could mean by the sentence
“the state σ exists”. First, we could mean that the list of properties exists.
But this list is an abstract mathematical object, which would exist whether
or not the corresponding theory is true. So, in this first sense, “σ exists” is
not interesting from the point of view of physics. Second, we could use “σ
exists” as an obscure shorthand for “σ is the actual state”, which in turn
is shorthand for saying that certain other objects have certain properties.
Thus, in this second case, “σ exists” is cashed out in terms that don’t refer
to σ at all. In philosophers’ lingo, “σ exists” is grounded in facts about other
objects, and so isn’t really about σ at all.

Now, the defender of quantum state realism might simply say: “that
was classical physics. In quantum physics, the state takes on a new role.”
I certainly accept that quantum physics changes some of the ways we talk
about the physical world. But I’m not so sure that it makes sense to reify
states. According to the normal senses of “object” and “state”, we affirm that
objects can be in states. Thus, if states are objects, then states themselves
can be in states. But then, to be consistent, we should reify the states of
those states, and these new states will have their own states, ad infinitum. In
short, if you run roughshod over the grammatical rules governing the word
“state”, then you can expect some strange results.

To continue that line of thought, we assume that things can be counted.
In other words, it makes sense to ask, “how many things are there?” But
then, if states were things, it would make sense to ask, “how many states
are there?” But now I’m completely puzzled. According to quantum theory,
the universe has an infinite number of potential states, but only one actual
state. What in the world would explain the absence of all the intermediate
possibilities? Why couldn’t there have been seventeen states? And what’s
more, why do physicists never raise as an empirical question, “how many
states are there?” The reason is simple: physicists don’t treat states as they
do things, not even in the extended sense where fields also count as things.

I hope that by this stage you are at least partially convinced that it does
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violence to the logic of physical theories to talk about states as if they were
things. But then you should agree that the role of a wavefunction is not to
denote an object. Moreover, if ψ does not denote a physical object, then the
properties of ψ do not directly represent the properties of a physical object.
Granted, we should be careful with this latter claim. Even in classical physics,
the properties of a state can represent, albeit indirectly, the properties of a
physical object. For example, for a classical particle, “being in subset ∆ of
statespace” is a property of states that represents a corresponding property
of the relevant particle. Nonetheless, there are two different types of things
here — the particle, which is a concrete physical object, and its state, which
is an abstract mathematical object. The latter tells us about the former, but
should not be conflated with it.

In classical theories, there is also a sharp distinction between instanta-
neous configurations and states. If a configuration is represented by a point
in the manifold M , then a state is represented by a point in the cotangent
bundle T ∗M . In many scenarios, T ∗M looks like a Cartesian product M×M ,
where the first coordinate gives instantaneous configuration, and the second
component gives momentum. In every case, there is a projection mapping
π : T ∗M → M , and the preimage of any particular configuration q ∈ M is
an infinite subset of T ∗M . But now, if ψ is both a state and a field con-
figuration, then it’s unclear where it lives. Does ψ live in the space M of
configurations, or does it live in the space T ∗M of states? How can it do
both jobs at the same time?

These considerations show that the ψ-field view stretches the logic of
classical physics beyond the breaking point. To treat ψ as representing a
field configuration is to disregard its primary theoretical role as a state. Or,
at the very least, to treat it thus would obscure the difference, central to
classical theories, between configurations and states.

If that isn’t enough trouble for ψ-field views, we can also ask them to give
an account of the properties that are possessed by this thing, the ψ-field.
Recall that in a classical theory with statespace S, properties are typically
represented by subsets of statespace S.2 Then we say that the system has
property E ⊆ S just in case it is in state σ ∈ E.

Now, ψ-field theorists would like us to think of quantum theory on the
model of a classical field theory. In this case, the statespace would be the

2We might require that these subsets be measurable or something like that. But that
point won’t matter in this discussion.
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space C∞(X) of smooth complex-valued solutions to some field equation, and
subsets of C∞(X) would represent properties that the system can possess.3

For example, for any field state f ∈ C∞(X), the singleton set {f} represents
the property of being in state f , and its complement C∞(X)\{f} represents
the property of not being in state f .

For the purpose of performing certain calculations, a classical field theorist
might complete C∞(X) relative to some norm, obtaining a Hilbert space such
as the space L2(X) of (equivalence classes of) square-integrable functions on
X. The elements in L2(X) are no longer smooth functions, and in fact, they
aren’t really functions at all — they are equivalence classes of functions under
the relation: f ∼ g just in case

∫
|f − g|dµ = 0.

In contrast, for a quantum theorist, L2(X) is simply one instance of, or
one representation of, a Hilbert space H of countably infinite dimension. Any
two Hilbert spaces of the same dimension are isomorphic, and so it doesn’t
matter (for the physics) which one we choose. The states of the system
are represented not by points in L2(X), but by rays. And the properties of
the system are represented not by subsets of L2(X) but by closed subspaces.
Thus, in short, while L2(X) is used by both the classical field theorist and the
quantum mechanic, it is used in completely different ways in the two cases.
For those of us who believe that the Hilbert space formalism is intended to
represent reality, we could say that it represents reality in a very different
way than a classical field theory does.

The ψ-field views ask us to forget the differences between quantum me-
chanics and classical field theories. But it won’t be easy to forget these
differences without doing violence to the representational role of the vari-
ous pieces of the Hilbert space formalism. A classical theory comes with
representatives (subsets of statespace) for many properties that are not rep-
resented in the Hilbert space formalism. The ψ-field theorist wants to lay
claim to all these properties — for this seems to provide the coveted “god’s
eye view” of reality. In effect, the ψ-field picture is designed to make us feel
like we’ve evaded the Kochen-Specker theorem. For, if physical properties
are represented by subsets of L2(X), or by the mathematical properties of a
function ψ ∈ L2(X), then each such property is either definitely possessed or
definitely not possessed when the system is in state ψ. This view is intended
to hide (or ignore? or deny?) the fact that a quantum state does not answer

3I’m ignoring here the fact that classical field theories would typically use the space of
real-valued functions.

8



all questions about which properties are possessed.
What’s more, the ψ-field view only follows classical physics as far as giving

an instantaneous snapshot of the possessed properties. As soon as it comes
to drawing inferences about the system, it imposes ad hoc rules to block
fallacious inferences. For example, in a classical field theory, if σ and σ′ are
distinct field states, then knowing that the system is in state σ permits you
to assert that the system is not in state σ′. Or in probabilistic terms, the
probability of σ′ conditional on σ is 0. If you carry that inference rule over
directly into quantum theory, then you’ll make false predictions. A Gaussian
function ψ centered at 0 is a different field state than a Gaussian function
ψ′ centered at 0.01. Thus, on a classical picture, the property E of “being
in state ψ” is inconsistent with the property E ′ of “being in state ψ′ ”, and
Pr(E ′|E) = 0. But quantum theory says that Pr(E ′|E) ≈ 1.

Of course, ψ-field theorists are too clever to fall into the trap of carrying
classical inference rules into the quantum domain. Although they purport
to view the ψ-field classically, they stop short when it comes to reasoning
about it. For the purposes of reasoning and making predictions, they turn to
the Hilbert space formalism to guide them. Thus, we might summarize the
attitude of these ψ-field views in a phrase: you can look at the world from
the god’s eye point of view; just don’t reason about it as god would.

