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Abstract

Prediction markets are low volume speculative markets whose prices offer informative

forecasts on particular policy topics. Observers worry that traders may attempt to

mislead decision makers by manipulating prices. We adapt a Kyle-style market mi-

crostructure model to this case, adding a manipulator with an additional quadratic

preference regarding the price. In this model, when other traders are uncertain about

the manipulator’s target price, the mean target price has no effect on prices, and

increases in the variance of the target price can increase average price accuracy, by in-

creasing the returns to informed trading and thereby incentives for traders to become

informed.
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Introduction

Observers have long been impressed by the ability of speculative markets to aggregate avail-

able information; it is hard to find information that is not already embodied in the prices

of thick markets (Lo 1997). Recently new markets have emerged, known as “prediction

markets,” “information markets,” or “idea futures,” which attempt to harness this power

to make forecasts on particular topics of interest (Wolfers and Zitzewitz 2004, Spann and

Skiera 2003, Berg and Rietz 2003, Chen and Plott 2002). Such markets promise to help

firms, governments and researchers to make better informed decisions (Hanson 1999).

Recently, prediction markets have generated some controversy and caused some concern.

During the recent furor over the DARPA Policy Analysis Markets (PAM), otherwise known

as the “terrorism futures” market, critics worried that PAM would encourage betting on

the details of individual terrorist attacks.1 Critics particularly feared that terrorists might

commit more terrorist acts in order to win bets about those acts, or that terrorists might

intentionally lose bets in order to deceive decision makers.2

Since existing thick financial markets already respond to major terrorist attacks, it seems

unlikely that new prediction markets, which are typically very thin, would substantially affect

incentives in extra-market behavior. A terrorist who wanted to profit from his activities

would have done far better in a natural stock market. The typical thinness of prediction

markets, however, does seem to make it cheap for participants to mislead markets with their

trades. And at least one apparently successful attempt to manipulate political prediction

markets has been reported (Hansen, Schmidt, and Strobel 2004).

Many others, however, have reported failed attempts to manipulate prices with trades,

historically (Strumpf and Rhode 2004), in the field (Camerer 1998), and in the laboratory

(Hanson, Oprea, and Porter 2006, Oprea, Porter, Hibbert, Hanson, and Tila 2007). A

recent review article concludes that “none of these attempts at manipulation had much of a

discernible effect on prices, except during a short transition phase” (Wolfers and Zitzewitz

2004). Why isn’t this sort of manipulation3 as prevalent as many fear?

One explanation is that a manipulative trader is in essence a “noise” trader, in the
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sense that his trades are based on considerations other than his best estimate of asset value.

Standard models of market microstructure find that when potentially informed traders have

deep pockets relative to the volume of noise trading, increases in trading noise do not directly

effect price accuracy. In addition, by inducing more traders to become better informed,

an increase in noise trading indirectly improves the accuracy of market prices (Kyle 1989,

Spiegel and Subrahmanyam 1992). If the presence of manipulative traders similarly induced

more effort by informed traders, this could help explain the typical failure of manipulation

attempts.

This paper presents a formal model which, in certain standard settings, illustrates this

view of manipulative traders as noise traders. We start with one of the simplest standard

models of market microstructure, the single-period simplification of Kyle (1989, 1985) as it

appears in popular textbooks on market microstructure (O’Hara 1997, Brunnermeier 2001).

This model contains noise traders, potentially informed traders, and a competitive market

maker. We adapt this standard model to the case of a thin prediction market, and then

add a manipulator, i.e., a trader who has an additional preference over the market price, or

equivalently over the beliefs of neutral observers influenced by the price.

We are interested in the case of a thin prediction market, i.e., where the quantity traded is

small, where relevant information can be obtained with some effort, and where there may be

no liquidity traders to attract rational speculators. We thus consider the case of risk neutral

traders who can buy information, and who may be, but need not, be mildly irrational. That

is, each trader’s information depends on his choice of information-gathering effort, and we

allow trading choices to be made using a standard general model of irrational behavior, the

quantal response noisy game theory equilibrium (McKelvey and Palfrey 1995, Goeree and

Holt 2001).