2.2 Left wing extremists

At one extreme, we have people telling us that the wavefunction is part of the
furniture of reality. At the opposite extreme, we have people telling us that
the wavefunction is “a mere calculational device” (Rovelli, 2016, p 1229),
and that “it is mistaken to view the universal wave-function as a beable”
(Healey, 2015). This second group of extremists is a curious bunch. They
protest loudly against the wavefunction, producing elaborate (and interest-
ing) arguments against its ontological status. And yet, they can’t seem to
live without it. In their books and articles, they accord a privileged role to
the wavefunction. When they want to say something true about a quantum
system, they consult the wavefunction before anything else. It makes one
wonder: if they don’t believe in the wavefunction, then why do they grant it
a special role in their representations of reality?

The practice in physics, followed by realists and antirealists alike, is that
each classically described “preparation” or “experimental setup” may be rep-
resented by a unique quantum state. In fact, the ability to associate quantum
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states to classically described experiments is one of the skills that displays
mastery of quantum theory. Once an experiment has been adequately de-
scribed, then there is no remaining latitude for idiosyncratic or subjective
state assignment. There is just one correct state, as will be borne out by
checking the statistics of measurement outcomes. The fact that physicists
have correctness standards for quantum state assignments strongly suggests
that they grant these states some sort of representational role.

Healey (2017) makes exactly this point, and he uses it to make an argu-
ment for quantum state objectivism: i.e. the belief that there are objectively
correct ascriptions of quantum states to physical systems. But isn’t this
sort of state objectivism strictly inconsistent with state antirealism? If the
quantum state is not real, then how could one be wrong about the quantum
state? In order to answer this question, Healey engages in subtle reasoning
about how objective correctness can be disentangled from the correspondence
theory of truth, and about how the meaning of the quantum state can be
accounted for in an inferential theory of content. This just goes to show that
matters are not as simple as they initially appeared to be.

Healey’s subtlety is laudable, but sometimes it verges on doublespeak. For
example, Healey hangs much on the distinction between ascribing a state ψ
to a thing X, and describing X with ψ.

Pragmatists agree with QBists [quantum Bayesians] that quan-
tum theory should not be thought to offer a description or repre-
sentation of physical reality: in particular, to ascribe a quantum
state is not to describe physical reality. (Healey, 2016, emphasis
added)

What are we supposed to be doing when we “ascribe” a quantum state? If ψ
has no representational role whatsoever, then why speak of “ascribing” it to a
physical object or situation? Why not just speak of “using” the wavefunction
— as one uses a computer or a hammer — to get a job done?

In the English language, the word “ascribe” involves a subject postulating
a relation between two objects: S ascribes Y to X. More is true: in normal
conversation, to ascribe Y to X involves judging that there is a pre-existing
relation between Y and X. For example, “He ascribed Jane’s short temper to
her upset stomach.” In this way, ascribing is different than using: I can use
Y to do something to X without making any judgment about the relation
between Y and X. These considerations show that the word “ascribe” is
tantalizingly close to other words — such as “describe” — that connote the
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existence of a representational relation, exactly the sort of thing that Healey
wishes to deny. To consistently carry out his pragmatist program, Healey
should use a different word than “ascribe”.

Here’s what I think is really going on here. The phrase “Y describes X”
is rather vague; and being vague, it can be thought to license all sorts of
inferences about the relationship between Y and X. When people say that
“Y describes X”, they tend to import a lot of baggage that goes far beyond
the simple existence of a representational relation between Y and X. In fact,
it seems all too easy to fall into the mistake of thinking that Y describes X
only if Y is similar to X. Of course that’s not true: the phrase “is over six
feet tall” describes Goliath, but this phrase is not similar to Goliath.

That temptation to assume similarity is all the more difficult to resist
when the first argument of “Y describes X” is a geometrical object such as
a wavefunction. The reason we fall into this trap, I assume, is because we do
frequently use geometric objects as pictorial representations. For example,
I might draw a rectangle on a piece of a paper and say, “this rectangle
describes the shape of my desk.” In this case, the rectangle on the paper is
indeed similar to the desk in a well-defined mathematical sense.

Healey, Rovelli, and other self-proclaimed antirealists have surrendered
too much to their opponents. They have allowed their opponents to define
words like “ontological status” and “describes”. Then, because Healey and
Rovelli reject the implications that come along with this particular definition
of “describes”, they’re forced to say that the quantum state does not de-
scribe at all. Thus, Healey and Rovelli lay themselves open to the charge of
antirealism — which, of course, carries highly negative connotations. To be
an antirealist implies a sort of failure of courage; it implies a sort of retreat.
Ergo, Healey and Rovelli are seen as making less bold assertions about reality
than their realist counterparts are making.

3 The state as directly representing

Are you a realist about the quantum state? We’ve already seen that this
question cannot be paraphrased as, “Do you believe that the quantum state
exists?” So what could the question mean? According to Wallace and Timp-
son,

Traditionally realist interpretations. . . read the quantum state lit-
erally, as itself standing directly for a part of the ontology of the
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theory. (Wallace and Timpson, 2010, p 703)

In fact, Wallace (2018b) locates the crucial divide between “representational”
and “non-representational” views of the quantum state. Thus the shift is
signaled from the material mode of speech (does the state exist?) to the
formal mode of speech (does the state represent?). In particular, Wallace
and Timpson claim that realism involves commitment to both literal and
direct representation. Thus, Carroll utters the shibboleth when he says, “the
wave function simply represents reality directly” (Carroll, 2017, 167). But
what work is the word “directly” doing here? I’m led to think that the task
of representing must be a bit like getting to work, where you have to take
the right turns in order to follow the most direct route. So what are the
instructions for following the direct route to representation?

When a person says that Y represents X, then that typically signals that
she endorses some inferences of the form:

(†) If Y has property φ then X has property φ′,

where φ 7→ φ′ is some particular association of properties (the details of which
needn’t detain us). Let’s call (†) a property transfer rule. For example, if I
say that a certain map represents Buenos Aires, then I mean that some facts
about Buenos Aires can be inferred from facts about the map.

What then is the force of insisting that Y doesn’t merely represent X, but
that it represents X directly? I suspect that the word “directly” is supposed
to signal endorsement of quite liberal use of property transfer rules. But
just how liberal? The key question to keep in mind is: which specification of
permitted property-transfer inferences corresponds most closely to the notion
of “direct representation” that is favored by realists such as Carroll, Wallace,
Saunders, and Timpson. When they say that “ψ directly represents reality”,
what exactly are they saying about the relation between ψ and the world?

Consider first the proposal:

(DR1) Y directly represents X just in case every property of Y
is also a property of X.

This proposal is logically consistent, but also absurd. One of the properties
that X has is being identical to X. Thus, according to DR1, if Y directly
represents X then Y = X. Could Wallace and Timpson possible intend this?
Does Carroll mean to say our universe is a subset of R3n × C? If so, then
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scientific realism is truly a radical point of view. The wavefunction is an ab-
stract mathematical object. Thus, if the universe is a wavefunction, then the
universe is an abstract mathematical object. Perhaps mathematicians will
applaud this conclusion, because then pure mathematics tells us everything
there is to be known about the universe.

I suspect that the realists don’t mean their direct representation claim in
the sense of DR1. Let’s try a more reasonable proposal.

(DR2) Y directly represents X just in case each mathematical
property of Y corresponds to some physical property of X.

Here we need some precise account of the “mathematical properties” of Y .
According to standard set-theoretic foundations of mathematics, the mathe-
matical properties of Y are precisely those properties that can be described
in the language of Zermelo-Fraenkel (ZF) set theory. Thus, for example, the
mathematical properties of Y would include its size (cardinality). In con-
trast, arbitrary predicates in natural language don’t pick out mathematical
properties of Y . For example, “is an abstract object” cannot be articulated
in ZF set theory, and so wouldn’t count as a mathematical property of Y .
Thus, DR2 doesn’t say that “anything goes” in terms of the representation-
ally significant properties of Y .

Even so, DR2 is still implausibly profligate in the number of representa-
tionally significant properties it assigns to the wavefunction. In particular,
for each definable name c in ZF set theory, there is a definable predicate Θc

given by
Θc(S) ↔ c ∈ S.

Among these definable set names, we have ∅, {∅}, and so on. Now, a wave-
function is a function ψ : A → B, with domain set d0f = A and codomain
set d1f = B. Thus, for any definable name c, it makes sense to ask whether
Θc(d0ψ), i.e. whether c is contained in the domain of ψ.

Imagine now the following scenario. Two physicists, Jack and Jill, are
arguing about whose wavefunction is a better representation of the universe.
The funny thing is, Jack and Jill’s wavefunctions are both Gaussians, cen-
tered on 0, and with the same standard deviation. If you ask Jack to draw a
picture of his wavefunction, then he draws a Gaussian centered at 0. If you
ask Jill to draw a picture of her wavefunction, then she also draws a Gaus-
sian centered at 0. They agree that this picture is a correct representation
of their respective wavefunctions. They also agree that their wavefunctions
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are written in the configuration space basis, and that the origin 0 represents
the same point in the universe. It seems that there is nothing left for them
to disagree about.

And yet, Jack and Jill insist on that their wavefunctions cannot both
be correct. According to Jack, the correct wavefunction ψ has the property
that Θ∅(d0ψ), that is, the empty set is an element of the domain of the
wavefunction. According to Jill, the correct wavefunction ψ′ does not have
that property. They both believe that Θ∅ corresponds to a genuine physical
property. Jack asserts that this property is instantiated, and Jill asserts that
it is not.

Jack and Jill would fail their quantum mechanics course. They don’t un-
derstand how the theory works. In using the formalism of quantum theory to
represent reality, we don’t care about these fine-grained set theoretic differ-
ences. If two wavefunctions have the same shape, then we consider them to
be the same. If two wavefunctions can be described via the same equation,
then we take them to be identical. But what is this notion of same shape
that we are using here? How can we tell when two wavefunctions are the
same, at least for the purpose of doing physics?

At this point, we might want to lay down the ace card of recent phi-
losophy of science: the notion of isomorphism. Can’t we just say that two
wavefunctions are representationally equivalent just in case they are isomor-
phic? In this case, we could then propose the following criterion for direct
representation:

(DR3) Y directly represents X just in case Y and X are isomor-
phic.

This proposal sounds a lot more plausible than the previous two — espe-
cially because the word “isomorphism” is simultaneously precise (within cer-
tain fixed contexts), and flexible (since it means different things in different
contexts). But that’s precisely the problem with DR3: the phrase “Y is iso-
morphic to X” is no better defined than the phrase “Y directly represents
X”.

In mathematics, isomorphism is a category-relative concept. If you hand
me two mathematical objects and ask, “are they isomorphic?” then I should
reply by asking “which category do they belong to”? For example, two
mathematical objects can be isomorphic qua groups, but non-isomorphic qua
topological spaces. Thus, it makes no sense to say that a mathematical object
is isomorphic to the world tout court. In order to make sense, we would first
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have to specify a relevant type (or category) of mathematical objects. For
example, one might say that the world is isomorphic to a topological space
Y , as shorthand for saying that the world has topological structure, and is
in this sense isomorphic to Y . But if you give me a concrete mathematical
object A and say that the world is isomorphic to A, then I have no idea what
you are saying.

So, if we want to say that the world is isomorphic to a wavefunction
ψ, then we need to say what category of mathematical objects we take ψ
to belong to. And that’s not going to be easy, for ψ is not a group, or a
topological space, or a differentiable manifold, or any other of the standard
types of mathematical structure. There is no category of wavefunctions; and
there is no notion of isomorphism between wavefunctions.4 The closest we
come to finding a home for ψ is in the category of Hilbert spaces: ψ is an
element of a Hilbert space, which is an object in the category of Hilbert
spaces. But that won’t help, because we don’t want to say that the world is
isomorphic to the Hilbert space H, but that it’s isomorphic to a particular
wavefunction ψ.

There are numerous other problems with analyses of representation in
terms of isomorphism, some of which are discussed in (Frigg and Nguyen,
2016). We mention two further problems here, each of which might be taken
to deliver a fatal blow to the account. First, an isomorphism is a function
between two mathematical objects, and the world is not a mathematical
object. In fact, as pointed out long ago by Reichenbach (1965), the only grip
we have on the structure of the world is by means of our representations.

Second, our account of representational significance should mesh with
our account of theoretical equivalence, and many philosophers of science
hold views of theoretical equivalence according to which equivalent theories
need not have isomorphic models. For example, Halvorson (2012) labels this
view as “the model isomorphism criterion of theoretical equivalence”, and he
argues that it must be rejected. However, if the model isomorphism criterion
of theoretical equivalence is rejected, then we must also reject the claim that
representation entails isomorphism between the world and one of the theory’s
models. We can argue as follows: if two theories T and T ′ are equivalent,
and if T is representationally adequate, then T ′ is also representationally

4It won’t help to say that ψ and ψ′ are isomorphic wavefunctions just in case there is
a unitary symmetry U such that Uψ = ψ′. For in that case, all wavefunctions would be
isomorphic.
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adequate. But if the models of T are not isomorphic to the models of T ′,
then it cannot be the case that the world is isomorphic to a model of T and
also to a model of T ′. Therefore, to say that T is representationally adequate
does not entail that the world is isomorphic to one of the models of T .

4 Representationally significant properties

As we have seen, isomorphism-based analyses of representation have diffi-
culty explaining how wavefunctions represent — because there is no obvious
candidate notion of “isomorphism” for wavefunctions. Perhaps, however, we
can attack this problem from the other side. Having a notion of isomorphism
in place gives us a criterion for identifying representationally significant prop-
erties:

A property φ is representationally significant just in case φ is
invariant under isomorphism.

But of course, we needn’t already have a notion of isomorphism in place to
choose the representationally significant properties. We can simply say what
those properties are.

As we know, it would be disastrous to propose that all mathematical
properties of a wavefunction are representationally significant. For example,
the property of “having domain that contains the element {∅, {∅}}” is a
perfectly good mathematical property that a wavefunction either possesses
or does not possess. But nobody, to my knowledge, has ever proposed that
this mathematical property represents a bona fide physical property. In
practice, we simply don’t care whether we use a wavefunction ψ that has
that property, or a similar wavefunction ψ′ that lacks that property. Many
of these set-theoretically definable properties of a wavefunction are routinely
ignored as “surplus mathematical structure”.