Into this basic prediction market model we add a manipulator who, in addition to a

usual profit-based payoff, has a quadratic preference for the market price to be close to a

target price. (This generalizes a previous model which had a linear manipulator preference

(Kumar and Seppi 1992).) Other traders know the strength of this quadratic preference, but
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have only a noisy clue about the manipulator’s target price. To study a best case for the

possibility of manipulation, we consider a single fully-rational manipulator.

We find that the manipulator’s mean target price has no effect on the market price, and

that variance in the manipulator’s target price has no direct effect on average price accuracy.

However, by increasing the expected rewards to informed trading, a larger manipulator vari-

ance motivates other traders to gather information and so indirectly increases the accuracy

of the market price as an estimate of fundamental asset value. Thus in this standard mar-

ket microstructure model of thin prediction markets, with rational or irrational traders who

can obtain information with effort, manipulator bias that is within the range of biases that

traders suspect might exist will on average improve price accuracy.4

Our model illustrates potentially positive effects of manipulation attempts on price forma-

tion, effects which have been ignored previously in the prediction market literature. However,

since this is not a fully general model, it cannot by itself support strong general claims about

the price effects of manipulation. For example, the model assumes risk-neutrality, normally

distributed values and signal errors, interior choices of information quantity, no transaction

costs of trading, no budget constraints, and a single rational manipulator with quadratic

manipulation preferences and a commonly known strength of desire to manipulate. While

we believe that these assumptions are natural ones for a first modeling effort, one should

remember that some of the model’s findings may not be robust to changes in some of these

assumptions.

Model

Consider a one-period version of Kyle (1989, 1985) that appears in popular textbooks on

market microstructure (O’Hara 1997, Brunnermeier 2001). In this model, there is a single

asset of uncertain value, and a single risk-neutral informed agent who has a noisy clue about

this asset value. This informed agent chooses a quantity of the asset to buy or sell. A “noise”

or “liquidity” trader asks to trade a random quantity at the same time, and these two orders
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are combined into a net market order, which is observed by a competitive risk-neutral market

maker. This market maker then sets the price for these trades to be the expected value of

the asset conditional on seeing this net market order.

Let us modify this standard model to describe a thin prediction market with a manip-

ulative trader. That is, consider a single asset whose true value is drawn as v ∼ N(v̄, Sv),

i.e., from a normal distribution with mean v̄ and (finite) variance Sv > 0. We will allow for

the possibility of a liquidity trade quantity l drawn as l ∼ N(l̄, Sl), but all our results will

hold when Sl = 0. (Unless specified otherwise, all parameters are drawn independently.)

There are T risk-neutral traders, labeled i ∈ {1, 2, . . . , T}, each gaining a trading profit

πi(xi) = xi(v − P )

if he buys a quantity xi when the asset price is P .

We also add a special trader, i = 0, with an extra quadratic preference regarding the

market price P .5 His profit can be written in two equivalent forms, either in terms of a target

price t or in terms of a bias w, as

π0(x0) = x0(v − P ) − k(t− P )2

= x0(v − P ) − k(v̄ − P )2 + wP − k̂, (1)

assuming k ≥ 0. One can translate between these forms using w = 2k(t − v̄) and k̂ =

k(t2 − v̄2). Since this additional preference gives this trader a special reason to manipulate

the price, we call this trader6 the “manipulator.”

We will use the second form, shown in equation 1, because this explicitly includes the

case of a linear manipulation preference, where k = 0 and w 6= 0. Such a linear preference

has been considered previously, in a model where a trader seeks to manipulate a spot market

in order to raise the value of assets previously acquired in a futures market (Kumar and

5



Seppi 1992). We assume that k is common knowledge, but that “bias” w (or equivalently

the target price t) is private information to the manipulator, and is only commonly known

to have been drawn as w ∼ N(w̄, Sw).