In my experience, physicists can’t usually say explicitly which properties
of ψ are representationally significant. However, we can determine which
properties of ψ they care about by watching what they do. If they treat two
wavefunctions ψ and ψ′ as interchangeable, then their behavior suggests that
they accord no representational significance to properties that separate these
two functions. Here we say that a property Θ separates ψ and ψ′ just in case
Θ(ψ) and ¬Θ(ψ′).
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The art of discriminating between wavefunctions is not so unlike the fa-
bled art of “chicken sexing”. The skilled chicken-sexer has the ability to
judge reliably whether two chicks are of the same sex. But is you ask him
what criteria he is using, he will be at a loss for words. In the same way,
the skilled quantum mechanic has the ability to judge whether two wave-
functions are representationally equivalent. And she displays her judgment
of representational equivalence by her disinterest in the question, “which of
these two wavefunctions provides the correct representation of reality?”

I’m not sure that it would be possible to give a fully explicit account of
the equivalence relation of “representational equivalence” for wavefunctions.
Nonetheless, there are certain sufficient conditions for representational equiv-
alence that are uncontroversial.

First, two wavefunctions are representationally equivalent if one is a com-
plex multiple of the other — i.e. if they lie in the same ray in Hilbert space.
Thus, if a property Θ of wavefunctions is not invariant under this relation,
of lying in the same ray, then Θ is not representationally significant. For
example, consider the property Θ given by

Θ(ψ) ↔ (ψ(0) = 1).

Clearly there are two functions ψ and ψ′ such that ψ ∼ ψ′, but Θ(ψ) and
¬Θ(ψ′). Therefore, Θ is not a representationally significant property of wave-
functions.

Second, wavefunctions are not actually functions at all. In fact, the space
of square integrable functions on configuration space is not a Hilbert space.
Instead, to define a positive-definite inner product, one has to take equiva-
lence classes of functions relative to the equivalence relation ∼ of “agreeing
except on a set of measure zero.” But now consider the property Θ defined
by:

Θ(ψ) ↔ (|ψ(0)|2 = 1).

Again, there are two functions ψ and ψ′ such that ψ ∼ ψ′, but Θ(ψ) and
¬Θ(ψ′). Therefore, Θ is not a representationally significant property of wave-
functions.

This is not to say that there are no representationally significant proper-
ties of wavefunctions. For example, consider the property

Θ(ψ) ↔
∫

∆

|ψ(x)|dµ(x) = 1.

17



This property Θ can be shown to be invariant under the equivalence rela-
tions above. Indeed, practitioners of quantum theory know exactly what this
property is: it’s the property [Q ∈ ∆] of being located in the region ∆. What
other invariant properties are there? Can we give some sort of systematic
description of them?

As mentioned before, the Hilbert space formalism is normally taken to
represent properties by means of the subspaces of the statespace. Let’s think
about how this works in the case of the space L2(X) of (equivalence classes of)
wavefunctions. What does a subspace of L2(X) look like? Some subspaces
correspond to properties of functions. For example, consider the property

Θ(ψ) ≡ ψ has support in the region ∆.

It’s not difficult to see that the set of functions satisfying Θ forms a closed
subspace of L2(X). But not every subspace of L2(X) has such an inter-
pretation in terms of straightforwardly geometric features of functions. For
example, let U : L2(K) → L2(X) be the unitary isomorphism between the
momentum-space and position-space representation of wavefunctions. Now
begin by defining the same sort of subspace, but relative to the momentum-
space representation. That is, let E be the subspace of L2(K) consisting of
functions with support in ∆. The natural interpretation of E is: having mo-
mentum value in the set ∆. Then U(E) is a subspace of L2(X), and hence
represents a quantum-theoretic property Θ. But this property Θ doesn’t
manifest itself as a natural property of functions on the original configura-
tion space X. Indeed, it’s not clear that it would be possible to express Θ
without making reference to the isomorphism between L2(K) and L2(X).

We have here a nice concrete example of an issue that philosophers have
been discussing in the abstract — the issue of abundant versus sparse views
of properties (see Bricker, 1996). The Hilbert space formalism gives a special
version of the sparse view of properties: not every subset of L2(X) corre-
sponds to a natural property. One might think initially that this sparse view
makes life difficult by preventing us from saying certain things. For example,
as Wallace (2012) points out, this sparse view entails that “has a definite
value of energy” fails to pick out a property (a consequence which he finds
to be unacceptable).

However, there is an obvious problem with trying to take an abundant
view of the properties of quantum theory, i.e. with taking every subset of
L2(X) to pick out a physical property. The problem is that there are too
many such subsets, and their physical interpretation is unclear. Nonetheless,
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the Hilbert space formalism provides a method for identifying those subsets of
L2(X) that represent physical properties. In particular, we have the following
result:

(SQ) Let H be an abstract Hilbert space of countably infinite
dimension. Then each subspace of H is of the form U−1[Z ∈ ∆],
where U : H → L2(R) is a unitary isomorphism, ∆ is a Borel
subset of R, and [Z ∈ ∆] is the subspace of functions with support
in ∆.5

Here we think of L2(R) as wavefunctions of some particular dynamical vari-
able Z, which could be position (along some axis), or momentum (along
some axis), or energy, or . . . . In this case, U−1[Z ∈ ∆] is the subspace of
wavefunctions where the value of Z lies in ∆. In other words, U−1[Z ∈ ∆]
and [Z ∈ ∆] represent the same property — only, this property’s physical
interpretation is more perspicuous in the latter case.

Thus, there is a non-trivial question about which properties of functions
(i.e. subsets of L2(X)) represent bona fide, or “natural”, physical properties.
Take an arbitrary mathematical predicate of functions, such as

Θ(ψ) ≡ ψ is a smooth (i.e. infinitely differentiable) function,

which seems to be quite natural, at least from a mathematical point of view.
But why suppose that Θ represents a natural physical property? What cri-
teria should we use to sort out the genuine predicates from the spurious
predicates? Some might suggest an operationalist criterion:

(operationalist) A predicate Θ of wavefunctions represents a nat-
ural physical property iff there is a measurement that would verify
whether an object’s state ψ has property Θ.

But that criterion is too imprecise. And, in any case, the operationalist
criterion is stricter than quantum theory’s own criterion, which countenances
many natural properties that cannot be operationally detected.

The language of quantum theory, represented via the Hilbert space for-
malism, comes with a vocabulary, including a list of predicates.

5This result is part of the folklore of functional analysis, and may be reconstructed
from the results in Chapter 9 of (Kadison and Ringrose, 1991).
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(QM properties) A predicate Θ of wavefunctions represents a nat-
ural physical property iff the set {ψ ∈ L2(X) | Θ(ψ)} is a subspace
of L2(X).

By the result above, this criterion can be restated as follows:

(QM properties) A predicate Θ of wavefunctions represents a nat-
ural physical property iff there is a dynamical variable Z, and a
measurable ∆ ⊆ R, such that Θ(ψ) if and only if ψ lies in the
subspace [Z ∈ ∆].

These predicates can then be taken as giving quantum theory’s preferred
account of natural properties. In short, the natural properties are precisely
those picked out by saying that a quantity’s Z has value in a certain range.

So, we return to the original question: if Θ(ψ) is the predicate “ψ is a
smooth function”, then does Θ pick out a physical property of wavefunctions?
Quantum theory answers this question by saying: Θ represents a physical
property only if there is some quantity Z such that that Θ picks out the
subspace [Z ∈ ∆].

When we talk about giving a “physical interpretation” to a subset E of
statespace, the demand is not that E be given an operational interpreta-
tion, as, e.g., corresponding to some measurement operation. Instead, we’re
simply asking that the mathematical object E be describable in words that
have some antecedent physical meaning. It’s simply the demand that we
understand what the formalism purports to represent.

5 Reading the state literally

Recall that Wallace and Timpson say that a quantum state realist does two
things: (1) she believes that the state represents reality directly, and (2) she
reads the state literally. As we saw, there are various ways of cashing out “Y
directly represents X.” If you push the notion to the extreme, where Y = X,
you’ll end up saying stupid things. But as soon as you start to nuance this
notion, you start to sound less like a full blooded realist.

So can we find a firm foothold for realism in the second criterion? Is it the
commitment to a “literal reading of the state” that sets the quantum state
realists apart from their antirealist counterparts? Here we’ve tapped into a
central vein in philosophical discussions of scientific realism. For example,
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forty odd years ago, van Fraassen described scientific realism as the belief
that:

The aim of science is to give us a literally true story of what the
world is like; and the proper form of acceptance of a theory is to
believe that it is true. (Van Fraassen, 1976, emphasis added)

The debates of the last forty years seem not to have brought into question the
connection between realism and literalism. In a recent authoritative account
of scientific realism, Chakravartty reasserts the connection:

Semantically, realism is committed to a literal interpretation of
scientific claims about the world. (Chakravartty, 2017, emphasis
added)

But something fishy must be going on here. The idea that a scientific the-
ory is a set of claims (i.e. sentences) fell out of favor about forty years ago.
Nowadays, most philosophers of science say that a scientific theory consists
of a collection of models, plus some claim to the effect that one of these mod-
els represents the world. But if a theory is a collection of models, then how
am I supposed to read it literally? Nor can this problem be brushed away
by adopting a different view of scientific theories. For better or worse, the
theories of mathematical physics involve collections of mathematical mod-
els, such as Lorentzian manifolds, Hilbert spaces, etc.. So how then are we
supposed to read these theories literally?

The answer, in short, seems to be: to read a theory literally is to take
one of its models M as a reliable guide to features of the world. But now
we are right back to where we were when considering analyses of “Y directly
represents X”. If I’m a literalist about M , then which features of M should I
take to be representationally significant? The simple answer “all features of
M” leads immediately to absurdity. The answer “all mathematical features
of M” also leads to a bizarre and untenable picture. Thus, we’re thrown
back on a more piecemeal approach, where one has to know how to interpret
the model M , which means being able to distinguish its representationally
significant properties from the insignificant ones.

Indeed, learning how to use a physical theory requires that learning the
art of “reading claims off” of a model. Consider, for example, the General
Theory of Relativity (GTR), where a model M is a Lorentzian manifold.
What might it look like to read M literally? Well, GTR claims that at each
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point p ∈ M , there is a four-dimensional tangent space Tp. And living on
top of Tp there is an infinite tower of (m,n) tensors, for all natural numbers
m and n. Are these things I’ve just said among the “scientific claims” of
GTR? If I’m a realist about GTR, then am I committed to these claims?
Should I envision an infinitely extended tangent space Tp of four dimensions
sitting on the tip of my nose, and indeed, a different such tangent space for
each instant of time? Are these tangent spaces “part of the furniture of the
world”. If this is what it means to be a realist about GTR, then Einstein
was no realist.

To make the point more clearly, GTR entails that:

For each point p ∈M , there is an open neighborhood O of p, and
a coordinate chart φ : O → R4.

These coordinate charts are just as much elements of a model of GTR as a
wavefunction is an element of a model of QM. Thus, if literalism demands
commitment to the wavefunction ψ, then it also demands commitment to
the coordinate chart φ. If quantum state realism is just a “literal reading of
QM”, then coordinate chart realism is just a “literal reading of GTR”.

If you don’t think that GTR involves a commitment to an ontology of
tangent spaces, coordinate charts, etc., then I can only agree: not every true
statement, made within the language of a theory, is one of the “scientific
claims” of that theory. To say that a model M accurately represents the
physical world does not mean that every mathematical thing in M represents
a physical thing. Realism, according to Chakravartty, Timpson, Wallace,
van Fraassen, et al., requires commitment to the scientific claims of a theory,
interpreted literally. But you can’t interpret a mathematical object literally.
That simply doesn’t make sense. The demand for literal interpretation only
makes sense after we have used the formalism to express claims in a language
that we understand.

Here we have to lay some blame at the door of the semantic view of
theories. The semantic view of theories plus realism suggests the idea that
one ought to interpret models literally — an idea that can lead to absurd
consequences if not further nuanced. A model’s elements need not all play
the same representational role. For example, suppose that I make a map of
Princeton University, on which I draw several buildings. Suppose that I also
draw a picture of a compass in the lower right hand corner of my map — to
indicate its orientation. Now, I’m a realist about the geography of Princeton,
and I believe that my map is a faithful representation of it. But that doesn’t
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mean that I believe there is a huge compass lying on the ground just outside
of the university. Nor would I say that the compass on the map is “just a
bookkeeping device”, or that it “has no representational role”. The compass
does have a representational role: it represents a claim about how my map
is related to the actual town of Princeton. And if this compass can be said
to have a representational role, then so can a wavefunction.6

6 Spacetime state realism

The most recent development in the realist ontology program is the proposal
to upgrade wavefunction realism to “spacetime state realism” (see Wallace
and Timpson, 2010; Wallace, 2018a). But does this technical maneuver dodge
the various philosophical problems that confront wavefunction realism? In
order to press the question further, we need to sketch the idea behind space-
time state realism.

Let’s begin with the simplest (and least interesting) case of spacetime
state realism — the case where spacetime consists of a single point. In this
case, we represent a quantum system by means of a C∗-algebra A of ob-
servables. [For an account of this formalism, see (Ruetsche, 2011).] The
important point is that A is closed under operations of addition, multiplica-
tion, and conjugation A 7→ A∗. Moreover, there is a preferred multiplicative
unit I ∈ A, the identity operator. The prototypical case of a C∗-algebra is
the algebra of n× n complex matrices.

We need a few definitions: an operator A ∈ A is said to be self-adjoint
just in case A∗ = A, and A is said to be positive just in case A = B∗B for
some operator B ∈ A. A function ω : A → C is said to be a linear functional
just in case ω(cA+B) = cω(A) +ω(B) for all A,B ∈ A and c ∈ C. A linear
functional ω is said to be positive just in case ω(A) ≥ 0 for every positive
operator A ∈ A. A positive linear functional ω is said to be a state just in
case ω(I) = 1. We will use Σ(A) to denote the space of states of A.7

We can formulate quantum mechanics in the language of C∗-algebras just
as well as we can in the language of Hilbert spaces. Indeed, the self-adjoint
operators in A represent observables (or more accurately, quantities), and the

6For an illuminating investigation of the notion of “literal interpretation”, see (Hirsch,
2017).