Of the T traders, let us assume that N of them can acquire information about the true

asset value v, and about the manipulator’s bias w. Specifically, each informed trader i

observes the clues ai = v + εi and bi = w + δi, where εi ∼ N(ε̄, Si) and δi ∼ N(δ̄, Sδ). If we

define relative clue accuracy as ηi ≡ Sv/(Sv +Si) and ρ ≡ Sw/(Sw +Sδ), then these clues give

traders improved estimates E[∆v|ai] = ηi∆ai and E[∆w|bi] = ρ∆bi, where for any variable

f the deviation from its unconditional mean is ∆f ≡ f − E[f ].

We assume that each informed trader can reduce the variance Si of his asset value clue

via costly effort c(Si), where c′(Si) < 0, c′′(Si) > 0, and c(∞) = 0. Full trader profit is thus

πi(xi, Si) = xi(v − P ) − c(Si).

The N informed traders can choose Si ∈ [0,∞), and get Sδ < ∞, while the other uninformed

traders are stuck with Si = Sδ = ∞. For simplicity, we also assume S0 = ∞, so that the

manipulator has no private information on the asset value, though he does know w exactly.

The order of actions is as follows. First, every informed trader chooses his clue noise Si.

Second, every trader observes his clues ai, bi. Third every trader chooses his market order

xi. No trader sees any other player choices before choosing Si or xi, and so informed trader

effort c(Si) is hidden. Fourth, orders xi are summed and added to the liquidity trade l to

produce a total order

y = l +
T
∑

i=0

xi.

Finally, the market maker observes this total order y and sets the market price to be

P = E[v|y] + θ,
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where θ ∼ N(0, Sθ) describes error in the (unmodeled) price setting process. All our results

will continue to hold when Sθ = 0.

The optimal actions, expressed in terms of expected profit, are thus

S∗

i = argmaxSi∈R+ [ ¯̄πi(Si) ≡ E[πi(x
∗

i (Si), Si)|Si] ] ,

x∗

i (Si) = argmaxxi∈R [ π̄i(xi) ≡ E[πi(xi, Si)|ai, bi, xi] ] ,

x∗

0 = argmaxx0∈R [ π̄0(x0) ≡ E[π0(x0)|w, x0] ] .

While all our results will hold when all traders choose optimal quantities x∗

i , we also allow

irrational choice given by the widely used noisy game theory, the quantal response equilibrium

(McKelvey and Palfrey 1995, Goeree and Holt 2001). This gives a probability density of

Pr[xi] =
exp(π̄i(xi)/ri)

∫

∞

−∞
exp(π̄i(x′

i)/ri) dx′

i

, (2)

where ri ≥ 0 is the irrationality of trader i. When ri = 0, then xi = x∗

i for sure. To study a

best case for manipulation, we assume r0 = 0.

Ultimately, we want to know whether a stronger manipulator preference reduces or in-

creases price accuracy. That is, how does the distribution of the error of the price as an

estimate of value, P − v, including its mean E[P − v] and mean square

Φ = E[(P − v)2],

respond to changes in the parameters w̄ and Sw describing the distribution of manipula-

tor bias? (When we change the variance Sw we will assume that the clue error Sδ varies

proportionally, so that the ratio Sw/Sδ remains constant.)
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Analysis

As is standard in such a model, we seek equilibria where the price and quantities are linear

in the various clues and parameters. Such linear equilibria are possible because we have

assumed jointly normal distributions, which gives linear conditional expectations, such as

E[v|y] = v̄ + ∆y
E[∆v∆y]

E[∆y∆y]
. (3)

For clarity, we focus on deviations from means. We thus we seek equilibria where

P = µ + λ∆y + θ, (4)

x∗

i = αi + βi∆ai + γi∆bi, (5)

x∗

0 = τ + γ0∆w. (6)

for certain values µ, λ, αi, βi, γi, τ, γ0. We furthermore seek equilibria which are symmetric

within each class of traders. That is, for all informed traders Si = Sε, ηi = η, αi = α, βi = β,

and γi = γ, and for all other traders (besides the manipulator) αi = βi = γi = 0.