7Although it won’t be important for our considerations here, Σ(A) has quite a bit of
interesting structure, as described, e.g., in (Alfsen and Shultz, 2012).
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elements of Σ(A) represent physical states. As a particular case in point, if A
is the algebra of 2×2 matrices, then the self-adjoint operators are simply the
Hermitian matrices, and the states on A correspond one-to-one with density
operators on C2 via the equation

ω(A) = Tr(WωA).

With these definitions in hand, we can state Wallace and Timpson’s proposal
quite simply:

For a system represented by the algebra A, the properties corre-
spond one-to-one with the states in Σ(A).

This proposal can be made more picturesque and plausible if you think of a
“field of states”, where each point p in spacetime is assigned a state ωp. And
if you feel that this is just empty mathematics, then it might help to think
of the typical case, where ωp is represented concretely by a density operator
Wp. Then the field p 7→ Wp of density operators starts to look more like
a classical field configuration, where some mathematical object, such as a
tensor, is assigned to each point in space. The only mathematical difference
is that Wp is a complex matrix instead of a tensor. But as Wallace and
Timpson point out, the relative unfamiliarity of complex matrices such as
Wp shouldn’t rule them out as legitimate values of a physical field.

To this point, I agree with Wallace and Timpson. What bothers me is
not the difference between tensors and complex matrices. What bothers me
is the conflation of the various theoretical roles of states, quantities, and
properties. The typical job of states is to assign values to quantities. So, if
we ask states also to serve as values of quantities, then the the job of states
will be to assign states. In order to try to keep things straight in our heads,
we might try to declare some “types”. First, the standard way of thinking of
states is that they are of type Q→ V, where Q is the quantity type, and V
is the value type. But now, Wallace and Timpson tell us that states are also
of type V. In this case, states would be both of type Q→ V and of type V,
resulting in a type confusion.

What’s more, we typically ask a physical theory to provide some sort of
“state-to-property” link. For example, the so-called orthodox interpretation
of quantum theory proposes the eigenstate-eigenvalue link:

(EE link) A property E of the system is possessed in state ψ just
in case Eψ = ψ.
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Wallace and Timpson also propose a state-to-property link. However, their
properties are of the form “being in state W”, and so their proposal reduces
to:

(WT link) A system has property W when it is in state W

Or perhaps it would be better to say:

(WT link) A system has the property of being in state W just in
case it is in state W .

I suppose this claim is true. But I didn’t need to learn any physics to draw
that conclusion. This is nothing more than a disquotational theory of truth.

It’s possible that Wallace and Timpson’s proposal only trivializes in the
trivial case — where spacetime consists of a single point. Perhaps their
proposal is only meant to give an interesting picture in the case where we as-
sociate a different algebra of observables A(O) to each region O of spacetime.
In that case, their recipe would yield a much richer structure, something like
a co-presheaf of states (see Swanson, 2018). But I don’t see any reason to
think that this additional mathematical structure can undo the conflation of
states and properties that already occurs at the level of individual algebras.

Finally, even if you can get past these other worries, there is a worry that
the Wallace-Timpson proposal shows too much. Indeed, there’s a case to
be made that any reasonable generalized probability theory can be formu-
lated in the framework of C∗-algebras. In that case, it would seem that the
Wallace-Timpson proposal yields a realistic physical ontology for any rea-
sonable generalized probability theory. In other words, it’s realism on the
cheap.

7 The wavefunction as symbol

We began our discussion with the dilemma: either the quantum state has
ontological status, or it does not. We saw that this dilemma cannot be taken
seriously, because a state isn’t a candidate for existence or non-existence in
the physical sense. Thus the original ontological dilemma was transformed
into a representational one: either the quantum state represents reality, or
it does not. But then we discovered that “represents” can be understood in
many different senses — and in the most extremely realistic sense of “rep-
resents”, no sane person would say that the quantum state represents the
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world. Thus, the disagreement between realists and antirealists — where it
is not simply a matter of emotional associations with words — boils down to
different stories about how to use the quantum state to represent reality.

It’s ironic, then, that early interpreters of quantum theory — such as
Bohr and Carnap — are often assumed to be operationalists about the quan-
tum state. That couldn’t be further from the truth. Both Bohr and Carnap
explicitly say that the wavefunction is not merely a calculational device. Pre-
sumably, somebody ran a word-search on Bohr and Carnap’s writings, and
having found no hits for “ψ represents reality directly” or “ψ has ontological
status”, they concluded that these guys must have been antirealists.

There is another possibility that we should take seriously. What if Bohr
and Carnap intentionally exercise caution with words like ontological status
and direct representation, since those words might lead to a misunderstanding
of how quantum theory works. Perhaps Bohr and Carnap were groping
their way, if ever so haltingly, toward a more articulate account of how the
wavefunction represents reality.

7.1 Bohr

Analytic philosophers have been quick to categorize Bohr as an operationalist
about the wavefunction, citing statements like this one:

. . . the symbolic aspect of Schrödinger’s wave functions appears
immediately from the use of a multidimensional coordinate space,
essential for their representation in the case of atomic systems
with several electrons.

Faye (2014), for example, seems to think that Bohr’s use of “symbolic” is
code for “should not be taken literally”.

Thus [for Bohr], the state vector is symbolic. Here “symbolic”
means that the state vector’s representational function should not
be taken literally but be considered a tool for the calculation of
probabilities of observables.

Faye’s confusion here is understandable. We analytic philosophers of science
tend to associate “symbolic” with “non-referential” or “uninterpreted.” In
particular, with regard to a sentence X in a formal calculus, to say that “X
is symbolic” means precisely that X in uninterpreted, and so lacks a truth
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value. In other words, when we hear “symbol”, we immediately think “does
not purport to describe reality”.

However, the considerations of previous sections show that this usage
of “symbolic” doesn’t make much sense when X is a mathematical object,
such as a wavefunction. Nor would it make much sense to attribute this
usage of “symbolic” to Bohr, who didn’t use words in exactly the way that
analytic philosophers of science have come to use them. When Bohr uses
“symbolic”, I assume that his meaning draws on a his peculiar educational
background, which was heavy on continental figures such as Kant, Goethe,
Hegel, and Helmholtz. I assume that his meaning was also shaped by his
interactions with continental-type philosophers such as Ernst Cassirer, and
mathematicians such as his brother Harald. Thus, when Bohr says something
is “symbolic”, we shouldn’t immediately conclude that he means it in the
sense of the uninterpreted predicate calculus.

Indeed, one of Bohr’s students, Christian Møller, asked him explicitly
what he meant by calling the wavefunction “symbolic”. In a 1928 letter,
Bohr replies in so many (!) words:

Regarding the question discussed in your letter about what was
meant, when I in my article in Naturwissenschaften, emphasized
so strongly the quantum-theoretical method’s symbolic charac-
ter, I am naturally in complete agreement with you that every
description of natural phenomena must be based on symbols. I
merely sought to emphasize the fact, that this circumstance —
that in quantum theory, we typically use the same symbols we
use in the classical theory — doesn’t justify our ignoring the large
difference between these theories, and in particular necessitates
the greatest caution in the use of the intuitive concepts [anskuels-
former ] to which the classical symbols are connected. Naturally,
one doesn’t easily run this danger with the matrix formulation,
where the calculation rules, which diverge so greatly from the pre-
viously standard algebraic ones, hold quantum theory’s special
nature before our eyes. Furthermore, to use the word “symbolic”
for non-commutative algebra is a way of speaking that goes back
long before quantum theory, and which has entered into standard
mathematical terminology. When one thinks about the wave the-
ory, it is precisely its “visualizability” [anskuelighed ] which is si-
multaneously its strength and its snare, and here by emphasizing
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the approach’s [behandlingens ] symbolic character, I was trying
to bring to mind the differences — required by the quantum pos-
tulate — from classical theories, which are hardly ever sufficiently
heeded. (Bohr, 1928, original in Danish)

As is typical with reading Bohr, one doesn’t feel that the situation has been
greatly clarified. However, one thing is clear: Bohr does not intend to single
out the quantum state for operational treatment. If Bohr is an antirealist
about the quantum state, then he is an antirealist about all of mathematical
physics. For Bohr, all mathematical representation is “symbolic”, whether
observable or unobservable aspects of reality are being represented. Among
the symbolic representations of physics, he would include the Fab of Maxwell’s
equations, the gab of General Relativity, as well as functions representing the
trajectories of material bodies through spacetime. Bohr’s point might be
summed up simply by saying that mathematical objects are not sentences,
and so they cannot “be read literally”.

To understand Bohr’s use of “symbolic”, it might also help to look at a
philosopher whose career ran in parallel with his. In fact, it’s well known
that Bohr interacted extensively with Ernst Cassirer when the latter was
composing his book Determinismus und Indeterminismus in der Modernen
Physik, first published in 1937. Whether there is a more substantial over-
lap in their usage of “symbolic” will have to await more detailed historical
investigations.

Nonetheless, it is clear that there are many common themes in the views of
Bohr and Cassirer (see e.g. Pringe, 2014). One such common theme is giving
careful thought to the way that mathematical objects can be used to represent
the physical world. In putting forward his views on this issue, Cassirer is
clear that “symbolic” should not be opposed to “representational”. The
interesting question is not whether something is representational, but rather
how it represents. In particular, Cassirer believes that the development of
mathematics and physics in the 19th century provides a particularly clear
demonstration of the need to expand the notion of representation beyond a
simplistic “similarity of content” account.

Mathematicians and physicists were first to gain a clear awareness
of this symbolic character of their basic implements. . . . In place
of the vague demand for a similarity of content between image and
thing, we now find expressed a highly complex logical relation, a
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general intellectual condition, which the basic concepts of physical
knowledge must satisfy. (Cassirer, 1955, p 75)

For the former, more narrow, use of symbols, Cassirer uses the word Darstellings-
funktion. For the latter, more general, use of symbols, Cassirer uses the word
Bedeutungsfunktion. Thus, to relate back to our earlier analysis of “Y repre-
sents X”, we might think that Darstellungsfunktion picks out a kind of repre-
sentational relation that licenses many inferences about X from Y , especially
inferences having to do with spatiotemporal properties. The paradigm case,
of course, of such representations are the directly geometric. In contrast,
Bedeutungsfunktion picks out a more general kind of representation relation
which does not imply geometric similarity between X and Y .

Bohr does not avail himself of Cassirer’s classification of symbolic forms.
However, he does often speak of things being “unvisualizable” (uanskuelig)
— opening a door to the deep dark recesses of the Kantian tradition. Bohr’s
notion of representing something to visual intuition doubtless overlaps in
important ways with Cassirer’s notion of Darstellungsfunktion. And if there
is any coherence in Cassirer’s idea of moving toward Bedeutungsfunktion,
then Bohr may be blazing the same trail. In particular, when Bohr says that
subatomic processes cannot be vizualized, he shouldn’t be taken as saying
that quantum theory is non-representational. Instead, Bohr might be groping
his way toward a more nuanced account of how mathematics can be used to
represent physical reality.

7.2 Carnap

We began the chapter with a story about how the early interpreters of quan-
tum theory were operationalists. That story is often neatly combined with
another story that post-Quinean analytic philosophers love to tell: the story
about how silly and stupid the logical positivists were. According to this
story, the logical positivists viewed scientific theories as “mere calculi” for
deriving predictions. Thus, the story concludes, it’s no surprise that Bohr et
al. were operationalists about the quantum state, given that operationalism
had so thoroughly infected the prevailing view of scientific theories.

If you’ve ever read a serious historical account of the origins of quantum
theory, you know that the first story is mostly propaganda. None of the
pioneers of quantum theory — Bohr, Heisenberg, Dirac, etc. — was a crass
operationalist. And if you’ve ever read a serious historical account of 20th
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century philosophy, you also know that the second story is largely Quinean
propaganda. In fact, Carnap himself was a vocal critic of operationalism —
long before he felt the pressure of Quine’s critiques of the positivist program.

Some, especially philosophers, go so far as even to contend that
these modern theories, since they are not intuitively understand-
able, are not at all theories about nature but “mere formalistic
constructions”, “mere calculi”. But this is a fundamental misun-
derstanding of the function of a physical theory. (Carnap, 1939,
p 210)

Notice how Carnap feels the same pressure that Bohr and Cassirer feel —
the pressure that the new theories of physics are not “intuitively understand-
able”. Moreover, like Bohr and Cassirer, he refuses to take the breakdown of
intuitive understandability (or anskuelighed, or Darstellbarkeit) to demand
a retreat to operationalism. Instead, Carnap — like Bohr and Cassirer —
asks us to think harder about how our theories purport to represent physical
reality.

Like Bohr, Carnap also insists that the representational status of the
quantum wavefunction is not all that different from the situation of the sym-
bols of classical mathematical physics.

If we demand from a modern physicist an answer to the question
what he means by the symbol “ψ” of his calculus, and are as-
tonished that he cannot give an answer, we ought to realize that
the situation was already the same in classical physics. There
the physicist could not tell us what he meant by the symbol “E”
in Maxwell’s equations. . . . Thus the physicist, although he can-
not give us a translation into everyday language, understands the
symbol “ψ” and the laws of quantum mechanics. He possesses
the kind of understanding which alone is essential in the field of
knowledge and science. (Carnap, 1939, pp 210-211)

Interestingly, the words of Carnap here are echoed — quite unintentionally,
I’m sure — by Wallace and Timpson.

. . . it’s not as if we really have an intuitive grasp of what an elec-
tric or magnetic field is, other than indirectly and by means of
instrumental considerations. . . . Thus, it seems that we gain a
basic understanding of the electromagnetic field by seeing it as a
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property of spatial regions, and our further understanding must
be mediated by reflecting on its role in the theory. . . . beyond that
there doesn’t seem to be much further to be grasped. (Wallace
and Timpson, 2010, p 700)

We might just add that the concept of spatial regions doesn’t provide us
with a truly Archimedian reference point — for these regions themselves are
understood in a mediated way, via their description in physical theory.

At this point, it should be thoroughly unclear how the views of Bohr,
Cassirer, and Carnap differ from some of the more moderate and reasonable
quantum state realists. To one such view we now turn.