Linear strategies make profit functions π̄i(xi) quadratic, and so quantal response behavior

of equation 2 makes trading errors ei = xi − x∗

i normally distributed. Thus ei ∼ N(0, Sei
),

with a variance of Sei
= −ri/π̄

′′

i , expressed using the constant second derivative of π̄i(xi). We

can combine these trading errors to obtain a total noise trade of e ≡
∑T

i=0 ei with variance

SE ≡
∑T

i=0 Sei
. This allows us to redescribe the total order as

y = l + e +
T
∑

i=0

x∗

i ,

a form into which we can substitute our linear equations 4, 5, and 6.

Making such substitutions in our price error form gives

Φ = Sθ + Sv(1 − Nλβ)), (7)
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and in the market maker equations 3 and 4 gives µ = v̄, implying E[P − v] = 0, and

1

λ
=

SE + SX

βNSv

+
β(NSv + Sε)

Sv

, (8)

where non-error trading noise is

SX ≡ Sl + Nγ2Sδ + (γ0 + γN)2Sw.

Substituting into the expected trader profit forms gives

π̄0(x0) = wv̄ − λ(x0 − w)(∆x0 + Nγ∆w) − k̂ − kSθ − kλ2(Sl + SE)

−kλ2(∆x2
0 + 2γN∆w∆x0 + β2N(NSv + Sε) + γ2N(N∆w2 + Sδ))

π̄i(xi) = xi[(1 − λβ(N − 1))ηi∆ai − λ(∆xi + (γ0 + γ(N − 1))ρ∆bi)] − c(Si)

¯̄πi(Si) = βi(1 − λ(β + (N − 1))Sv − λ(β2
i (Sv + Si) + γ2Sδ + γ(γ0 + Nγ)Sw) − c(Si)

Note that when choosing Si, agent i must distinguish the equilibrium value β from the value

βi that will describe his behavior if he makes an out of equilibrium choice of Si 6= Sε.

For the uninformed traders π̄i(xi) = −λxi∆xi, making the first order condition (FOC)

on xi be x∗

i = 0, which gives αi = βi = γi = 0 as we had assumed. The FOC on xi for

informed traders and manipulators give αi = 0, τ = w̄ and

βi = (1/λ + β(N − 1))ηi/2, (9)

γi =
−ρ

Nρ + 2(2 − ρ)(1 + kλ)
,

γ0 =
Nρ + 2 − ρ

Nρ + 2(2 − ρ)(1 + kλ)
,

1/λβ = N + 1 + 2Sε/Sv (10)

The second order condition (SOC) for manipulators is 0 ≥ π̄′′

0 = −2λ(1 + kλ), and for all

other traders is 0 ≥ π̄′′

i = −2λ. If we assume a strict interior optimum of x∗

i , then λ > 0.
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And since r0 = 0, we have SE = r/2λ, for r ≡
∑T

i=1 ri ≥ 0.

Equation 10 can be substituted into equation 7 to give our first result.

Theorem 1 The error P − v of price as an estimate of asset value is distributed with mean

zero, and variance

Φ = Sθ + Sv

(

1 −
N

N + 1 + 2Sε/Sv)

)

,

which (for fixed number of traders N , asset variance Sv, and price setting variance Sθ)

depends only on (and is increasing in) the equilibrium asset value clue variance Sε.

Thus there is on average no net bias, and the manipulator bias distribution w ∼ N(w̄, Sw)

can only effect price accuracy by effecting the informed trader’s choices of clue variance Sε.

The FOC and SOC for the choice of Si are ¯̄π′

i(Si) = 0 and ¯̄π′′

i (Si) ≤ 0, where these

expressions hold constant β, η, Sε, λ, γ, γ0, while allowing βi, ηi to vary with Si. We assume

that c′′(Si) is large enough to induce a strict interior optimum, so that ¯̄π′′

i (Sε) < 0, Sε < ∞.

Solving equations 8, 9, and 10 gives a quadratic equation, whose solution is

β = β0 ±
√

β2
0 + SX/N(Sv + Sε) (11)

where

β0 =
r(N + 1 + 2Sε/Sv)

2N(Sv + Sε)
.

The negative sign solution violates the SOC on x∗

i (λ > 0), so only the positive sign solution

is valid.

Equations 10 and 11 show that an equilibrium exists, with λ and β finite and non-zero,

when any one of Sl, Sw, or r is non-zero (and all are finite). Thus liquidity trading is not

required to produce a prediction market equilibrium; a manipulator with unknown bias or

any trader irrationality can substitute as a source of noise trading.
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We are interested in how the price error Φ changes as we change the parameters (k, w̄, Sw, Sδ)

that describe the manipulator. We already know that w̄ has no effect on prices. Let us now

consider a proportional variation of Sw and Sδ together. That is, let us hold ρ constant while

we increase Sw, keeping a proportional Sδ = Sw(1− ρ)/ρ. This variation plausibly describes

a change to situation with “more” manipulation and similar clues about such manipulation.

We can show that as Sw and Sδ increase together in this way, the equilibrium trader clue

error Sε will decrease, lowering average price error Φ.

Theorem 2 Changes in the mean manipulator bias w̄ have no effect whatsoever on prices.

When the variance of manipulator bias Sw and bias clue error Sδ increase in the same

proportion, trader asset clue variance Sε and price error Φ both decrease.

Proof The first claim follows trivially because w̄ only effects τ , which does not effect

price P . Regarding the second claim, if we define π̂(Si) ≡ ¯̄πi(Si)+c(Si), then the FOC for Si

can be written c′ = π̂′ = −λβ2
i and the SOC can be written c′′ ≥ π̂′′, where only βi, ηi vary

with Si. If we differentiate this FOC with respect to Sw and collect terms appropriately, we

find

(π̂′′ − c′′)
dSε

dSw

= −
∂

∂Sw

∣

∣

∣

∣

∣

Sε

π̂′ =
∂

∂Sw

∣

∣

∣

∣

∣

Sε





β0 +
√

β2
0 + SX

N(Sv+Sε)

N − 1 + 2/η



 . (12)

In the far right term, when Sε is held constant then only SX depends on Sw. So if we assume

a strict interior optimum of Si, with the SOC holding strictly (π̂′′ − c′′ > 0), we must have

−sign

[

dSε

dSw

]

= sign

[

∂SX

∂Sw

∣

∣

∣

∣

∣

Sε

]

Substituting proportional variation of Sw and Sδ into our expression for SX, and differenti-

ating, we find

∂SX

∂Sw

∣

∣

∣

∣

∣

Sε

(

1 + 4kSw(2 − ρ)
Nρ(1 − ρ) + (2 − ρ)2

(Nρ + 2(2 − ρ)(1 + kλ))3

∂λ

∂SX

∣

∣

∣

∣

∣

Sε

)

=
Nρ(1 − ρ) + (2 − ρ)2

(Nρ + 2(2 − ρ)(1 + kλ))2
.
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If we take the derivative of λ with respect to SX, we can rearrange and find that SX increases

in Sw, and hence Sε and Φ decrease in Sw, when

1 >
β − 2β0

β − β0

×
2(2 − ρ)kλ

Nρ + 2(2 − ρ)(1 + kλ)
×

Sw

Sw + Sl
(Nρ+2(2−ρ)(1+kλ))2

Nρ(1−ρ)+(2−ρ)2

.

The right hand side here is a product of three non-negative terms, each of which is no greater

than one, and one of which (the middle) is strictly less than one. QED.