7.3 The nomological view

According to the cutting edge survey of Chen (2018), there are three versions
of wavefunction realism — the two ψ-field views, and a “nomological view”
where the wavefunction represents a law of nature (Goldstein and Zangh̀ı,
2013; Esfeld, 2014; Miller, 2014; Callender, 2015; Esfeld and Deckert, 2017).
Thus, if we were to regiment the nomological view, we might say that the
wavefunction plays the theoretical role of a proposition, or perhaps of a rule
for generating propositions. The theoretical role of propositions is, of course,
quite different than the theoretical role of names or even variables, both of
which are used to denote existing things. Thus, only by stretching the word
“ontological” beyond the breaking point could we say that the nomological
view is ontological. No matter what view of laws we take, a law isn’t a
thing, and is not in the domain of quantification of a physical theory. Thus,
according to the nomological view, the wavefunction is not a beable.

Why then should the nomological view of the wavefunction be called a
realist view it doesn’t treat the wavefunction as corresponding to an existing
thing? Presumably, nomologists would say that what makes their view realist
is that the propositions encoded in ψ are objectively true, i.e. they correspond
to reality. But what then are these propositions that are encoded in ψ? Of
course, Bohmians have an answer ready at hand: ψ encodes propositions
about the trajectories of particles.

Notice that the specific Bohmian answer is not implicit in the very idea
that ψ encodes true propositions. Even a rank operationalist will say that
ψ encodes true propositions — about the probabilities of measurement out-
comes. Only we might question whether these propositions are “objectively
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true”, since probabilities of measurement outcomes are indexed by measure-
ments, and the latter has yet to be objectively defined.

So what makes the nomological view realist? Is it simply that ψ encodes
objectively true propositions? Or is it that ψ encodes true propositions about
particle trajectories? I would be loath to accept the second answer, because
it would make realism hostage to one idiosyncratic ontological picture, viz./
a particle ontology. Surely one can be a realist and have some sort of gunky
ontology, or a field ontology. So, it seems that realist-making feature of the
nomological view is merely its commitment to the idea that ψ represents
objectively real features of the world. But now, if that’s enough to make
a view realist, then Healey’s view is also a realist view. For Healey says
that each physical situation is correctly represented by at most one quantum
state. Healey and the nomologists agree that ψ represents objectively real
features of the world.

Nor can we say that the nomological view is more realist than Healey’s
because it takes ψ to be a direct representation of reality. The representa-
tion relation posited by the nomological view is every bit as indirect and
nuanced as that posited by Healey, or by Bohr for that matter. Indeed, the
nomological view includes an intricate translation scheme from mathematical
properties of ψ to various meaningful physical statements, some of which are
about occurent states of affairs, and some of which are about how things will
change as time progresses. Thus, in terms of how ψ represents, the nomo-
logical view is closer to the views of Healey, Bohr, and Carnap than it is to
ψ-field views. The nomologists may be horrified to hear this, for they take
great pride in being realists. But recall that Bohm often emphasized that his
point of view was not so radically different from Bohr’s. He even offered his
point of view as a clarification of Bohr’s. Perhaps then the nomological view
could be thought of as an attempt to clearly articulate some of the things
that Bohr was trying to say about the wavefunction.

8 Conclusion

The primary aim of this chapter was to investigate the meaning of realism
about quantum theory, and in particular, realism about the quantum state. We
found that, for the most part, these phrases are empty of substantive con-
tent. They are emotive catch phrases that are meant to muster the troops,
and perhaps to sell books. But please don’t get me wrong. I’m not saying
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that there are no substantive questions about how to interpret the quantum
state. First of all, dissolving the anti/realism distinction doesn’t solve the
measurement problem. There’s still the thorny issue of why it appears to
us that measurements have outcomes. Second, there are genuine disagree-
ments about how to use quantum states — even if these disagreements don’t
correlate directly with a distinction between “real” and “not real”.

First, there is a genuine question of how to think of the relation of quan-
tum states to physical situations. (For simplicity, I’ll suppose that a physical
situation is picked out by an ordinary language description, for example, by
the sorts of instructions that one might give to an engineer or to a postdoc
in the lab.) At one extreme, we have objectivists who think that each such
situation corresponds to a unique correct quantum state. At the opposite
extreme, we have the Quantum Bayesians who propose no correctness stan-
dards whatsoever between physical situations and quantum states. For these
QBists, a quantum state just is a person’s point of view — it’s neither cor-
rect nor incorrect, appropriate or inappropriate. Between these two extremes,
we have views like Rovelli’s, where each physical situation can be described
equally well at least two quantum states, depending on one’s choice of a
direction of time. Some people also think that Bohr was a non-objectivist
about quantum states (see Zinkernagel, 2016). However, I find that view
hard to square with Bohr’s repeated pronouncements of the “objectivity of
the quantum-mechanical description”.

I propose that we stop talking about the ill-defined notion of quantum
state realism, and that we start talking instead about these sorts of question
— e.g. whether quantum theory comes with objective standards for the as-
cription of states to physical situations. First of all, what role do physical
situations, described in ordinary language, play in this debate? Could we re-
place “physical situation” with something more neutral and description-free,
such as “object” or “system”? The problem with that suggestion is that the
bare notion of an object or a system cannot give us any sort of standard
for comparison. For example, we might say: “according to Healey, for each
object X, there is a unique correct quantum state.” But how does Healey
individuate objects? If he has different standards for individuating objects
than Rovelli has, then their apparently diverging views might in fact agree.
Thus, the question of appropriate use of quantum states requires a target, or
standard of reference, on which all parties antecedently agree. The notion of
a “physical situation” is supposed to offer a plausible standard of reference.

I already suggested a shift from the ontological question “do states ex-
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ist?” to the representational question “how do states represent?” Now I’m
suggesting that this representational question be given a normative reading:
what are the rules govering the use of quantum states? That, I believe, is
the real issue at stake, although it is masked by emotionally charged words
such as “ontological status”.

There is a second question, closely related to the first one. Should we ap-
ply unitary dynamics without exception? Some people say yes (e.g. Bohm,
Everett, Wallace), and others say no (e.g. GRW, Rovelli, Healey). But even
this disagreement is not as clear-cut as it may seem. Even those who believe
in the universal validity of unitary dynamics allow themselves to use “effec-
tive states”. The “true state”, they say, follows unitary dynamics. But for
calculational purposes, there can be great advantages to using the effective
state.

I’m no verificationist, and so I don’t propose that we collapse the distinc-
tion between real and effective states. Nonetheless, I’m interested here in
the rules for using states, i.e. for deciding whether one ought to use the state
that results from unitary evolution, or whether one is permitted to use the
state that results from application of the projection postulate. Or to put it in
explicitly representational language: the question is whether the state that
results from unitary evolution is the only one that is “apt” to one’s situation,
or whether the state resulting from the projection postulate might also be
“apt” to one’s situation. Interestingly, all parties seem to agree that the state
resulting from the projection posulate is “apt” in some sense. Even the most
fervent anti-collapsers will tell you that the projected state is correct for all
practical purposes. Then they’ll remind you that it’s not the “real” state.
But I would then ask: not the real state of what? We’re back again to the
question of how to identify the target X of our representation via a quantum
state.

Acknowledgments: Thanks to Eddy Chen for guidance about wavefunc-
tion realism, and to Tom Ryckman for sending a preprint of (Ryckman, 2017),
which got me interested in Cassirer’s view.
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