Discussion

These results may seem surprising at first, but should become less so once one recognizes

the commonality between manipulators and other noise traders, and once one distinguishes

between ex ante and ex post manipulation.

In ordinary financial markets, many traders base their trades on private information

about common asset value, and so market makers who set prices try to infer common asset

value from the set of trades. Such markets, however, also include noise trades, i.e., trades

best explained by something other than information about common asset value. Holding all

else constant, each noise trade randomly disturbs the trade set, and would seem to reduce

the ability of observers to infer information about the asset value from that trade set.

Since the largest financial markets have the most and largest noise trades, one might

expect such markets to also have the least accurate prices. But in fact the largest financial

markets tend on average to have the most accurate and informative prices. The key to

resolving this conflict is to see that all else is not equal. Other traders who anticipate a

larger volume of noise trades change their trading behavior in response.

First, market makers who set prices adjust their interpretation of the trade set to take

into account any expected imbalance of noise trades. For example, if on a certain day, tax

incentives will make noise traders tend to sell more than they buy of a particular asset, then

observing more total sales than buys will not by itself be taken as a negative sign about that
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asset. It will only be a bad sign if there are even more sales, relative to buys, than expected.

Second, non-noise traders with private information about common asset value will in-

crease the volume of their trades to compensate for the larger volume of noise trades. Since

this larger volume increases their profit from using any particular source of information,

these traders also respond by increasing their investment in information. Together, these

effects can easily explain why high volume financial markets have better price accuracy.

Now consider a manipulator. All else equal, a manipulator who has a different target

price or a different strength of preference for that target will make a different manipulation

trade. If this realized manipulation preference is uncorrelated with the common asset value,

the resulting trade is a noise trade, in the relevant sense of being best explained by something

other than information about the asset value. So as with other kinds of noise trades, we

expect market makers who set prices to correct for any expected imbalance in manipulation

trades. If manipulators are expected to on average buy to push prices up, then market

makers will only let prices rise if there are even more extra buys than expected.

Holding constant all other trading behavior, it is clear that ex post manipulation must

be feasible, in the sense that the final price will in fact vary predictably with details of the

manipulator’s actual trade. If the manipulator buys more, for example, then the price will in

fact be higher. This does not, however, imply the feasibility of ex ante manipulation, i.e., that

prices become on average more distorted or less accurate with the introduction of a more

motivated or varied manipulator. When we average over the “noise” of different possible

manipulator desires, prices can become more accurate due to other traders anticipating and

responding to manipulator trades.

Of course the fact that we have a particular model illustrating these results hardly implies

that these results always hold in every context. Our model assumes risk-neutrality, normally

distributed values and signal errors, interior choices of information quantity, only quantal-

response-type irrationality, no meta-signals about the signals of other agents, no transaction

costs of trading, no budget constraints, and a single rational manipulator with quadratic

manipulation preferences and a commonly known strength of desire to manipulate. However

13



convenient these assumptions may have been for solving the model, one can reasonably

question the empirical relevance of models based on them.

We have, for example, assumed away budget constraints, yet budget constraints are

clearly an important feature of many real prediction markets, such as the Iowa Electronic

Exchange. Budget constraints limit both the trades of a manipulator, and of those who

intend to counter manipulator trades, and so manipulation may be more feasible when the

first group is less constrained than the second. For example, when all traders face the same

budget limit, then there could be problems if most traders were part of a conspiracy pursuing

a common manipulation objective.

Consider also risk-aversion, which can function much like a budget limit in limiting trades.

On the one hand, prediction markets almost invariably feature small trading volumes and

relatively small stakes. As Rabin (2000) argues, imputing substantial risk aversion to agents

in such low stakes environments requires quite implausible global levels of risk aversion. On

the other hand, many kinds of small stakes laboratory and field behavior are often said to

be best explained via something akin to risk aversion. Once we have a better models of such

behavior, we will want to apply such models to small stakes prediction markets.

The assumption of normal distributions for uncertain asset value and signal errors is

clearly less general than one would like. But, as is well known in the market microstructure

literature, these models become vastly more complex with most other distributions. We still

know relatively little about non-normal cases.

Our model focuses on a prediction market with a single manipulator, but we believe

(though we have not proven) that similar, if more complex, results follow when our model is

modified to have many manipulators with differing target prices t and strengths of desire k.

The linear trading behavior of each manipulator should add up to a linear behavior for the

group, a behavior equivalent to that of a single manipulator with some effective target price

t̃ and strength of desire k̃. Normally distributed signals about individual targets should also

be equivalent to a normally distributed signal about the effective group target.
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Conclusion

The novelty, complexity and anonymity of prediction markets have lead some observers to

fear that they will be misused. One typical concern is that traders will commit acts of

sabotage or terrorism in order to earn money in the market. Another is that traders will

take losses in these markets in order to deceive decision makers. While the low volume of

prediction markets limits their likely effect on extra-market behavior, that low volume seems

to also make it cheap for traders to manipulate perceptions with their trades. This has led

to fears that manipulators may decrease the predictive accuracy of prediction market prices.

Historical, field, and laboratory data, however, have usually failed to find substantial

effects of such manipulation on average price accuracy. Since previous models have found

that increases in noise trading can increase the accuracy of thin markets, by increasing the

rewards to informed trading, we might hypothesize that manipulators are like noise traders,

in that both make trades based on considerations other than their best estimate of the asset

value.

This paper has presented a standard Kyle-style market microstructure model that for-

mally illustrates this idea. Adapting this standard model to the case of a low stakes pre-

diction market, and adding in a manipulator, we find that a manipulator can substitute for

a liquidity trader or for trader irrationality to produce a prediction market equilibrium. A

manipulator with a known target price preference has no effect on the market price, but one

whose target price is unknown is much like a noise trader with an unknown trading quantity.

The prospect of trading against someone who trades on non-asset-value considerations can

entice other traders to become better informed, increasing average price accuracy.

While the social desirability of prediction markets remains an open question, this model

suggests that concerns about manipulators reducing average price accuracy may be over-

stated.
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Endnotes

1. Actually, PAM would have focused on aggregate geopolitical trends, such as how the

chance of political unrest in Saudi Arabia depends on whether US troops leave there

(Polk, Hanson, Ledyard, and Ishikida 2003).

2. Senators, reporters, and economists complained:

Terrorists themselves could drive up the market for an event they are plan-

ning and profit from an attack, or even make false bets to mislead intelligence

authorities. U.S. Senators Wyden and Dorgan (2003), Press Release, July

28, 2003.

Would-be assassins and terrorists could easily use disinformation and clever

trading strategies to profit from their planned misdeeds while distracting

attention from their real target. Steven Pearlstein (2003), Washington Post,

July 30, 2003.

Trading . . . could be subject to manipulation, particularly if the market has

few participants – providing a false sense of security or . . . alarm. . . . the

lack of intellectual foundation or a firm grasp of economic principles - or the

pursuit of other agendas - has led to a proposal that almost seems a mockery

of itself. Joseph Stiglitz (2003), Los Angeles Times, July 31, 2003.

3. Other kinds of “manipulation” not considered here include hidden actions that influ-

ence events, deceptive cheap talk intended to influence prices (Allen and Gale 1992),

and strategic contrary trading made by an informed trader to control the rate at which

his information is revealed (Chakraborty and Yilmaz 2004).

4. Of course it is possible for the average social harm from price errors to increase even

as the average price errors decrease, if social harm varies in complex ways with price

16



errors. As we lack a model of social harm from price errors, we do not further consider

this possibility here.

5. This ends up being the same as having a preference over the beliefs of outside observers.

6. We introduce only one manipulator for simplicity and to study a best case for manipu-

lation. This single trader can represent a group of manipulators with maximal internal

coordination.
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